Structural Decomposition Methods and Islands of Tractability for NP-hard Problems

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Outline of PART II

Beyond Tree Decompositions Applications to Databases and CSPs

Structural and Consistency Properties

Outline of Part III

Applications to Optimization Problems
Application: Nash Equilibria
Application: Coalitional Games
Application: Combinatorial Auctions
Appendix: Beyond Hypertree Width

Outline of PARTI

Introduction to Decomposition Methods
Iree Decompositions

of Tree Decompositions

Inherent Problem Complexity

- Problems decidable or undecidable.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

Inherent Problem Complexity

- Problems decidable or undecidable.
- We concentrate on decidable problems here.
- A problem is os complex as the best possible algorithm which solves it.

Number of steps it takes for input of size n

Graph Three-colorability

\(\left\{\begin{array}{l}Instance: A graph G .
Question: Is G 3-colorable?\end{array}\right.\)

Examples of instances:

Graph Three-colorability

\(\left\{\begin{array}{l}Instance: A graph G .
Question: Is G 3 -colorable?\end{array}\right.\)

Examples of instances:

- NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
- Randomized local search
- Approximation
- Identification of easy (=polynomial) subclasses.

Approaches for Solving Hard Problems

- NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
- Randomized local search
- Approximation
- Identification of easy (=polynomial) subclasses.

Identification of Polynomial Subclasses

- High complexity often arises in "rare" worst case instances
- Worst case instances exhibit intricate structures
- In practice, many input instances have simple structures
- Therefore, our goal is to
- Define polynomially solvable subclasses (possibly, the largest ones)
- Prove that membership testing is tractable for these classes
- Develop efficient algorithms for instances in these classes
- The evil in Computer science is hidden in (vicious) cycles.
- We need to get them under control!
- Decompositions: Tree-Decomposition, path decompositions, hypertree decompositions,...
Exploit bounded degree of cyclicity.

Graph Three-colorability

\(\left\{\begin{array}{l}Instance: A graph G .
Question: Is G 3 -colorable?\end{array}\right.\)

Examples of instances:

Problems with a Graph Structure

- With graph-based problems, high complexity is mostly due to cyclicity.

Problems restricted to acyclic graphs are often trivially solvable ($\rightarrow 3 \mathrm{COL}$).

- Moreover, many graph problems are polynomially solvable if restricted to instances of low cyclicity.

Problems with a Graph Structure

- With graph-based problems, high complexity is mostly due to cyclicity.

Problems restricted to acyclic graphs are often trivially solvable ($\rightarrow 3 \mathrm{COL}$).

- Moreover, many graph problems are polynomially solvable if restricted to instances of low cyclicity.

How can we measure the degree of cyclicity?

How much "cyclicity" in this graph?

- Suggest a measure of distance from an acyclic graph

Three Early Approaches

Feedback vertex set
Set of vertices whose deletion makes the graph acyclic

The feedback vertex number

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

FVN: Properties

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

$$
f w n(G)=3
$$

- Is this really a good measure for the "degree of acyclicity" ?
- Pro: For fixed k we can check efficiently whether $f w n(G) \leq k$
- What does it mean efficiently when parameter k is fixed?

Classical Computational Complexity

 poly(n)

Butas.

- In many problems there exists some part of the input that are quite small in practical applications
- Natural parameters
- Many NP-hard problems become easy if we fix such parameters (or we assume they are below some fixed threshold)
- Positive examples: k-vertex cover, k-feedback vertex set, k-clique, ...
- Negative examples: k-coloring, k-CNF, ...

Parameterized Complexity

- Initiated by Downey and Fellows, late '80s

$\mathrm{n}=$ input size

Typical assumption: FPT $\neq \mathrm{W}[1]$

W[1]-hard problems: k-clique

- k-clique is hard w.r.t. fixed parameter complexity!

INPUT: A graph $G=(V, E)$
PARAMETER: Natural number k

- Does G have a clique over k vertices?

Problem	$f(k)$	vertices in kernel	Reference/Comments
Vertex Cover	1.2738^{k}	$2 k$	1
Connected Vertex Cover	2^{k}	no $k^{(1)}$	26, randomized algorithm
Multiway Cut	2^{k}	not known	21
Directed Multiway Cut	$2^{O\left(k^{s}\right)}$	no \$k^\{O(1) \} \$	34
Almost-2-SAT (VC-PM)	4^{k}	not known	21
Multicut	$2^{O\left(k^{s}\right)}$	not known	22
Pathwidth One Deletion Set	$4.65{ }^{k}$	$O\left(k^{2}\right)$	28
Undirected Feedback Vertex Set	$3.83{ }^{k}$	$4 k^{2}$	2, deterministic algorithm
Undirected Feedback Vertex Set	3^{k}	$4 k^{2}$	23, randomized algorithm
Subset Feedback Vertex Set	$2^{O(k \log k)}$	not known	29
Directed Feedback Vertex Set	$4^{k} k$!	not known	27
Odd Cycle Transversal	3^{k}	$k^{O(1)}$	24, randomized kernel
Edge Bipartization	2^{k}	$k^{O(1)}$	25, randomized kernel
Planar DS	$2^{11.98 \sqrt{k}}$	$67 k$	3
1 -Sided Crossing Min	$2^{O(\sqrt{k} \log k)}$	$O\left(k^{2}\right)$	4
Max Leaf	$3.72{ }^{\text {k }}$	$3.75 k$	5
Directed Max Leaf	3.72^{k}	$O\left(k^{2}\right)$	6
Set Splitting	1.8213^{k}	k	7
Nonblocker	2.5154^{k}	$5 k / 3$	8
Edge Dominating Set	2.3147^{k}	$2 k^{2}+2 k$	10
k-Path	4^{k}	no $k^{O(1)}$	11a, deterministic algorithm
k-Path	$1.66{ }^{k}$	no $k^{O(1)}$	11b, randomized algorithm
Convex Recolouring	4^{k}	$O\left(k^{2}\right)$	12
VC-max degree 3	1.1616^{k}		13
Clique Cover	$2^{2^{k}}$	2^{k}	14
Clique Partition	$2^{k^{2}}$	k^{2}	15
Cluster Editing	$1.62{ }^{k}$	$2 k$	16, weighted and unweighted
Steiner Tree	2^{k}	no $k^{O(1)}$	17
3-Hitting Set	$2.076{ }^{k}$	$O\left(k^{2}\right)$	18

FPT Tractability of Feedback Vertex Set

INPUT: A graph $G=(V, E)$
PARAMETER: Natural number k

- Does G has a feedback vertex set of k vertices?
- Naïve algorithm: $O\left(n^{k+1}\right)$ Not good!
- Solvable in $O\left((2 k+1)^{k} n^{2}\right)$ [Downey and Fellows '92]
- A practical randomized algorithm runs in time: $O\left(4^{k} \mathrm{kn}\right)$ [Becker et al 2000]

Feedback Vertex Set: troubles

Feedback vertex number
Min. number of vertices I need to eliminate to make the graph acyclic

$$
\mathrm{fwn}(\mathrm{G})=3
$$

Is this really a good measure for the "degree of acyclicity"?
\int Pro: For fixed k we can check in quadratic time if $f w n(G)=k \quad(F P T)$.
Con: Very simple graphs can have large FVN:

Feedback edge number

Feedback edge number \rightarrow same problem.

- Well known graph properties:
- A biconnected component is a maximal subgraph that remains connected after deleting any single vertex
- In any graph, its biconnected components form a tree

Maximum size of biconnected components

$$
b c w(G)=4
$$

Pro: Actually bcw(G) can be computed in linear time

$$
b c w(G)=4
$$

$\left\{\begin{array}{l}\text { Pro: Actually } \operatorname{bcw}(G) \text { can be computed in linear time } \\ \text { Con: Adding a single edge may have tremendous effects to bcw(G) }\end{array}\right.$

Maximum size of biconnected components

$\left\{\begin{array}{l}\text { Pro: Actually } \operatorname{bcw}(\mathrm{G}) \text { can be computed in linear time } \\ \text { Con: Adding a single edge may have tremendous effects to } \mathrm{bcw}(\mathrm{G})\end{array}\right.$

Can we do better?

- Hint:
- why should clusters of vertices be of this limited kind?
- Use arbitrary (possibly small) sets of vertices!
- How can we arrange them in some tree-shape?
- What is the key property of tree-like structures (in most applications)?

Can we do better?

- Hint:
- why should clusters of vertices be of this limited kind?
- Use arbitrary (possibly small) sets of vertices!
- How can we arrange them in some tree-shape?
- What is the key property of tree-like structures, in applications?

Outline of PARTI

Introduction to Decomposition Methods

Tree Decompositions

of Tree Decompositions

Tree Decompositions [Robertson \& Seymour '86]

Tree Decompositions [Robertson \& Seymour '86]

Graph G

Tree decomposition of width 2 of \mathbf{G}

Tree Decompositions [Robertson \& Seymour '86]

Graph G

Tree decomposition of width 2 of \mathbf{G}

- Every edge realized in some bag
- Connectedness condition

Connectedness condition for h

Tree Decompositions and Treewidth

Properties of Treewidth

- $\mathrm{tw}($ acyclic graph $)=1$
- tw(cycle) $=2$
- $\mathrm{tw}(\mathrm{G}+\mathrm{v}) \leq \mathrm{tw}(\mathrm{G})+1$
- $\mathrm{tw}(\mathrm{G}+\mathrm{e}) \leq \mathrm{tw}(\mathrm{G})+1$
- $\mathrm{tw}\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n}-1$
- tw is fixed-parameter tractable (parameter: treewidth)

Outline of PARTI

Decomposition Methods

Tree Decompositions
Applications of Tree Decompositions

1. Prove Tractability of bounded-width instances
a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{w})}\right)$-bounds
b) Fixed-Parameter tractability: $\mathrm{f}(\mathrm{w}) * \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
2. Tool for proving general tractability
a) Prove tractability for both large \& small width
b) Prove all yes-instances to have small width

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances
a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(w)}\right)$-bounds
constraint satisfaction = conjunctive database queries
b) Fixed-Parameter tractability: $\mathrm{f}(\mathrm{w}) * \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
multicut problem

2. Tool for proving general tractability

a) Prove tractability for both large \& small width finding even cycles in graphs - ESO over graphs
b) Prove all yes-instances to have small width the Partner Unit Problem

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances
a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{w})}\right)$-bounds In PART II
b) Fixed-Parameter tractability: $\mathrm{f}(\mathrm{w}) * \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
2. Tool for proving general tractability
a) Prove tractability for both large \& small width
b) Prove all yes-instances to have small width

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{w})}\right)$-bounds
b) Fixed-Parameter tractability: $f(w) * O\left(n^{k}\right)$
2. Tool for proving general tractability
a) Prove tractability for both large \& small width
b) Prove all yes-instances to have small width

An important Metatheorem

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

An important Metatheorem

Courcelle's Theorem [1987]
Let P be a problem on graphs that can be formulated in Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

- Theorem. (Fagin): Every NP-property over graphs can be represented by an existential formula of Second Order Logic. $\mathrm{NP}=\mathrm{ESO}$
- Monadic SO (MSO): Subclass of SO, only set variables, but no relation variables of higher arity. 3 -colorability \in MSO.

