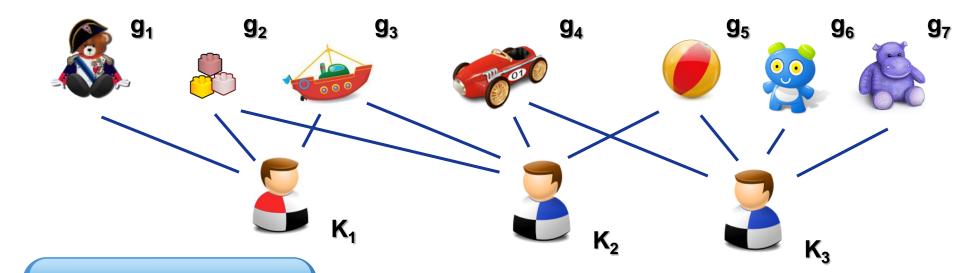
23rd International Conference on Artificial Intelligence

Constraint Satisfaction and Fair Multi-Objective Optimization Problems: Foundations, Complexity, and Islands of Tractability

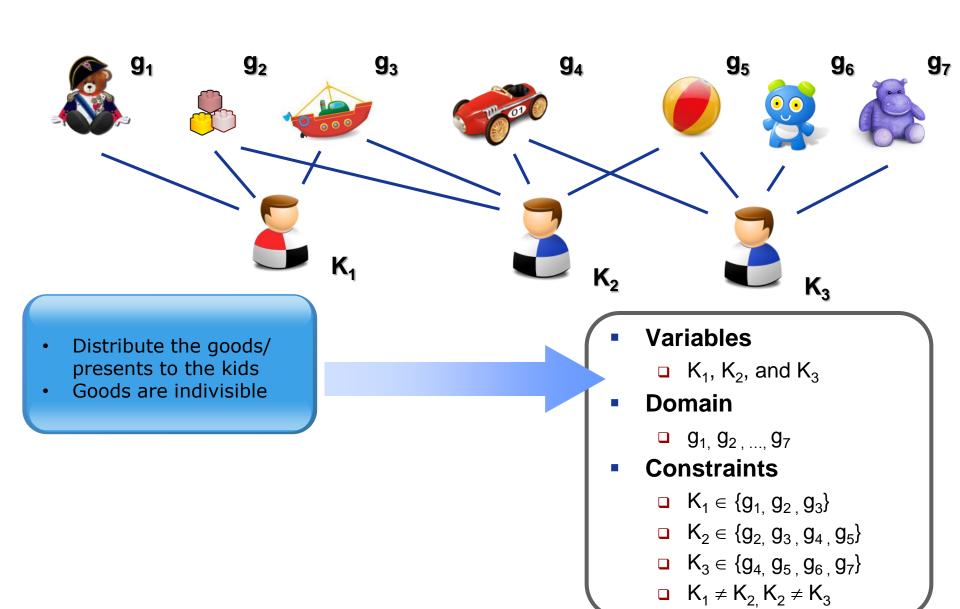
Gianluigi Greco and Francesco Scarcello

Constraint Satisfaction Problems

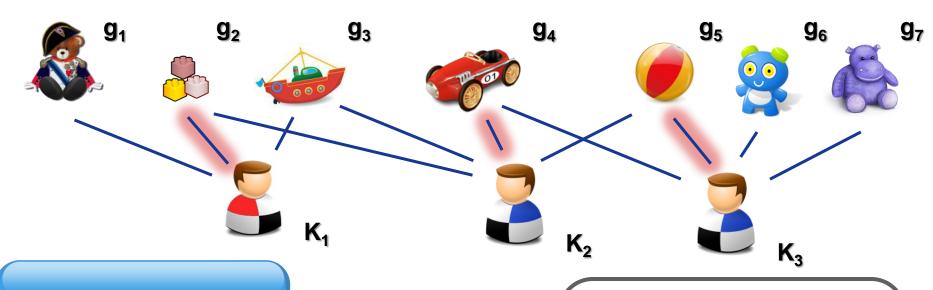


- Distribute the goods/ presents to the kids
- Goods are indivisible

Constraint Satisfaction Problems



Constraint Satisfaction Problems



- Distribute the goods/ presents to the kids
- Goods are indivisible

Solution

- ightharpoonup $K_1 \rightarrow g_2$
- \square $K_3 \rightarrow g_6$

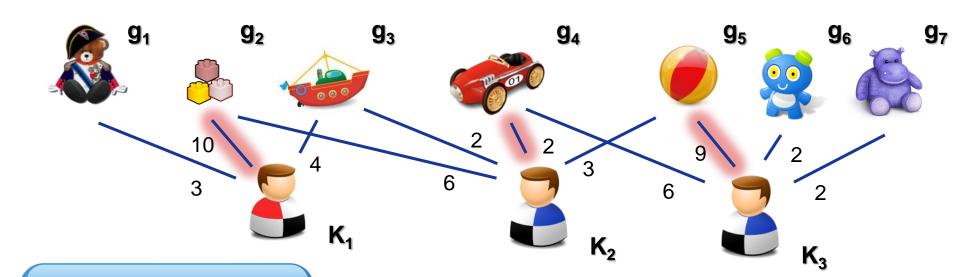
Variables

- ullet K_1 , K_2 , and K_3
- Domain
 - \Box $g_1, g_2, ..., g_7$

Constraints

- $\ \ \, \square \ \ \, K_2 \in \{g_{2,} \, g_{3,} \, g_{4,} \, g_{5}\}$
- $\quad \ \ \, \blacksquare \ \ \, K_3 \in \{g_{4,} \, g_{5\,,} \, g_{6\,,} \, g_{7}\}$

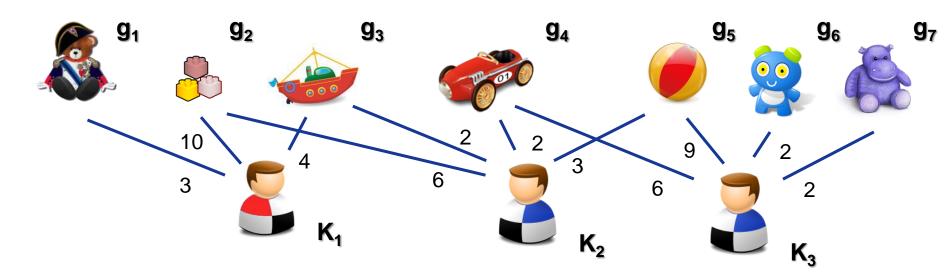
Optimization Functions in CSPs



- Distribute the goods/ presents to the kids
- Goods are indivisible

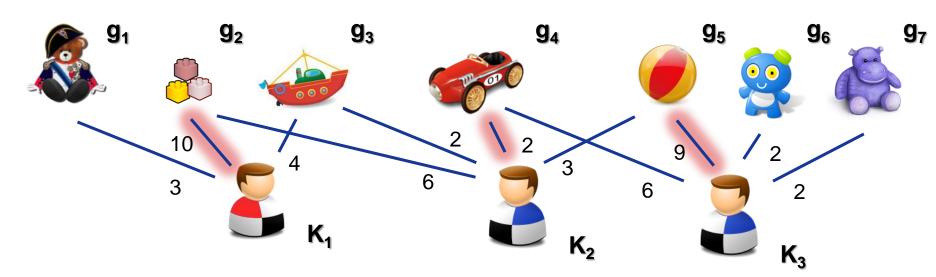
 Kids have preferences over the presents

- Valuation Function: $\mathcal{F} = \langle w, + \rangle$
 - $w(K_1/g_1) = 3$
 - $w(K_1/g_2) = 10$
 - **...**
- Value of the Solution
 - $w(K_1/g_1) + w(K_2/g_4) + w(K_3/g_6) = 21$
- Optimal (MAX) Solution
 - Maximizes the social welfare

