
23rd International Conference on Artificial Intelligence

Constraint Satisfaction and Fair Multi-Objective Optimization Problems:

Foundations, Complexity, and Islands of Tractability

Gianluigi Greco and Francesco Scarcello

Constraint Satisfaction Problems

• Distribute the goods/
presents to the kids

• Goods are indivisible

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

Constraint Satisfaction Problems

 Variables

 K1, K2, and K3

 Domain

 g1, g2 , …, g7

 Constraints

 K1  {g1, g2 , g3}

 K2  {g2, g3 , g4 , g5}

 K3  {g4, g5 , g6 , g7}

 K1  K2, K2  K3

• Distribute the goods/
presents to the kids

• Goods are indivisible

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

Constraint Satisfaction Problems

• Distribute the goods/
presents to the kids

• Goods are indivisible

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

 Solution

 K1 → g2

 K2 → g4

 K3 → g6

 Variables

 K1, K2, and K3

 Domain

 g1, g2 , …, g7

 Constraints

 K1  {g1, g2 , g3}

 K2  {g2, g3 , g4 , g5}

 K3  {g4, g5 , g6 , g7}

 K1  K2, K2  K3

Optimization Functions in CSPs

• Distribute the goods/
presents to the kids

• Goods are indivisible

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

• Kids have preferences
over the presents

 Valuation Function: = +

 (K1/g1) = 3

 (K1/g2) = 10

 …

 Value of the Solution

 (K1/g1) + (K2/g4) + (K3/g6) = 21

 Optimal (MAX) Solution

 Maximizes the social welfare

3

10

6
4

2 2
3

6

9 2

2

Multi-Objective Optimization

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

 Different Valuations:

 h is defined on Kh

 Combination Strategies:

Multi-Objective Optimization

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

 Different Valuations:

 h is defined on Kh

 Combination Strategies:

 MAX-SUM (social welfare)

10 2 9

Multi-Objective Optimization

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

 Different Valuations:

 h is defined on Kh

 Combination Strategies:

 MAX-SUM (social welfare)

 LEX

10 2 9

10 3 2

Multi-Objective Optimization

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

 Different Valuations:

 h is defined on Kh

 Combination Strategies:

 MAX-SUM (social welfare)

 LEX

 PARETO

10 2 9

10 3 2

 3 6 9 e.g.

Related Literature

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

 Different Valuations:

 h is defined on Kh

 Combination Strategies:

 MAX-SUM (social welfare)

 LEX

 PARETO

10 2 9

10 3 2

 3 6 9 e.g.

[Bistarelli et al., Rossi et al.]

[Freuder et al.]

[Torrens and Faltings]

Related Literature

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

Santa’s goal is to distribute presents in a way

that the least lucky kid is as happy as possible.

Related Literature

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

Santa’s goal is to distribute presents in a way

that the least lucky kid is as happy as possible.
Social welfare = 19 (max 21)

Related Literature

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

Santa’s goal is to distribute presents in a way

that the least lucky kid is as happy as possible.

FAIR OPTIMIZATION

 MAX-MIN

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Social welfare = 19 (max 21)

Related Literature

K1
K3

g1

K2

g2 g3 g4 g5 g6 g7

3

10

6
4

2 2
3

6

9 2

2

Santa’s goal is to distribute presents in a way

that the least lucky kid is as happy as possible.

FAIR OPTIMIZATION

 MAX-MIN

[Snow and Freuder, Dubois and Fortemps, Bouveret and Lematre]

Social welfare = 19 (max 21)

Limited expressiveness
• functions on one variable/constraint

No complexity analysis

Overview

Model

Complexity

Decomposition

Methods

The Model

 is a set of valuation functions

 is such that

 with

 is a commutative, associative, and closed binary operator



The Model

 is a set of valuation functions

 is such that

 with

 is a commutative, associative, and closed binary operator



10 2 9

10 3 2

 3 6 9

(possible solutions)

 4 6 6

 4 6 9

 …

 …

 …

The Model

 is a set of valuation functions

 is such that

 with

 is a commutative, associative, and closed binary operator



10 2 9

10 3 2

 3 6 9

(possible solutions)