Three Colorability in MSO

$$
\begin{aligned}
(\exists R, G, B) \quad[& (\forall x(R(x) \vee G(x) \vee B(x))) \\
& \wedge(\forall x(R(x) \Rightarrow(\neg G(x) \wedge \neg B(x)))) \\
& \wedge \\
& \wedge \\
& \wedge \\
& \wedge(\forall x, y(E(x, y) \Rightarrow(R(x) \Rightarrow(G(x) \vee B(y))))) \\
& \wedge(\forall x, y(E(x, y) \Rightarrow(G(x) \Rightarrow(R(x) \vee B(y))))) \\
& \wedge(\forall x, y(E(x, y) \Rightarrow(B(x) \Rightarrow(R(x) \vee G(y)))))]
\end{aligned}
$$

Courcelle's Theorem: Problems expressible in MSO_{2} are solvable in linear time on structures of bounded treewidth

... and in LOGSPACE [Elberfeld, Jacoby,Tantau]

Example - Graph Coloring

$$
\exists \mathrm{P} \forall \mathrm{x} \forall \mathrm{y}:(\mathrm{E}(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y}))
$$

Master Theorems for Treewidth

Arnborg, Lagergren, Seese '91:
Optimization version of Courcelle's Theorem:
Finding an optimal set P such that $G \mid=\Phi(P)$ is FP-linear over inputs G of bounded treewidth.

Example:

Given a graph $G=(V, E)$
Find a smallest P such that

$$
\forall x \forall y:(\mathrm{E}(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{P}(\mathrm{x}) \not \equiv \mathrm{P}(\mathrm{y}))
$$

Unrestricted Vertex Multicut Problems

H:
S1 T1
S2 T3
S2 T2

Find minimum-cardinality vertex set separating Si from Tj for each tuple $<\mathrm{Si}, \mathrm{Tj}>$ in relation H

Unrestricted Vertex Multicut Problems

H:

S 1 T 1	
s 2	$\mathrm{T3}$
S 2	T 2

Unrestricted Vertex Multicut Problems

Results

[Guo et al. 06] UVMC FPT if |S|, |C| and tree-width fixed
[G. \& Tien Lee] UVMC FPT if overall structure has bounded tw. using master theorem by Arnborg, Lagergren and Seese.

Unrestricted Vertex Multicut Problems

PROOF

Definition 8. On structures $\mathcal{A}=(V, E, H)$ as above, let connects (S, x, y) be defined as follows:

$$
\begin{aligned}
& S(x) \wedge S(y) \wedge \forall P((P(x) \wedge \neg P(y)) \rightarrow(\exists v \exists w(S(v) \wedge S(w) \wedge P(v) \wedge \neg P(w) \wedge E(v, w)))) \\
& u v m c(X) \equiv \forall x \forall y(H(x, y) \rightarrow \forall S(\operatorname{connects}(S, x, y) \rightarrow \exists v(X(v) \wedge S(v))))
\end{aligned}
$$

Minimize X in uvmc
X intersects each set that connects x and y

1. Prove Tractability of bounded-width instances a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{w})}\right)$-bounds b) Fixed-Parameter tractability: $\mathrm{f}(\mathrm{w}) * \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
2. Tool for proving general tractability
a) Prove tractability for both large \& small width
b) Prove all yes-instances to have small width

INPUT: A graph G, a constant k.
QUESTION: Decide whether G has a cycle of length $0(\bmod k)$

In the past century, this was an open problem for a long time.

Carsten Thomassen in 1988 proved it polynomial for all graphs using treewidth as a tool.

Proof Idea

Small Treewidth ($\leq \mathrm{c}$)

"cycle of length 0 (mod k)" can be expressed un MSO
example
$\mathrm{k}=4$

\rightarrow Courcelle's Theorem (but was not known then...)

Large Treewidth (>c)

$\forall \mathrm{k} \exists \mathrm{c}$: each graph G with $\mathrm{tw}(\mathrm{G})>\mathrm{C}$ contains a subdivision of the $f(k)$-grid. [for suitable f]

$\forall n>f(k)$, each subdivision of $f(k)$-grid contains a cycle of length $0(\bmod k)$.

Long Term Research Programme

Determine the complexity of SO fragments over finite structures.

Finite structures: words (strings), graphs, relational databases
Known: $\mathrm{SO}=\mathrm{PH} ; \mathrm{ESO}=\mathrm{NP}$

Which SO-fragments can be evaluated in polynomial time?

Which SO-fragments express regular languages on strings ?

More modestly: What about prefix classes?

A "simple" Facility Placement Problem

Every room should be equipped with a computer.

If a printer is not present in a room, then one should be available in an adjacent room.

No room with a printer should be a meeting room.

Every room is at most 5 rooms distant from a meeting room.
[...]

Simplest Form

Given an office layout as a graph, decide whether the facility placement constraints are satisfiable.

$$
\exists P \exists M \ldots \forall x \exists y((P(x) \vee E(x, y) \& P(y)) \& \ldots
$$

Observe that this is an $\mathrm{E}_{1}{ }^{*}$ ae formula

This leads to the questions:
Are formulas of the type $E_{1}{ }^{*}$ ae or even E^{*} ae polynomially verifiable over graphs?

What about other fragments of ESO or SO?

Simplest Form

This motivates the following question:
Can formulas in classes such as $\mathrm{E}_{2}\left(\mathrm{ae}_{2}\right)$ or even $\operatorname{ESO}\left(\mathrm{e}^{*} \mathrm{ae}^{*}\right)$ be evaluated in polynomial time over strings?

More generally:
Which ESO-fragments admit polynomial-time model checking over strings ?

A similar, even more important question can be asked for graphs and general finite structures:

Which ESO-fragments admit polynomial-time model checking over graphs or arbitrary finite structures?

Complexity of ESO Prefix Classes

Directed graphs (or undirected graphs with self-loops):
[G.,Kolaitis, Schwentick 2000]

Undirected graphs w/o self-loops:

Pattern graph P1

Graph G

Saturation of G via P1:

Relating $E_{1}^{*} a e$ to the Saturation Problem

Pattern graph P2

Graph G

Saturation of \mathbf{G} via $\mathbf{P} 2$ impossible!
No cycle of length $0(\bmod 4)$ in G.

Graph G

Saturation of G via P1:

Relating E_{1}^{*} ce to the Saturation Problem

$$
\begin{aligned}
\exists & P_{1}, P_{2} \forall x \exists y \\
& {\left[\left(E(x, y) \wedge P_{1}(x) \wedge P_{2}(x) \wedge P_{1}(y) \wedge \neg P_{2}(y)\right) \vee\right.} \\
& \left(E(x, y) \wedge P_{1}(x) \wedge \neg P_{2}(x) \wedge \neg P_{1}(y) \wedge \neg P_{2}(y)\right) \vee \\
& \left.\left(\neg E(x, y) \wedge \neg P_{1}(x) \wedge \neg P_{2}(x) \wedge P_{1}(y) \wedge P_{2}(y)\right)\right]
\end{aligned}
$$

corresponding pattern graph

1. Prove Tractability of bounded-width instances a) Genuine tractability: $\mathrm{O}\left(\mathrm{n}^{\mathrm{f}(\mathrm{w})}\right)$-bounds
b) Fixed-Parameter tractability: $\mathrm{f}(\mathrm{w}) * \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
2. Tool for proving general tractability
a) Prove tractability for both large \& small width
b) Prove all yes-instances to have small width

Partner Units Scenario

- Track People in Buildings
- Sensors on Doors, Rooms Grouped into Zones

- Assigning Sensors and Zones to Control Units

- Respect Adjacency Constraints

Bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}) \mathrm{V}=\mathrm{Va} \cup \mathrm{Vb}$;
$\mathrm{Va}=\{\mathrm{a} 1, \ldots, \mathrm{ar}\}$,
$\mathrm{Vb}=\{\mathrm{b} 1, \ldots, \mathrm{bs}\}$,
E : edges btw. Va and Vb

sensors
zones

Replace connections by connections to units
ai \bigcirc
O bj

The Partner-Unit Problem

Bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}) \mathrm{V}=\mathrm{Va} \cup \mathrm{Vb} ; \mathrm{Va}=\{\mathrm{a} 1, \ldots, \mathrm{ar}\}, \mathrm{Vb}=\{\mathrm{b} 1, \ldots, \mathrm{bs}\}, \mathrm{E}$: edges btw. Va and Vb

Replace connections by connections to units

The Partner-Unit Problem

Bipartite graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}) \mathrm{V}=\mathrm{Va} \cup \mathrm{Vb} ; \mathrm{Va}=\{\mathrm{a} 1, \ldots, \mathrm{ar}\}, \mathrm{Vb}=\{\mathrm{b} 1, \ldots, \mathrm{bs}\}, \mathrm{E}$: edges btw. Va and Vb

Replace connections by connections to units
OR

The Partner-Unit Problem

A No-Instance of Partner-Unit

Assume one node a is connected to 7 nodes
$\mathrm{b} 1, \ldots, \mathrm{~b} 7$ in G . Then instance G is unsolvable.

Thus, no vertex can have more than 6 neighbours in G.

The PU Problem(s)

- PU DECISION PROBLEM (PUDP):

Given G , is there a G^{*} satisfying the constraints?
(Number of units irrelevant.)

