
Gianluigi Greco

University of Calabria

Process Mining in Complex Domains

joint work with Antonella Guzzo and Luigi Pontieri

Information (Computational) Systems in the Big-Data Era

 Eindhoven University of Technology, 14 May 2012

An Application Domain

An Application Domain

An Application Domain

Gioia Tauro

Italian harbor acting as a maritime freight hub (about 4

millions of containers per year).

Berth planning

Routing

…

Yard planning

5

Yard Planning

The mission is to offer high quality of service to the navigation lines,

while reducing the overall cost of internal logistic processes.

Critical performance measures are

the latency time elapsed when serving a ship (where, typically, a
number of containers are both discharged off and charged on), and

the overall costs of moving the containers around the yard.

A key factor impacting on both these measures is the number of

‘‘house-keeping” moves that are applied to the containers.

Yard Planning

The mission is to offer high quality of service to the navigation lines,

while reducing the overall cost of internal logistic processes.

Critical performance measures are

the latency time elapsed when serving a ship (where, typically, a
number of containers are both discharged off and charged on), and

the overall costs of moving the containers around the yard.

A key factor impacting on both these measures is the number of

‘‘house-keeping” moves that are applied to the containers.

Minimize house-keeping moves

Yard Planning

The mission is to offer high quality of service to the navigation lines,

while reducing the overall cost of internal logistic processes.

Critical performance measures are

the latency time elapsed when serving a ship (where, typically, a
number of containers are both discharged off and charged on), and

the overall costs of moving the containers around the yard.

A key factor impacting on both these measures is the number of

‘‘house-keeping” moves that are applied to the containers.

Minimize house-keeping moves

Understand the process, first!

The yard

slot

The yard

block

The yard

sector

The yard

Life Cycle

The container is initially unloaded from the ship, with the

help of a crane

It is first stocked within a zone near to the dock

It is carried to some slot of the yard, via

cranes

straddle-carriers (a vehicle capable of picking and carrying a
container, by possibly lifting it up)

multi-trailers (a sort of train-like vehicle that can transport
many containers

At boarding time, the container is first placed in a yard

area close to the dock

Finally, it is loaded on the cargo by means of a crane

Challenges

Logs from transactional systems

Logs mix different usage scenarios

Traces are stored at different level of details

Noise

Huge volume of data

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

(1) Clustering

log

traces

basic WF

Schema

Partitioning
&

Refinement

Disjunctive Workflow Schema

CF Graph

induction

…

(1) Clustering

log

traces

basic WF

Schema

Partitioning
&

Refinement

Disjunctive Workflow Schema

CF Graph

induction

…

Concrete Workflow

Schemas

(2) Abstraction

The tree describes the process
behavior at different level of details

At the highest level of detail (leaves of
the tree), the schemas could be used to
support the design of concrete workflow
models

At lower levels, the schemas are
abstract views over heterogeneous
behaviors, which could support analysis
and monitoring tasks

 Basic Idea:

1) The hierarchy is restructured bottom-up at different levels

2) Produce an abstraction dictionary

(3) Classification

Basic idea:

find a comprehensive representation for the process, describing both
structural and non-structural aspects

A rule-based classifier is induced to discriminate among given
structural clusters, based on process/task data

help interpreting/predicting the different ways of executing the
process, based on properties of process/task instances

clustering

classifier induction

a
1

a
2

c
1

c
4

a
3

c
3

c
2

Decision tree

Structural patterns are identified

(4) Outlier Detection

n

m

o

p2

d

e

g

p1

fork s-pattern

join s-pattern

log

Structural patterns are identified

They are co-clustered with the traces, based on what
an extent these latter support them

Mark as outlier each trace t such that either

t has not been assigned to any cluster

t belongs to a cluster whose cardinality is
“appreciably smaller” than the average cluster size

S-patterns
Co-Clusters

+

outliers

(4) Outlier Detection

n

m

o

p2

d

e

g

p1

fork s-pattern

join s-pattern

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

Process Mining

Process

Design
Requirements Implementation

Process Mining

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining + Background Knowledge

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Process Mining + Background Knowledge

Process

Design
Requirements Implementation

abcdfg

abcfd

abcdfe

….

