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Abstract

The chapter covers methods for identifying islands of tractability for NP-hard combi-
natorial problems by exploiting suitable properties of their graphical structure. Acyclic
structures are considered, as well as nearly acyclic ones identified by means of so-called
structural decomposition methods. In particular, the chapter focuses on the tree decompo-
sition method, which is the most powerful decomposition method for graphs, and on the
hypertree decomposition method, which is its natural counterpart for hypergraphs. These
problem-decomposition methods give rise to corresponding notions of width of an instance,
namely, treewidth and hypertree width. It turns out that many NP-hard problems can be
solved efficiently over classes of instances of bounded treewidth or hypertree width: deciding
whether a solution exists, computing a solution, and even computing an optimal solution
(if some cost function over solutions is specified) are all polynomial-time tasks. Exam-
ple applications include problems from artificial intelligence, databases, game theory, and
combinatorial auctions.

1 Introduction

Many NP-hard problems in different areas such as AI [42], Database Systems [7, 81], Game the-
ory [45, 31, 20], and Network Design [34], are known to be efficiently solvable when restricted to
instances whose underlying structures can be modeled via acyclic graphs or acyclic hypergraphs.
For such restricted classes of instances, solutions can usually be computed via dynamic program-
ming. However, as a matter of fact, (graphical) structures arising from real applications are in
most relevant cases not properly acyclic. Yet, they are often not very intricate and exhibit some
rather limited degree of cyclicity, which suffices to retain most of the nice properties of acyclic
instances. Therefore, many efforts have been spent to investigate graph and hypergraph proper-
ties that are best suited to identify nearly-acyclic graph/hypergraphs, leading to the definition
of a number of so-called structural decomposition methods.

In order to apply a decomposition method to a given problem, one first needs to describe the
structure of the problem through a graph or a hypergraph. This means that, to each problem
instance I, one associates a graph G(I) or a hypergraphH(I). Then, G(I) orH(I) is decomposed
into possibly overlapping chunks that have a tree-like (i.e., acyclic) interconnection pattern.
The resulting data structure is called a graph or hypergraph decomposition. The width of a

∗Preliminary version of a chapter in “Tractability: Practical Approaches to Hard Problems”, ed. Lucas
Bordeaux, Youssef Hamadi and Pushmeet Kohli. Cambridge University Press, 2014. Please do not redistribute
without permission.

1



Figure 1: A crossword puzzle and its representation as a hypergraph H0.

decomposition of a problem instance I corresponds to the size of the largest chunk occurring in
the decomposition. The width of the instance I is then defined as the minimum width over all
decompositions of I.

An overwhelming number of relevant decision or computation problems admit solution algo-
rithms whose runtime is exponential in O(w) where w is the width of the input instance. This
means that for classes of bounded width, these problems are solvable in polynomial time. Given
that many practical problem instances occurring in real life applications tend to be of low width,
decomposition methods are currently among the most effective weapons against NP-hardness.

The structure of many problems is adequately described by graphs. In particular, this is
the case when a graph is explicitly part of the problem instance, such as in graph coloring or
network problems, or when the problem is about a binary relationship, such as in matching
problems, binary constraint networks, or precedence orderings, for example, for major versions
of job shop scheduling. For many other problems, however, a graphical representation in terms
of hypergraphs is more appropriate. This is usually the case when relations of unbounded arities
or families of sets are part of the problem description. For example, in the crossword puzzle
depicted on the left of Figure 1, empty fields, that are placeholders for letters, are grouped
together to form placeholders for words. In general, a word-field consists of several letter-fields.
The structure of such a puzzle is thus best described in terms of a hypergraph, as illustrated on
the right of Figure 1. Examples for other problems whose structure is most adequately described
by hypergraphs are general constraint satisfaction problems, conjunctive database queries, and
combinatorial auctions, which will all be explained in Section 4. Examples where other notions
of problem structures (not necessarily graph-based) are more useful for identifying tractable
instances are described in other chapters of this book.

This chapter focuses on two relevant decomposition methods for (hyper)graph based struc-
tures: the treewidth, which is the most powerful decomposition method on graphs, and the
hypertree width, which is its natural counter-part over hypergraphs. Both methods are special-
izations of a more general decomposition scheme called tree projection, which we will briefly
illustrate in Section 5.

The rest of this chapter is organized as follows. In Section 2 we review the notion of treewidth,
and in Section 3 the notion of (generalized) hypertree width, by providing their direct definitions,
looking at their connections, and giving pointers to their most recent extensions. A number of
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Figure 2: A graph G0 and a tree decomposition for it.

applications of such decomposition methods are illustrated. In particular, Section 4 discusses
tractability results for the constraint satisfaction (optimization) problem (CSP), as this is a
fundamental framework which is able to express many problems from different fields. Moreover,
our current knowledge on the tractability frontier for such problems is illustrated in Section 6.

2 Treewidth

The concept of treewidth [72], based on tree decompositions of graphs, constitutes a significant
success story of Theoretical Computer Science.

There are different possible notions to measure how far a graph is from a tree, that is, to
measure its degree of cyclicity or, dually, its tree-likeness (see, e.g., [36]). Among them, the
treewidth is provably the most powerful one, in that it is able to extend the nice computational
properties of trees to the largest possible classes of graphs, in many applications from different
fields.

Definition 2.1 ([72]). A tree decomposition of a graph G = (N,E) is a pair 〈T, χ〉, where
T = (V, F ) is a tree, and χ is a labeling function assigning to each vertex p ∈ V a set of vertices
χ(p) ⊆ N , such that the following three conditions are satisfied: (1) for each node b of G, there
exists p ∈ V such that b ∈ χ(p); (2) for each edge (b, d) ∈ E, there exists p ∈ V such that
{b, d} ⊆ χ(p); and (3) for each node b of G, the set {p ∈ V | b ∈ χ(p)} induces a connected
subtree of T .

The width of 〈T, χ〉 is the number maxp∈V (|χ(p)|−1). The treewidth of G, denoted by tw(G),
is the minimum width over all its tree decompositions. �

Note that treewidth is a true generalization of graph acyclicity. Indeed, a graph G is acyclic
if and only if tw(G) = 1.

For example, the graph G0 reported in Figure 2 is cyclic and its treewidth is 2, as it is
witnessed by the width-2 tree decomposition depicted in the same figure.

Complexity of Treewidth. To determine the treewidth of a graph G is NP-hard. However,
for each fixed natural number k, checking whether tw(G) ≤ k, and if so, computing a tree de-
composition for G of optimal width, is achievable in linear time [9], and was recently shown to
be achievable in logarithmic space [26]. Note that the multiplicative constant factor of Bod-
laenders linear algorithm [9] is exponential in k. However, there are algorithms that find exact
tree decompositions in reasonable time or good upper approximations in many cases of practical
relevance—see, for example, [10, 11] and the references therein.

3



aaa
aaa
aaa

aaa
aaa
aaa

Figure 3: The robber and cop game played on the graph G0 of Figure 2.

Game-Theoretic Characterization. An alternative definition of treewidth is based on the
robber and cops game, which is played on a graph G = (N,E) by a robber and a set of cops.
The robber stands on a node and can run at great speed along the edges of G; however, she is
not permitted to run trough a node that is controlled by a cop. Note that the robber is fast and
may see cops that are entering in action. Therefore, while cops move, the robber may run trough
those positions that are left by cops or not yet occupied. The goal of the cops is to occupy the
vertex on which the robber stands, while the robber tries to avoid her capture. A graph has
treewidth bounded by k if and only if k + 1 cops can capture the robber [78].