- PU SEARCH PROBLEM (PUSP)

Given G, find a suitable G^{*} whenever possible.

- PU OPTIMIZATION PROBLEM (PUOP)

Given G, find a suitable G^{*} with minimum
number of units |U| (whenever possible).

ASSUMPTION: G is connected.

Note: This assumption can be made wlog, because the PUDP can be otherwise decomposed into a conjunction of independent PUDPs, one for each component.

Lemma 1: If G is connected and solvable, then there exists a solution G^{*} in which the unit-graph $U G=G^{*}[U]$ is connected.

Topology of the Unit-Graph

Lemma 2: If G is connected and solvable, then there exists a solution G^{*} whose unit graph is a cycle.

Note: We still don't know |U|, but we may just try all cycles of length max(|Va|,|Vb|)/2 to length |Va|+|Vb|. There are only linearly many! (Guessable in logspace)

Result

Theorem:

Assume G is solvable through solution G^{*} with $|U|=n$ and having unit function f. Then:
(1) $\mathrm{pw}(\mathrm{G}) \leq 11$
(2) $\mathrm{tw}(\mathrm{G}) \leq 5$
(3) There is a path decomposition $\mathrm{T}=(\mathrm{W}, \mathrm{A})$ that can be locally check to witnss PUDP solution G^{*}

Example

Example

Note: We cannot do better, thus the bound 11 is actually tight!

Example

We now show (2)

Strip off the Vb-elements and put them into separate bags.

Note: Other examples show, we cannot do better, thus the bound 5 is actually tight

Example

Example for lower bound 5
a1○
... and this G is actually solvable:

Theorem : PUDP is in polynomial time and is solvable by dynamic programming techniques.

Partner Units Results

Name	Sensors	Zones	Edges	Cost	CSP	DECPUP
dbl-20	28	20	56	14	$*$	0.01
dbl-40	58	40	116	29	$*$	0.05
dbl-60	88	60	176	44	*	0.08
dblv-30	28	30	92	15	$*$	65.49
dblv-60	58	60	192	30	*	*
triple-30	40	30	78	20	$*$	0.50
triple-34	40	34	93	1	*	*
grid-90	50	68	97	34	$*$	0.03

Case $\mathrm{N}>2$

For constant N totally open. Could well be NP-hard.
In fact, Unit Graph does not need to have bounded treewidth!

If N is not-constant, then NP-complete:

For Siemens, it seems that very small values of N are relevant.

Outline of PART II

Beyond Tree Decompositions Applications to Databases and CSPs

Structural and Consistency Properties

Outline of PART II

Beyond Tree Decompositions
Applications to Databases and CSPs
Structural and Consistency Properties

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

There are also problems whose structure is better described by hypergraphs rather than by graphs...

Database queries

- Database schema (scopes):
- Enrolled (Pers\#, Course, Reg-Date)
- Teaches (Pers\#, Course, Assigned)
- Parent (Pers1, Pers2)
- Is there any teacher having a child enrolled in her course?
ans $\leftarrow \operatorname{Enrolled}(S, C, R) \wedge \operatorname{Teaches}(P, C, A) \wedge$ Parent (P, S)

Database queries

Teaches		
Nicola	Algebra	March
Georg	Logic	May
Frank	DB	June
Mimmo	DB	May
$\ldots \ldots \ldots$	$\ldots \ldots$	$\ldots \ldots$.

Parent	
Mimmo	Luisa
Georg	Anita
Frank	Mary
$\ldots \ldots . .$.	

QUERY: Is there any teacher having a child enrolled in her course?
ans $\leqslant \operatorname{Enrolled}(S, C, R) \wedge \operatorname{Teaches}(P, C, A) \wedge$ Parent(P, S)

Ans $\longleftarrow E n r o l l e d(S, C, R) \wedge \operatorname{Teaches}(P, C, A) \wedge \operatorname{Parent}(P, S)$

Queries and Hypergraphs (2)

- Database schema (scopes):
- Enrolled (Pers\#, Course, Reg-Date)
- Teaches (Pers\#, Course, Assigned)
- Parent (Pers1, Pers2)

- Is there any teacher whose child attend some course?
Ans $\leftarrow \operatorname{Enrolled}\left(S, C^{\prime}, R\right)$ ^ Teaches (P, C, A) ^
Parent (P, S)
ans $\leftarrow a\left(S, X, X^{\prime}, C, F\right) \wedge b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \wedge c\left(C, C^{\prime}, Z\right) \wedge d(X, Z) \wedge$

$$
\left.\begin{array}{rl}
e(Y, Z) \wedge f\left(F, F^{\prime}, Z^{\prime}\right) & \wedge g\left(X^{\prime}, Z^{\prime}\right)
\end{array}\right) h\left(Y^{\prime}, Z^{\prime}\right) \wedge ~ 子 ~\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \wedge p\left(B, X^{\prime}, F\right) \wedge q\left(B^{\prime}, X^{\prime}, F\right)
$$

Populating datawarehouses

Constraint Satisfaction Problems

Crossword puzzle

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

1h:

PARIS
PANDA
LAURA
ANITA

1v: | LIMBO |
| :--- |
| LINGO |
| PETRA |
| PAMPA |
| PETER | and so on

Constraint Satisfaction Problems

A problem from Nasa

Part of relations for the Nasa problem

```
cid_260(Vid_49, Vid_366, Vid_224),
cid_261(Vid_100, Vid 391, Vid_392),
cid_262 (Vid_273, Vid_393, Vid_246),
cid_263(Vid_329, Vid_394, Vid_249),
cid_264(Vid_133, Vid_360, Vid_356),
cid_265(Vid_314, Vid 348, Vid 395),
cid_266(Vid_67, Vid_352, Vid_396)
cid_267(Vid_182, Vid_364, Vid_397),
cid_268(Vid_313, Vid_349, Vid_398),
cid_269(Vid_339, Vid_348, Vid_399),
cid_270(Vid_98, Vid_366, Vid_400),
cid_271(Vid_161, Vid_364, Vid_401),
cid_272(Vid_131, Vid_353, Vid_234),
cid_273(Vid_126, Vid_402, Vid_245),
cid_274(Vid_146, Vid_252, Vid_228),
cid_275(Vid_330, Vid_360, Vid_361),
```

- 680 constraints
- 579 variables

Configuration problems (Renault example)

- Renault Megane configuration [Amilhastre, Fargier, Marquis AIJ, 2002] Used in CSP competitions and as a benchmark problem
- Variables encode type of engine, country, options like air cooling, etc.
- 99 variables with domains ranging from 2 to 43 .
- 858 constraints, which can be compressed to 113 constraints.
- The maximum arity is 10 (hyperedge cardinality/size of constraint scopes)
- Represented as extensive relations, the 113 constraints comprise about 200000 tuples
- 2.84×10^{12} solutions.

In the third part

Representing Hypergraphs via Graphs

Hypergraph $H(Q)$

Primal graph $G(Q)$

Hypergraphs vs Graphs

An acyclic hypergraph
Its cyclic primal graph

Hypergraphs vs Graphs

There are two cliques.
We cannot know where they come from

Further Graph Representations

α-acyclic Hypergraphs

Note the connectedness condition for a

Again on the simplest query

Ans $\leftarrow \operatorname{Enrolled}\left(S, C^{\prime}, R\right) \wedge \operatorname{Teaches}(P, C, A) \wedge \operatorname{Parent}(P, S)$

α-acyclic hypergraph
Join Tree

Deciding Hypergraph Acyclicity

- Can be done in linear time by GYO-Reduction
[Yu and Özsoyoğlu, IEEE Compsac'79; see also Graham, Tech Rep'79]

Input: Hypergraph H

Method: Apply the following two rules as long as possible:
(1) Eliminate vertices that are contained in at most one hyperedge
(2) Eliminate hyperedges that are empty or contained in other hyperedges
H is (α-)acyclic iff the resulting hypergraph empty

Proof: Easy by considering leaves of join tree

Example of GYO-Reduction

$H^{*}=(\varnothing, \varnothing)$
GYO reduct

Example of GYO-irreducible Hypergraph

Tree decompositions as Join trees

- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance

width 2 tree decomposition

Graph
Acyclic instance

From graphs to acyclic hypergraphs

- The "degree of cyclicity" is the treewidth (maximum number of vertices in a cluster -1)
- In this example, the treewidth is 2
- That's ok! We started with a cyclic graph...

width 2 tree decomposition

Equivalent acyclic instance

Not good for hypergraph-based problems

- Here the input instance is acyclic (hence, easy)
- However, its treewidth is 2 ! (similar troubles for all graph representations)

Input: acyclic hypergraph
Primal graph
width-2 tree decomposition

A different notion of "width"

- Exploit the fact that a single hyperedge covers many vertices
- Degree of cyclicity: maximum number of hyperedges needed to cover every cluster

Input: acyclic instance
One hyperedge covers each cluster: width 1

Generalizing acyclicity and treewidth

- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance
- Width of a decomposition: maximum number of hyperedges needed to cover each bag of the tree decomposition
- Generalized Hypertree Width (ghw): minimum width over all possible decompositions [Gottlob, Leone, Scarcello, JCSS'03]
- also known as (acyclic) cover width
- Generalizes both acyclicity and treewidth:
- Acyclic hypergraphs are precisely those having ghw = 1
- The "covering power" of a hyperedge is always greater than the covering power of a vertex (used in the treewidth)

Tree Decomposition of a Hypergraph

H

Tree decomp of $\mathbf{G}(\mathbf{H})$

2 hyperedges suffice for each bag

Generalized Hypertree Decomposition

Notation:

- label decomposition vertices by hyperedges
- omit hyperedge elements not used for bag covering (hidden elements are replaced by "_")

