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{ The Knapsack Problem _

OBJECT WEIGHT | VALUE
Silver Plate 55008 | SLa30
Golden Mirror | 3200 ¢ §500.-
Sword 1500 ¢ $350.-
Painting 3400 g $680 -

Problem Statement:

Given Instance: List of records (Object, Weight, Value),
maximum weight G, desired total value W

Question: Is there a set S C Objects, such that

Zu‘r’iyht[.r) <G and Z value(z) > W 7

z€S zeS

{ The Knapsack Problem _

OBJECT WEIGHT | VALUE
Silver Plate 5500 g | $1.430.
Golden Mirror | 3200 g §800.-
Sword 1500 ¢ 550
Painting 3400 g 8680.-

Problem Statement:

Given Instance: List of records (Object, Weight, Value),
maximum weight G, desired total value W

Question: Is there a set § C Objects, such that

Z weight(z) < G and Z value(z) > W ?
€S 16 kg wes $8,000.--

[ From Decisions to Compu

@ Search Problem

Compute a solution S such that

3 weight(z) <G and Y value(z) = W

€S €S

@ Optimization Problem

Compute a solution S such that

Z weight(z) < G and z value(x) is maximized.

€S T€ES
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{ Graph Three-colorability _

{Inatunce: A graph G

Question: Is GG 3-colorable?

Examples of instances:

°* o °

Associated search problem: Compute a correct 3-coloring, if possible.
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{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:
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Associated search problem: Compute a correct 3-coloring, if possible,

[ Graph Three-colorability _

{Instance: A graph G.

Question: s G 3-colorable?

Examples of instances:

[ R { PY

@ \ \

Associated search problem: Compute a correct 3-coloring, if possible.
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{ Graph Three-colorability _

{Inatunce: A graph G,

Question: Is G 3-colorable?

BACKTRACKING!

Examples of instances:

Associated search problem: Compute a correct 3-coloring, if possible.

[ Graph Three-colorability _

{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:
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Associated search problem: Compute a correct 3-coloring, if possible.

[ Graph Three-colorability _

{Imtcmce: A graph G.

Question: s G 3-colorable?

Examples of instances:

Associated search problem: Compute a correct 3-coloring, if possible.
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{ Graph Three-colorability _

{Inatunce: A graph G

Question: Is GG 3-colorable?

Examples of instances:
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Associated search problem: Compute a correct 3-coloring, if possible.

[ Graph Three-colorability _

{Inatunce: A graph G,

Question: Is G 3-colorable?

Examples of instances:

Associated search problem: Compute a correct 3-coloring, if possible.

[ Graph Three-colorability _

{Instnm:e: A graph G.

Question: Is G 3-colorable?

Examples of instances:

o ¢ Py

‘e @

Associated search problem: Compute a correct 3-coloring, if possible.
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{ Graph Three-colorability _

{Instance: A graph G.

Question: s G 3-colorable?

Examples of instances:
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{ Graph Three-colorability _

{Inatunce: A graph G.

Question: Is G 3-colorable?
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Associated search problem: Compute a correct 3-coloring, if possible.

[ Graph Three-colorability _

{Instnm:e: A graph G.

Question: Is G 3-colorable?

Examples of instances:

o ¢ PY
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Associated search problem: Compute a correct 3-coloring, if possible.




{ Graph Three-colorability _

{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

" —— @ PY
/ . YES!
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Associated search problem: Compute a correct 3-coloring, if possible.

{ Graph Three-colorability _

{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

o o PY
/ . YES!

¢ e

Associated search problem: Compute a correct 3-coloring, if possible.

[ Traveling Salesman Problem (T

{Iﬁs!ance: Road network G with distances, number M.

Question: Is there a “Tour” of total length < M?

Optimization problem: Compute tour of minimum length.
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{ Traveling Salesman Proble

{Iﬂa!ance: Road network G with distances, number M.

Question: Is there a “Tour” of total length < M?

Optimization problem: Compute tour of minimum length.

[ Traveling Salesman Problem (1

{Inalance: Road network G with distances, number M.

Question: Is there a “Tour” of total length < M?

Hamiltonian Cycle

b @ Does there exist a cycle
- of n edges going through
all n vertices?

{lmtance: Road network G with distances, number M.