Example 2.2. Consider the robber and cops game played on the graph G0 of Figure 2, and
the moves illustrated in Figure 3: The robber initially stands on node 1. Then, two cops enter
in action by occupying 4 and 6. While these cops are moving, the robber can go to node 7 in
a very fast way. Then, another cop comes into play by occupying node 8, thus blocking the
robber at node 7. Eventually, the cop that is currently placed at node 4 moves to node 7, and
hence captures the robber. Note that the sequence of moves leading to the capture of the robber
corresponds to one branch of the tree decomposition of G0 depicted in Figure 2 (and replicated
in Figure 3, with such branch being evidenced). In fact, the correspondence is not by chance: the
depicted width-2 tree decomposition can be seen as encoding a “winning strategy” for 3 cops. C

Note that in the game there is no restriction on the strategy employed by cops to capture
the robber. In particular, they are not forced to play monotonic strategies, that is, to shrink
the robber’s escape space in a monotonically decreasing way. However, it was shown in [78] that
playing non-monotonic strategies gives no more power to cops. Many results about treewidth
are proved in a simple and elegant way by exploiting the game-theoretic characterization. In
particular, the above equivalence between monotonic and non-monotonic capturing strategies
turns out to be very useful, because good strategies for the robber may be easily characterized as
those strategies that allow the robber to run forever. See [3], for an interesting application of the
robber-and-cops game in proofs regarding the power of k-Consistency in constraint satisfaction
problems.
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2.1 Applications to Decision Problems

Tree decompositions and polynomial algorithms for bounded treewidth are among the most
effective weapons to attack NP-hard problems, namely, by recognizing and efficiently solving
large classes of tractable problem instances. In particular, the notion of treewidth is at the
base of strong meta-theorems such as Courcelle’s Theorem [18], which states that any problem
expressible in monadic second-order logic (MSO) over structures of bounded treewidth can be
solved in linear time. Many problems are easily expressed in terms of MSO, and thus Courcelle’s
theorem turns out to be a very effective tool for obtaining tractability results.

Finite Structures. The notion of treewidth is easily generalized from graphs to finite
structures. A vocabulary τ is a finite set of relation symbols R1, . . . , Rk of arities a1, . . . , ak,
respectively. A relational structure A over τ consists of a finite domain A and an ai-ary relation
RA

i ⊆ Aai , for each relation symbol Ri in τ . The size of A, denoted by ||A||, is the value

||A|| = |A| +
∑k

j=1 |Rj | × aj . For further background on finite structures, the interested reader
is referred to textbooks on finite model theory (e.g., [44]).

For instance, a graph G = (N,E) can be viewed as a finite structure whose domain is N , and
where E is a binary relation encoding its edges.

The Gaifman graph of a structure A is the undirected graph G(A) whose vertices are the
elements of the domain of A, and where there is an edge between the elements e and e′ if and
only if there is a tuple of some relation of A where e and e′ jointly occur. The treewidth of A,
denoted by tw(A), is the treewidth of its Gaifman graph, i.e., tw(A) = tw(G(A)).

MSO. A First Order logic formula is made up of relation symbols, individual variables (usually
denoted by lowercase letters), the logical connectives ∨, ∧, and ¬, and the quantifiers ∃ and ∀.
Monadic Second Order (MSO) enhances the expressiveness of first order logic by allowing the use
of set variables (usually denoted by uppercase letters), of the membership relation ∈, and of the
quantifiers ∃ and ∀ over set variables. In addition, it is often convenient to use symbols like ⊆, ⊂,
∩, ∪, and → with their usual meaning, as abbreviations. When an MSO formula φ is evaluated
over a finite structure A, the relation symbols of φ are interpreted as the corresponding relations
of A and the variables of φ range over the domain A of A. The fact that an MSO formula φ
holds over A is denoted by A |= φ. For a graph G (viewed as a finite structure), this is just
meant to state that G satisfies the property expressed by the formula φ, as we illustrate below.

Example 2.3. Let G = (N,E) be an undirected graph (interpreted as a finite structure). Then,
the fact that G is 3-colorable can be expressed via the following MSO formula:

∃R,B, Y, R ∪B ∪ Y = N ∧
R ∩B = ∅ ∧ R ∩ Y = ∅ ∧ B ∩ Y = ∅ ∧
∀x, x ∈ B → (∀y, {x, y} ∈ E → ¬(y ∈ B)) ∧
∀x, x ∈ R → (∀y, {x, y} ∈ E → ¬(y ∈ R)) ∧
∀x, x ∈ Y → (∀y, {x, y} ∈ E → ¬(y ∈ Y ))

In particular, note that the formula checks whether there exists a partition of the nodes in N
into three disjoint sets of nodes R, B, and Y , which respectively correspond to the nodes that are
colored red, blue, and yellow. Moreover, the formula checks that for each node, all its adjacent
nodes are colored with a different color. C

The next theorem relates treewidth to MSO.

Theorem 2.4. Let φ be a fixed MSO sentence, let k be a fixed constant, and let Ck be a class of
finite structures having treewidth bounded by k. Then, for each finite structure A ∈ Ck, deciding
whether A |= φ holds is feasible in linear time [18] and logarithmic space [26] (w.r.t. ||A||).
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From the above theorem and Example 2.3, we can conclude that 3-colorability is a property
that can be efficiently checked on classes of graphs having bounded treewidth, while, on arbitrary
classes of graphs, the problem is a well-known NP-complete problem.

2.2 Applications to Optimization Problems

An important generalization of MSO formulae to optimization problems was presented by [5].
Let A be a finite structure over the domain A, and let w be a list of weights associated with

the elements in A, such that w(v) is a rational number for each v ∈ A. The pair 〈A, w〉 is
hereinafter called a weighted finite structure, and its size ||〈A, w〉|| is defined as the size of A plus
all the values (numerators and denominators) in w.

Let φ(X̄) be an MSO formula over A, where X̄ is the set of free second-order variables (i.e.,
set variables) occurring in φ. For an interpretation I mapping variables in X̄ to subsets of A, we
denote by φ[I] the MSO formula (without free variables) where each variable X ∈ X̄ is replaced
by I(X).

A solution to φ over 〈A, w〉 is an interpretation I such that A |= φ[I] holds. The cost of I
is the value

∑
X∈X̄

∑
v∈I(X) w(e). A solution of minimum cost is said optimal.

Example 2.5. Let G = (N,E) be an undirected graph (interpreted as a finite structure). Then,
the property that a set X of vertices is a vertex cover, i.e., a set such that each edge in E has at
least one endpoint incident on it, can be expressed via the vertexCover(X) formula (where X is
its free variable) defined as follows:

X ⊆ N ∧ (∀x ∈ N∀y ∈ N, {x, y} ∈ E → (x ∈ X) ∨ (y ∈ X))

By considering a list w of weights assigning 1 to each vertex in N , we have that an optimal
solution to vertexCover over 〈G,w〉 is a minimum-cardinality vertex cover. C

The result below shows that not only the decision problem, but even the associated problem
of computing a solution of minimum cost is feasible in polynomial time on bounded-treewidth
structures.

Theorem 2.6 (simplified from [5]). Let φ be a fixed MSO sentence, let k be a fixed constant, and
let Ck be a class of finite structures having treewidth bounded by k. Then, for each weighted finite
structure 〈A, w〉 such that A ∈ Ck, computing an optimal solution to φ over 〈A, w〉 is feasible in
polynomial time (w.r.t. ||〈A, w〉||).

From the above theorem and Example 2.5, we can immediately conclude that computing
a minimum-cardinality vertex cover is feasible in polynomial time on classes of graphs having
bounded treewidth whereas, on arbitrary classes of graphs, it is NP-hard.

3 Hypertree Width

The structure of a computational problem is sometimes better described by a hypergraph rather
than by a graph. This is, in particular, the case if local relationships involve many elements
together, such as in the case of relational structures with large arities. Therefore, various width-
notions for hypergraphs have been defined and studied, and often these are more effective than
simply applying the treewidth on a suitable “binarization” [36, 47].