Generalized hypetree decomposition of width 2

Generalized Hypertree Decompositions

$\mathbf{j}\left(_, \mathrm{X}, \mathrm{Y}, \ldots,-\right), \mathbf{c}\left(\mathrm{C}, \mathrm{C}^{\prime}, \mathrm{Z}\right)$
$\mathbf{j}\left(_, \quad, \quad, X^{\prime}, Y^{\prime}\right), \mathbf{f}\left(\mathrm{F}, \mathrm{F}^{\prime}, Z^{\prime}\right)$
$\mathbf{d}(\mathrm{X}, \mathrm{Z})$

$$
\mathbf{e}(\mathrm{Y}, \mathrm{Z})
$$

$$
\mathbf{g}\left(\mathrm{X}^{\prime}, \mathrm{Z}^{\prime}\right), \mathbf{f}\left(\mathrm{F}, \mathrm{Z}^{\prime}, \mathrm{Z}^{\prime}\right)
$$

$$
\mathbf{h}\left(\mathrm{Y}^{\prime}, \mathrm{Z}^{\prime}\right)
$$

$$
\mathbf{p}\left(\mathrm{B}, \mathrm{X}^{\prime}, \mathrm{F}\right) \quad \mathbf{q}\left(\mathrm{B}^{\prime}, \mathrm{X}^{\prime}, \mathrm{F}\right)
$$

$$
\begin{aligned}
& a\left(S, X, X^{\prime}, C, F\right) \quad b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \quad c\left(C, C^{\prime}, Z\right) \quad d(X, Z) \\
& e(Y, Z) \quad f\left(F, F^{\prime}, Z^{\prime}\right) \quad g\left(X^{\prime}, Z^{\prime}\right) \quad h\left(Y^{\prime}, Z^{\prime}\right) \\
& j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) \quad p\left(B, X^{\prime}, F\right) \quad q\left(B^{\prime}, X^{\prime}, F\right)
\end{aligned}
$$

Basic Conditions ${ }_{(113)}$

Original (direct) definition
We group edges

Basic Conditions ${ }_{(213)}$

Connectedness Condition $_{(333)}$

- Can we determine in polynomial time whether ghw $(\mathrm{H})<\mathrm{k}$ for constant k ?

Computational Question

- Can we determine in polynomial time whether ghw $(\mathrm{H})<\mathrm{k}$ for constant k ?

Bad news: ghw $(\mathrm{H})<4$? NP-complete

[Gottlob, Miklós, and Schwentick, J.ACM‘09]

Hypertree Decomposition (HTD)

HTD = Generalized HTD +Special Condition

[Gottlob, Leone, Scarcello, PODS'99; JCSS'02]

Special Condition

Special Condition

Thus, e.g., all available variables in the root must be used

Positive Results on Hypertree Decompositions

- For each query $Q, h w(Q) \leq q w(Q)$
- In some cases, $h w(Q)<q w(Q)$
- For fixed k, deciding whether $h w(Q) \leq k$ is in polynomial time (LOGCFL)
- Computing hypertree decompositions is feasible in polynomial time (for fixed k).

But: FP-intractable wrt k: W[2]-hard.

Relationship GHW vs HW

Observation:

$$
\begin{aligned}
& \operatorname{ghw}(H)=h w\left(H^{*}\right) \\
& \text { where } H^{*}=H \cup\left\{E^{\prime} \mid \exists E \text { in edges }(H): E^{\prime} \subseteq E\right\}
\end{aligned}
$$

Exponential!
Approximation Theorem [Adler,Gottlob,Grohe ,05] :

$$
\operatorname{ghw}(\mathrm{H})<=3 h w(\mathrm{H})+1
$$

GHW and HW identify the same set of classes having bounded width

Game Characterization: Robber and Marshals

Game Characterization: Robber and Marshals

- A robber and k marshals play the game on a hypergraph
- The marshals have to capture the robber
- The robber tries to elude her capture, by running arbitrarily fast on the vertices of the hypergraph

Robbers and Marshals: The Rules

- Each marshal stays on an edge of the hypergraph and controls all of its vertices at once
- The robber can go from a vertex to another vertex running along the edges, but she cannot pass through vertices controlled by some marshal
- The marshals win the game if they are able to monotonically shrink the moving space of the robber, and thus eventually capture her
- Consequently, the robber wins if she can go back to some vertex previously controlled by marshals

Step 0: the empty hypergraph

Step 1: first move of the marshals

Step 2a: shrinking the space

Step 2a: shrinking the space

Step 2a: shrinking the space

Strategies and Decompositions

$$
\left.\begin{array}{rl}
\text { ans } \leftarrow a(S, X, T, R) \wedge b(S, Y, U, P) \wedge c(T, U, Z) \wedge e(Y, Z) \wedge \\
& g(X, Y)
\end{array}\right) f(R, P, V) \wedge \wedge d(W, X, Z)
$$

$$
\mathbf{a}(\mathrm{S}, \mathrm{X}, \mathrm{~T}, \mathrm{R}), \mathbf{b}(\mathrm{S}, \mathrm{Y}, \mathrm{U}, \mathrm{P})
$$

$\mathbf{a}(\mathrm{S}, \mathrm{X}, \mathrm{T}, \mathrm{R}), \mathbf{b}(\mathrm{S}, \mathrm{Y}, \mathrm{U}, \mathrm{P})$

The capture

$\mathbf{a}(S, X, T, R), \mathbf{b}(S, Y, U, P)$
$\mathbf{f}(\mathrm{R}, \mathrm{P}, \mathrm{V})$

$$
\mathbf{a}(\mathrm{S}, \mathrm{X}, \mathrm{~T}, \mathrm{R}), \mathbf{b}(\mathrm{S}, \mathrm{Y}, \mathrm{U}, \mathrm{P})
$$

$$
\mathbf{a}(\mathrm{S}, \mathrm{X}, \mathrm{~T}, \mathrm{R}), \mathbf{b}(\mathrm{S}, \mathrm{Y}, \mathrm{U}, \mathrm{P})
$$

The capture

$\mathbf{a}(S, X, T, R), \mathbf{b}(S, Y, U, P)$

Let H be a hypergraph.

- Theorem: H has hypertree width $\leq k$ if and only if k marshals have a winning strategy on H.
- Corollary: H is acyclic if and only if one marshal has a winning strategy on H.
- Winning strategies on H correspond to hypertree decompositions of H and vice versa.
[Gottlob, Leone, Scarcello, PODS'01, JCSS'03]

A Useful Tool: Alternating Turing Machines

- Generalization of non-deterministic Turing machines
- There are two special states: and
- Acceptation: Computation tree
- ALOGSPACE = PTIME

ATMs and LOGCFL

- LOGCFL: class of problems/languages that are logspace-reducible to a CFL
- Admit efficient parallel algorithms
$\mathrm{AC}_{0} \subseteq \mathrm{NL} \subseteq \mathrm{LOGCFL}=\mathrm{SAC}_{1} \subseteq \mathrm{AC}_{1} \subseteq \mathrm{NC}_{2} \subseteq{ }^{-} \subseteq \mathrm{NC}=\mathrm{AC} \subseteq \mathrm{P} \subseteq \mathrm{NP}$

> Characterization of LOGCFL [Ruzzo ‘80]:
> LOGCFL $=$ Class of all problems solvable with a logspace ATM with polynomial tree-size

A polynomial algorithm: ALOGSPACE

Marshals

Actually, LOGCFL

Once I have guessed R , how to guess the next marshal position S ?

 Marshals

Monotonicity: $\forall \mathrm{E} \in \operatorname{edges}\left(\mathrm{C}_{\mathrm{R}}\right):(\mathrm{E} \cap \mathrm{UR}) \subseteq \mathrm{US}$ Strict shrinking: (US) $\cap \mathrm{C}_{\mathrm{R}} \neq \varnothing$

Outline of PART II

Applications to Databases and CSPs

Structural and Consistency Properties

Some hypergraph based problems

HOM: The homomorphism problem
$B C Q:$ Boolean conjunctive query evaluation
CSP: Constraint satisfaction problem

Important problems in different areas. All these problems are hypergraph based.
[e.g., Kolaitis \& Vardi, JCSS'98]

The Homomorphism Problem

- Given two relational structures

$$
\begin{aligned}
\mathbb{A} & =\left(U, R_{1}, R_{2}, \ldots, R_{k}\right) \\
\mathbb{B} & =\left(V, S_{1}, S_{2}, \ldots, S_{k}\right)
\end{aligned}
$$

- Decide whether there exists a homomorphism \boldsymbol{h} from \mathbb{A} to \mathbb{B}

$$
\begin{aligned}
& h: U \longrightarrow V \\
& \text { such that } \quad \forall \mathbf{x}, \forall i \\
& \mathbf{x} \in R_{i} \Rightarrow h(\mathbf{x}) \in S_{i}
\end{aligned}
$$

A
1 2 1 3 2 3 3 4 2 5 4 5 3 6

	\mathbb{B}
red	green
red	blue
green	red
green	blue
blue	red
blue	green

Example: graph colorability

Complexity: HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

Graph 3-colourable iff $\mathrm{HOM}(A, B)$ yes-instance.

Conjunctive Database Queries

DATABASE:

QUERY:

Is there any teacher having a child enrolled in her course?
ans $\leftarrow \operatorname{Enrolled}(S, C, R) \wedge$ Teaches $(P, C, A) \wedge \operatorname{Parent}(P, S)$

Conjunctive Database Queries

DATABASE:

CSPs as Homomorphism Problems

CSPs as Homomorphism Problems

CSPs as Homomorphism Problems

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Cores and equivalent instances

- Can be used to simplify problems
- There is a homomorphism from \mathbf{A} to \mathbf{B} if and only if there is a homomorphism from a/any core of \mathbf{A} to \mathbf{B}
- Sometimes terrific simplifications:

- This undirected grid is equivalent to a single edge. That is, it is equivalent to an acyclic instance!