Question: Is there a “Tour” of total length < :) 8

Hamiltonian Cycle

@ Does there exist a cycle
of n edges going through
all n vertices?
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[ Traveling Salesman Problem (

SF)

{lmzlance: Road network G with distances, number M.

. o » —
Question: Is there a “Tour” of total length <(M 8

Hamiltonian Cycle

@ Does there exist a cycle
of n edges going through
all n vertices?

[ G has Hamiltonian circuit <> G’ hat Tour of Length 8 ]

[ Combinatorial Crossword Puzzle!

1 2 3
7

n 12 13
8 . d
20 21 2

[ Combinatorial Crossword Puzzié

1v:

1h:

10

15

19

26
PARIS
PANDA
LAURA
ANITA
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[ Combinatorial Crossword Puzzle:

20
1h: [PARIS
v |[LIMBO PANDA
LINGO LAURA
PETRA ANITA
PAMPA
PETER

All known general
solution algorithms
rely on backtracking

20
1h: [PARIS
1v: |[LIMBO PANDA
LINGO LAURA
PETRA ANITA
PAMPA
PETER

[ samisriaBiLTY (sAaT)

Imstance: A set of Clauses

(XL or X2 or X3)
(X1 or X2 orX3)
(ﬁor;l orx_i)

(XL or X2 or X3)

Question: |s there a satisfying truth value assignment ?

22/06/2010
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(sanisriaBiLTY sar)

Instance: A set of Clauses

(Xlor X2 orX3) / VES €0

()ﬁ or X2 or X3) / Xl=true
TaT o) S X2=false

(XL or X2 orX3) X3=false

(Klor X2 orX3) /

Question: |s there a satisfying truth value assignment ?

@ We concentrate on decidable problems here.

[ Inherent Problem Complexi

@ Problems decidable or undecidable.

@ A problem is as complex as the best possible algorithm which solves it.

[ Inherent Problem Complexi

@ Problems decidable or undecidable.

@ We concentrate on decidable problems here.

@ A problem is 4 the best possible algorithm which solves it.

[Number of steps it takes for input of size n ]

Exponential

on

runtime

Polynomial

\

instance size

22/06/2010
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| Time Complexity .

PROVABLY EXPONENTIAL
Theory of the Real Numbers

Domino Problems

PROBL.

PROVABLY POLYNOMIAL
Find shortest path in graph
Linear Programming

| Time Complexity .

PROVABLY EXPONENTIAL
Theory of the Real Numbers

Domino Problems

e e e e e e e e e - ~
I NP-COMPLETE !
PROBL. 1 Graph 3colorability 3000 1
I Knapsack . 1
\ Traveling Salesman bl N

Crossword Puzzle problems
: Satisfiability (SAT) :

PROVABLY POLYNOMIAL
Find shortest path in graph
Linear Programming

_The class NP s

@ NP: Nondeterministic Polynomial Time

Paradigm: Guess and Check

13
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[ The class NP .

@ NP: Nondeterministic Polynomial Time

Paradigm: Guess and Check

EXPTIME
o~ NP

- -

Np=p}

[ The class NP .

@ NP: Nondeterministic Polynomial Time

Paradigm: Guess and Check

EXPTIME
o~ NP

- -

Np=p}

The most important open problem of Theoretical Computer Science!
Clay Mathematical Institute: $1.000.000

[ The class NP s

@ NP: Nondeterministic Polynomial Time

Paradigm: Guess and Check

Structure inside NP

NPC: The hardest problems in NP.

All problems in NPC can be polynomially transformed into one another.

One polynomially solvable = all polynomially solvable, i.e. NP=P.

14
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@ NP-complete problems often occur in practice.

@ They must be solved by acceptable methods.
@ Three approaches:
e Randomized local search

® Approximation

e Identification of easy (=polynomial) subclasses.

:@

[ Approaches for Solving Hard'Prob

@ NP-complete problems often oceur in practice,
@ They must be solved by acceptable methods.
@ Three approaches:

® Randomized local search

e Approximation

e Identification of easy (=polynomial) subclasses. ]

:@
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[ Outline of the Tutorial _

“Easy” Classes

compositions

s of Hypertree Width

— N __ | J

[ Identification of Polynomial

@ High complexity arises often in “worst cases” only.
@ Intricate structure of worst case problem instances.
@ For inputs of simpler structure polynomial algorithms may exist.
@ In practice many input instances are simple.
Therefore:
e Define snitable polynomially solvable subclasses of instances.
e Prove that membership testing for these subclases is polynomisl.