Width-notions for hypergraphs come as generalizations of hypergraph acyclicity, which is
recalled next.
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Figure 4: A hypergraph H1 and a join tree JT (H1).

A hypergraph H is acyclic iff it has a join tree [7]. A join tree JT (H) for a hypergraph H is
a tree whose vertices are the hyperedges of H such that, whenever the same node X ∈ V occurs
in two hyperedges h1 and h2 of H, then X occurs in each vertex on the unique path linking h1

and h2 in JT (H) (connectedness condition for X). Note that this notion of acyclicity is the most
general one known in the literature, coinciding with α-acyclicity according to Fagin [27].

For example, the hypergraph H1 shown on the left of Figure 4 is acyclic as it is witnessed by
the join tree JT (H1). Instead, the reader can check that the hypergraph H′

1 shown on the left of
Figure 5, obtained by adding an edge {B,M} to H1, is not acyclic. Indeed, there is no way to
build a join tree for it. For instance, the reader may check that every attempt to add a vertex
for {B,M} to the join tree shown in Figure 4 does not satisfy the connectedness condition for
B or M . Similarly, it can be seen that the hypergraph H0 reported on the right of Figure 1 is
not acyclic, too.

3.1 Embedding Hypergraphs in (Hyper)trees

The natural counter-part of the tree decomposition method over hypergraphs is the notion of
(generalized) hypertree decomposition [39, 38]. In the following, for a hypergraph H = (V,H),
we denote by N (H) and E(H) the sets V and H, respectively. Moreover, its associated primal
graph is defined over the same set N (H) of nodes and contains an edge for each pair of nodes
included in some hyperedge of E(H).

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T = (N,E) is a rooted tree, and
χ and λ are labeling functions that associate with each vertex p ∈ N two sets χ(p) ⊆ N (H) and
λ(p) ⊆ E(H). The width of a hypertree is the cardinality of its largest λ label, i.e., maxp∈N |λ(p)|.

Hypertree decompositions are similar to tree decompositions, but for the associated notion
of width, which is determined by a minimum hyperedge covering of the sets of nodes in the χ
labeling.

Definition 3.1. [40] A generalized hypertree decomposition of a hypergraph H is a hypertree
HD = 〈T, χ, λ〉 for H, where 〈T, χ〉 is a tree decomposition of the primal graph of H, and λ is a
function labeling the vertices of T by sets of hyperedges of H such that, for each p ∈ vertices(T ),
χ(p) ⊆

⋃
h∈λ(v) h. That is, all nodes in the χ labeling are covered by hyperedges in the λ labeling.

A hypertree decomposition is a generalized hypertree decomposition that satisfies the following
additional condition, called Descendant Condition or also special condition: ∀p ∈ vertices(T ),
∀h ∈ λ(p), h ∩ χ(Tp) ⊆ χ(p), where Tp denotes the subtree of T rooted at p, and χ(Tp) the set
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Figure 5: A hypergraph H′
1, a tree decomposition for its primal graph, and a width-2 hypertree

decomposition for H′
1.

of all variables occurring in the χ labeling of this subtree. �

Note that the notions of hypertree width and generalized hypertree width are true generaliza-
tions of acyclicity, as the acyclic hypergraphs are precisely those hypergraphs having hypertree
width and generalized hypertree width one [40].

Example 3.2. Recall the hypergraph H′
1 shown in Figure 5. We have already observed that this

hypergraph is not acyclic because it has no join tree. However, the connectedness condition for all
nodes may be fulfilled if one may use additional nodes, possibly taken from multiple hyperedges,
to label the desired tree. Indeed, this behavior may be observed in the tree decomposition of the
primal graph of H′

1 shown in the left part of Figure 5.
Note that the width of this decomposition is 7, because the notion of treewidth is based on

the number of nodes used in each label. However, this hypergraph is evidently quasi-acyclic.
And in fact the hypertree width of H′

1 is at most 2, because all sets of nodes used in the labels
may be covered by two hyperedges at most, as witnessed by the hypertree decomposition in the
bottom part of Figure 5. To complete the picture, we may also conclude that the hypertree
width of H′

1 is precisely 2, because the fact that it is cyclic entails hw(H′
1) > 1. C

At a first glance, a generalized hypertree decomposition may simply be viewed as a clustering
of the hyperedges where the classical connectedness condition of join trees holds. However, this
is not the case, as it can be seen by looking in more detail at the two labels associated with each
vertex p: the set of hyperedges λ(p), and the set of effective nodes χ(p), which are subject to
the connectedness condition. In particular, all nodes that appear in the hyperedges of λ(p) but
that are not included in χ(p) are “ineffective” for v and do not count w.r.t. the connectedness
condition.
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Figure 6: A width-2 hypertree decomposition for the hypergraph H0 reported on the right of
Figure 1.

Figure 7: The hypergraph H′
0 in Example 3.3.

Example 3.3. Reconsider the hypergraph H0 reported on the right of Figure 1 and associated
with the crossword puzzle. The hypergraph is not acyclic, and a width-2 hypertree decomposition
of it is shown in Figure 6, thus witnessing that hw(H0) = 2. Note, for instance, that the
hyperedge 20H is used in 3 distinct vertices of the decomposition. In all such occurrences but
for that in the root, some of the nodes in 20H are “ineffective”.

Finally, for a further example, consider the hypergraph H′
0 shown in Figure 7, and note that

H′
0 is obtained by adding one hyperedge to the hypergraph H0 shown in Figure 1. It can be

checked that there exists no width-2 hypertree decomposition of H′
0. In fact, hw(H′

0) = 3. C

3.2 Complexity Issues

Choosing a decomposition tree and suitable χ and λ vertex labelings in order to get a hypertree
decomposition below a fixed threshold-width k is not that easy, and it is definitely more difficult
than computing a simple tree decomposition.

In fact, it has been shown that generalized hypertree-width is an intractable notion, as decid-
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ing whether a hypergraph has generalized hypertree width at most k is an NP-complete problem,
for any fixed k ≥ 3 [41]. It is thus very nice and somehow surprising that dealing with hyper-
tree width is a very easy task. More precisely, for any fixed k ≥ 1, deciding whether a given
hypergraph has hypertree width at most k is in LOGCFL. For the sake of completeness, we
recall here that the class LOGCFL consists of all decision problems that are logspace reducible
to a context-free language, and that it contains many interesting and natural complete problems,
such as evaluating (Boolean) acyclic conjunctive queries [37]. Moreover, the relationship between
LOGCFL and other well-known complexity classes can be summarized in the following chain of
inclusions:

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P,

where L denotes logspace, ACi and NCi are logspace-uniform classes based on the corresponding
types of Boolean circuits, NL denotes nondeterministic logspace, and P is polynomial time—for
definitions of all these classes, see [57].

Note that, since LOGCFL ⊆ AC1 ⊆ NC2, deciding whether a given hypergraph has hypertree
width at most k is a highly parallelizable problem. Correspondingly, the search problem of com-
puting a k-bounded hypertree decomposition belongs to the functional version of LOGCFL, which
is LLOGCFL [39]. However, unlike treewidth for which a linear-time algorithm exists, the prob-
lem of deciding whether, for a hypergraph H, hw(H) ≤ k is fixed-parameter intractable (more
precisely, W[2]-hard) in the parameter k [33]. Therefore, unless some unlikely collapse occurs in
fixed-parameter complexity theory, a bad exponential dependency of the form O(f1(n)

f2(k)) is
unavoidable in the running time of sound and complete algorithms. See the chapter by Fomin
and Saraubh in this collection, for an introduction to the main concepts in the theory of fixed
parameter tractability.