Process Mining

Knowledge + Big Data

More Knowledge

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

Process Models

Dependency Graph: directed graphs whose nodes one-to-one correspond with the activities and such

that an edge from an activity a to an activity b means that, in some enactment we expect that an actual

flow of information can occur from a to b.

Process Models

Dependency Graph: directed graphs whose nodes one-to-one correspond with the activities and such

that an edge from an activity a to an activity b means that, in some enactment we expect that an actual

flow of information can occur from a to b.

abcde

acbde

Example

Process Models

Dependency Graph: directed graphs whose nodes one-to-one correspond with the activities and such

that an edge from an activity a to an activity b means that, in some enactment we expect that an actual

flow of information can occur from a to b.

abcde

acbde

Example

{abcde,acbde}

{abcde,acbde}

{abcde,acbde}

Process Models

Dependency Graph: directed graphs whose nodes one-to-one correspond with the activities and such

that an edge from an activity a to an activity b means that, in some enactment we expect that an actual

flow of information can occur from a to b.

abcde

acbde

Example

{abcde,acbde}

{abcde,acbde}

{abcde,acbde}

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

{b} c

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

{b} c

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

{b} c

{c,b} e

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

{b} c

{c,b} e

{c} b

Precedence Constarints

Syntax

edge constraint:

path constraint:

negative constraint: , where is a (edge/path) constraint

 Semantics is interpreted over directed graphs

{a,c} d

{b} c

{c,b} e

{c} b

Revisiting Process Discovery

Revisiting Process Discovery

Revisiting Process Discovery

Revisiting Process Discovery

A Closer Look

As a result of our formulation, process discovery is

conceptually carried out via:

a learning task (i.e., building all possible dependency
graphs for a given input log), followed by

a reasoning task (i.e., to filter out those graphs that do not
satisfy the precedence constraints defined by the analyst)

A Closer Look

As a result of our formulation, process discovery is

conceptually carried out via:

a learning task (i.e., building all possible dependency
graphs for a given input log), followed by

a reasoning task (i.e., to filter out those graphs that do not
satisfy the precedence constraints defined by the analyst)

exponentially many dependency graphs might

be built in the learning phase

A Closer Look

As a result of our formulation, process discovery is

conceptually carried out via:

a learning task (i.e., building all possible dependency
graphs for a given input log), followed by

a reasoning task (i.e., to filter out those graphs that do not
satisfy the precedence constraints defined by the analyst)

exponentially many dependency graphs might

be built in the learning phase

A two-phase approach is unfeasible

«Compiling» Logs into Constraints

«Compiling» Logs into Constraints

Complexity Analysis

Complexity Analysis

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

CP encoding: preliminaries

The mining of a dependency graph based on precedence constraints is turned

into a constraints satisfaction problem (CSP) or a constraint satisfaction

optimization problem (CSOP)

existing constraint programming platforms can bereused to efficiently compute models

CP encoding: preliminaries

The mining of a dependency graph based on precedence constraints is turned

into a constraints satisfaction problem (CSP) or a constraint satisfaction

optimization problem (CSOP)

existing constraint programming platforms can bereused to efficiently compute models

Formally, a CSP instance is a triple (Var,U,C), where

Var = {X1,...,Xm} is a finite set of variables

U is a function mapping each variable Xi ∈ Var to a domain U(Xi) of values

C is a finite set of constraints, i.e., boolean functions over {Xi1,...,Xik}, such as:

summation constraints, of the form: Σ wj× Xj ≥ γ

reified (summation) constraints, of the form: : Σ wj × Xj ≥ γ ↔ X

… where X is a boolean variable, while γ and all wj are real numbers

CP encoding: preliminaries

The mining of a dependency graph based on precedence constraints is turned

into a constraints satisfaction problem (CSP) or a constraint satisfaction

optimization problem (CSOP)

existing constraint programming platforms can bereused to efficiently compute models