¢ Develop efficient polynomial algorithms for these classes.

[ Problems with a Graph S_

@ With graph-based problems, high complexity is mostly

due to cyclicity.
Problems restricted to acyclic graphs are often
trivially solvable (—3COL).

@ Moreover, many graph problems are polynomially
solvable if restricted to instances of low eyclicity.

22/06/2010
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[ Problems with a Graph Str_

@ With graph-based problems, high complexity is mostly

due to cyclicity.

Problems restricted to acyclic graphs are often
trivially solvable (—3COL).

@ Moreover, many graph problems are polynomially

solvable if restricted to instances of low cyclicity.

How can we measure the degree of cyclicity?

[ (Three) Early Approaches _

[[" Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic

[ (Three) Early Approaches NN

[ﬂJJ] Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic
o ..
® - e fwn(©)=3
S :

22/06/2010
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[ (Three) Early Approaches _

'J]l Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic

. . ']

® ©® @

. fWnG)=3

Is this really a good measure for the “degree of acyclicity” ?

{Pro: For fixed k we can check in quadratic time if fwn(G)=k  (FPT) .

Con: Very simple graphs can have large FVN:

[ (Three) Early Approaches _

[|" Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic

. . ']

& ® ®

. fWnG)=3

Is this really a good measure for the “degree of acyclicity” ?

{Pro: For fixed k we can check in quadratic time if fwn(G)=k  (FPT) .

Con: Very simple graphs can have large FVN:

VVVVVIVYYY

[ (Three) Early Approaches NN

[[2)]] Feedback edge number 2 same problem.

18
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[ (Three) Early Approaches _

@]J Feedback edge number > same problem.

['3{] Maximum size of biconnected components
L

bew(G)=4

Pro: Actually bcw(G) can be computed in linear time
Con: Adding a single edge may have tremendous effects to bcw(G)

[ (Three) Early Approaches _

[[2)]] Feedback edge number - same problem.

['3{” Maximum size of biconnected components
L

bew(G)=4

Pro: Actually bcw(G) can be computed in linear time
Con: Adding a single edge may have tremendous effects to bcw(G)

[ (Three) Early Approaches NN

[[2)]] Feedback edge number 2 same problem.

[|31] Maximum size of biconnected components
L

bew(G)=4

{ Pro: Actually bcw(G) can be computed in linear time

Con: Adding a single edge may have tremendous effects to bcw(G)
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[ (Three) Early Approaches _

@]J Feedback edge number > same problem.

['3{] Maximum size of biconnected components
L

bew(G)=4

Pro: Actually bcw(G) can be computed in linear time
Con: Adding a single edge may have tremendous effects to bcw(G)

[ (Three) Early Approaches _

[[2)]] Feedback edge number - same problem.

['3{” Maximum size of biconnected components
L
12

bew(G)=4

Pro: Actually bcw(G) can be computed in linear time
Con: Adding a single edge may have tremendous effects to bcw(G)

[ Tree Decompositions [Roberts_

GeD GG Conod

Tree decomposition of width 2 of G

22/06/2010
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{ Tree Decompositions [Roberts_

<y
oo D

Groy G Qe Gaed

Tree decomposition of width 2 of G

« Every edge realized in some bag
« Connectedness condition

[ Connectedness condition

[ Tree Decompositions and Treewid

(abd ) Cbef )

Cbad ) baf )

d t (oot ) (oo
\ Y
o
(_beg )

h D [ width(T,X;) = max |X;| -1 }

" | tw(G) = min width(T,X,)

22/06/2010
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{ Properties of Treewidth _

tw(acyclic graph)=1
tw(cycle) = 2
tw(G+v) < tw(G)+1
tw(G+e) < tw(G)+1
tw(K,) =n-1

e © © ¢ @

[ Properties of Treewidth _

tw(acyclic graph)=1
tw(cycle) = 2
tw(G+v) < tw(G)+1
tw(G+e) < tw(G)+1
tw(K,) = n-1

e © © ¢ @

[1)) tw is preserved under graph minors
[IZ]J tw is a key for tractability
3] tw s tractable

| Graph Minors s

e H is a minor of G if it can be obtained
by repeatedly applying:
o Edge deletion
@ Vertex deletion
e Edge contraction

22
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{ An important Metatheorem _

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in
Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

[ An important Metatheorem _

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in
Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

@ Theorem. (Fagin): Every NP-property over graphs can be

represented by an existential formula of Second Order Logic.