$\mathcal{H}_{\mathbb{A}}$

Structurally Restricted CSPs

The hypergraph is acyclic

$\mathcal{H}_{\mathbb{A}}$

Structurally Restricted CSPs

The hypergraph is acyclic

- We have seen that Acyclicity is efficiently recognizable
- We shall see that Acyclic CSPs can be efficiently solved

Basic Question

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Is there a homomorphism from \mathbb{A} to \mathbb{B} ?
- Feasible in polynomial time $\mathrm{O}\left(n^{2} \times \log n\right)$
- LOGCFL-complete

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Is there a homomorphism from \mathbb{A} to \mathbb{B} ?
- Feasible in polynomial time $O\left(n^{2} \times \log n\right)$
- LOGCFL-complete

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

- Is there a homomorphism from \mathbb{A} to \mathbb{B} ?
- Feasible in polynomial time $\mathrm{O}\left(n^{2} \times \log n\right)$
- LOGCFL-complete
[Gottlob, Leone, Scarcello, J.ACM’00]

HOM: The homomorphism problem
$B C Q:$ Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Yannakakis's Algorithm (Acyclic structures):

- Dynamic Programming over a Join Tree, where each vertex contains the relation associated with the corresponding hyperedge
- Therefore, if there are more constraints over the same relation, it may occur (as a copy) at different vertices

«Answering» Acyclic Instances

HOM: The homomorphism problem
$B C Q:$ Boolean conjunctive query evaluation
CSP: Constraint satisfaction problem

Yannakakis's Algorithm (Acyclic structures):
Dynamic Programming over a Join Tree

Solutions can be computed by adding a top-down phase to Yannakakis' algorithm for acyclic instances

Computing the result (Acyclic)

- The result size can be exponential (even in the acyclic case).
- Even when the result is of polynomial size, it is in general hard to compute.
- In case of acyclic instances, the result can be computed in time polynomial in the result size (and with polynomial delay: first solution, if any, in polynomial time, and each subsequent solution within polynomial time from the previous one).
- This will remain true for the subsequent generalizations of acyclicity.
- Add a top-down phase to Yannakakis' algorithm for acyclic instances, thus obtaining a full reducer, and join the partial results (or perform a backtrack free visit)

Outline of PART II

Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

$\mathcal{H}_{\mathbb{A}}$

$\mathcal{H}_{\mathbb{A}}$

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

(Generalized) Hypertree Decompositions

$\mathcal{H}_{\mathbb{A}}$

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

(Generalized) Hypertree Decompositions

Each cluster can be seen as a subproblem
$\mathcal{H}_{\mathbb{A}}$

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

(Generalized) Hypertree Decompositions

Each cluster can be seen as a subproblem
$\mathcal{H}_{\mathbb{A}}$

Relations:

Relations:

Toward an equivalent acyclic instance

- Each cluster can be seen as a subproblem $\quad \mathcal{H}_{\mathbb{A}}$
- Associate each subproblem with a fresh constraint

Toward an equivalent acyclic instance

- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

A join tree of the
new instance

- Each cluster can be seen as a subproblem
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

An acyclic equivalent instance

- Each cluster can be seen as a subproblem
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

Solve the acyclic instance with any known technique

Tree Projection (idea)

- Generalization where suproblems are arbitrary (not necessarily clusters of k edges or vertices)

- More information in the appendix

Hypertrees for Databases

Inside PostgreSQL

Some experiments

- PostgreSQL standard ■PostgreSQL UP-VAR \square PostgreSQL q-HD

(a) Acyclic Queries

(b) Chain Queries

Large width example: Nasa problem

Part of relations for the Nasa problem

	260(Vid_49, Vid_366, Vid 224)
	cid $262\left(\mathrm{Vid}^{-273, ~ V i d ~}\right.$
	cid_264(Vid-133, Vid_360, Vid_356)
	cid 265 (Vid 314, Vid 348, Vid
	cid 266 (Vid 67 , Vid 352, Vid 396)
	cid_267(Vid_182, Vid_364, Vid_397)
	cid 268(Vid 313, Vid 349, Vid 398)
	cid_269(Vid_339, Vid_348, Vid_399
	cid_270 (Vid_98, Vid_366, Vid 400)
	cid_271 (Vid_161, Vid_364, Vid_401),
	cid_272(Vid_131, Vid_353, Vid_234)
	cid_273(Vid_126, Vid_402, Vid_245)
	cid 274 (Vid ${ }^{-146, ~ V i d-252, ~ V i d ~}$
	cid_275(Vid_330, Vid_360, Vid_361

- 680 relations
- 579 variables

Nasa problem: Hypertree

Part of hypertree for the Nasa problem
Best known hypertree-width for the Nasa problem is 22

Further Structural Methods

- Many proposals in the literature, besides (generalized) hypertree width (see [Gottlob, Leone, Scarcello. Art. Int.'00])
- For the binary case, the method based on tree decompositions (first proposed as heuristics in [Dechter and Pearl. Art.Int.'88 and Art.Int.'89]) is the most powerful [Grohe. J.ACM'07]
- Let us recall some recent proposals for the general (non-binary) case:
- Fractional hypertree width [Grohe and Marx. SODA'06]
- Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS'08]
- Component Decompositions [Gottlob,Miklòs,and Schwentick. J.ACM'09]
- Greedy tree projections [Greco and Scarcello, PODS'10, ArXiv'12]
- Computing a width-k decomposition is in PTIME for all of them (for any fixed $\mathrm{k}>0$).
- If we relax the above requirement, we can consider fixed-parameter tractable methods. If the size of the hypergraph structure is the fixed parameter, the most powerful is the Submodular width [Marx. STOC'10]

Heuristics for large width instances (CSPs)

1. Computing decompositions

- Heuristics to get variants of (hyper)tree decompositions

2. Evaluating instances

- Computing all solutions of the subproblems involved at each node may be prohibitive
- Memory explosion
- Solution: combine with other techniques. E.g., in CSPs,
- use (hyper)tree decompositions for bounding the search space [Otten and Dechter. UAl'08]
- use (hyper)tree decompositions for improving the performance of consistency algorithms (hence, speeding-up propagations) [Karakashian, Woodward, and Choueiry. AAAl'13]

Alternative constraint encodings

- Most results hold on constraint encodings where allowed tuples are listed as finite relations
- Alternative encodings make sense
- For instance,
- constraint satisfaction with succinctly specified relations [Chen and Grohe. J.CSS'10]
- see also [Cohen, Green, and Houghton. CP’09]

Local (pairwise) consistency

- For every relation/constraint: each tuple matches some tuple in every other relation
- Can be enforced in polynomial time: take the join of all pairs of relations/constraints until a fixpoint is reached, or some relation becomes empty

Enforcing pairwise consistency

- Further steps are useless, because the instance is now locally consistent
- On acyclic instances, same result as Yannakakis' algorithm on the join tree!

Easy on Acyclic Instances

- Computing a join tree
(in linear time, and logspace-complete [GLS'98+ SL=L]) may be viewed as a clever way to enforce pairwise consistency

- Cost for the computation of the full reducer:

$$
O\left(m n^{2} \log n\right) \text { vs } O(m n \log n)
$$

- N.B. n is the (maximum) number of tuples in a relation and may be very large (esp. in database applications)

Global and pairwise Consistency

- Yannakakis' algorithm actually solves acyclic instances because of their following crucial property:
- Local (pairwise) consistency \rightarrow Global consistency [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
- Global consistency: Every tuple in each relation can be extended to a full (global) solution
- In particular, if all relations/constraints are pairwise consistent, then the result is not empty
- Not true in the general case:

$$
\text { ans:- } a(X, Y) \wedge b(Y, Z) \wedge c(Z, X)
$$

Consistency in Databases and CSPs

- Huge number of works in the database and constraint satisfaction literature about different kinds (and levels) of consistencies
(e.g., recall the seminal paper [Mackworth. Art. Int., 1977] or [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] and [Dechter and van Beek. TCS'97])
- Most theoretical papers in the database community
- Also practical papers in the constraint satisfaction community:
- Local consistencies are crucial for filtering domains and constraints
- Allow tremendous speed-up in constraint solvers
- Sometimes allow backtrack-free computations

Global consistency in Databases and CSPs

- Global consistency (GC): Every tuple in each relation can be extended to a full (global) solution
[Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
- For instances with m constraints, it is also known as
- m-wise consistency [Gyssens. TODS'86]
- relational ($i ; m$)-consistency [Dechter and van Beek. TCS'97]
- $\boldsymbol{R}\left({ }^{*}, \boldsymbol{m}\right) \boldsymbol{C}$ [Karakashian, Woodward, Reeson, Choueiry and Bessiere. AAAl'10]
- ...
- Remark:

In the CSP literature, "global consistent network" sometimes means "strongly n-consistent network", which is a different notion (see, e.g., [Constraint Processing, Dechter, 2003]).

On the desirability of Global Consistency

- If an instance is globally consistent, we can immediately read partial solutions from the constraint/database relations
- full solutions are often computed efficiently
- can be exploited in heuristics by constraint solvers. For a very recent example, see
- [Karakashian, Woodward, and Choueiry. AAAl'13]: enforce global consistency on groups of subproblems (tree-like arranged) for bolstering propagations

When pairwise consistency entails GC

- We have seen that it happens in acyclic instances...
- Is it the case that this condition is also necessary?
- What is the real power of local consistency?
i.e., relational arc-consistency (more precisely, arc-consistency on the dual graph)
Also known as
- pairwise consistency [Janssen, Jégou, Nougier, and Vilarem.

IEEE WS Tools for Al'89],

- 2-wise consistency [Gyssens. TODS'86],
- R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and Bessiere. AAAl'10]
- ...

When pairwise consistency entails GC

- We have seen that it happens in acyclic instances...
- The classical result that this is also necessary
[Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] actually holds only if relations cannot be used in more than one constraint/query atoms
- In fact, it works even on some cyclic instances
- We now have a precise structural characterization of the instances where local consistency entails global consistency
- it applies to the binary case, too
- it applies to the more general case where pairwise consistency is enforced between each pair of arbitrary defined subproblems (see appendix)!
[Greco and Scarcello. PODS'10]

The Power of Pairwise Consistency

- Let us describe when local (pairwise) consistency (LC) entails global consistency (GC), on the basis of the constraint structure
- That is, we describe the condition such that:
- whenever it holds, LC entails GC for every possible CSP instance (i.e., no matter on the constraint relations)
- if it does not hold, there exists an instance where LC fails
- If we are interested only in the decision problem (is the CSP satisfiable?) than this condition is the existence of an acyclic core [Atserias, Bulatov, and Dalmau. ICALP'07]

The Power of Pairwise Consistency

- Does pairwise consistency entail global consistency in this case?