Of course, the notion of hypertree width is less general than the notion of generalized hypertree
width. However, it provides a good approximation for generalized hypertree width as, for each
hypergraph H, ghw(H) ≤ hw(H) ≤ 3× ghw(H) + 1 [1].

3.3 Algorithms for Hypertree Computation

Several efforts have been spent in the last few years to define algorithms for hypertree com-
putation. See the Hypertree Decomposition Home Page [75], for available implementations of
algorithms for computing hypertree decompositions, and further links to heuristics and other
papers on this subject.

Exact approaches. The first proposal in the literature appeared in [39], where an algorithm
called k-decomp has been presented constructing a (“normal-form”) hypertree decomposition of
minimal width less than or equal to k (if such a decomposition exists). However, k-decomp “runs”
on alternating Turing machines using logarithmic workspace, and hence is not designed for real-
world applications. A more practical algorithm, named opt-k-decomp, has been obtained in [35]
by “uprolling” k-decomp in a sequential bottom-up fashion. The algorithm runs in O(m2kv2)
time, where m and v are the number of edges and the number of nodes of the hypergraph,
respectively. This algorithm has been improved subsequently in [55], where some techniques
for limiting redundant computations have been discussed, which actually do not improve the
asymptotic worst-case bounds of the original algorithm.

Another approach for computing hypertree decompositions has been discussed in [80]. Its
basic idea is to exploit a backtracking procedure that stops as soon as it discovers a decomposition
of width at most k (differently from opt-k-decomp, which implicitly builds a structure from which
it is possible to enumerate easily all possible normal-form decompositions of width at most k).
The (worst case) time complexity of this approach is O(v3k+3).
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Heuristics. Most recent research focuses on heuristic approaches for the construction of (gen-
eralized) hypertree decompositions of “small” but not necessarily minimal width.

For instance, generalized hypertree decompositions can be constructed starting from tree de-
compositions, and subsequently covering the variables at each vertex label by a small number of
hyperedges. This latter condition can be straightforwardly implemented by set covering (heuris-
tics), so that it is possible to use tree decomposition heuristics for the construction of generalized
hypertree decompositions. In particular, Bucket Elimination [22] is used in combination with
several variable ordering heuristics in [64].

Another technique has been discussed in [74], which shows how to use the branch-decomposition
approach for ordinary graphs [17] for the heuristic construction of generalized hypertree decom-
positions (based on the fact that every branch decomposition of width k can be transformed into
a tree decomposition of width at most 3k/2).

Reference [60] investigates the idea of computing generalized hypertree decompositions based
on the tree decompositions of the primal and of the dual graph.

The use of tabu search for computing (generalized) hypertree decompositions has been con-
sidered in [66].

More recently, [43] considered a combination of exact and heuristic approaches in the sense
that the search space is restricted by a fixed upper bound k, and some heuristics are used to
accelerate the search for a generalized hypertree decomposition of width at most k (but not
necessarily the minimal one). The resulting algorithm det-k-decomp is based on backtracking,
and can also be implemented for parallel executions.

3.4 Game-Theoretic Characterizations

Even though the formal definitions of hypertree and generalized hypertree width are quite in-
volved, these notions (similarly to treewidth) have very natural game-theoretic characterizations.
Having a game view of graph-theoretic notions not only helps grasping their meaning, but also
provides a useful tool for both practical applications and formal results. For instance, game
winning-strategies are often related to suitable “normal-form” decompositions. Such decompo-
sitions have been used both to speed up the computation of hypertree decompositions and to
formally prove that the NP-hard notion of generalized hypertree width is in fact in NP (cf. [32]).

Hypertree Width. The robber and marshals game is played by one robber and a number of
marshals on a hypergraph. The robber moves on nodes, while marshals move on hyperedges. At
each step, any marshal controls an entire hyperedge. During a move of the marshals from the
set of hyperedges E to the set of hyperedges E′, the robber cannot pass through the nodes in
B = (∪E) ∩ (∪E′), where, for a set of hyperedges F , ∪F denotes the union of all hyperedges in
F . Intuitively, the vertices in B are those not released by the marshals during their move. The
game is won by the marshals if they corner and capture the robber somewhere in the hypergraph,
by monotonically shrinking the moving space of the robber. A hypergraph H has k-bounded
hypertree width if, and only if, k marshals win the robber and marshals game on H [40].

Example 3.4. Consider the robber and marshals game played on the hypergraphH0 of Figure 1,
and the moves illustrated in Figure 8: the robber initially stands on node 11. Then, two marshals
enter in action and block hyperedges 1H and 20H. During the move of the marshals, the robber
is fast enough to move on any node of the hypergraph that will not be blocked by them. For
instance, the robber might in principle move to node 14. In fact, the robber decides to move to
11 and, hence, (s)he is now confined to the set of nodes {7, 11, 12, 13, 16, 17}. No matter of the
move of the robber, one marshal keeps blocked 20H while the other one occupies 1V . Note that
during this move the marshal releases all nodes in {2, 3, 4, 5}, but still blocks node 1 (which is
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Figure 8: The robber and marshal game played on the hypergraph H0.

covered by both 20H and 1V ). It follows that the robber cannot escape via node 1, and is now
confined to move over {12, 13, 17}. In fact, no matter of the next move of the robber, the two
marshals can now capture the robber by moving on 11H and 13V . Again, note that during this
move the “escape doors” of the robber (nodes 11 and 22) remain blocked.

Note that the above described sequence of moves leading to the capture of the robber corre-
sponds to one branch of the hypertree decomposition of H0 depicted in Figure 1 (and replicated
in Figure 8, with such branch being evidenced). In fact, the correspondence is not by chance:
the depicted width-2 hypertree decomposition can be seen as encoding a “winning strategy” for
2 marshals. C
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Figure 9: A move in the captain and robber game played on the hypergraph H0 of Figure 1.

Generalized Hypertree Width. The captain and robber game is played on a hypergraph,
by a robber and a captain controlling some squads of cops.1 The robber stands on a vertex
and can run at great speed along the edges; however, (s)he is not permitted to run trough a
vertex that is controlled by a cop. Each move of the captain involves one squad of cops, which is
encoded as an edge h. The captain may ask any subset of cops in the squad h to run in action,
as long as they occupy vertices that are currently reachable by the robber, thereby blocking an
escape path for the robber. Thus, “second-lines” cops cannot be activated by the captain. The
goal of the captain is to place a cop on the vertex occupied by the robber. A hypergraph H
has k-bounded generalized hypertree width if, and only if, a captain controlling k squad of cops
wins the captain and robber game on H [46]. Note that, in contrast with the previous game, in
this case the captain is not forced to block entirely a hyperedge with a squad, and (s)he is not
required to shrink monotonically the escape-space of the robber. In fact, it turns out that non-
monotonic strategies give no more power to the captain [46], similarly to the game characterizing
the treewidth.

Example 3.5. In order to understand the main difference between the robber and cops game
and the robber and marshals game, consider again the moves depicted in Figure 8. In particular,
let us focus on the first step where the two marshals occupy 1H and 20H. In the captain and
robber game, the same starting configuration may occur as well, because the captain may ask
the two squads (associated with hyper edges) 1H and 20H to enter in action (see Figure 9).
After this move, either the robber is confined to the set of nodes {7, 11, 12, 13, 16, 17}, or to the
set of nodes {6, 8, 9, 10, 14, 15, 18, 19}, as in the robber and marshals game.