NP=ESO

@ Monadic SO (MSO): Subclass of SO, only set variables, but no
relation variables of higher arity.

3-colorability € MSO.

[ Three Colorability in MSO_

(3R.G.B) | (Vx (R(z) V G(2) V B(x)))
(Va(R(x) = (=G(x) A ~B(x))))

(Va,y(E(x,y) = (R(x) = (G(x) vV B(y)))))
(Yo, y(E(v,y) = (G(x) = (R(x) V B(y)))))
(V. y(BE(x,y) = (B(x) = (R(x) VG(y)))))]

> > i SIS R s

23



[ Is Treewidth a Tractable Not_

@ Can we efficiently check for a constant k whether tw(G)<k ?

@ Can we construct a tree decomposition efficiently in case ?

[ Is Treewidth a Tractable Not_

@ Can we efficiently check for a constant k whether tw(G)<k ?

@ Can we construct a tree decomposition efficiently in case ?

Yes !
[ The answer was first given via an amazing theorem ]

of Robertson and Seymour [1986]

[ Is Treewidth a Tractable Notion2

@ Can we efficiently check for a constant k whether tw(G)<k ?

@ Can we construct a tree decomposition efficiently in case ?

Yes !

The answer was first given via an amazing theorem
of Robertson and Seymour [1986]

Each class of graphs that is closed under taking minors is characterized by a finite set of forbidden minors.

@ The “obstruction set” of class C.

@ For each k and for each class of graphs G for which tw(G)<k, the obstruction
set is a finite set of grids.

@ It can be checked in quadratic time whether a fixed graph is a minor of an
input graph.

@ Linear time algorithm for checking tw(G)<k by Bodlaender ‘96

22/06/2010
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{ Outline of the Tutorial _

nd Tree Decompositions ]

Fhiaracterizations of Hypertree Width ]

[ Beyond Treewidth _

@ Treewidth is currently the most successful measure of
graph cyclicity. It subsumes most other methods.

@ However, there are “simple” graphs that are heavily
cyclic. For example, a clique.

Beyond Treewidtn

@ Treewidth is currently the most successful measure of
graph cyclicity. It subsumes most other methods.

@ However, there are “simple” graphs that are heavily
cyclic. For example, a clique.

by hypergraphs rather than by graphs...

i

[There are also problems whose structure is better described ]

25
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{ Three Problems _

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Important problems in different areas.
All these problems are hypergraph based.

{ Three Problems _

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Important problems in different areas.
All these problems are hypergraph based.

 But actually: HOM = BCQ = CSP |

[ The Homomorphism Problem_

@ Given two relational structures

A=(U,RyR2,...,R)
B=(V,Sy S2,.., S)

@ Decide whether there exists a homomorphism h from Ato B
h: U—V
such that VX, Vi
XxXeRi = h(X)eSi

26



[ HOM is NP-complete _

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

Graph 3-colourable iff HOM(A,B ) yes-instance.

{ HOM is NP-complete _

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

Graph 3-colourable iff HOM(A,B ) yes-instance.

[ Constraint Satisfaction Pr_

@ Set of variables V={X;,...,X,}, domain D

@ Set of constraints {Cy,...,C,}

where: C=<S;, R>

scope relation
(KjzreeesXyr) 1673
1539
2476
3547
@ Solution: A substitution h: V—D such that h(S))eR; holds, for each i

22/06/2010
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{ Constraint Satisfaction Prob_

@ Set of variables V={X;,...,X,}, domain D

@ Set of constraints {Cy,...,C,}

where: C=<S;, R>

scope relation
(KjpreXi) 1673
1539
2476
3547
@ Solution: A substitution h: V=D such that h(S;)eR; holds, for each i

[Associated hypergraph: {var(S))|1 <i<m} ]

{ Example of CSP: Crossword Puzzle

[ 7 8 1910
n 12 13 14 15

Cu /i 1" 5
16 .n 18 19 | 6 " 18 19
0 (21 2 (23 24 25 2%

[ Conjunctive Database Querie

DATABASE:

John Algebra 2003
Robert Logic 2003

Algebra March McLane Lisa

Logic May Kolaitis  Robert

Mary DB 2002
DB

DB June Rahm Mary

QUERY: Is there any teacher having a child enrolled in
her course?

ans « Enrolled(S,C,R) A Teaches(P,C,A) A Parent(P,S)

22/06/2010
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{ Queries and Hypergraphs _

ans « Enrolled(S,C,R) . Teaches(P,C,A) . Parent(P,S)

{ Queries and CSPs _

@ Database schema (scopes):
o Enrolled (Pers#, Course, Reg-Date)
@ Teaches (Pers#, Course, Assigned)
o Parent (Persl, Pers2)

@ Is there any teacher whose child attend some
course?

ans « Enrolled(S,C’,R) » Teaches(P,C,A) » Parent(P,S)

[ Acyclic Queries _

ans « Enrolled(S,C’,R) . Teaches(P,C,A) . Parent(P,S)

7

29



[ Acyclic Queries _

ans « Enrolled(S,C’,R) . Teaches(P,C,A) . Parent(P,S)

Parent(P,S)

‘ Teaches(P,C,A) H Enrolled(S,C’,R) ‘

Join Tree

{ Complexity of BCQs _

@ NP-complete in the general case
(Bibel, Chandra and Merlin '77, etc.)
NP-hard even for fixed constraint relations

@ Polynomial in case of acyclic hypergraphs
(Yannakakis '81) .
LOGCFL-complete (in NC,)

(Gottlob, Leone, Scarcello '98)

[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
@ Acyclic BCQs (ABCQs) can be efficiently solved
@ Local consistency — Global consistency

22/06/2010
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[ Properties of Acyclic BCQs _

[ @ Acyclicity is efficiently recognizable ]
@ Acyclic BCQs (ABCQs) can be efficiently solved
@ Local consistency — Global consistency

[ Deciding Hypergraph Acycli

. - . f’l-\‘" [F\.
@ Can be done in linear time [} |‘ : ‘| pot |
by GYO-Reduction -
y | /_ ) ’m‘
€ ——\f"

Input: Hypergraph H
Method: Apply the following two rules as long as possible:
(1) Eliminate vertices that are contained in at most one hyperedge
(2) Eliminate hyperedges that are empty or contained in other hyperedges

His acyclic iff the resulting hypergraph empty

Proof: Easy by considering leaves of join tree

[ Example of GYO- Reductlon

rule 1 rule 2

ruIe 1

H*= (,2) <

rule 2
GYOreduct

22/06/2010
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[ Example of GYO-irreducible Hyperaraph

[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
[ @ Acyclic BCQs (ABCQs) can be efficiently solved ]

@ Local consistency — Global consistency

[ Answering Acyclic Instan_

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

.

Yannakakis’s Algorithm (ABCQs):
Dynamic Programming over a Join Tree

22/06/2010
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d: d(Y,P)
e
7
-
938
r(Y,Z,U) aes
383
594
947
389
838 s(Z,U,W) t(V,2) 5
384 95

A solution: Y=3, P=7, Z=8, U=9, W=4, V=9

{ Answering Acyclic Instan_

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

S

Yannakakis’s Algorithm (ABCQs):
Dynamic Programming over a Join Tree
\\// _ '
-~ @ Answering ACQs can be done adding a top-down phase to
Yannakakis’ algorithm for ABCQs
o obtain a full reducer,
o join the partial results (or perform a backtrack free visit)

[ ABCQis in LOGCFL I

Theorem [Gottlob, Leone, Scarcello ‘99]:

Acyclic CSP-solvability is LOGCFL-complete.
Answering acyclic BCQs is LOGCFL-complete

‘@ LOGCEFL: class of problems/languages that are
logspace-reducible to a CFL

@ Admit efficient parallel algorithms
ACoc NL<C LOGCFL=SAC, cAC, cNC, c---c NC=ACcPc NP

Characterization of LOGCFL [Ruzzo ‘80]:

LOGCFL = Class of all problems solvable with a logspace ATM
with polynomial tree-size

22/06/2010
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[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
@ Acyclic BCQs (ABCQs) can be efficiently solved
[ @ Local consistency — Global consistency ]

