July 13-19, 2018, Stockholm, Sweden

Constrained Coalition Formation on Valuation Structures

Gianluigi Greco and Antonella Guzzo

University of Calabria, Italy

Transferable Utility Games

- A transferable utility game is a pair (N, v), where:
 - $N = \{a_1, ..., a_n\}$ is the set of agents
 - v: $2^N \rightarrow \mathbb{R}$ is the characteristic function
 - for each subset of players C, v(C) is the amount that the members of C can earn by working together

Transferable Utility Games

- A transferable utility game is a pair (N, v), where:
 - $N = \{a_1, ..., a_n\}$ is the set of agents
 - v: $2^N \rightarrow \mathbb{R}$ is the characteristic function
 - for each subset of players C, v(C) is the amount that the members of C can earn by working together

Transferable Utility Games

- A transferable utility game is a pair (N, v), where:
 - $N = \{a_1, ..., a_n\}$ is the set of agents
 - v: $2^N \rightarrow \mathbb{R}$ is the characteristic function
 - for each subset of players C, v(C) is the amount that the members of C can earn by working together

Coalition Structures

- A partition of the agents in exaustive and disjoint coalitions
 - Every agent belongs to some coalition
 - Coalitions do not overlap
- The value is the sum of the values of the coalitions

Problem of Interest

- Input: A coalitional game
- Ouput: The "optimal coalition structure"...
 ...that is, the structure with the greatest overall value

Outline

Constraints on Coalition Formation

Islands of Tractability

From Optimality to Stability

Constraints on Coalition Structures

In the real world, some coalition structures might be not admissible, because they violate constraints induced by the specific semantics of the applications at hand

Constraints on Coalition Structures

- In the real world, some coalition structures might be not admissible, because they violate constraints induced by the specific semantics of the applications at hand
 - Constraints on the interactions (e.g., physical limitations)
 [G. Demange, 2009]
 - Size of coalitions
 - [O. Shehory and S. Kraus, 1998]
 - [T. Rahwan and N. R. Jennings, 2007]
 - Positive and negative constraints (via a suitable language) [T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M. Wooldridge, and N. R. Jennings, 2011]

«Constraints» on Worth Functions

Even the worth function can be subject to constraints

«Constraints» on Worth Functions

- Even the worth function can be subject to constraints
 - Independent on Disconnected Members (IDM)
 [T. Voice, M. Polukarov, and N. R. Jennings, 2012]

An interaction graph is given, and any two agents have no effect on each other's marginal contribution to their separator

- i and j are not directly connected
- For each coalition C that does not include i or j, it holds that

 $\vee(\mathbf{C} \cup \{i, j\}) = \vee(\mathbf{C} \cup \{i\}) + \vee(\mathbf{C} \cup \{j\}) - \vee(\mathbf{C})$

• A valuation structure is a tuple $\sigma = \langle G, S, \alpha, \beta, x, y \rangle$

• A valuation structure is a tuple $\sigma = \langle G, F, \alpha, \beta, x, y \rangle$

G is the interaction graph

 A coalition C is considered as a *feasible* one, only if the subgraph induced over the nodes in C is connected

• A valuation structure is a tuple $\sigma = \langle G, \beta, \alpha, \beta, x, y \rangle$

G is the interaction graph

 A coalition C is considered as a *feasible* one, only if the subgraph induced over the nodes in C is connected

• A valuation structure is a tuple $\sigma = \langle G, S, q, \beta, x, y \rangle$

S is a set of pivotal agents

 They are pairwise "incompatible", so that every coalition C must also satisfy the condition |S ∩ C| ≤ 1 in order to be a feasible one

$$val_{\sigma}(v,C) = \begin{cases} \alpha(a_i) \times v(C) + \beta(a_i) & \text{if } \{a_i\} = C \cap S, \\ x \times v(C) + y & \text{if } C \cap S = \emptyset \end{cases}$$

IDM function

Clustering Problems

- In the *k*-correlation clustering, the value of a clustering is the number of + edges within the *k* clusters plus the number of – edges among clusters
- Find a k-clustering with maximum weight

- In the chromatic clustering, the value of a clustering is the number of the weights of the edges within the clusters
- Weigths depend on the color assigned to the cluster
- Find a clustering with maximum weigth

Cut Problems

- A multicut is a set of edges separating all source/terminal pairs: s₁/t₁, s₂/t₂, ...
- Find a multicut whose edges have minimum total weight

- A multiway cut is a set of edges separating all pair of terminals fro each other
- Find a multiway cut whose edges have minimum total weight

Outline

Constraints on Coalition Formation

Islands of Tractability

From Optimality to Stability

Related Result in the Literature

Theorem: Coalition structure generation is tractable over IDM functions defined over interaction graphs that are **nearly-**acyclic (**bounded treewidth**).

[T. Voice, M. Polukarov, and N. R. Jennings, 2012]

Theorem: Coalition structure generation is tractable over IDM functions defined over interaction graphs that are **nearly-**acyclic (**bounded treewidth**).

[T. Voice, M. Polukarov, and N. R. Jennings, 2012]

Theorem: Coalition structure generation is tractable over valuation structures defined over interaction graphs that are nearly-acyclic.

Our Main Result

Theorem: Coalition structure generation is tractable over valuation structures defined over interaction graphs that are nearly-acyclic.

Our Main Result

Affine trasformations from IDM functions

valuation structures and MC-nets

CSP encodings for MC-nets

novel machineries to encode connectivity

Corollaries

- The following problems are tractable when restricted over graphs having bounded treewidth:
 - k-clustering
 - chromatic clustering
 - multicut
 - multiway cut

Outline

Constraints on Coalition Formation

Islands of Tractability

From Optimality to Stability

The core of a game is the set of all stable outcomes, that is, no coalition wants to deviate from

 $core(G) = \{(CS, \underline{x}) \mid \Sigma_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N\}$

The core of a game is the set of all stable outcomes, that is, no coalition wants to deviate from

core(G) = { (CS, \underline{x}) | $\Sigma_{i \in C} x_i \ge v(C)$ for any $C \subseteq N$ }

coalition structure

The core of a game is the set of all stable outcomes, that is, no coalition wants to deviate from

core(G) = {(C\$, \underline{x}) $\Sigma_{i \in C} x_i \ge v(C)$ for any $C \subseteq N$ }

worth distribution over the agents

$$core(G) = \{(CS, \underline{x}) | \sum_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N \}$$

stability condition

The core of a game is the set of all stable outcomes, that is, no coalition wants to deviate from

 $core(G) = \{(CS, \underline{x}) \mid \Sigma_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N\}$

Summary of Results

Theorem: Computing the core is intractable.

What happens with valuation structures?

Theorem: Computing the core is intractable.

What happens with valuation structures?

Theorem: The coalition structure core can be computed in polynomial time on valuation structures defined over interaction graphs that are nearly-acyclic.