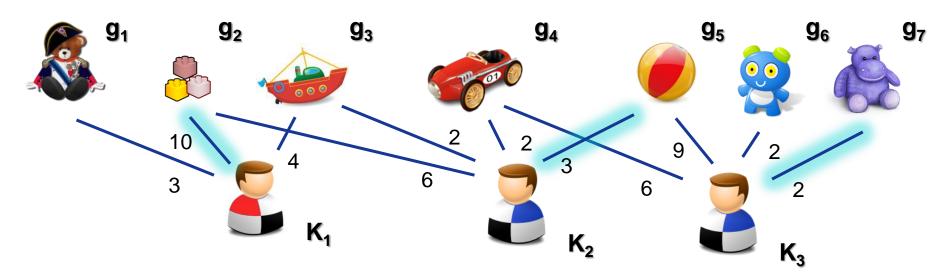


 $\{\mathcal{F}_1,\mathcal{F}_2,\mathcal{F}_3\}$

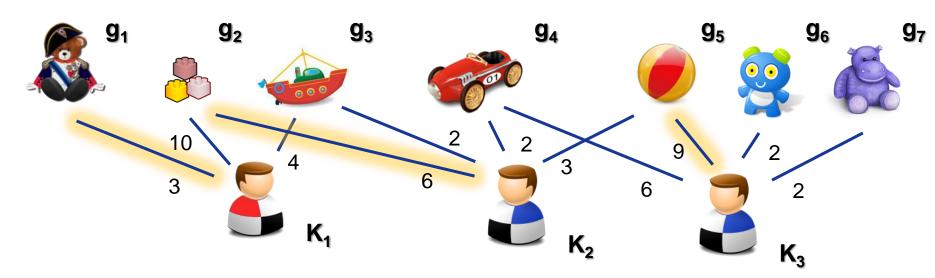
- Different Valuations:
 - $f \mathcal{F}_h$ is defined on K_h
- Combination Strategies:

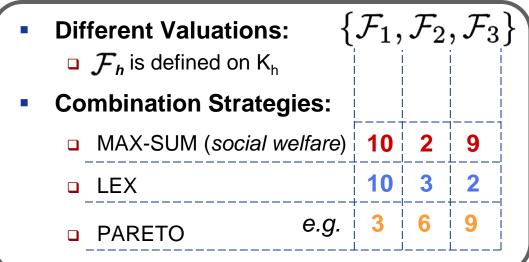


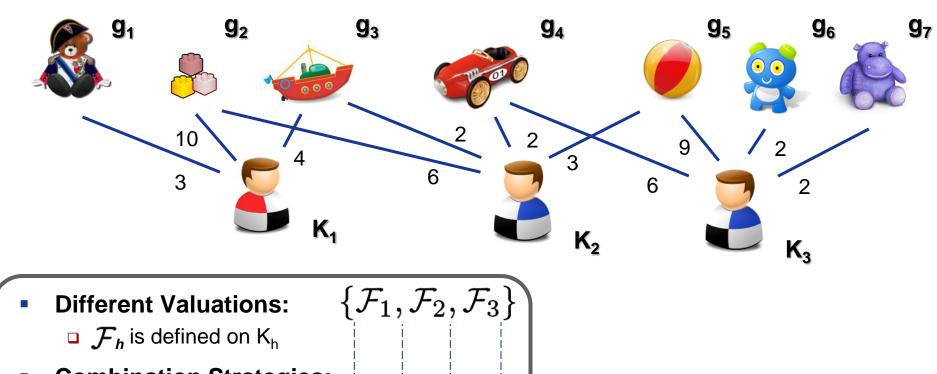
Different Valuations: {\$\mathcal{F}_1\$, \$\mathcal{F}_2\$, \$\mathcal{F}_3\$}\$
\$\mathcal{F}_h\$ is defined on \$K_h\$
Combination Strategies:
MAX-SUM (social welfare)
10
2
9



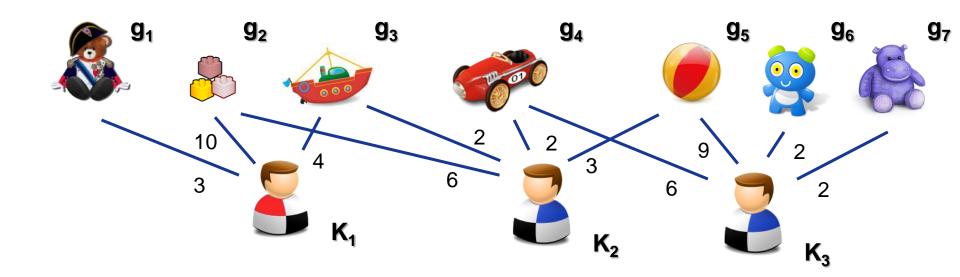
	ferent Valuations: $ig\{ \mathcal{F}_{h} \text{ is defined on } K_{h} ig\}$	$\mathcal{F}_1,$	\mathcal{F}_2	$,\mathcal{F}_3$	}
• Co	mbination Strategies:	 	 		
٥	MAX-SUM (social welfare)	10	2	9	
	LEX	10	3	2	
		 	 		
		l	İ	j !	





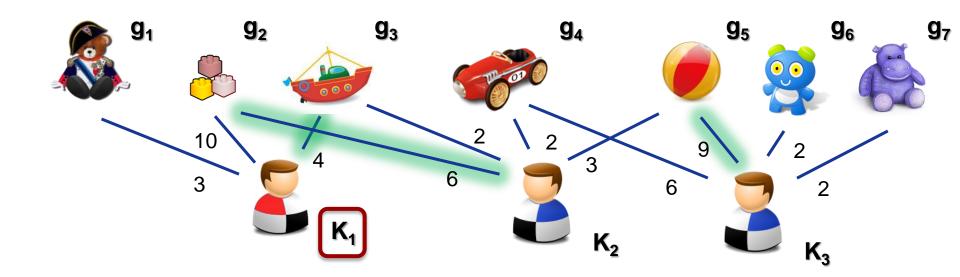


\$\mathcal{F}_h\$ is defined on \$K_h\$
Combination Strategies:
MAX-SUM (social welfare)
LEX
PARETO
PARETO
Bistarelli et al., Rossi et al.]
[Freuder et al.]
[Torrens and Faltings]



The Santa Claus Problem:

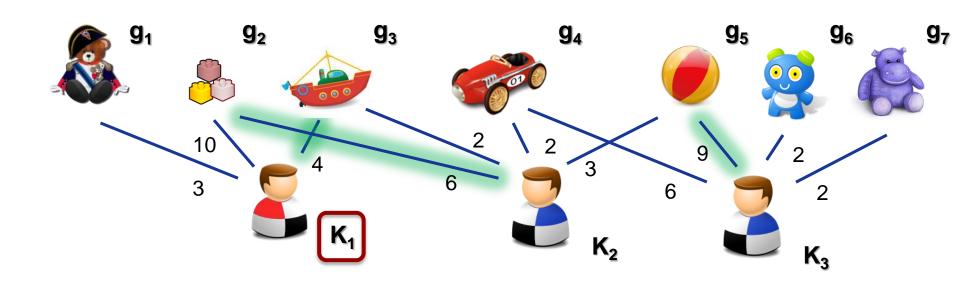
Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.



The Santa Claus Problem:

Social welfare = 19 (max 21)

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.



The Santa Claus Problem:

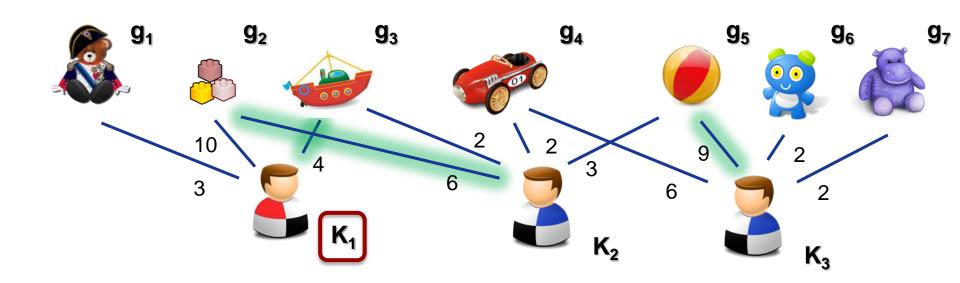
Social welfare = 19 (max 21)

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

FAIR OPTIMIZATION

MAX-MIN

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]



The Santa Claus Problem:

Social welfare = 19 (max 21)

Santa's goal is to distribute presents in a way that the least lucky kid is as happy as possible.