 4 6 6

 4 6 9

 …

 …

 …

The Model

 is a set of valuation functions

 is such that

 with

 is a commutative, associative, and closed binary operator



10 2 9

10 3 2

 3 6 9

(possible solutions)

 4 6 6

 4 6 9

 …

 …

 …

lex

The Model

 is a set of valuation functions

 is such that

 with

 is a commutative, associative, and closed binary operator



10 2 9

10 3 2

 3 6 9

(possible solutions)

 4 6 6

 4 6 9

 …

 …

 …

lex

Overview

Model

Complexity

Decomposition

Methods

Complexity of (LEX)MAX-MIN Solutions

 Constraint satisfaction is NP-hard

 Even without optimization functions…

 Tractable classes of CSPs
 Based on the values in the constraint relations

 Based on the structure of the constraint scopes

Complexity of (LEX)MAX-MIN Solutions

 Constraint satisfaction is NP-hard

 Even without optimization functions…

 Tractable classes of CSPs
 Based on the values in the constraint relations

 Based on the structure of the constraint scopes
Treewidth [Dechter & Pearl]

Complexity of (LEX)MAX-MIN Solutions

 Constraint satisfaction is NP-hard

 Even without optimization functions…

 Tractable classes of CSPs
 Based on the values in the constraint relations

 Based on the structure of the constraint scopes

K1 K2

K1

K3 K2

K2 K3

Complexity of (LEX)MAX-MIN Solutions

 Constraint satisfaction is NP-hard

 Even without optimization functions…

 Tractable classes of CSPs
 Based on the values in the constraint relations

 Based on the structure of the constraint scopes

K1 K2

further variable/constraints K1

K3 K2

K2 K3

K4

Complexity of (LEX)MAX-MIN Solutions

 Vertices correspond to the hyperedges

 Each variable induces a connected subtree

K1 K2

further variable/constraints K1

K3 K2

K2 K3

K4

{K1,K2,K3}

{K1,K2} {K2,K3}

{K2,K3,K4}

Complexity of (LEX)MAX-MIN Solutions

 Vertices correspond to the hyperedges

 Each variable induces a connected subtree

K1 K2

further variable/constraints K1

K3 K2

K2 K3

K4

{K1,K2,K3}

{K1,K2} {K2,K3}

{K2,K3,K4}

Complexity of (LEX)MAX-MIN Solutions

 Vertices correspond to the hyperedges

 Each variable induces a connected subtree

K1 K2

further variable/constraints K1

K3 K2

K2 K3

K4

{K1,K2,K3}

{K1,K2} {K2,K3}

{K2,K3,K4}

Complexity of Acyclic Instances

 Restrictions on





Complexity of Acyclic Instances

 Restrictions on





in P

[Gottlob et al.]

Complexity of Acyclic Instances

 Restrictions on





in P

[Gottlob et al.]

in P

in P

Complexity of Acyclic Instances

 Restrictions on





in P

[Gottlob et al.]

in P

in P in P

Dynamic programming

Complexity of Acyclic Instances

 Restrictions on





in P

[Gottlob et al.]

in P

in P in P

Dynamic programming

in P

Complexity of Acyclic Instances

 Restrictions on





in P weakly NP-hard

[Gottlob et al.]

• Reduction from «Partition»

• Pseudo-polynomial

in P

in P in P

Dynamic programming

in P

Complexity of Acyclic Instances

 Restrictions on





in P weakly NP-hard

[Gottlob et al.]

• Reduction from «Partition»

• Pseudo-polynomial

NP-hard in P

in P

Reduction from «Set Packing»

in P

Dynamic programming

in P

Complexity of Acyclic Instances

 Restrictions on





in P weakly NP-hard

[Gottlob et al.]

• Reduction from «Partition»

• Pseudo-polynomial

NP-hard in P

in P

Reduction from «Set Packing»

NP-hard

in P

Dynamic programming

in P

Complexity of Acyclic Instances

 Restrictions on





in P weakly NP-hard

[Gottlob et al.]