[ Answering ACQs via Consistencig

Method: Enforce pairwise consistency, by taking the join of all pairs of relations |

until a fixpoint is reached, or some relation becomes empty

3
9
d(y,P) 1(Y,Z,U) 5
3
8
9

S © 000w w oo
~N A WhH oo

t 938
s(Z,U,W) t(V,2) 93

POOOWWH OUWww
~Nhwhoomo NNN®

© 0 WwWoOw

[ Join Trees or Local Consi

@ Computing a join tree (in linear time, and logspace-
complete [Gottlob, Leone, Scarcello’98+ SL=L])
may be viewed as a clever way to enforce local---and
hence---global consistency

@ Cost for the computation of the full reducer:

O(m n?log n) vs O(m nlog n)

@ N.B. n is the (maximum) number of tuples in a relation
and may be very large

22/06/2010
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{ Global and Local Consisten

@ An important property of ACQs:
@ Local consistency = Global consistency

o That s, if all relations are pairwise consistent, then the
query is not empty

@ Nottrue in the general case

{ Global and Local Consisten

@ An important property of ACQs:
@ Local consistency = Global consistency

o That s, if all relations are pairwise consistent, then the
query is not empty

@ Not true in the general case

ans « a(X,Y) 4 b(Y,Z) »c(Z,X)

[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
@ Acyclic BCQs (ABCQs) can be efficiently solved
@ Local consistency — Global consistency

22/06/2010
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[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
@ Acyclic BCQs (ABCQs) can be efficiently solved
@ Local consistency — Global consistency

22/06/2010

ans < a(S, X, X',C,F) Ab(S,Y,Y',C',F') Ac(C,C', Z) nd(X,Z) A
e(Y,Z) A F(F.F',Z') AQ(X", Z') AR(Y', Z') A

n size of the database J(3,X,Y, X" Y A p(B, X", F) Aq(B', X", F)

m number of atoms in the query

m=11!

Classical methods worst-case complexity: O(n m)

[ Properties of Acyclic BCQs _

@ Acyclicity is efficiently recognizable
@ Acyclic BCQs (ABCQs) can be efficiently solved

@ Local consistency — Global consistency

ans < a(S, X, X',C,F) Ab(S,Y,Y',C',F') Ac(C,C', Z) nd(X,Z) A
e(Y,Z) A F(F.F',Z') AQ(X", Z') AR(Y', Z') A

n size of the database J(3,X,Y, X" Y A p(B, X", F) Aq(B', X", F)

m number of atoms in the query

m=11!

Classical methods worst-case complexity: O(n m)

| Still, it can be evaluated in O(m-n 2- logn) |

[ Primal Graphs of Queries _

ans « Enrolled(S,C,R) . Teaches(P,C,A) . Parent(P,S)
@
Ve
G—®

Hypergraph H(Q) Primal graph G(Q)
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[ Hypergraphs vs Graphs _

An acyclic hypergraph Its cyclic primal graph

[ Hypergraphs vs Graphs _

There are two cliques.
We cannot know where they come from

[ Drawbacks of Treewidth _

Acyclic queries may have unbounded TW!

Example:
q P1(Xy, Xorooos X3, Y1) A o AP(Xyy Koo X5, Y)

is acyclic, obviously polynomial, but has treewidth n-1
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[ Beyond Trewi B |

Bounded Degree of Cyclicity (Hinges)

[Gyssens & Paredaens "84, Gyssens, Jeavons, Cohen *94]
Does not generalize bounded treewidth.

- Bounded Query width

[Chekuri & Rajaraman *97]

Group together query atoms
(hyperedges) instead of variables

{ Query Decomposition _

g« Pi(Xp, Xo ooty Y1) a oo a P(Xyy X oen, V)

|Query width =1 = acyclicity |

pl(xll"/'l anYl)

°o o o

Pa(Xgsees Xo, Yr)

« Every atom/hyperarc appears in some node
« Connectedness conditions for variables and atoms

[ Decomposition of Cyclic Que
q « s(Y,Z,U) » g(X,Y) ~t(Z,X)  S(ZW.X) - (Y,2)

906, 102)

e | sz |

- BCQ is polynomial for queries of bounded
query width, if a query decomposition is given