FAIR OPTIMIZATION

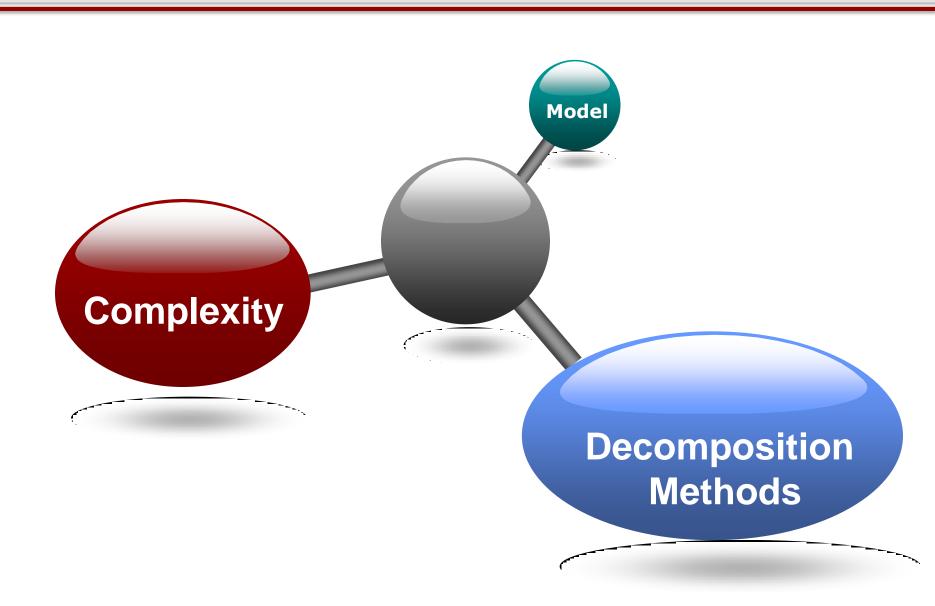
MAX-MIN

Limited expressiveness

- functions on one variable/constraint
- X No complexity analysis

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Overview



- $L=\{\mathcal{F}_1,...,\mathcal{F}_n\}$ is a set of valuation functions $\mathcal{F}_i=\langle w_i,\oplus_i \rangle$ is such that
- - $w_i: \bar{X}_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
 - ullet \oplus_i is a *commutative*, associative, and *closed* binary operator

•
$$\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$$

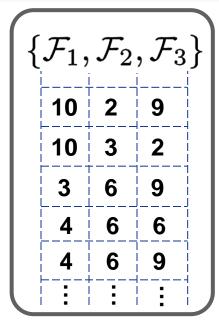
 $\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

- $L=\{\mathcal{F}_1,...,\mathcal{F}_n\}$ is a set of valuation functions $\mathcal{F}_i=\langle w_i,\oplus_i \rangle$ is such that
- - $w_i: X_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
 - ullet \oplus_i is a *commutative*, *associative*, and *closed* binary operator

•
$$\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$$

The Santa Claus Problem:

(possible solutions)



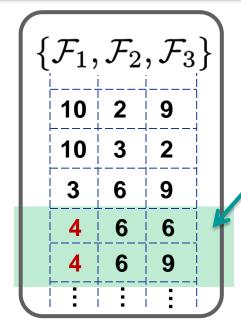
 $\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

- $L=\{\mathcal{F}_1,...,\mathcal{F}_n\}$ is a set of valuation functions $\mathcal{F}_i=\langle w_i,\oplus_i \rangle$ is such that
- - $w_i: X_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
 - ullet \oplus_i is a *commutative*, *associative*, and *closed* binary operator

•
$$\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$$

The Santa Claus Problem:

(possible solutions)



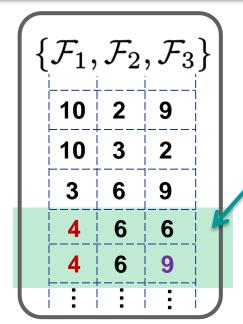
 $\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

- $L=\{\mathcal{F}_1,...,\mathcal{F}_n\}$ is a set of valuation functions $\mathcal{F}_i=\langle w_i,\oplus_i \rangle$ is such that
- - $w_i: X_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
 - ullet \oplus_i is a *commutative*, *associative*, and *closed* binary operator

•
$$\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$$

The Santa Claus Problem:

(possible solutions)



 $\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

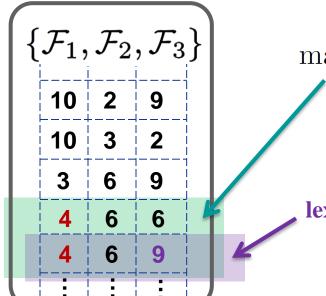
 $\operatorname{lexmax}_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

- $L=\{\mathcal{F}_1,...,\mathcal{F}_n\}$ is a set of valuation functions $\mathcal{F}_i=\langle w_i,\oplus_i \rangle$ is such that
- - $w_i: X_i \times \mathcal{U} \mapsto \mathbb{R}$, with $\bar{X}_i \subseteq Var$
 - ullet \oplus_i is a *commutative*, *associative*, and *closed* binary operator

•
$$\mathcal{F}_i(\theta) = \bigoplus_{\{X/u \in \theta \mid X \in \bar{X}_i\}} w_i(X, u)$$

The Santa Claus Problem:

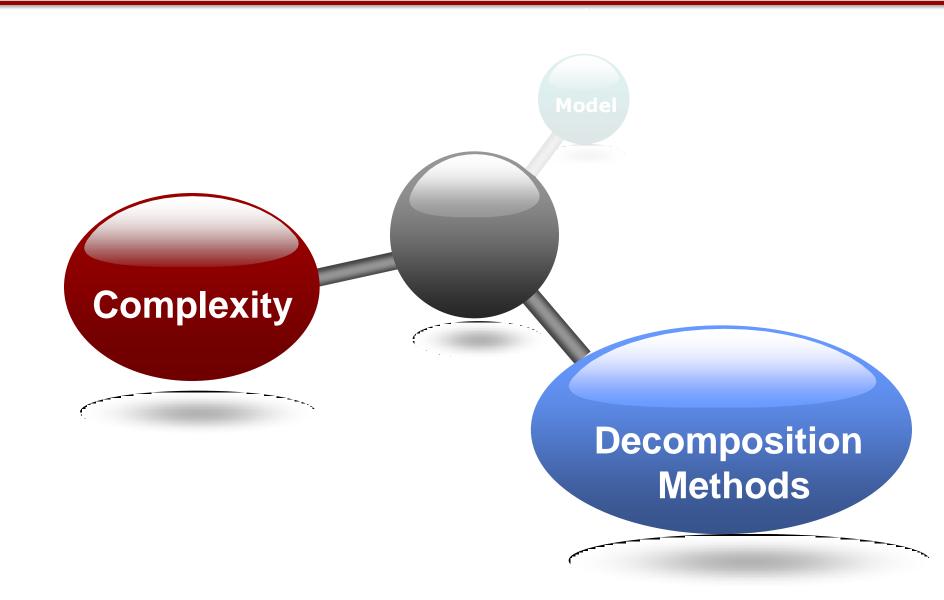
(possible solutions)



 $\max_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

 $\operatorname{lexmax}_{\theta} \min_{\mathcal{F} \in L} \mathcal{F}(\theta)$

Overview



- Constraint satisfaction is NP-hard
 - Even without optimization functions...
- Tractable classes of CSPs
 - Based on the values in the constraint relations
 - Based on the structure of the constraint scopes

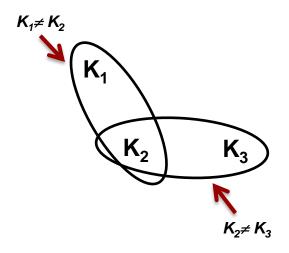
- Constraint satisfaction is NP-hard
 - Even without optimization functions...
- Tractable classes of CSPs
 - Based on the values in the constraint relations
 - Based on the structure of the constraint scopes
 - Treewidth [Dechter & Pearl]

Constraint satisfaction is NP-hard

Even without optimization functions...