Constraints

$$
\begin{aligned}
& \text { e(A,B) } \\
& e(A, C) \\
& e(D, C) \\
& e(D, B)
\end{aligned}
$$

The Power of Pairwise Consistency

- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation \boldsymbol{e}
- Every constraint is a core of the instance

$$
\begin{aligned}
& \mathrm{e}(\mathrm{~A}, \mathrm{~B}) \\
& \mathrm{e}(\mathrm{~A}, \mathrm{C}) \\
& \mathrm{e}(\mathrm{D}, \mathrm{C}) \\
& \mathrm{e}(\mathrm{D}, \mathrm{~B})
\end{aligned}
$$

The Power of Pairwise Consistency

- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation \boldsymbol{e}
- Every constraint is a core of the instance

Constraints

$$
\begin{aligned}
& \mathrm{e}(\mathrm{~A}, \mathrm{~B}) \\
& \mathrm{e}(\mathrm{~A}, \mathrm{C}) \\
& \mathrm{e}(\mathrm{D}, \mathrm{C}) \\
& \mathrm{e}(\mathrm{D}, \mathrm{~B})
\end{aligned}
$$

tp-covering (acyclic version)

- The constraint $e(X, Y)$ is tp-covered in an acyclic hypergraph if,
- add a fresh constraint $e^{\prime}(\mathrm{X}, \mathrm{Y})$ (where e' is a fresh relational symbol),
- a core of the new instance has an acyclic hypergraph
- Intuitively the "coloring" of $e(X, Y)$ forces the core of the new structure to deal with the ordered pair (X, Y)
- Indeed, every core must contain e' (X, Y)
- Instead, the usual notion of the core does not preserve the meaning of variables
- this is crucial for computing solutions, but not for the decision problem

The Power of Pairwise Consistency

- The constraint $e(X, Y)$ is tp-covered in an acyclic hypergraph if,
- add a fresh constraint $e^{\prime}(\mathrm{X}, \mathrm{Y})$ (where e^{\prime} is a fresh relational symbol),
- a core of the new instance has an acyclic hypergraph

Local (pairwise) consistency entails Global consistency if and only if every constraint is tp-covered in an acyclic hypergraph

tp-covering by Example

- The constraint $e(X, Y)$ is tp-covered in an acyclic hypergraph if,
- add a fresh constraint e' (X, Y) (where e' is a fresh relational symbol),
- a core of the new instance has an acyclic hypergraph

$$
e(A, B) \text { is tp-covered }
$$

tp-covering by Example

- The constraint $e(X, Y)$ is tp-covered in an acyclic hypergraph if,
- add a fresh constraint e' (X, Y) (where e' is a fresh relational symbol),
- a core of the new instance has an acyclic hypergraph

$e(F, C)$ is tp-covered

tp-covering by Example

- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph

The power of Pairwise Consistency

- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph
- However, it does not entail global consistency
- There is an instance that is pairwise consistent but $e(A, B)$ contains wrong tuples

$e(A, B)$ is not tp-covered: the core of the new structure is cyclic

A generalization: Local k-consistency

- Consider subproblems of k constraints
- Local k-consistency: pairwise consistency over such (kconstraints) subproblems
Equivalent to relational k-consistency [Dechter and van Beek. TCS'97]

> Local k-consistency entails Global consistency if and only if every constraint is tp-covered in a hypergraph having Generalized Hypertree widith k

[Greco and Scarcello. PODS'10]

- See the appendix for a further generalization to arbitrary subproblems in the general framework of tree projections

Outline of Part III

Applications to Optimization Problems
Application: Nash Equilibria
Application: Coalitional Games
Application: Combinatorial Auctions
Appendix: Beyond Hypertree Width

Outline of Part III

Applications to Optimization Problems

Nash Equilibria

pplication: Coalitional Games

ontceation: Combinatorial Auctions

Beyond Hypertree Width

Constraint Optimization Problems

- Classically, CSP: Constraint Satisfaction Problem
- However, sometimes a solution is enough to "satisfy" (constraints), but not enough to make (users) "happy"

Any best
(or at least good) solution

- Hence, several variants of the basic CSP framework:
- E.g., fuzzy, probabilistic, weighted, lexicographic, penalty, valued, semiring-based, ...

Classical CSPs

- Set of constraint relations

Puzzles for Experts...

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

The puzzle in general admits more than one solution...

- E.g., find the solution that minimizes the total number of vowels occurring in the words

A Classification for Optimization Problems

A Classification for Optimization Problems

A Classification for Optimization Problems

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

With a bottom-up computation:

- Filter the tuples that do not match

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

With a bottom-up computation:

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

With a bottom-up computation:

- Filter the tuples that do not match
- Compute the cost of the best partial solution, by looking at the children

$$
\begin{aligned}
& \operatorname{cost}(\mathrm{C} / \mathrm{C} 1)=\operatorname{cost}(\mathrm{D} / \mathrm{D} 1)=0 \\
& \operatorname{cost}(\mathrm{C} / \mathrm{C} 2)=\operatorname{cost}(\mathrm{D} / \mathrm{D} 2)=1 \\
& \operatorname{cost}(\mathrm{E} / \mathrm{E} 1)=\operatorname{cost}(\mathrm{F} / \mathrm{F} 1)=0 \\
& \operatorname{cost}(\mathrm{E} / \mathrm{E} 2)=\operatorname{cost}(\mathrm{F} / \mathrm{F} 2)=1
\end{aligned}
$$

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

- Adapt the dynamic programming approach in (Yannakakis'81)

With a bottom-up computation:

WCSP: Tractability of Acyclic Instances

12345
PARIS
PANDA
LAURA
ANITA

[Gottlob, Greco, and Scarcello, ICALP‘09]

WCSP: Tractability of Acyclic Instances

- Is feasible in linear time

The mapping: Preserves the solutions

- Preserves acyclicity

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

- Maximize the number of words placed in the puzzle

[Gottlob, Greco, and Scarcello, ICALP‘09]

In-Tractability of MAX-CSP Instances

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

- Add a "big" constraint with no tuple

- Maximize the number of words placed in the puzzle

The puzzle is satisfiable \leftrightarrow exactly one constraint is violated in the acyclic MAX-CSP

Tractability of MAX-CSP Instances

Tractability of MAX-CSP Instances

Tractability of MAX-CSP Instances

In-Tractability of MAX-CSP Instances

- Is feasible in time exponential in the width

The mapping: Preserves the solutions
Leads to an Acyclic CSOP Instance

Outline of Part III

Applications to Optimization Problems

Application: Nash Equilibria
Application: Coalitional Games
Application: Combinatorial Auctions
Beyond Hypertree Midth

Game Theory (in a Nutshell)

Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

Which actions have to be performed?

Strong equilibria

Kernel

Nucleolus
Core

Shapley value

Stable sets

Game Theory (in a Nutshell)

Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

Which actions have to be performed?

Solution Concepts
Nash equilibria
Strong equilibria

Non-Cooperative Games (113)

\square
Payoff maximization problem Fach player:

- Has goal to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

Bob	John goes out	John stays at home
out	2	0
home	0	1

John	Bob goes out	Bob stays at home
out	1	1
home	0	0

Non-Cooperative Games ${ }_{(233)}$

Nash equilibria

Bob	John goes out	John stays at home
out	2	0
	0	1

John	Bob goes out	Bob stays at home
out	1	1
home	0	0

Non-Cooperative Games ${ }_{(233)}$

Bob	John goes out	John stays at home
out	2	0
home	0	1

Non-Cooperative Games ${ }_{(233)}$

Payoff maximization problem

Nash equilibria

Bob	John goes out	John stays at home	
out	2		0
home		0	

John	Bob goes out	Bob stays at home
out	1	1
home	0	0

Non-Cooperative Games ${ }_{(233)}$

Payoff maximization problem

Nash equilibria

Bob	John goes out	John stays at home
out	$\mathbf{2}$	0
home	0	1

John	Bob goes out	Bob stays at home
out	$\mathbf{1}$	1
home	0	0
	0	

Non-Cooperative Games (333)

Payoff maximization problem

pure Nash equilibria

Every game admits a mixed Nash equilibrium,

- where players chose their strategies according to probability distributions

Succint Game Representations

- Players:
- Maria, Francesco
- Choices:
- movie, opera

If 2 players, then size $=2^{2}$

Maria	Francesco, movie	Francesco, opera
movie	2	0
opera	0	1

Succint Game Representations

- Players:
- Maria, Francesco, Paola
- Choices:
- movie, opera

If 2 players, then size $=2^{2}$
If 3 players, then size $=2^{3}$

Maria	$\mathrm{F}_{\text {movie }}$ and $\mathrm{P}_{\text {movie }}$	$\mathrm{F}_{\text {movie }}$ and $\mathrm{P}_{\text {opera }}$	$\mathrm{F}_{\text {opera }}$ and $\mathrm{P}_{\text {movie }}$	$\mathrm{F}_{\text {opera }}$ and $\mathrm{P}_{\text {opera }}$
movie	2	0	2	1
	0	1	2	2

Succint Game Representations

- Players:
- Maria, Francesco, Paola, Roberto, and Giorgio
- Choices:
- movie, opera

If 2 players, then size $=2^{2}$
If 3 players, then size $=2^{3}$

If N players, then size $=2^{\mathrm{N}}$

Maria	$\mathrm{F}_{\text {movie }}$ and $\mathrm{P}_{\text {movie }}$ and $\mathrm{R}_{\text {movie }}$ and $\mathrm{G}_{\text {movie }}$			
movie	2	\ldots
opera	0	\cdots

Succint Game Representations

- Players:
- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
- movie, opera

Succinct Game Representations

- Players:
- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:

- movie, opera

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$		
m	2	2	1	0		
o	0	2	1	2	\quad	G
:---:						

R	F_{m}	F_{o}		
m	0	1		
o	2	0	\quad	P
:---				

Pure Equilibria

- Players:
- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
- movie, opera

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$		
m	2	2	1	0		
o	0	2	1	2	\quad	G
:---:						

R	F_{m}	F_{o}		
m	0	1		
o	2	0	\quad	P
:---				

Pure Equilibria

- Players:
- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
- movie, opera

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$					
m	2	2	1	0		G	$P_{m} F_{m}$	$P_{m} F_{o}$	$P_{o} F_{m}$
	$P_{o} F_{o}$								
o	0	2	1	2	2	0	0	1	

| R | F_{m} | F_{o} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 0 | 1 |
| o | 2 | 0 |

Pure Equilibria

- Players:
- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:

NP=hard!