22/06/2010
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{ From Decompositions to Joi

g« S(Y,Z,U) »g(X.Y) t(Z,X) - SZW,X) 1(Y,2)

a(x,y), t(v,2) gt(X,Y,2)
X)) [stizu)] ™ [zx)] [s(vzU) ]

Relations: Relations:

FEE = k= 5

{ Problems by Chekuri & Rajaramanyor

@ Are the following problems solvable in polynomial time

for fixed k ?
o Decide whether Q has query width at most k
o Compute a query decomposition of Q of width k

®

[ A Negative Answer _

[Gottlob, Leone, Scarcello '99]

Theorem: Deciding whether a query has
query width at most k is
ne-complete

Proof: Very involved reduction from
EXACT COVERING BY 3-SETS

22/06/2010




[ Important Observation _

NP-hardness is due to an overly strong condition
in the definition of query decomposition

| p(X,{)@,"q(U,\@ |
| a(x,'kl\,m‘, bYVW) |
Forbidden!‘ PXYD), cTW) \

[ soxn | [ am |

[ Important Observation _

But the reuse of p(X,Y,Z) is harmless here:

we could add an atom p(X, Y,Z’) without changing the query

p0x¥2), 40D |
AU, b

[ pexxz), ctw) |

[ soxn | [ am |

[ Hypertree Decompositions _

as long as the full atom appears
somewhere else

!

More liberal than query decomposition

@ Query atoms can be used “partially”

22/06/2010
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[ Grouping and Reusing Ato

\
1
We group atoms —

| a(UW), bYVW) |

[
|We use p(X,Y,Z) partially | ‘ P(X,Y,_), C(T,W) ‘

L dxn | [ en

| Reusing Atoms .

| p(x,Y,Z)," UV |

[ aex,uW), brvw) |
[
We use p(X,Y,Z) partially | ‘ P(X,Y,_), C(TIW) ‘

L dxn | [ en |

[ Back to the Example _

ans < a(s, X, X',C,F) Ab(S,Y,Y",C, F') Ac(C,C", Z) Ad(X,Z) A
e(Y,2) A F(F,F',Z)Ag(X',Z') AR(Y",Z') A
J3,X.Y, XYY A p(B, X', F) Aq(B', X', F)

‘ JOXXXY) ‘
\

‘ a(S.X,x,C,F), b(S,Y,Y’,C’ F") ‘

[ ioxveowcen | [ i xwerz) |
[axa | [ | [ oo | [nvs |
‘ p(B.X".F) ‘ ‘ q(B’.X",F) ‘

Hypertree of width 2

22/06/2010
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{ Generalized Hypertree Deco

GHD= Hypertree + Connectedness condition

‘ JUXYXY) ‘
\

| a(S.X,x’,C,F), b(S,Y,Y’,.C"F") |

| icveoacen | [ G xwniern |
‘ d(X,2) ‘ ‘ e(Y.2) ‘ | 9(xX,2"), f(F,_,2") | ‘ h(Y’,Z") ‘
[pexn | [aexn |

[ Tree Decomposition of Hype_

H Tree decomp of G(H)

[[123456 | [[11,12171819 |
[ 345678 | [[1216171819 |
[ 56789 | [[1215161819 |
[ 7910 ] [121314151819 |

[ Tree Decomposition of Hyper_

[[123456 | [ 1112171819 |
[ 345678 | [[1216171819 |
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]

22/06/2010
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[ Tree Decomposition of Hype_

[ 123456 | [ 1112171819 |
[ 345678 | [[121617,1819 ]
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]

[ Tree Decomposition of Hype_

[[123456 | [ 1112171819 |
[ 345678 | [[121617,1819 |
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]

[ Tree Decomposition of Hype_

[[123456 | [ 1112171819 |
[ 345678 | [[1216171819 |
[ 56789 | [[1215161819 |
[ 7910 ] [121314151819 ]
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[ Tree Decomposition of Hype_

[[123456 | [ 1112171819 |
[ 345678 | [[121617,1819 ]
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]

[ Tree Decomposition of Hype_

[[123456 ] [ 1112171819 |
[ 345678 | [[121617,1819 |
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]

[ Tree Decomposition of Hype_

[[123456 | [ 1112171819 |
[ 345678 ] [ 1216171819 |
[ 56789 ] [[1215161819 |
[ 7910 ] [121314151819 ]
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[ Tree Decomposition of Hype_