Formally, a CSP instance is a triple (Var,U,C), where

Var = {X1,...,Xm} is a finite set of variables

U is a function mapping each variable Xi ∈ Var to a domain U(Xi) of values

C is a finite set of constraints, i.e., boolean functions over {Xi1,...,Xik}, such as:

summation constraints, of the form: Σ wj× Xj ≥ γ

reified (summation) constraints, of the form: : Σ wj × Xj ≥ γ ↔ X

… where X is a boolean variable, while γ and all wj are real numbers

An assignment θ for the CSP instance (Var,U,C) is a function mapping each

variable Xi ∈ Var to an element of its associated domain U(Xi)

θ is a solution to (Var,U,C) if it satisfies all the constraints in C

CP encoding: preliminaries

The mining of a dependency graph based on precedence constraints is turned

into a constraints satisfaction problem (CSP) or a constraint satisfaction

optimization problem (CSOP)

existing constraint programming platforms can bereused to efficiently compute models

Formally, a CSP instance is a triple (Var,U,C), where

Var = {X1,...,Xm} is a finite set of variables

U is a function mapping each variable Xi ∈ Var to a domain U(Xi) of values

C is a finite set of constraints, i.e., boolean functions over {Xi1,...,Xik}, such as:

summation constraints, of the form: Σ wj× Xj ≥ γ

reified (summation) constraints, of the form: : Σ wj × Xj ≥ γ ↔ X

… where X is a boolean variable, while γ and all wj are real numbers

An assignment θ for the CSP instance (Var,U,C) is a function mapping each

variable Xi ∈ Var to an element of its associated domain U(Xi)

θ is a solution to (Var,U,C) if it satisfies all the constraints in C

In addition to constraints, in a CSOP instance, an optimal solution is searched,

minimizing a linear cost function of the form

Basic encoding algorithm PCtoCSP

A given set of precedence constraints over activities {a1, ..., an} is encoded into a

CSP instance, containing a series of variables for each pair ai and aj of activities:

an “edge” variables e[ai,aj],

“path” variables p[ai,aj]
l and “path-through” variables p[ai,ak,aj]

l, for k,l = 1..n, where l
denotes the maximum number of edges in the respective path

Basic encoding algorithm PCtoCSP

A given set of precedence constraints over activities {a1, ..., an} is encoded into a

CSP instance, containing a series of variables for each pair ai and aj of activities:

an “edge” variables e[ai,aj],

“path” variables p[ai,aj]
l and “path-through” variables p[ai,ak,aj]

l, for k,l = 1..n, where l
denotes the maximum number of edges in the respective path

CP solving algorithms

The computation of the dependency graph for a given set of precedence

constraints is carried out by PC-SAT solver module, based on Gecode

CP solving algorithms

The computation of the dependency graph for a given set of precedence

constraints is carried out by PC-SAT solver module, based on Gecode

As a basic solution scheme, PC-CSP uses backtracking, while PC-CSOP

uses a branch-and-bound approach.

CP solving algorithms

The computation of the dependency graph for a given set of precedence

constraints is carried out by PC-SAT solver module, based on Gecode

As a basic solution scheme, PC-CSP uses backtracking, while PC-CSOP

uses a branch-and-bound approach.

During the exploration, all solution algorithms alternate two kinds of steps:

branching, where a value is assigned to some variables as in standard search
methods, and

constraint propagation, where different constraints can be iteratively applied as
to shrink the space of the possible dependency graphs and propagate the
consequences of choices made in the previous steps

CP solving algorithms

The computation of the dependency graph for a given set of precedence

constraints is carried out by PC-SAT solver module, based on Gecode

As a basic solution scheme, PC-CSP uses backtracking, while PC-CSOP

uses a branch-and-bound approach.