- movie, opera

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$					
m	2	2	1	0		G	$P_{m} F_{m}$	$P_{m} F_{o}$	$P_{o} F_{m}$
	$P_{o} F_{o}$								
o	0	2	1	2	2	0	0	1	

| R | F_{m} | F_{o} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 0 | 1 |
| o | 2 | 0 |

Nash Equilibrium Existence

Constraint Satisfaction Problem

1
Solve CSP in polynomial time using known methods
[Gottlob, Greco, and Scarcello, JAIR'05]

Encoding Games in CSPs

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$
m	2	2	1	0
o	0	2	1	2

| R | F_{m} | F_{o} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 0 | 1 | | | |
| o | 2 | 0 | | F_{m} | F_{o} |
| m | 2 | 0 | | | |

F	\mathbb{P}	R
m	m	m
m	m	0
0	m	0
m	0	m
0	0	m
0	0	0

rG:

G	P	F	$\boldsymbol{T}_{\boldsymbol{R}}$:	R	F	\boldsymbol{T}_{P} :	
m	m	m			m		
	m	m		m	0		
m	m	0					
\bigcirc	m	\bigcirc					
m	0	m				M	R
\bigcirc	\bigcirc	m					
m	\bigcirc	\bigcirc	303		M	m	m
0	-	0					

P	F
m	m
o	a

Encoding Games in CSPs

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$
m	2	2	1	0
o	0	2	1	2

| R | F_{m} | F_{o} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | 0 | 1 |
| o | 2 | 0 |

F	P	R
In	m	m
m	m	0
0	m	0
m	0	m
0	0	m
0	0	0

TG:

G	P	F	$\underbrace{\tau_{R}:}$	R	F	${ }_{T}{ }^{\prime}$:	
$\begin{aligned} & \mathrm{m} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~m} \end{aligned}$	m m 1		\bigcirc	${ }^{\text {m }}$		
m	m	-					
\bigcirc	m	-					
m	\circ	m				M	R
m	0	$\stackrel{\square}{\circ}$			$\mathrm{ram}_{\text {: }}$	m	m

\mathbf{P}	\mathbf{F}
m	m
o	a

Encoding Games in CSPs

F	$P_{m} R_{m}$	$P_{m} R_{o}$	$P_{o} R_{m}$	$P_{o} R_{o}$		
m	2	2	1	0		
o	0	2	1	2	\quad	G
:---:						

Interaction Among Players: Friends

- The interaction structure of a game G can be represented by:
- the dependency graph $G(G)$ according to $\operatorname{Neigh}(G)$
- a hypergraph $H(G)$ with edges: $H(p)=\operatorname{Neigh}(p) \cup\{p\}$

G (FRIENDS)

H(FRIENDS)

Interaction Among Players: Friends

This is the same structure as the one of the associated CSP

Interaction Among Players: Friends

This is the same structure as the one of the associated CSP

On (nearly)-Acyclic Instances, Nash equilibria are easy

Outline of Part III

oplications to Optimization Problems

Application: Coalitional Games

Application: Combinatorial Auctions

Beyond Hypertree Width

Game Theory (in a Nutshell)

Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players
- Is rational

Which actions have to be performed?

Cooperative Game Theory $_{(112)}$

Cooperative Game Theory $_{(112)}$

> Players get $9 \$$, if they enforce connectivity
$>$ Enforcing connectivity over an edge as a cost

Cooperative Game Theory $_{(112)}$

> Players get 9\$, if they enforce connectivity
$>$ Enforcing connectivity over an edge as a cost

Coalition $\{F, P, R, M\}$ gets 9\$, and pays 6\$

$$
\text { worth } v(\{F, P, R, M\})=9 \$-6 \$
$$

Cooperative Game Theory $_{(112)}$

How to distribute 9\$, based on such worths?

Cooperative Game Theory $_{(222)}$

Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players
fairness

coalition	worth
$\{F\}$	0
\ldots	0
$\{G, P, R, M\}$	0
$\{F, P, R, M\}$	3
$\{G, F, P, R, M\}$	4

How to distribute 9\$, based on such worths?

Cooperative Game Theory $_{(222)}$

Each player:

- Has a goal to be achieved
- Has a set of possible actions
- Interacts with other players fairness

How to distribute $9 \$$, based on such worths?

Cooperative Game Theory $_{(212)}$

Find the distribution(s) that:

- Each coalition has a positiveena
- Lexicographically maximizes the pxcess nucleolus
- Is immune against devis bargaing

How to distribute 9\$, based on such worths?

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

- Outcomes belong to the imputation set $X(\mathcal{G})$

$$
x \in X(\mathcal{G})\left\{\begin{array}{c}
\bullet \text { Efficiency } \\
x(N)=v(N) \\
\text { • Individual Rationality } \\
x_{i} \geq v(\{i\}), \quad \forall i \in N
\end{array}\right.
$$

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

- Solution Concepts characterize outcomes in terms of
- Fairness
- Stability

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$
\mathcal{G}=\langle N, v\rangle, v: 2^{N} \mapsto \mathbb{R}
$$

- Solution Concepts characterize outcomes in terms of
- Fairness
- Stability

$$
\begin{array}{rr}
0 \geq e(S, x)=v(S)-\sum_{i \in S} x_{i} \\
\text { The Core: } \quad \forall S \subseteq N, x(S) \geq v(S) ; \\
x(N)=v(N)
\end{array}
$$

Complexity of Solution Concepts

- Nucleolus
- Kernel
- Bargaining Set
- Stable Sets

Graph games:

- Succinct specification
- Core existence is coNP-complete

Complexity of Solution Concepts

- Nucleolus
- Kernel
- Bargaining Set
- Stable Sets

Reductions for graph games

Succinct games:

- Nucleolus is PNP-complete
- Kernel is PNP-complete
- Bargaing set is coNP ${ }^{N P}$-complete
- Stable sets is still open
[Greco, Malizia, Palopoli, Scarcello, AIJ‘11]
Ellipsoid method $+$
NP separation oracles

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \geq v(S)$;

$$
x(N)=v(N)
$$

Consider the sentence, over the graph where N is the set of nodes and E the set of edges :

$$
\begin{aligned}
& \operatorname{proj}(X, Y) \equiv X \subseteq N \wedge \\
& \forall c, c^{\prime}\left(Y\left(c, c^{\prime}\right) \rightarrow X(c) \wedge x\left(c^{\prime}\right)\right) \wedge \\
& \forall c, c^{\prime}\left(X(c) \wedge X\left(c^{\prime}\right) \wedge E\left(c, c^{\prime}\right) \rightarrow Y\left(c, c^{\prime}\right)\right)
\end{aligned}
$$

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \geq v(S)$;

$$
x(N)=v(N)
$$

Consider the sentence, over the graph where N is the set of nodes and E the set of edges :

$$
\begin{aligned}
& \operatorname{proj}(X, Y) \equiv X \subseteq N \wedge \\
& \forall c, c^{\prime}\left(Y\left(c, c^{\prime}\right) \rightarrow X(c) \wedge x\left(c^{\prime}\right)\right) \wedge \\
& \forall c, c^{\prime}\left(X(c) \wedge X\left(c^{\prime}\right) \wedge E\left(c, c^{\prime}\right) \rightarrow Y\left(c, c^{\prime}\right)\right)
\end{aligned}
$$

...it tells that Y is the set of edges covered by the nodes in X

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \geq v(S)$;

$$
x(N)=v(N)
$$

Let $\operatorname{proj}(X, Y)$ be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: $\quad w_{E}\left(c, c^{\prime}\right)=-w\left(c, c^{\prime}\right) ; \quad w_{N}(c)=x_{c}$

Value of the edge (negated) Value at the imputation

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \geq v(S)$;

$$
x(N)=v(N)
$$

Let $\operatorname{proj}(X, Y)$ be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: $\quad w_{E}\left(c, c^{\prime}\right)=-w\left(c, c^{\prime}\right) ; \quad w_{N}(c)=x_{c}$

Value of the edge (negated) Value at the imputation

Find the "minimum-weight" \mathbf{X} and \mathbf{Y} such that $\operatorname{proj}(X, Y)$ holds

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \geq v(S)$;

$$
x(N)=v(N)
$$

Let $\operatorname{proj}(X, Y)$ be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: $\quad w_{E}\left(c, c^{\prime}\right)=-w\left(c, c^{\prime}\right) ; \quad w_{N}(c)=x_{c}$

Value of the edge (negated) Value at the imputation

Find the "minimum-weight" \mathbf{X} and \mathbf{Y} such that $\operatorname{proj}(X, Y)$ holds

Max (value of edges - value of the imputation), i.e., $\max _{S \subseteq N} e(S, x)$

Outline of Part III

pplications to Optimization Problems

hopilcation: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Beyond Hypertree Width

57

57

Example: Combinatorial Auctions

Winner Determination Problem

- Determine the outcome that maximizes the sum of accepted bid prices

Example: Combinatorial Auctions

Winner Determination Problem $\quad 1 / \square \quad 180$

- Determine the outcome that maximizes the sum of accepted bid prices

57

- Other applications [Cramton, Shoham, and Steinberg, '06]
- airport runway access
- trucking
- bus routes
- industrial procurement

57

Winner Determination is NP-hard

Structural Properties

item hypergraph

Structural Properties

> The Winner Determination Problem remains NP-hard even in case of acyclic hypergraphs

Dual Hypergraph

item hypergraph

Dual Hypergraph

dual hypergraph

The Approach

[Gottlob \& Greco, EC'07]

Outline of Part III

pplications to Optimization Problems

ppilcation: Nash Equilibria

Application: Coalitional Games

Apolication: Combinatorial Auctions
Appendix: Beyond Hypertree Width

Going Beyond...

- Treewidth and Hypertree width are based on tree-like aggregations of subproblems that are efficiently solvable
- k variables (resp. k atoms) $\rightarrow\|I\| \|^{\mathrm{k}}$ solutions (per subproblem)
- Is there some more general property that makes the number of solutions in any bag polynomial?
- YES!
[Grohe \& Marx '06]

Fractional Hypertree Decompositions

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.
Note: fractional hypertree width \leq generalized hypertree width

> [Grohe \& Marx '06]

- A query may be solved efficiently, if a fractional hypertree decomposition is given
- FHDs are approximable: If the the width is $\leq w$, a decomposition of width $O\left(w^{3}\right)$ may be computed in polynomial time [Marx '09]

More Beyond?