Tractable classes of CSPs

- Based on the values in the constraint relations
- Based on the structure of the constraint scopes

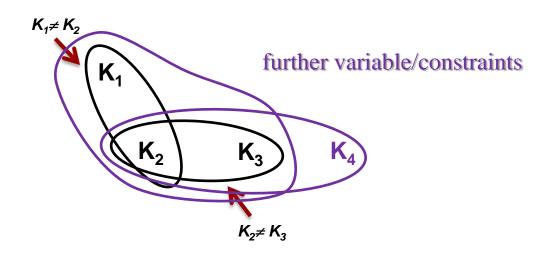


Constraint satisfaction is NP-hard

Even without optimization functions...

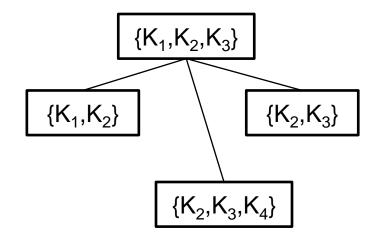
Tractable classes of CSPs

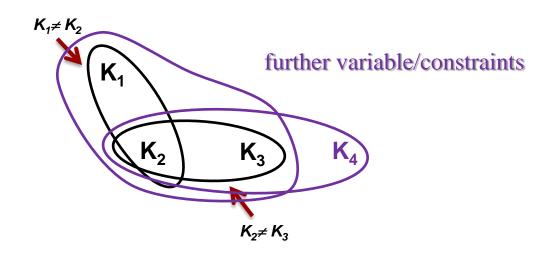
- Based on the values in the constraint relations
- Based on the structure of the constraint scopes



JOIN TREE

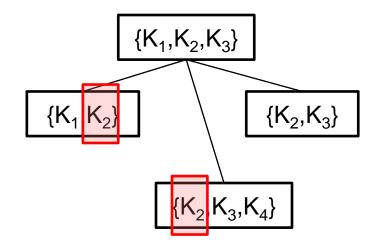
- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

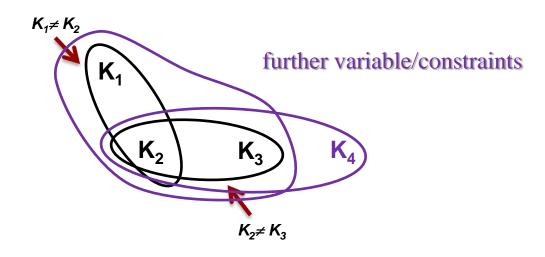




JOIN TREE

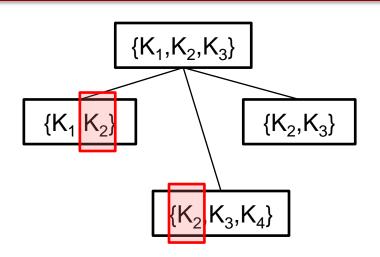
- Vertices correspond to the hyperedges
- Each variable induces a connected subtree

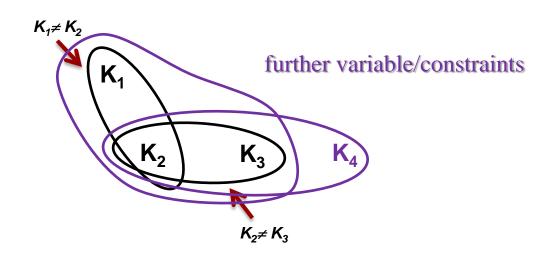




JOIN TREE

- Vertices correspond to the hyperedges
- Each variable induces a connected subtree





[D, F]	1	h	∞
1			
k			
∞			

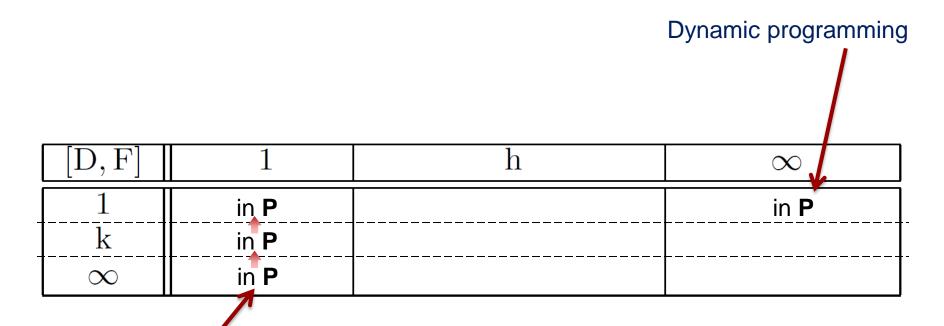
- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - □ |*L*| ≤F

[D, I]	7]	1	h	∞	
1					
k					
∞		in P			

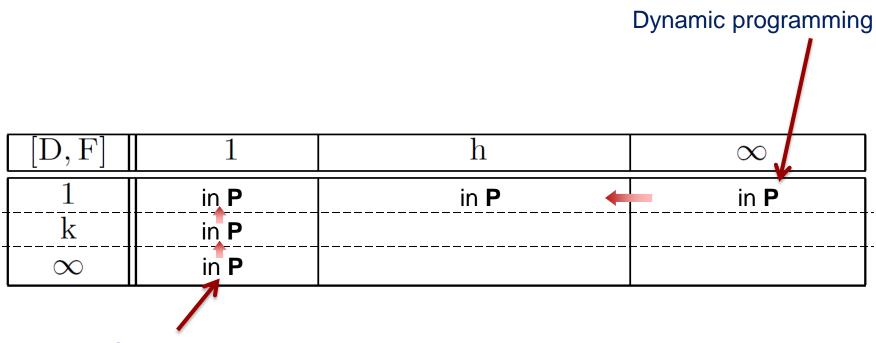
- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - □ |*L*| ≤F

[D,F]	1	h	∞
1	in P		
k	in P		
∞	in P		

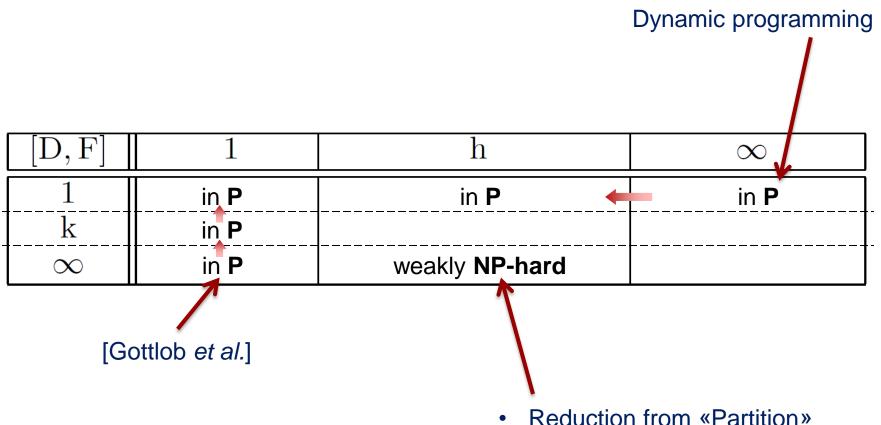
- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - □ |*L*| ≤F



- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - □ |*L*| ≤F

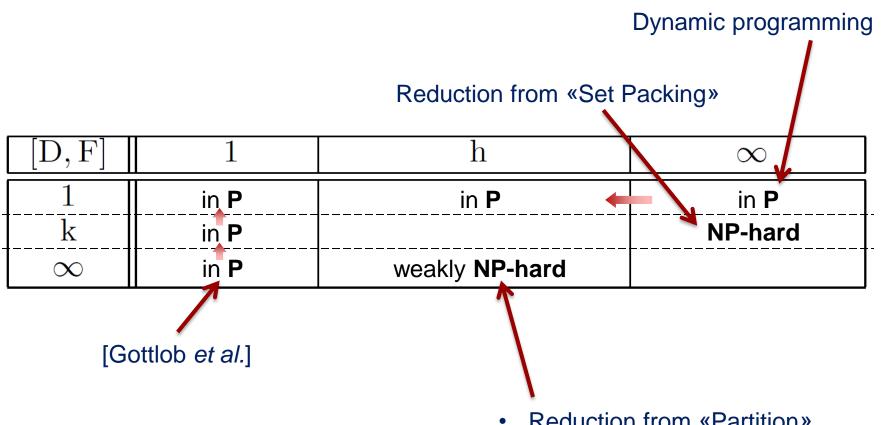


- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\operatorname{dom}(\mathcal{F})| \leq D$
 - □ |*L*| ≤F



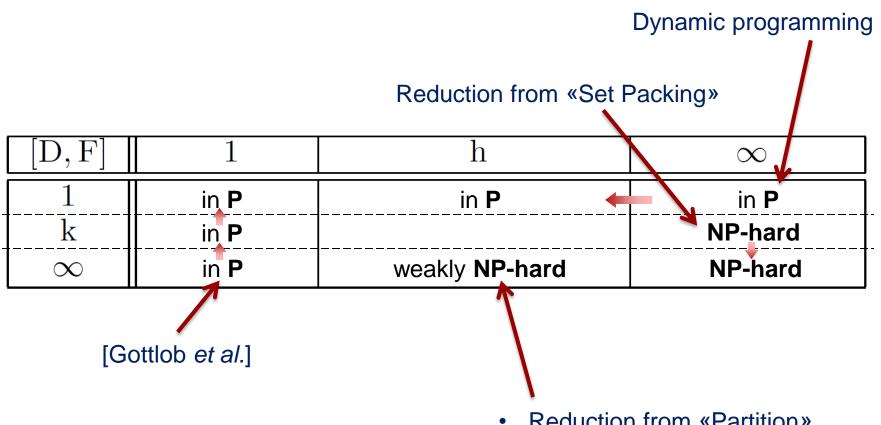
- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - $\square |L| \leq F$

- Reduction from «Partition»
- Pseudo-polynomial



- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - $\square |L| \leq F$

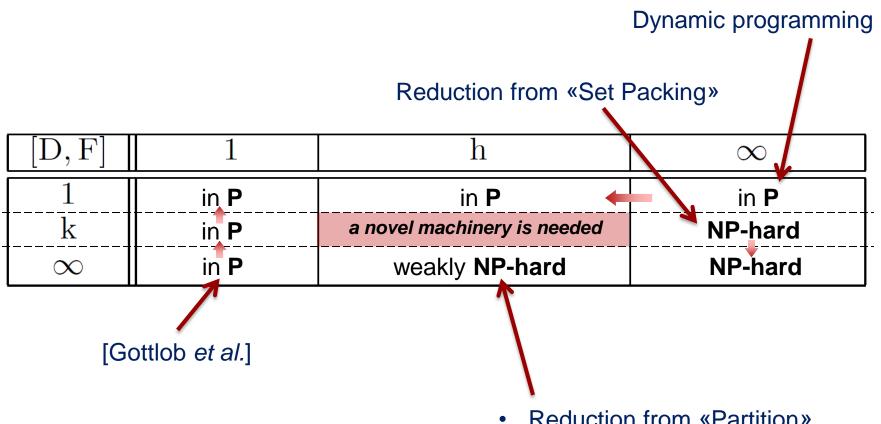
- Reduction from «Partition»
- Pseudo-polynomial



- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - $\square |L| \leq F$

- Reduction from «Partition»
- Pseudo-polynomial

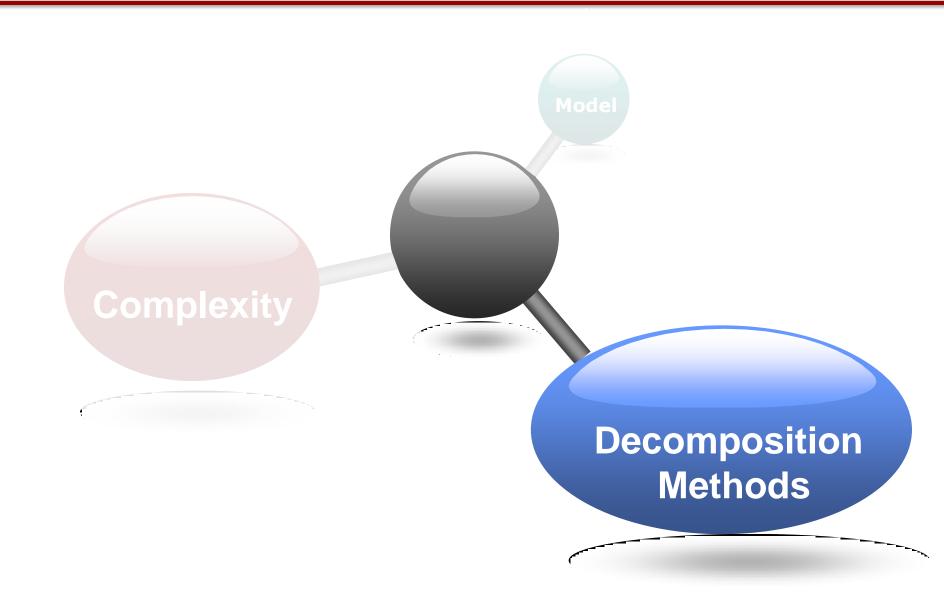
Complexity of Acyclic Instances



- Restrictions on $L = \{\mathcal{F}_1, ..., \mathcal{F}_n\}$
 - $\max_{\mathcal{F} \in L} |\mathrm{dom}(\mathcal{F})| \leq D$
 - $\square |L| \leq F$