Consider in particular hyperedge 20H: either nodes 23, 24, 25, 26, or nodes 20, 21, 22, and 23
are no longer reachable by the robber. Hence, they are second-lines and cannot be used by the
captain. However, any subset of nodes (cops) potentially useful to actually constrain robber’s
moves may freely be selected to enter in action. For instance, with the former choice of the
robber (say standing on node 13), in the subsequent step the captain may employ the full squad
1V and the two cops on nodes 20 and 21 from squad 20H. In this case the game immediately
ends with a final step where the two squads 11H and 13V enter in action, and the robber cannot
move any more. C

1This game is actually the specialization to generalized hypertree decompositions of the homonymous game
played on pairs of hypergraphs that characterizes tree projections [46].
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4 Applications of Hypertree Width

The notion of (generalized) hypertree width has been exploited profitably in the last few years to
single out islands of tractability to a broad spectrum of problems in different application areas.
Differently from tree decompositions, there is no theorem à la Courcelle to be used for establishing
tractability results for instances having bounded hypertree width via some logic-based encodings.
In this case, a useful tool to isolate tractable instances of some given problem is to establish a
structure-preserving polynomial-time reduction to some problem for which islands of tractability
are already known. In the following, we shall illustrate such a tool for a number of application
examples, by focusing on tractable classes of the constraint satisfaction problem (CSP), which is
able to express in a natural way many problems from different fields.

4.1 Application to Constraint Satisfaction

An instance of a constraint satisfaction problem (CSP) (also constraint network) (e.g., [23]) is a
triple I = (Var , U, C), where Var is a finite set of variables, U is a finite domain of values, and
C = {C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Ci is a pair (Si, ri), where Si

is a list of variables of length mi called the constraint scope, and ri is an mi-ary relation over U ,
called the constraint relation. (The tuples of ri indicate the allowed combinations of simultaneous
values for the variables Si). A solution to a CSP instance is a substitution θ : Var −→ U , such
that for each 1 ≤ i ≤ q, Siθ ∈ ri. The problem of deciding whether a CSP instance has any
solution is called constraint satisfiability.

Example 4.1. A combinatorial crossword puzzle (see Figure 1) is a typical CSP [21, 69]. A set
of legal words is associated to each horizontal or vertical array of white boxes delimited by black
boxes. A solution to the puzzle is an assignment of a letter to each white box such that to each
white array is assigned a word from its set of legal words.

This problem is represented as follows. There is a variable Xi for each white box, and a
constraint C for each array D of white boxes. (For simplicity, we just write the index i for
variable Xi.) The scope of C is the list of variables corresponding to the white boxes of the
sequence D; the relation of C contains the legal words for D. For the example in Figure 1, we
have C1H = ((1, 2, 3, 4, 5), r1H), C8H = ((8, 9, 10), r8H), C11H = ((11, 12, 13), r11H), C20H =
((20, 21, 22, 23, 24, 25, 26), r20H ), C1V = ((1, 7, 11, 16, 20), r1V ), C5V = ((5, 8, 14, 18, 24), r5V ),
C6V = ((6, 10, 15, 19, 26), r6V ), C13V = ((13, 17, 22), r13V ). Subscripts H and V stand for “Hor-
izontal” and “Vertical,” respectively, resembling the usual naming of definitions in crossword
puzzles. A possible instance for the relation r1H is {〈h, o, u, s, e〉, 〈c, o, i, n, s〉, 〈b, l, o, c, k〉}. /

Structural Tractability. The structure of a CSP instance I can be represented by its associated
hypergraph H(I) = (V,H), where V = Var and H = {S | (S, r) ∈ C}. For example, the
hypergraph associated with the crossword puzzle formalized above is the one on the left of
Figure 1.

Constraint satisfiability is in general NP-complete. However, bounded hypertree width of the
associated hypergraph is a key for tractability. Formally, we say that a class of instances C has
bounded hypertree width if there exists some natural number k such that hw(H(I)) ≤ k, for
every I ∈ C. Observe that a class C has bounded hypertree width if, and only if, it has bounded
generalized hypertree width, after the mentioned constant-approximation relationship between
the two notions [1]. We thus speak hereafter only of bounded hypertree width classes. Moreover,
it is known that, for any class C, bounded treewidth entails bounded hypertree width, while the
converse does not hold in general (unless the maximum size of the constraint scopes in every
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instance of C is bounded by a fixed constant).2

The following result has been discussed by different authors for different decomposition meth-
ods and (hyper)graph representations [24, 59, 14], while the more general version for bounded
hypertree width (together with the completeness of the problem for the class LOGCFL) was
proven in [39]. Note that the result below is purely structural, as the kind of tuples occurring in
the various constraint relations do not play any role.

Theorem 4.2 ([39]). Constraint satisfiability is feasible in polynomial time over any class C of
bounded hypertree width.

To establish the result, the idea is to compute a hypertree decomposition HD = 〈T, χ, λ〉 of
hypergraph H(I) of the given instance I, and then solve constraint satisfiability by traversing HD
from the leaves to the root r, by means of a bottom-up procedure. Recall first that each vertex
v of T is associated with a set of hyperedges λ(v) of H(I) and, hence, to a set of constraints in
I, and define (initially) relv as the set of all solutions of the CSP restricted to such constraints,
possibly projected over the variables in χ(v). Note that |relv| ≤ Ck, where k is the hypertree
width and C denotes the cardinality of the largest constraint relation. Then, in the bottom-up
procedure, at each (non-leaf) vertex v, for each child c of v in T , we filter relv by keeping only
those substitutions θv that coincide with some substitution θc ∈ relc on the variables they have
in common. At the end, the given instance I admits a solution if, and only if, relr is not empty.
By this procedure, I can be evaluated in O((m− 1)Ck logC) where m is the number of vertices
of T (which is at most the number of variables, in normal-form decompositions). Note that for
k = 1, the method above coincides with the well-known algorithm by Yannakakis [81] for the
evaluation of acyclic instances.

It is natural to ask whether we can achieve fixed-parameter tractability (FPT) [25] by finding a
better algorithm which would allow us to get rid of the constant k in the exponent. Unfortunately,
this appears to be very unlikely. In fact, the problem can be shown to be fixed-parameter
intractable (more precisely, W [1]-hard) in the number of constraints or the number of variables
as parameters [68]. The same holds for treewidth.

Strategic Games, Databases. Several problems can be reformulated as CSPs, so that struc-
tural tractability follows via Theorem 4.2. A noticeable example comes from the theory of
strategic games [67]: Pure Nash equilibria are shown to be computable in polynomial time over
compactly specified games (see, e.g., [31, 58, 20]) where the players’ interaction is encoded in
form of a hypergraph with bounded hypertree width [31]—in general the problem if NP-hard.

For other example, we recall that constraint satisfiability is known to be equivalent to a
number of problems in database theory [53, 59], e.g., to the problem of conjunctive query con-
tainment [59], or to the problem of evaluating Boolean conjunctive queries over a relational
database [62]. Therefore, cross fertilization among these different research fields was possible
and led to major achievements both in the AI and in the DB communities. However, observe
that, even if in principle we are talking about equivalent problems, in practice the instances
considered in the applications are very different, and thus one cannot simply take any technique
from AI and apply it to DB, or vice-versa. Typical CSP instances are indeed characterized by
many constraints with relatively small constraint relations, while typical query-answering tasks
involve relatively small queries on large (often huge) databases.

2To be precise, in order to use the notion of treewidth, it should be specified how a non-binary structure
is encoded as a graph. However, it has been shown that the above mentioned result holds in fact for all CSP
graph-encodings (currently) described in the literature [47, 36].
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4.2 Application to Enumeration Problems

We first focus on the tractability of the problem ECSP of enumerating (possibly projected)
solutions. In particular, since even easy instances may have an exponential number of solutions,
tractability means here having algorithms that compute solutions with polynomial delay (WPD):
An algorithm M solves WPD a computation problem P if there is a polynomial p(·) such that,
for every instance of P of size n, M discovers if there are no solutions in time O(p(n)); otherwise,
it outputs all solutions in such a way that a new solution is computed within O(p(n)) time from
the previous one.