During the exploration, all solution algorithms alternate two kinds of steps:

branching, where a value is assigned to some variables as in standard search
methods, and

constraint propagation, where different constraints can be iteratively applied as
to shrink the space of the possible dependency graphs and propagate the
consequences of choices made in the previous steps

The PC-SAT solver module exploits standard Gecode’s propagators for all

kinds of constraints required in our framework.

CP solving algorithms

The computation of the dependency graph for a given set of precedence

constraints is carried out by PC-SAT solver module, based on Gecode

As a basic solution scheme, PC-CSP uses backtracking, while PC-CSOP

uses a branch-and-bound approach.

During the exploration, all solution algorithms alternate two kinds of steps:

branching, where a value is assigned to some variables as in standard search
methods, and

constraint propagation, where different constraints can be iteratively applied as
to shrink the space of the possible dependency graphs and propagate the
consequences of choices made in the previous steps

The PC-SAT solver module exploits standard Gecode’s propagators for all

kinds of constraints required in our framework.

Ad-hoc branching policies have been implemented:

we first branch on the edge variables before considering path variables;

all variables p[ai,aj]
l are always considered before those of the form p[ai,ak,aj]

 l

Heuristics

In order to pragmatically reduce the size of the search space and

speed-up the computation, three types of heuristics can be used:

1.Redundancy Reduction. Two policies, relying on two different

notions of constraint subsumption:

A constraint S → a is filtered out if there is another precedence
constraint S′ → a such that S′ ⊃ S

A constraint S → a is filtered out if there exist another constraint S′′ → a
such that S′′ ⊂ S

this (weaker) notion allows for recognizing skip-like control flow structures,
where some synchronizing (i.e. join) activity a can be activated by an activity
in S \ S′′ or, optionally, by an activity in S ∩ S′′.

Heuristics

In order to pragmatically reduce the size of the search space and

speed-up the computation, three types of heuristics can be used:

1.Redundancy Reduction. Two policies, relying on two different

notions of constraint subsumption:

A constraint S → a is filtered out if there is another precedence
constraint S′ → a such that S′ ⊃ S

A constraint S → a is filtered out if there exist another constraint S′′ → a
such that S′′ ⊂ S

this (weaker) notion allows for recognizing skip-like control flow structures,
where some synchronizing (i.e. join) activity a can be activated by an activity
in S \ S′′ or, optionally, by an activity in S ∩ S′′.

2.Closed World Assumption (CWA). In order to reduce the size of the

search space, further constraints are introduced as follows:

an edge (x, y) is not permitted to appear in the model if activity y never
follows activity x, (directly or ndirectly), in any trace of the log.

In the case of unfolding, CWA constraints are expressed over real
activities, rather than on their unfolded versions.

Heuristics: Constraint Size reduction

The nr. of elements in constraint bodies is a key factor for scalability.

Let { t[1], ..., t[i −1] } → t[i] be a constraint in the set π(t) of precedence

constraints derived from a given trace t[1], ..., t[n].

Three strategies for shrinking the size of the body (i.e., left hand part):

a) Maximal horizon H over past activities:

remove each t[j] s.t. j <i−H, from { t[1], ..., t[i−1] }

b) Two kinds of lower thresholds for edge weights: σabs (“absolute”),
and σr2b (“relative to best predecessor”, like in Heuristics Miner)

remove any t[j] such that weight(t[j],t[i]) < σabs

remove any t[j] s.t. weight(t[j],t[i]) < σr2b × argmax1≤k<I { weight(t[k], t[i]) }

c) Maximum number Ktop of activities that can occur in the body:

at most Ktop elements are kept, with top dependency scores (w.r.t. t[j])

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

Outline

Process Mining Approaches @UniCAL

Another Challenge in Process Mining

Formal Framework

Implementation Issues

Application Domain

Thank you!