- Reduction from «Partition»
- Pseudo-polynomial

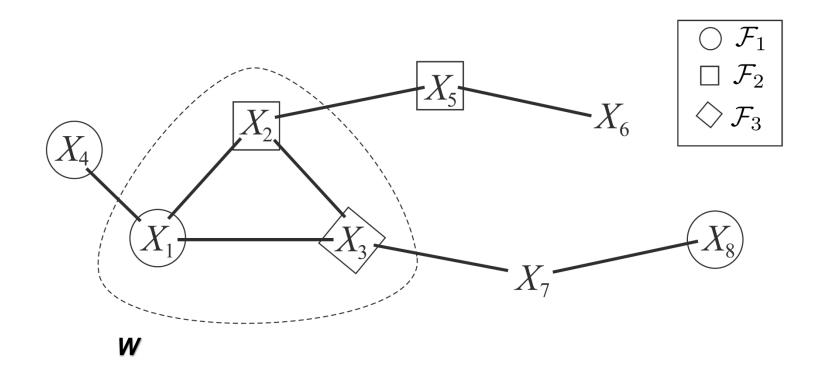
Overview



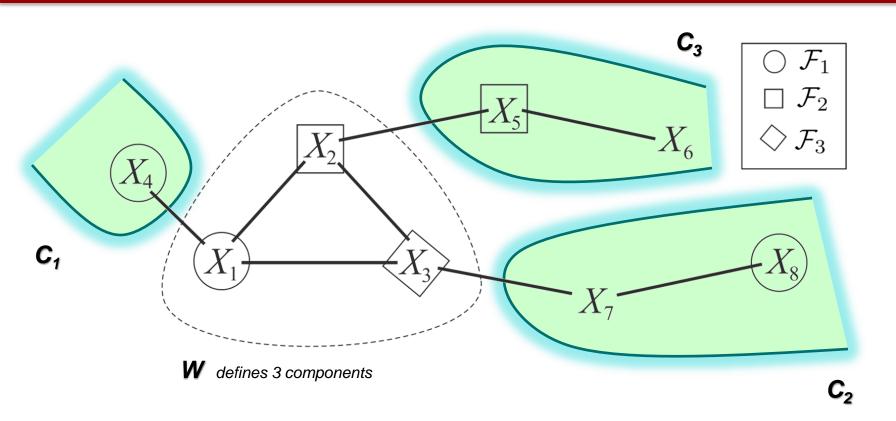
Key Ideas

Guards for Valuation Functions

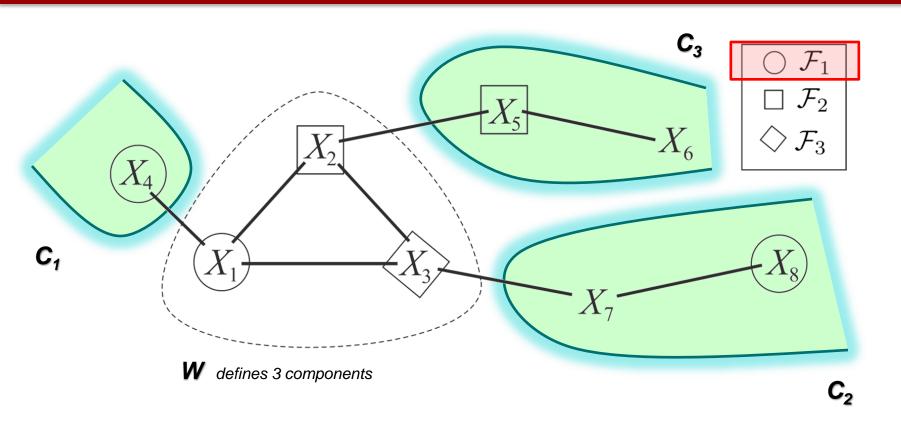
Decomposition Methods



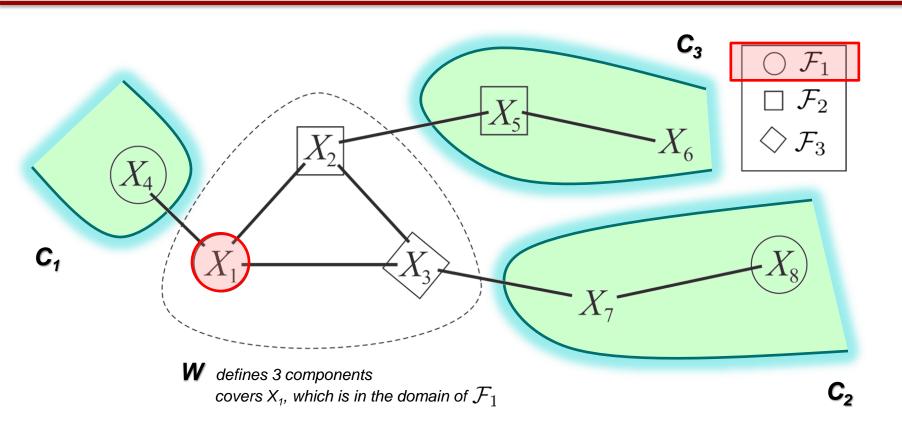
- A set of variables W is a guard for a valuation function if
 - separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions



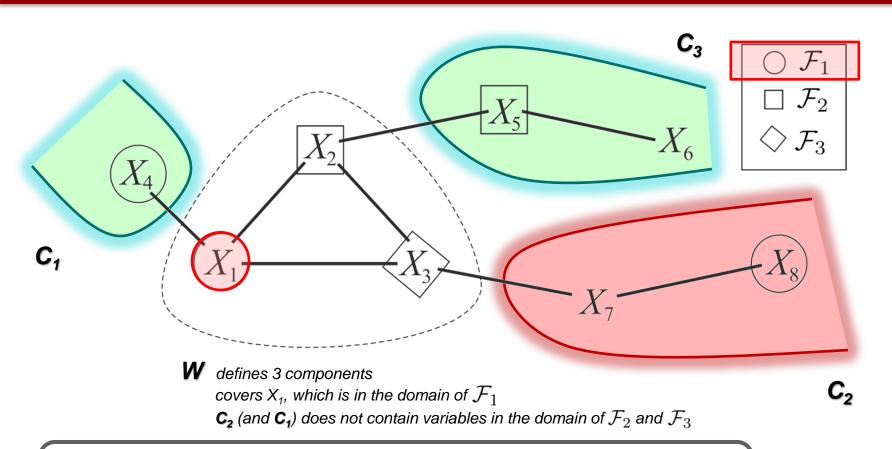
- A set of variables W is a guard for a valuation function if
 - separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions



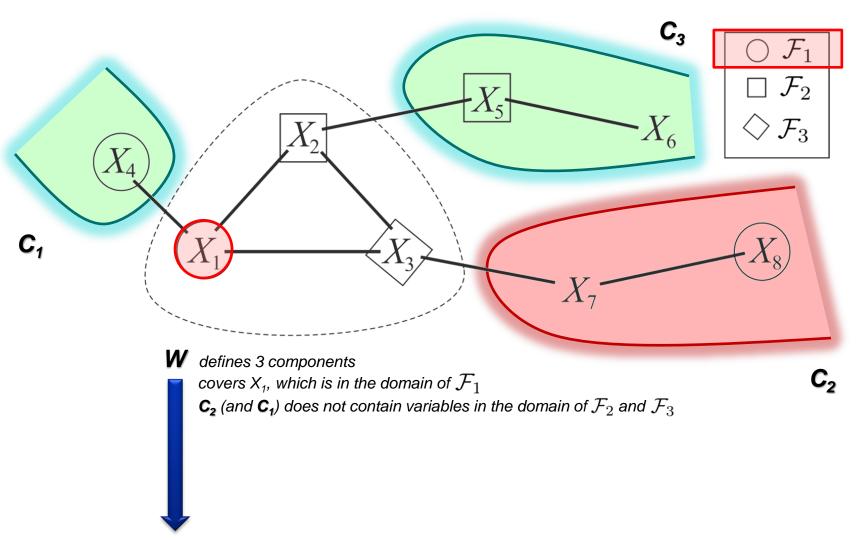
- A set of variables W is a guard for a valuation function if
 - separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions



- A set of variables W is a guard for a valuation function if
 - separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions



- A set of variables W is a *guard* for a valuation function if
 - separates the hypergraph in components where its domain variables do not occur together with any variable occurring in other valuation functions



is a guard for \mathcal{F}_1 ; in fact, it is also a guard for the other functions