We remark that having efficient algorithms for ECSP is important not only in the (obvious)
case we are interested in computing all solutions, but also whenever we are interested in solutions
having some specific properties that cannot be expressed by standard constraints. For instance,
this happens whenever the desired answers are the solutions of a problem beyond NP, hence not
expressible as a (standard) CSP instance. Examples are the Strategic Companies problem [13],
or problems related with Conformant Planning and Conditional Planning [71], which are all hard
for the second level of the polynomial hierarchy. Indeed, in such cases, one typically starts an
enumeration (possibly, anytime) algorithm, and for each computed solution checks whether the
additional properties are met or not, which may require a completely different algorithm. In
the worst case, the complete enumeration of all solutions may be required. Actually, note that
in these cases one is usually interested in a (minimal) subset O of variables sufficient to check
the additional properties. Moreover, observe that modeling real-world applications through CSP
instances typically requires the use of “auxiliary” variables, whose precise values in the solutions
are not relevant for the user, and that are (usually) filtered-out from the output. Therefore,
computing all combinations of their values occurring in solutions means wasting time, possibly
exponential time. Of course, this is irrelevant for computing just one solution, but it is crucial
for the enumeration problem.

It was shown that this problem is tractable for classes of instances having bounded tree-
width [12]. Actually, such a tractability result has been extended to the more general tree-
projection framework [48], which comprise all purely structural decomposition methods. We
next recall a specialization to the hypertree width method.

Theorem 4.3 ([48]). Let C be any class of CSPs having bounded hypertree width. Then, for
every I ∈ C and every set of variables O occurring in I, all the solutions of I projected over O
can be enumerated with polynomial delay.

Analogous positive results hold for the related problem of counting the number of solutions.
Note that, even for instances with exponentially many solutions, the number of these solutions
may well be computed in polynomial time if it is not necessary to actually generate them. Indeed,
it has been shown that counting the number of solutions of a CSP is feasible in polynomial time
for classes of instances having bounded hypertree width and where the set of output variables
O is in fact the full set of variables. The result is also tight on recursively enumerable classes
of instances having bounded arity (unless FPT = W [1]) [19]. Moreover, in the general case
of classes of instances having bounded hypertree width and with arbitrary sets O of desired
variables, the problem is still tractable if either the constraint relations or the constraint scopes
have a fixed maximum size [70].

Conjunctive Queries. Note that the above enumeration problem is precisely the classical
query answering problem for conjunctive queries over relational databases, which are equivalent
to SELECT-PROJECT-JOIN queries. Moreover, counting the number of answers is a basic
function in most query languages (just think of the count operator in SQL). However, despite
the very nice computational properties of structural decomposition methods such as treewidth
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and hypertree width, they did not have a significant impact on the design of commercial DBMS
optimizers, and the interest for these techniques remained only at a theoretical level, until very
recently. This is mainly due to two reasons. First, decomposition methods flatten in the hy-
pergraph all the “quantitative” aspects of data, such as selectivity and cardinality of relations,
whose knowledge may dramatically speed-up the evaluation time. Second, such methods do not
generally take care of the output of the queries, or of aggregate operators. Relevant steps to
fill the gap between theory and practice have been made in [77], where the hypertree decom-
position method has been extended in order to combine this structural decomposition method
with quantitative approaches, and in [29], where methods have been discussed to deal with out-
put variables and aggregate operators. A system prototype implementing these approaches has
recently been presented in [28]. The system can be put on top of any existing database manage-
ment system supporting JDBC technology, by transparently interacting/replacing its standard
query optimization module.

4.3 Application to Constraint Optimization

Whenever assignments are associated with some cost because of the semantics of the underlying
application domain, computing an arbitrary solution might not be enough. For instance, the
crossword puzzle in Example 4.1 may admit more than one solution, and expert solvers may
be asked to single out the most difficult ones, such as those solutions that minimize the total
number of vowels occurring in the used words. For another example, think of database queries,
which are often ranked according to user preferences.

In these cases, one is often interested in the optimization problem of computing the solution of
minimum cost, whose modeling is accounted for in several variants of the basic CSP framework,
such as fuzzy, probabilistic, weighted, lexicographic, penalty, valued, and semiring-based CSPs
(see [65, 8], and the references therein). A thorough analysis of the complexity of constraint
optimization under structural restrictions has been carried out in [50]. Below, we overview such
recent results.

Formal Framework. Let Var be a set of variables and let U be a domain of constants. Let
� be a total order over a domain of values D. Then, an evaluation function F over D and � is
a tuple 〈w,⊕〉 with w : Var × U 7→ D and where ⊕ is a commutative, associative, and closed
binary operator with an identity element over D.

For a substitution θ 6= ∅, F(θ) is the value
⊕

X/u∈θ w(X,u); and, conventionally, F(∅) is the

identity element (w.r.t. ⊕). The evaluation function F = 〈w,⊕〉 is monotone if F(θ) � F(θ′)
implies that F(θ)⊕F(θ′′) � F(θ′)⊕F(θ′′), for each triple of substitution θ, θ′, θ′′.

Let L = [F1, ...,Fm] be a list of evaluation functions, where each Fi is defined over a domain
Di and a total order �i, ∀i ∈ {1, ...,m}. Then, for any substitution θ, L(θ) denotes the vector of
values (F1(θ), ...,Fm(θ)) ∈ D1 × · · · × Dm. To compare elements of D1 × · · · × Dm, we consider
the lexicographical total order �lex , inducing a hierarchy over the preference relations in each
domain. Let x = (x1, ..., xm) and y = (y1, ..., ym) be two vectors with xi, yi ∈ Di, for each
i ∈ {1, ...,m}. Then, as usual, x �lex y, if either x = y, or there is an index i ∈ {1, ...,m} such
that xi �i yi and xj = yj holds, for each j ∈ {1, ..., i− 1}.

Let L = [F1, ...,Fm] be a list of evaluation functions. Then, we define �L as the binary
relation such that, for each pair θ1 and θ2 of substitutions, θ1 �L θ2 if, and only if, L(θ1) �lex

L(θ2). Note that �L is a preorder, which might be not antisymmetric, as L(θ1) = L(θ2) does
not imply that θ1 = θ2. As the ordering might even not be a partial order at all, it is natural to
exploit linearization techniques, as discussed in [2].

Let �U be an arbitrary total order defined over U . Let ` = [X1, ..., Xn] be a list including all
the variables in Var , hereinafter called linearization. Then, we define �`

L as the binary relation
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Figure 10: A Dual Hypergraph with a with-2 hypertree decomposition.

such that, for each pair θ1 and θ2 of substitutions, θ1 �`
L θ2 if, and only if, (i) θ1 = θ2, or

(ii) θ1 �L θ2 and θ2 6�L θ1, or (iii) θ1 �L θ2, θ2 �L θ1, and there is a variable Xi such that
θ1(Xi) �U θ2(Xi), and θ1(Xj) = θ2(Xj), for each j ∈ {1, ..., i − 1}. Note that �`

L is a total
order, where ties in �L are resolved according to ` and the total order �U over U . In fact, �`

L

is a refinement of �L.

Structural Tractability. An instance I = (Var , U, C) of a constraint satisfaction problem
equipped with a list L of evaluation functions is called a constraint optimization problem, and
is denoted by IL. A problem that naturally arises with evaluation functions is the Min(IL, `)
problem of computing the solution θ to I such that there is no solution θ′ with θ �`

L θ′ (or
recognizing that no solution exists at all). In case of arbitrary evaluation functions, results are
bad news about the tractability of Min, even on classes of acyclic instances.

Theorem 4.4 ([50]). Min is NP-hard for any linearization, even on classes of instances IL
where H(I) is acyclic.

