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Constraint Satisfaction Problems

r
= Solution
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0 Ks— Ge
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Optimization Functions in CSPs

Kids have preferences
over the presents

~

.

.

Valuation Function: F = (w, +)

o WK, /g, =3

0 w(K,/gy) =10

a ...
Value of the Solution

0 W(K/gy) + w(Kyg,) + W(Ks/ge) =21
Optimal (MAX) Solution

o Maximizes the social welfare

~
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Related Literature

(- Different Valuations: {.7:1 ; .7:2, .7:3}\

o JF, is defined on K|,

= Combination Strategies:

3
0 MAX-SUM (social welfare) | 101 2 | 9 | | =) [Bistarelli et al., Rossi et al.]
o LEX 110! 312 | | 2> [Freuder et al.]
———————————————————————— Fm— e ———f————
| | | | .
a2 PARETO e.g. l:___j____:L | [Torrens and Faltings]
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that the least lucky kid is as happy as possible.
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Related Literature

The Santa Claus Problem: | Santa’s goal is to distribute presents in a way
that the least lucky kid is as happy as possible.

Social welfare = 19 (max 21)

FAIR OPTIMIZATION )( Limited expressiveness

functions on one variable/constraint
o MAX-MIN

)( No complexity analysis
\ 4

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]
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The Model

(
= L = {.1'71j cees fn} Is a set of valuation functions

= fz — <fwi’ @7) is such that
o wWj; X,,, X U — R, with X; C Var

o &P; is a commutative, associative, and closed binary operator

~

J
The Santa Claus Probiem: [ )
(possible solutions) {ifl ,i fz I’ F?’i} maxg minrer, ]:(9)

102 9

1032

3169 | |
e e e, 7O
4169 |
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Complexity of (LEX)MAX-MIN Solutions

= Constraint satisfaction is NP-hard
o Even without optimization functions...
= Tractable classes of CSPs

0o Based on the values in the constraint relations
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Complexity of (LEX)MAX-MIN Solutions

= JOIN TREE

0 Vertices correspond to the hyperedges
0 Each variable induces a connected subtree

ACYCLIC CSP

1Ky,Ky K}

Ky

lx
|
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Complexity of Acyclic Instances

Dynamic programming
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Complexity of Acyclic Instances

Dynamic programming

D, F] 1 h 00 \l
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[Gottlob et al.]
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Complexity of Acyclic Instances

Dynamic programming
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Dynamic programming

Reduction from «Set Packing»
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Complexity of Acyclic Instances

Dynamic programming

Reduction from «Set Packing»

D, F] 1 h
_____ L imp | P e N, inP_
k in P a novel machinery is needed NP-hard
o0 in P weakly NP-hard NP-hard

[Gottlob et al.]

 Reduction from «Partition»

7

= Restrictions on L = {F1, ..

a MmMaxXrer, \dom(]—“)| S D
o |[L| <F

* Pseudo-polynomial
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Guards for VValuation Functions

O F1
1 Fo

O Fy

7
|

A set of variables W is a guard for a valuation function if

O separates the hypergraph in components where its domain
variables do not occur together with any variable occurring in
other valuation functions
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Guards for VValuation Functions

W' defines 3 components
covers X;, which is in the domain of ]-—1 C2
C, (and C,) does not contain variables in the domain of F5 and F3

is a guard for JF7; in fact, it is also a guard for the other functions
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Decomposition Methods

= Common ldeas
0 Generalize the notion of graph or hypergraph acyclicity
0 Associate a width to each instance, expressing its degree of cyclicity

0 Polynomial time algorithms for bounded-width CSP instances, running
In O(n w+1- logn)

0 Bounded-width CSP instances can be recognized in polynomial time
0 Bounded-width decompositions can be computed in polynomial time

= Noticeable Examples
0 Tree decompositions
0 (Generalized) Hypertree decompositions



Generalized Hypertree Decompositions

a(s, x,X",C,F) b(s,Yy,y,C,F') c(C,C''2Z) d(X,2)
e(v,z) f(F,F,Z") g(X'“Z') h(Y'ZzZ")
(3, X, Y, XYY p(B, X' F) q(B', X', F)

A o J(.X,Y.X.Y)

a(S,X,X’,C,F), b(S,Y.,Y’,C’.F’)

JC,.X)Y, , ), c(C,C.272) 1C, L, XY, f(F.F.2)

d(X,Z2) e(Y,2) 9(X’,2), f(F, ,Z2°) h(Y’,Z)

P(B,X’,F) q(B’,X’,F)




Basic Conditions,,

e We group edges

J1.X)Y,.X,Y?)

S

/

e

a(S,X,X’,C,F), b(S,Y.,Y’,C’.F’)

JC,XY, , ), c(C,C.2)

d(X,2)

e(Y,Z2)

j( 59 )X,DY,)D f(FQF,9Z,)

9(X’,2°), f(F, ,Z2”)

h(Y’,Z’)

p(B.,X"F)| |aB’.X"F)




Basic Conditions,,,

j(J X, Y, XY) e Edges can partially
be used

a(89X9X’9C9F)9 b(SDYﬂY,QC,ﬁF ,)//

—

JC,XY, , ), c(C,C.2) 1C, L, X0 Y0), f(FF,2)

d(X,Z2) e(Y,2) 9(X’,2°), f(F, ,Z2”) h(Y’,Z)

P(B,X’,F) q(B’,X’,F)




Connectdness Condition

J1.X)Y,.X,Y?)

a(S,X,X’,C,F), b(S,Y.Y’,C’.F’)

JC,XY, , ), c(C,C.2)

d(X,2)

e(Y,Z2)

j( 599 QX,DY,)D f(FQF,QZ,)

9(X’,2°), f(F, ,Z2°)

p(B.X".F)

h(Y’,Z)

q(B’.X",F)




Hypertree Decompositions (HTD)

HTD = Generalized HTD +Special Condition

: o Each variable not used
JUXY.XY) at some vertex v

a(SlXIX,ICIF)i b(SiYiY,ic,lF,) /

—

JCXY,_, ), c(C,C,2) JOXY, X, YY), f(F,F’,2°)

d(X,2) e(Y,2) 9(X*,2°), f(F,_,2’) h(Y’,Z’)

Does not appear in
the subtrees rooted at v p(B,X’,F) q(B’,X’,F)
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Decomposition Methods and Guards

set of equivalent acyclic instances

{

DI e U,
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A, such that each valution function is guarded by some hyperedge
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Decomposition Methods and Guards

set of equivalent acyclic instances

‘lphw- '[

An instance is guarded via the given method if there is an output
A, such that each valution function is guarded by some hyperedge

\ y
O A
/’/;__;\\;/‘X-\ D FQ
= S
X ,Xz: \\\‘\ X6 O .FB
4 \

g = /. is guarded via hypertree decomposition (width k=3)
/ 1 Y @
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Proof Idea

variables in the domain of F;

acyclic instance, with 1 function over n variables

Xl':ll}' ------ ':II}' X,

solutions with optimal values, computed via dynamic programming

in P, if guarded via Wy,
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Main Results

D, F] 1 h 00
_____ I | inPp | inP e inP |
kP e nP_ | NP-hard |
00 in P/ weakly NP-hard x NP-hard
/ \
?in P, if guarded via Wy,

3

(acyclic) instances of this kind are always guarded via W;,,,, width: h x k+1
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Thank you!