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Decomposition Methods

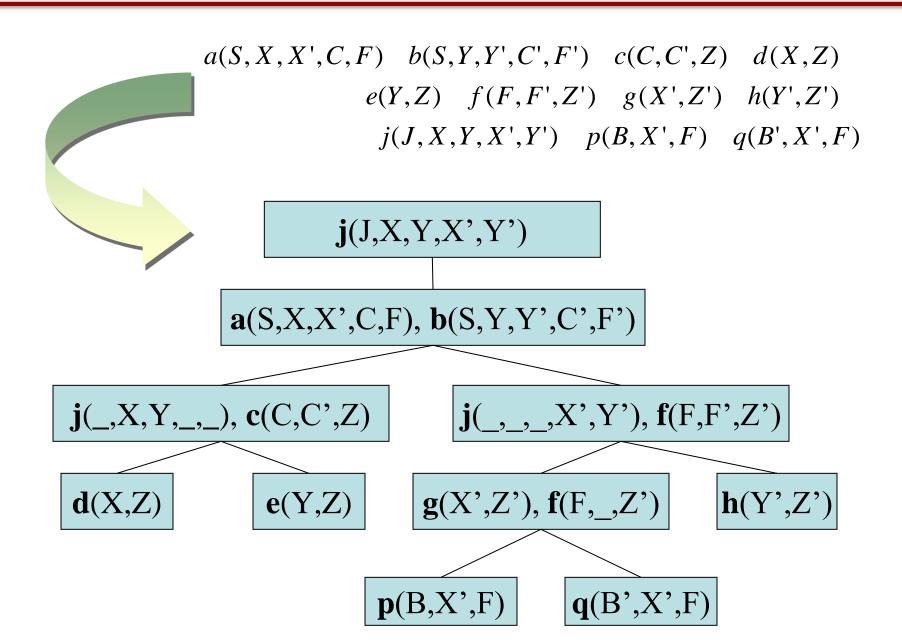
Common Ideas

- Generalize the notion of graph or hypergraph acyclicity
- Associate a width to each instance, expressing its degree of cyclicity
- Polynomial time algorithms for bounded-width CSP instances, running in O(n w+1· logn)
- Bounded-width CSP instances can be recognized in polynomial time
- Bounded-width decompositions can be computed in polynomial time

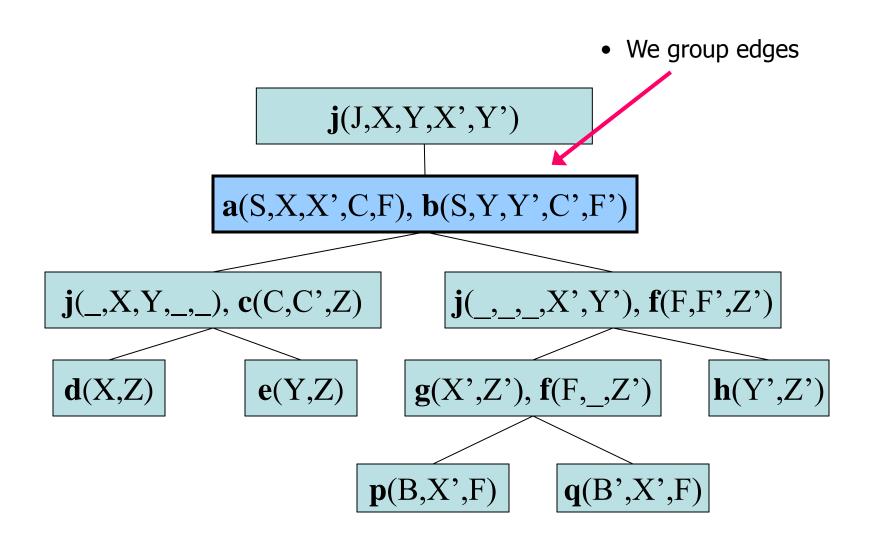
Noticeable Examples

- Tree decompositions
- (Generalized) Hypertree decompositions

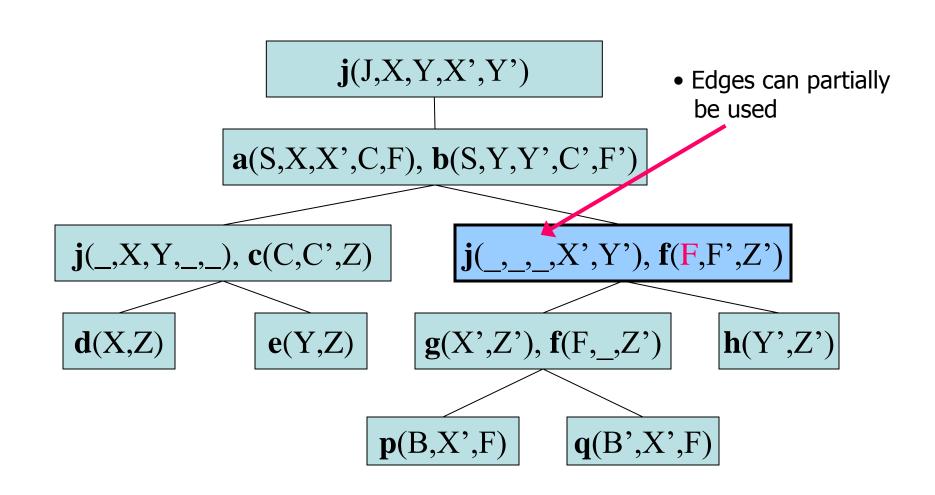
Generalized Hypertree Decompositions



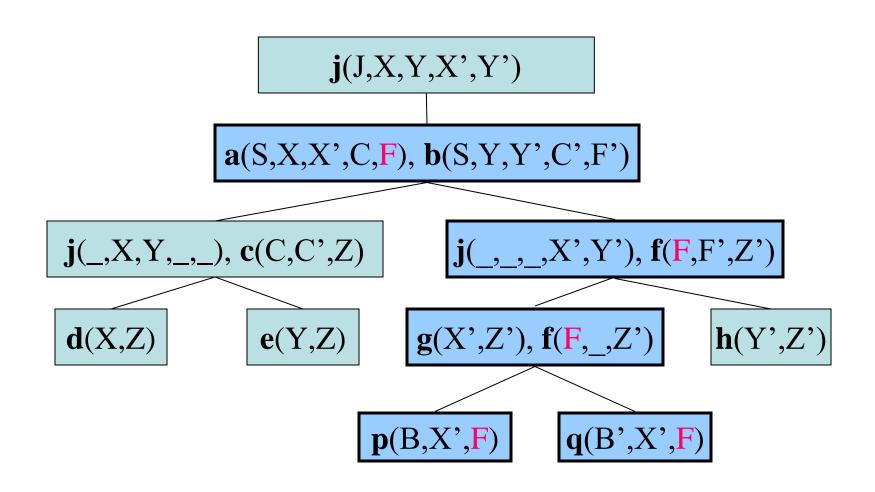
Basic Conditions_(1/2)



Basic Conditions_(2/2)

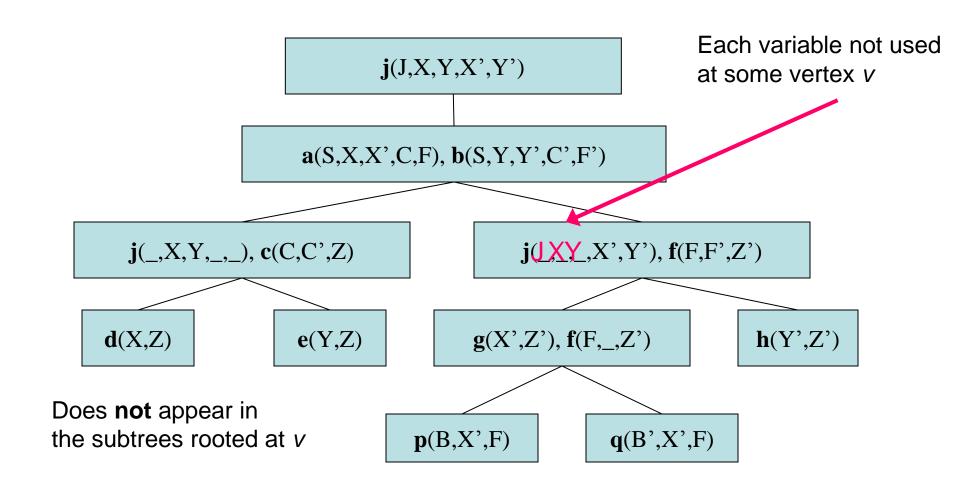


Connectdness Condition



Hypertree Decompositions (HTD)