However, on monotone functions to be optimized, bounded hypertree width is again a key to
ensure tractability. The complexity analysis follows here the usual simple approach of counting
1 each mathematical operation, hence in principle one may compute in polynomial time (oper-
ations) values whose size is exponential w.r.t. the input size. We thus explicitly care about the
size of values computed during the execution of algorithms, and look for output polynomial-space
algorithms.

Theorem 4.5 ([50]). On classes of constraint optimization problems IL where the hypertree width
of H(I) is bounded by some fixed natural number and where L is a list of monotone evaluation
functions, Min is feasible in polynomial time and output-polynomial space (for any linearization).

The result is established by modifying the bottom-up procedure illustrated in the section
above for constraint satisfiability. The main difference is that, at each (non-leaf) vertex v, for
each child c of v in T , one filters relv by keeping only the “best” substitutions θv, i.e., those on
which the solution of minimum cost can be achieved for the CSP obtained by considering the
constraints in the subtree rooted at v.

Combinatorial Auctions. The above solution algorithm may be viewed as a generalization
to lexicographic optimization of an algorithm discussed in [30] for combinatorial auctions, where
there is just one function to be optimized.

Combinatorial auctions are well-known mechanisms for resource and task allocation where
bidders are allowed to simultaneously bid on combinations of items. Such mechanisms model
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Figure 11: A tree projection for the hypergraph H1 in Figure 4 (on the left) w.r.t. the resource
hypergraph reported on the right.

very well those situations where bidders’ valuations of bundles of items are not equal to the sum
of their valuations of individual items.

Formally, a combinatorial auction is a pair 〈I,B〉, where I = {I1, ..., Im} is the set of items
the auctioneer has to sell, and B = {B1, ..., Bn} is the set of bids from the buyers interested
in the items in I. Each bid Bi has the form 〈item(Bi), pay(Bi)〉, where pay(Bi) is a rational
number denoting the price a buyer offers for the items in item(Bi) ⊆ I. An outcome for 〈I,B〉
is a subset b of B such that item(Bi)∩ item(Bj) = ∅, for each pair Bi and Bj of bids in b with
i 6= j. Bidder interaction in a combinatorial auction 〈I,B〉 can be represented via its associated
dual hypergraph [30] H(〈I,B〉), whose nodes are the various bids in the auction and hyperedges
represent items, that is, each item I ∈ I is associated with a hyperedge consisting of the set of
bids that contain I.

For example, the hypergraph in Figure 10, on the left, encodes an auction over items {I1, ..., I5}
and where bids are on the following bundles of items: h1 : {I1}, h2 : {I1, I2, I3}, h3 : {I1, I2, I5},
h4 : {I3, I4}, and h5 : {I3, I4, I5}. Note that this hypergraph is not acyclic and its hypertree width
2, as it is witnessed by the decomposition reported in Figure 10.

A crucial problem for combinatorial auctions is the winner determination problem of deter-
mining the outcome b∗ that maximizes the sum of the accepted bid prices (i.e.,

∑
Bi∈b∗ pay(Bi))

over all the possible outcomes. The problem is in general NP-hard [73], while it is tractable on
classes of auctions with bounded hypertree-width dual hypergraphs [30].

5 Beyond (Hyper)tree Decompositions

All the known so-called purely-structural decomposition methods, where decompositions are only
based on the (hyper)graph structure H of the given instance, are in fact specializations of the
general and abstract framework of tree projections [54]. In this view, the goal is to cover the
hypergraph H via an acyclic hypergraph (the tree projection), in a way that each hyperedge
is contained in some hyperedge of another given “resource” hypergraph H′ (also known as the
acyclic hypergraph sandwich problem). See Figure 11, for an example of tree projection.

The existence of a tree projection is often a key to establish tractability results for decision
problems [54] and for enumeration ones [48]. Moreover, it guarantees that interesting consis-
tency properties [49] and game-theoretic characterizations [46] hold. According to this unifying
view, differences among the various (purely) structural decomposition methods just come in the
way the resource hypergraph H′ is defined. In particular, for a fixed natural number k, the
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treewidth method is obtained by considering as available hyperedges in the resource hypergraph
H′ all combinations of k nodes of H; while the generalized hypertree-width method is obtained
by considering all combinations of k hyperedges of H. However, note that the notion of tree
projection is more general then both treewidth and hypertree width, because the hyperedges
of the “resource” hypergraph H′ may model arbitrary subproblems of the given instance whose
solutions are easy to compute, or already available from previous computations (for instance,
materialized views while answering database queries).

As an example of a different set of useful “resources” (subproblems), we mention a powerful
extension of hypertree decompositions, called fractional hypertree decompositions [52]. Accord-
ing to this notion, the resources are the width-k fractional covers of hypergraph vertices, instead
of the integral covers that characterize hypertree decompositions (where each hyperedge counts
1). It turns out that fractional hypertree-width is strictly more general than the hypertree width,
as there exist classes of hypergraphs having bounded fractional hypertree width and unbounded
(generalized) hypertree width.

For completeness, we recall the most powerful method known at this time, whose width is
determined by suitably covering tree-decomposition bags by using submodular functions. The
resulting notion, called submodular width [63], is in its turn strictly more general than fractional
hypertree width. However, unlike the previously mentioned methods that guarantee polynomial-
time tractability for bounded-width classes, this technique only guarantees that classes of in-
stances having bounded submodular-width are fixed-parameter tractable (and in [63] a tight
result is proved for this kind of tractability, see below).

6 Tractability Frontiers (for CSPs)

Constraint satisfaction is often formalized as a homomorphism problem that takes as input two
finite relational structures A (modeling variables and scopes of the constraints) and B (modeling
the relations associated with constraints), and asks whether there is a homomorphism from
A to B [59]. We consider problems where A must be taken from some suitably defined class
A of structures, while B is any arbitrary structure from the class “−” of all finite structures,
shortly denoted as CSP(A,−). Note that we face the so-called uniform homomorphism problem,
where both structures are part of the input, i.e., nothing is fixed. For completeness we recall
that, instead, in the typical non-uniform problem CSP(−,B), B is a fixed structure (thus, any
instance of such a problem just consists of some left-hand structure A).

6.1 Decision Problem

Several decomposition methods have been proposed in the last few years, with the aim of dis-
covering further islands of tractability and, ultimately, of charting the tractability frontier for
constraint satisfaction. In the bounded-arity case, research has already achieved this ambitious
goal.

Theorem 6.1 ([51]). Assume FPT 6= W [1]. Then, for any recursively enumerable class of
bounded-arity structures A, CSP(A,−) is solvable in polynomial time if, and only if, the cores
of the structures in A have bounded (hyper)treewidth.3

Note that the latter condition may be equivalently stated as follows: for every A ∈ A there is
some A′ homomorphically equivalent to A and such that its treewidth is below the required fixed

3Recall that, for classes of structures having bounded arity, bounded hypertree width entails bounded treewidth
(the converse is always true), so that the two notions are interchangeable for these classes.
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threshold. For short, we say that such a class A has bounded treewidth modulo homomorphic
equivalence.

Things with unbounded-arity classes are, instead, not that clear. Generalized hypertree-
width seems the natural counterpart of the tree decomposition method over unbounded-arity
classes, and in fact CSP(A,−) is solvable in polynomial time if A has bounded hypertree-width
modulo homomorphic equivalence [15]. However, it is known that generalized hypertree-width
does not characterize all classes of structures where CSP(A,−) is solvable in polynomial time.
Indeed, there are classes of structures having unbounded hypertree width that are tractable,
because they have bounded fractional hypertree-width [52]. It seems that tighter results may
be obtained by moving from polynomial-time tractability to fixed-parameter tractability (FPT).
For any class of hypergraphs H, let CSP(H) denote the class of all homomorphism problem
instances (A,B) where the hypergraph associated with A belongs to H. Then, under some
reasonable technical assumptions, CSP(H) is FPT if, and only if, hypergraphs inH have bounded
submodular width [63].