• Reduction from «Partition»

• Pseudo-polynomial

NP-hard in P

in P

Reduction from «Set Packing»

NP-hard

in P

Dynamic programming

in P
a novel machinery is needed

Overview

Model

Complexity

Decomposition

Methods

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Guards for Valuation Functions

 A set of variables W is a guard for a valuation function if

 separates the hypergraph in components where its domain

variables do not occur together with any variable occurring in

other valuation functions

W

Guards for Valuation Functions

W defines 3 components

C1

C2

C3

 A set of variables W is a guard for a valuation function if

 separates the hypergraph in components where its domain

variables do not occur together with any variable occurring in

other valuation functions

Guards for Valuation Functions

W defines 3 components

C1

C2

C3

 A set of variables W is a guard for a valuation function if

 separates the hypergraph in components where its domain

variables do not occur together with any variable occurring in

other valuation functions

Guards for Valuation Functions

W defines 3 components

C1

C2

C3

covers X1, which is in the domain of

 A set of variables W is a guard for a valuation function if

 separates the hypergraph in components where its domain

variables do not occur together with any variable occurring in

other valuation functions

Guards for Valuation Functions

W defines 3 components

C1

C2

C3

covers X1, which is in the domain of

C2 (and C1) does not contain variables in the domain of and

 A set of variables W is a guard for a valuation function if

 separates the hypergraph in components where its domain

variables do not occur together with any variable occurring in

other valuation functions

Guards for Valuation Functions

W defines 3 components

C1

C2

C3

covers X1, which is in the domain of

C2 (and C1) does not contain variables in the domain of and

is a guard for ; in fact, it is also a guard for the other functions

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Decomposition Methods

 Common Ideas

 Generalize the notion of graph or hypergraph acyclicity

 Associate a width to each instance, expressing its degree of cyclicity

 Polynomial time algorithms for bounded-width CSP instances, running

in O(n w+1· logn)

 Bounded-width CSP instances can be recognized in polynomial time

 Bounded-width decompositions can be computed in polynomial time

 Noticeable Examples

 Tree decompositions

 (Generalized) Hypertree decompositions

Generalized Hypertree Decompositions

),','(),',()',',,,(

)','()','()',',(),(

),(),',()',',',,(),,',,(

FXBqFXBpYXYXJj

ZYhZXgZFFfZYe

ZXdZCCcFCYYSbFCXXSaans







a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Basic Conditions(1/2)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

• We group edges

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

• Edges can partially
 be used

j(_,_,_,X’,Y’), f(F,F’,Z’)

Basic Conditions(2/2)

Connectdness Condition

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Hypertree Decompositions (HTD)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Does not appear in

the subtrees rooted at v

J X Y

HTD = Generalized HTD +Special Condition

Each variable not used

at some vertex v

Key Ideas

Guards for Valuation Functions

Decomposition Methods

Decomposition Methods and Guards

Input CSP A1 An

set of equivalent acyclic instances

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output

Ai such that each valution function is guarded by some hyperedge

Input CSP A1 An

set of equivalent acyclic instances

Decomposition Methods and Guards

An instance is guarded via the given method if there is an output

Ai such that each valution function is guarded by some hyperedge

Input CSP A1 An

set of equivalent acyclic instances

is guarded via hypertree decomposition (width k=3)

Main Results

in P weakly NP-hard

NP-hard in P

in P

NP-hard

in P in P

Main Results

in P weakly NP-hard

NP-hard in P

in P

NP-hard

in P in P

 in P, if guarded via

Proof Idea

 in P, if guarded via

guard for

variables in the domain of

Proof Idea

 in P, if guarded via

guard for

variables in the domain of

X1

Proof Idea

 in P, if guarded via

guard for

variables in the domain of

X1

solutions with optimal values, computed via dynamic programming

Proof Idea

 in P, if guarded via

guard for

variables in the domain of

X1

solutions with optimal values, computed via dynamic programming

X1
Xn

acyclic instance, with 1 function over n variables

Main Results

in P weakly NP-hard

NP-hard in P

in P

NP-hard

in P in P

 in P, if guarded via

Main Results

in P weakly NP-hard

NP-hard in P

in P

NP-hard

in P in P

(acyclic) instances of this kind are always guarded via width: h x k+1

 in P, if guarded via

Main Results

in P weakly NP-hard

NP-hard in P

in P

NP-hard

in P in P

in P

(acyclic) instances of this kind are always guarded via width: h x k+1

 in P, if guarded via

Overview

Model

Complexity

Decomposition

Methods