HTD = Generalized HTD +Special Condition



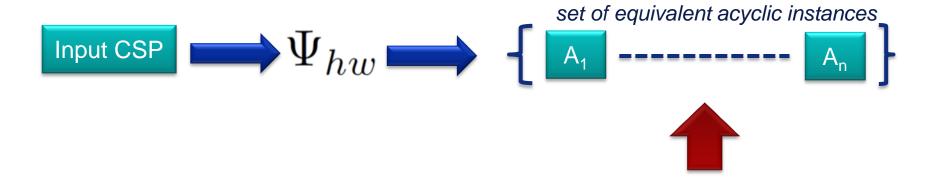
Key Ideas

Guards for Valuation Functions

Decomposition Methods

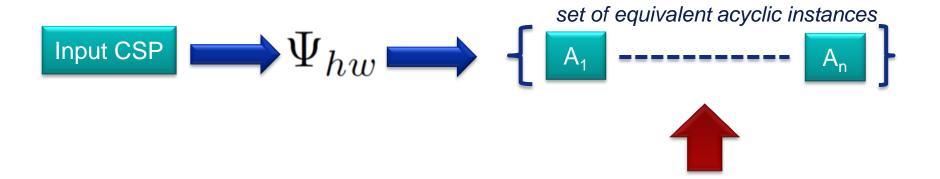
Decomposition Methods and Guards

Decomposition Methods and Guards

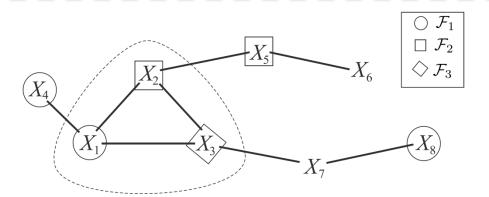


An instance is guarded via the given method if there is an output A_i such that each valution function is guarded by some hyperedge

Decomposition Methods and Guards



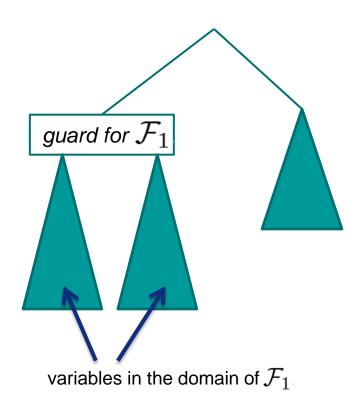
An instance is guarded via the given method if there is an output A_i such that each valution function is guarded by some hyperedge

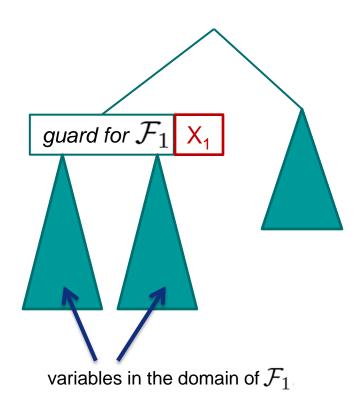


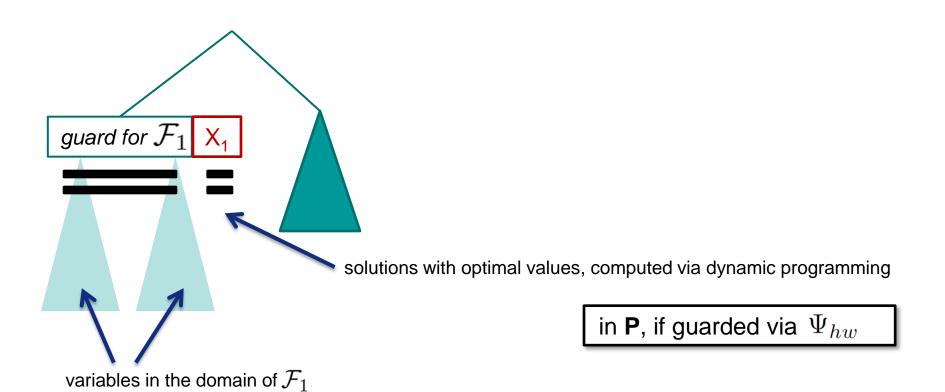
is guarded via hypertree decomposition (width k=3)

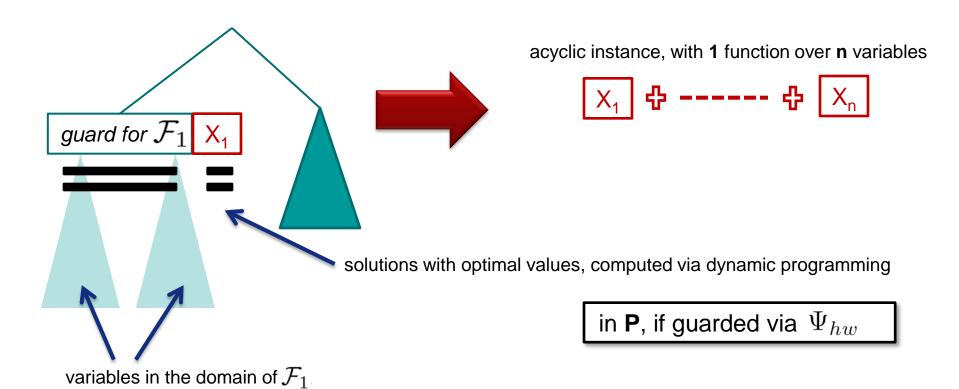
[D,F]	1	h	∞
1	in P	in P	in P
k	in P		NP-hard
∞	in P	weakly NP-hard	NP-hard

[D, F]	1	h	∞
1	in P	in P	in P
k	in P		NP-hard
∞	in P	weakly NP-hard	NP-hard

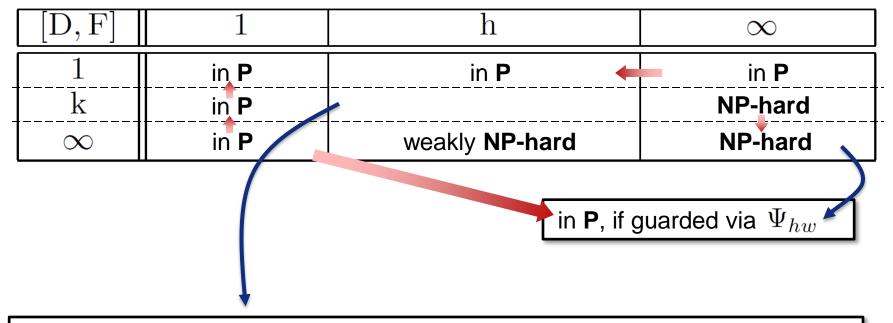




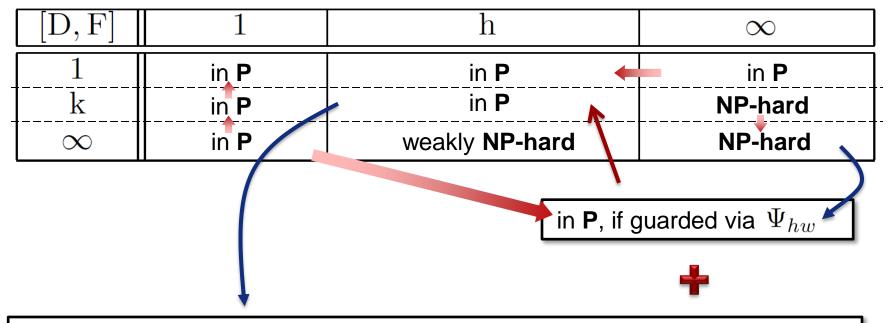




[D, F]	1	h	∞
1	in P	in P	in P
k	in P		NP-hard
∞	in P	weakly NP-hard	NP-hard



(acyclic) instances of this kind are always guarded via Ψ_{hw} $\,$ width: h x k+1 $\,$



(acyclic) instances of this kind are always guarded via Ψ_{hw} width: h x k+1

Overview