It is worthwhile noting that the above mentioned tractability results for classes of instances
defined modulo homomorphically equivalence are actually tractability results for the promise
version of the problem. In fact, unless P = NP, there is no polynomial-time algorithm that
may check whether a given instance A actually belongs to such a class A. In particular, it has
been observed by different authors [76, 12] that there are classes of instances having bounded
treewidth modulo homomorphically equivalence for which answers computable in polynomial
time cannot be trusted. That is, unless P = NP, there is no efficient way to distinguish whether
a “yes” answer means that there exists a solution of the problem, or that A 6∈ A.

In fact, the tractability frontier for the so-called search problem of computing just one solution
(whose correctness may be easily checked) is an interesting open problem, which is somehow
related to the frontier of the problem of enumerating homomorphisms, discussed next (for more
on the relationships between these two problems, see [12]). For completeness, we recall that
things are different for the case of non-uniform CSPs, where instead the tractability of the
decision problem always entails the tractability of the search problem [16].

6.2 Enumeration Problems

Define formally an ECSP instance to be a triple (A,B, O), for which we have to compute all
solutions (homomorphisms) projected to a set of desired output variables O, denoted by AB[O].

In order to identify the (structural) tractability frontier, there are two choices to model
the presence of output variables. The first possibility is that output variables are part of the
(left-hand) structure. For instance, in [51] an additional “virtual” constraint covering together
all possible output variables is added to the input structure. For bounded-arity recursively-
enumerable classes of this form, it turns out that the enumeration problem is tractable for a class
of instances if, and only if, the class has bounded treewidth modulo homomorphic equivalence.
Note that the only possibility to meet this bounded treewidth requirement is having a fixed
number of output variables in the class, otherwise the additional virtual constraint will have
unbounded arity. Therefore, according to this approach, only instances with a polynomial number
of (projected) solutions may be dealt with.

This limitation does not occur in a more recent modeling choice of output-aware structures,
where possible output variables are described as those variables X having a domain constraint
dom(X), that is, a distinguished unary constraint specifying the domain of this variable. Such
variables are said domain restricted. In fact, this choice reflects the classical approach in
constraint satisfaction systems, where variables are typically associated with domains, which
are heavily exploited by constraint propagation algorithms. Interestingly, for bounded-arity
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recursively-enumerable classes we get the same kind of statement as above, but now allowing
an unbounded number of output variables, and hence the computation of exponentially many
solutions, in general.

Theorem 6.2 ([48]). Let A be a class of (left-hand) structures having bounded hypertree-width
modulo homomorphic equivalence. Then, A has a tractable enumeration problem, i.e., for every
A ∈ A, for every right-hand structure B, and for every set O of domain restricted variables, the
ECSP instance (A,B, O) is solvable WPD.

Moreover, let A be any recursively-enumerable class of structures of bounded arity having a
tractable enumeration problem. Then, A has bounded (hyper)tree-width modulo homomorphic
equivalence (unless FPT = W [1]).

The second possibility to deal with output variables is to leave them completely arbitrary,
hence looking for a stronger form of tractability that should hold for any required set O of
desired output variables. Intuitively, in this case it is not possible to have tractable instances
with intractable substructures. Observe that this latter natural property does not hold if we do
not consider projected solutions but we rather look for the enumeration of all (full) solutions, as
shown in [12].

The tractability frontier for this case is still an open problem (see, e.g., [51] for a statement of
this problem in the context of conjunctive database queries). However, there is a partial answer
for the case of bounded-arity classes of structures closed under taking minors. It turns out that,
for these classes, the enumeration problem is tractable if, and only if, the whole structures (and
not just their cores) have bounded (hyper)treewidth.

Theorem 6.3 ([48]). Let A be any recursively-enumerable class of (left-hand) structures of
bounded arity closed under taking minors. Then, for every A ∈ A, for every right-hand structure
B, and for every set O of variables, the ECSP instance (A,B, O) is solvable WPD if, and only
if, A has bounded (hyper)tree-width (unless FPT = W [1]).

A final important observation is that the former results based on homomorphic equivalence,
which generalize the results on decision problems to the enumeration problem, suffer of the same
practical problem of giving as their output solutions that cannot be trusted, in general (because
of the promise). Instead, for the above classes of structures having a bounded-width hypertree
decomposition, we are able to compute certified solutions with polynomial delay [48], which is
what we need in practical applications (think, e.g., of database query answering).

6.3 Optimization Problems

The same kind of tight tractability results, based on the existence of a hypertree decomposition
of the whole structure, have been found for constraint optimization problems. In particular,
besides Min, we recall the problem of enumerating the best K solutions (Top-K ), and the
problem of computing the next solution following one that is given at hand (Next). For these
problems, good news have been found not only for monotone functions, but also for those (possi-
bly) non-monotone functions, called smooth evaluation functions, which manipulate “small” (in
fact, polynomially-bounded) values.

Monotone functions have already been discussed in Section 4.3, where we have noticed that
the winner determination problem in combinatorial auction can be formulated as a constraint
optimization problem over this kind of functions.

For a simple example of a smooth evaluation function, consider a function which counts the
number of variables that are mapped to some domain values. This is useful whenever we would
like to minimize the variables mapped to some “undesirable” values. Observe that the possible
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Problem No Restriction Monotone Smooth

Min NP-hard in P in P
Next NP-hard NP-hard in P
Top-K NP-hard WPD WPD

Figure 12: Summary of complexity results for bounded hypertree-width instances.

output values of this function are polynomially bounded in the size of the input, because they
range from 0 to the number of variables. In fact, it is a smooth and monotone function, as it is
often the case for functions based on counting.

Finally, as an example of non-monotone smooth evaluation-function, assume for the sake of
simplicity to have one “undesirable” value ‘a’, and consider the following function: take the
product of weights associated with variable assignments, where every variable mapped to ‘a’ is
weighed −1, and all the others get 1. That is, we prefer those solutions with an odd number of
variables mapped to the “undesirable” value. In general, functions involving multiplications are
non-monotone, yet they are smooth if their output values are polynomially bounded (w.r.t. the
input size).

Figure 12 provides a picture of the complexity of such optimization problems over classes of
instances having bounded hypertree width—there recall from Section 4.2 that WPD is the class
of all problems that can be solved with polynomial delay. All tractability results are tight on
recursively enumerable classes of instances having bounded arity (unless FPT = W [1]) [50].

7 Conclusion

This chapter describes techniques where graphical structures are profitably exploited to solve
efficiently a large number of problem instances. We mentioned only a few possible applications,
but we believe the list being not exhaustive at all, because such basic (hyper)graph theoretic
notions may be actually useful in many different fields, most often outside authors’ areas of re-
search. Just to give a rough idea of the wide spectrum of these fields, we recall the connections
between the treewidth and the resolution width in propositional proof systems [4] or the ap-
plications to natural sciences (e.g., some solutions to structure-sequence alignment problems in
bioinformatics exploit the fact that many involved structure graphs, such as almost all existing
RNA pseudoknots, have small treewidth [79, 56]).

In fact, it is very common to observe that many instances of real-life problems exhibit a kind
of sparse tree-like structure in the large, but have a very dense highly-cyclic structure in local
connections. Therefore, it is natural to imagine that in such applications the ability to combine
different techniques, possibly based on different notions of “good” structure, will become very
important in the near future. For instance, by using the tree projection framework described
in Section 5, one may arrange in a tree-like structure a number of dense subproblems whose
solutions are instead computed easily because of completely different properties.
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