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 Solution 

 K1 → g2  

 K2 → g4 

 K3 → g6 

 Variables 

 K1, K2, and K3 

 Domain 

 g1, g2 , …, g7   

 Constraints 

 K1  {g1, g2 , g3} 
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Optimization Functions in CSPs 

• Distribute the goods/ 
presents to the kids 
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• Kids have preferences 
over the presents 

 

 Valuation Function:       =        + 

   (K1/g1) = 3 

   (K1/g2) = 10 

 … 

 Value of the Solution 

   (K1/g1)  +      (K2/g4)  +       (K3/g6) = 21 

 Optimal (MAX) Solution 

  Maximizes the social welfare 
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 Different Valuations:  

    h is defined on Kh 
 

 Combination Strategies:  
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FAIR OPTIMIZATION  
 

 MAX-MIN 

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre] 

Social welfare = 19 (max 21) 

Limited expressiveness  
• functions on one variable/constraint 
 

No complexity analysis 
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Complexity of (LEX)MAX-MIN Solutions 

 Constraint satisfaction is NP-hard 

 Even without optimization functions… 

 Tractable classes of CSPs 
 Based on the values in the constraint relations 

 Based on the structure of the constraint scopes 
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in P weakly NP-hard 

[Gottlob et al.] 

• Reduction from «Partition» 

• Pseudo-polynomial 

NP-hard in P 

in P 

Reduction from «Set Packing» 

NP-hard 

in P 

Dynamic programming 

in P 
a novel machinery is needed 
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 A set of variables W is a guard for a valuation function if 
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Guards for Valuation Functions 

W  defines 3 components 

C1 

C2 

C3 

covers X1, which is in the domain of  

C2 (and C1) does not contain variables in the domain of       and 

is a guard for       ; in fact, it is also a guard for the other functions 
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Decomposition Methods 

 Common Ideas 

 Generalize the notion of graph or hypergraph acyclicity 

 Associate a width to each instance, expressing its degree of cyclicity 

 Polynomial time algorithms for bounded-width CSP instances, running 

in O(n w+1· logn) 

 Bounded-width CSP instances can be recognized in polynomial time 

 Bounded-width decompositions can be computed in polynomial time 

 Noticeable Examples 

 Tree decompositions 

 (Generalized) Hypertree decompositions 

 



Generalized Hypertree Decompositions 

),','(),',()',',,,(

)','()','()',',(),(
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a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 



Basic Conditions(1/2) 
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a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

• Edges can partially  
   be used 

j(_,_,_,X’,Y’), f(F,F’,Z’) 

Basic Conditions(2/2) 



Connectdness Condition 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 
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Hypertree Decompositions (HTD) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Does not appear in 

the subtrees rooted at v 

J X Y 

HTD = Generalized HTD +Special Condition 

Each variable not used  

at some vertex v 
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Decomposition Methods and Guards 

An instance is guarded via the given method if there is  an output 

Ai such that each valution function is guarded by some hyperedge  

 

 

 

 

  

Input CSP A1 An 

set of equivalent acyclic instances 

is guarded via hypertree decomposition (width k=3) 
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Proof Idea 

    in P, if guarded via 

guard for  

variables in the domain of  

X1 

solutions with optimal values, computed via dynamic programming 

X1 
Xn 

acyclic instance, with 1 function over n variables 
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