- A new notion: the submodular width
- Bounded submodular width is a necessary and sufficient condition for fixed-parameter tractability (under a technical complexity assumption)

Revisiting Decomposition Methods

Relations:

Relations:

$$
\{1 \mathrm{~V}, 20 \mathrm{H}\}=1 \mathrm{~V} \bowtie 20 \mathrm{H}
$$

Revisiting Decomposition Methods

Relations:

$$
\{1 \mathrm{~V}, 20 \mathrm{H}\}=1 \mathrm{~V} \triangleright 20 \mathrm{H}
$$

Revisiting Decomposition Methods

Relations:
$\{1 \mathrm{~V}, 2 \mathrm{OH}\}=1 \mathrm{~V} \bowtie 20 \mathrm{H}$

Revisiting Decomposition Methods

CSP instance (\mathbb{A}, \mathbb{B})

$\mathbb{A}_{\mathcal{V}}=\ell-\operatorname{DM}(\mathbb{A}) \mathbb{B}_{\mathcal{V}}=r-\operatorname{DM}(\mathbb{A}, \mathbb{B})$ I

Relations:

$$
\{1 \mathrm{~V}, 20 \mathrm{H}\}=1 \mathrm{~V} \bowtie 20 \mathrm{H}
$$

Revisiting Decomposition Methods

Work on subproblems

Relations:

$$
\{1 \mathrm{~V}, 20 \mathrm{H}\}=1 \mathrm{~V} \bowtie 20 \mathrm{H}
$$

Revisiting Decomposition Methods

CSP instance (\mathbb{A}, \mathbb{B})

Scopes
Solutions

Work on subproblems

- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)

Revisiting Decomposition Methods

CSP instance (\mathbb{A}, \mathbb{B})
 $\mathbb{A}_{\mathcal{V}}=\ell-\operatorname{DM}(\mathbb{A}) \mathbb{B}_{\mathcal{V}}=r-\operatorname{DM}(\mathbb{A}, \mathbb{B})$

- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)

Requirements on Subproblem Definition

1. Every constraint is associated with a base subproblem
2. Further subproblems can be defined

Acyclicity in Decomposition Methods

Working on subproblems is not necessarily beneficial...

Acyclicity in Decomposition Methods

CSP instance (\mathbb{A}, \mathbb{B})

Working on subproblems is not necessarily beneficial...

Can some and/or portions of them be selected such that:

- They still cover \mathbb{A}, and
- They can be arranged as a tree

Tree Projections (by Example)

$\mathbb{A}: r_{1}(A, B, C) \quad r_{2}(A, F) \quad r_{3}(C, D) \quad r_{4}(D, E, F)$
$r_{5}(E, F, G) \quad r_{6}(G, H, I) \quad r_{7}(I, J) \quad r_{8}(J, K)$

Structure of the CSP

Tree Projections (by Example)

$\mathbb{A}: \quad r_{1}(A, B, C) \quad r_{2}(A, F) \quad r_{3}(C, D) \quad r_{4}(D, E, F)$
$r_{5}(E, F, G) \quad r_{6}(G, H, I) \quad r_{7}(I, J) \quad r_{8}(J, K)$

Structure of the CSP
Available Views

Tree Projections (by Example)

$\mathbb{A}: \quad r_{1}(A, B, C) \quad r_{2}(A, F) \quad r_{3}(C, D) \quad r_{4}(D, E, F)$
$r_{5}(E, F, G) \quad r_{6}(G, H, I) \quad r_{7}(I, J) \quad r_{8}(J, K)$

Structure of the CSP
Tree Projection
Available Views

Tree Projections (by Example)

$\mathbb{A}: \quad r_{1}(A, B, C) \quad r_{2}(A, F) \quad r_{3}(C, D) \quad r_{4}(D, E, F)$
$r_{5}(E, F, G) \quad r_{6}(G, H, I) \quad r_{7}(I, J) \quad r_{8}(J, K)$

Structure of the CSP
Tree Projection
Available Views

(Noticeable) Examples

- Treewidth: take all views that can be computed with at most k variables
- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)
- Fractional hypertree width: take all views that can be computed through subproblems having fractional cover at most k (or use Marx's $\mathrm{O}\left(\mathrm{k}^{3}\right)$ approximation to have polynomially many views)

Tree Decomposition

A General Framework, but

- Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM'09]

A General Framework, but

- Decide the existence of a tree projection is NP-hard

Hold on generalized hypertree width too.

[Gottlob, Miklos, and Schwentick, JACM‘09]

A Source of Complexity: The Core

The core of a query Q is a query Q ' s.t.:

1. $\operatorname{atoms}\left(Q^{\prime}\right) \subseteq \operatorname{atoms}(Q)$
2. There is a mapping $h: \operatorname{var}(Q) \rightarrow \operatorname{var}\left(Q^{\prime}\right)$ s.t., $\forall r(\boldsymbol{X}) \in \operatorname{atoms}(Q), r(h(\boldsymbol{X})) \in a t o m s\left(Q^{\prime}\right)$
3. There is no query Q " satisfying 1 and 2 and such that atoms (Q") \subset atoms(Q')

A Source of Complexity: The Core

The core of a query Q is a query Q 's.t.:

1. $\operatorname{atoms}\left(Q^{\prime}\right) \subseteq \operatorname{atoms}(Q)$
2. \quad There is a mapping $h: \operatorname{var}(Q) \rightarrow \operatorname{var}\left(Q^{\prime}\right)$ s.t., $\forall r(\boldsymbol{X}) \in \operatorname{atoms}(Q), r(h(\boldsymbol{X})) \in a t o m s\left(Q^{\prime}\right)$
3. There is no query Q " satisfying 1 and 2 and such that atoms $\left(Q^{\prime \prime}\right) \subset$ atoms $\left(Q^{\prime}\right)$

Example:

Q

Q'

A Source of Complexity: The Core

Cores are isomorphic
The "Core"

Cores are equivalent to the query

Example:
Q

Q'

Example

$Q: r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge$
$r(D, B) \wedge r(A, E) \wedge r(F, E)$,

Example

$Q: \quad r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge$
$r(D, B) \wedge r(A, E) \wedge r(F, E)$,

Cores and Tree Projections

Structure of the CSP
Tree Projection

Available Views

Cores and Tree Projections

Tree Projection

Available Views

Cores and Tree Projections

Structure of the CSP
Tree Projection
Available Views

Cores and Tree Projections

Structure of the CSP
Tree Projection
Available Views

CORE is NP-hard

- Deciding whether Q' is the core of Q is NP-hard
- For instance, let 3COL be the class of all 3colourable graphs containing a triangle
- Clearly, deciding whether $\mathrm{G} \in 3 \mathrm{COL}$ is NP-hard
- It is easy to see that $\mathrm{G} \in 3 \mathrm{COL} \Leftrightarrow \mathrm{K}_{3}$ is the core of G

Example:
Q

Q'

Enforcing Local Consistency (Acyclic)

Enforcing Local Consistency (Decomposition

Enforcing Local Consistency

CSP instance (\mathbb{A}, \mathbb{B})

$$
\mathbb{A}_{\mathcal{V}}=\ell-\operatorname{DM}(\mathbb{A}) \mathbb{B}_{\mathcal{V}}=r-\operatorname{DM}(\mathbb{A}, \mathbb{B})
$$

If there is a tree projection, then enforcing local consistency over the views solves the decision problem
[Sagiv \& Smueli, ‘93]

Enforcing Local Consistency

[Sagiv \& Smueli, ‘93]

Even Better

There is a polynomial-time algorithm that: either returns that there is no tree projection, or solves the decision problem

Even Better

CSP instance (\mathbb{A}, \mathbb{B})

$\mathbb{B}_{\mathcal{V}}=r-\operatorname{DM}(\mathbb{A}, \mathbb{B})$

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,
- or solves the decision problem

The Precise Power of Local Consistency

- The followings are equivalent:
- Local consistency solves the decision problem
- There is a core of the query having a tree projection

The Precise Power of Local Consistency

- The followings are equivalent
- Local consistency solves the decision problem
- There is a core of the query having a tree projection

$$
\begin{aligned}
Q: & r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge \\
& r(D, B) \wedge r(A, E) \wedge r(F, E)
\end{aligned}
$$

The Precise Power of Local Consistency

- The followings are equivalent
- Local consistency solves the decision problem
- There is a core of the query having a tree projection

$$
\begin{aligned}
Q: & r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge \\
& r(D, B) \wedge r(A, E) \wedge r(F, E),
\end{aligned}
$$

a core with TP

a core without TP

A Relevant Specialization (not immediate)

- The followings are equivalent
- Local consistency solves the decision problem
- There is a core of the query having a tree projection

The CSP has generalized hypertreewidth k at most

Over all union of k atoms

Back on the Result

- The followings are equivalent
- Local consistency solves the decision problem
- There is a core of the query having a tree projection
«Promise» tractability
- There is no polynomial time algorithm that
- either solves the decision problem
- or disproves the promise

Local consistency for computing solutions

- The followings are equivalent
- Local consistency entails «views containing variables O are correct»
- The set of variables O is tp-covered in a tree projection
$Q: r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge$

$$
r(D, B) \wedge r(A, E) \wedge r(F, E), \wedge \operatorname{atoms}(\{A, E\})
$$

$\{A, E\}$ is tp-covered

E A core with a TP

Local consistency for computing solutions

- The followings are equivalent
- Local consistency entails «views containing variables O are correct»
- The set of variables O is tp-covered in a tree projection
$\begin{aligned} Q: & r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge \\ & r(D, B) \wedge r(A, E) \wedge r(F, E), \wedge \text { atoms }(\{A, F\})\end{aligned}$

Local and global consistency

- The followings are equivalent
- Local consistency entails global consistency
- Every query atom/constraint is tp-covered in a tree projection
$Q: r(A, B) \wedge r(B, C) \wedge r(A, C) \wedge r(D, C) \wedge$ $r(D, B) \wedge r(A, E) \wedge r(F, E), \wedge \operatorname{atoms}(\{D, B\})$

Thank you!