[[123456 | [ 1112171819 |
[ 345678 | [[121617,1819 ]
[ 56789 ] [ 1215161819 |
[ 7910 ] [121314151819 ]

[ Generalized Hypertree Deco_

h8(L,11), h15(L,17,19)

[ h1(1,2.3), h2(1,456) | [ ho(11,12,18), h15(,17,19) |

[ h2(_4,5.6), h3(3,4.7,8) ] [ h10(12,_19), h14(16,17.18) |

[ h4(57),h5(6,89) | [ h9(.12,18), h13(15,16,19) |

[ hé6(.9,10) ] [[h10(12,13,19), h12(14,15,18) |

Generalized hypetree decomposition of width 2

[ Computational Question _

@ Can we determine in polynomial time whether
ghw(H) <k for constantk ?
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{ Computational Question _

@ Can we determine in polynomial time whether
ghw(H) <k for constantk ?

®

Bad news: ghw(H) <4? NP-complete

[Schwentick et. al. 06]

[ Hypertree Decomposition (HTD)

HTD = Generalized HTD +Special Condition

Each variable
‘ that disappeared

‘ JOXY.X,Y) at some vertex v

\
‘ a(S.X.X".C.F), b(S,Y,Y".C"F’) /

‘ JOXY,_0),e(C.C.2) ‘ ‘ JAXY.X.Y), f(EF,Z7) ‘

‘ d(X,2) ‘ ‘ e(Y.2) ‘ ‘ 9(X,2)),f(F,_.Z") ‘ ‘ h(Y*,Z) ‘

Does not reappear in
the subtrees rooted at v ‘ p(B.X’,F) ‘ ‘ q(B*.X",F) ‘

[ Special Condition _

Each variable
‘ that disappeared

‘ JOXY.XY) at some vertex v

‘ a(S.X.X".C.F), M

‘ JOXY. ), e(C.C7) ‘ ‘ JAXYX,Y), f(EF.27) ‘

‘ d(x.2) ‘ ‘ e(Y.2) ‘ | 9xX.2), f(F._,Z") | |h(Y‘,Z‘)|

Does not appear in
the subtrees rooted at v | p(B.X".F) | | q(B*.X".F) |

53



{ Positive Results on Hypertree DecompoSisis

@ For each query Q, hw(Q) < qw(Q)
@ In some cases, hw(Q) < qw(Q)

@ For fixed k, deciding whether
hw(Q) < k is in polynomial time (LoGcFL)

@ Computing hypertree decompositions is
feasible in polynomial time (for fixed k).

But: FP-intractable wrtk: W{[2]-hard.

[ Evaluating Queries with Bounded\(g)hii;

k is fixed

Given:
a database db of relations
a CSP Q over db such that hw(Q) <k or ghw <k
a width k hypertree decomposition of Q

@ Deciding whether (Q,db) solvable is in
O(n**1log n) and complete for LOGCFL

@ Computing Q(db) is feasible in
output-polynomial time

[Observatio .

If H has n vertices, then HW(H)sn/2+1

@ Does not hold for TW:
o TW(K,)=n-1

@ Often HW < TW.
o H-Decomps are interesting in case of bounded arity, too.

22/06/2010
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{ Comparison Results _

| Hypertree Decomposition
Hinge Decompeosition 4
+ Cycle Hypercutset
Tree Clustering

Hinge Tree Clustering
Decomposition w* = treewidth

—
Biconnected Components Cycle Cutset

{ Relationship GHW vs HW. _

Observation:

ghw(H) = hw(H*)

where H* =H U {E | 3E in edges(H): E" ¢ E}

Exponential!

Approximation Theorem [Adier,Gottiob,Grohe ,05]

| ghw(H) <= 3hw(H)+1 |

[ Comparison Results _

Are there other approximations to GHW ?

Hypertree Decomposition

Cycle Hypercutset

Hinge Tree Clustering
Decomposition w* = treewidth

—
Biconnected Components Cycle Cutset

Hinge Decompesition
+

Tree Clustering
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[ Comparison Results

Are there other approximations to GHW ?

Hypertree Decomposition

Hinge Decompeosition
+

Cycle Hypercutset
Tree Clustering

Hinge Tree Clustering
Decomposition w* = treewidth

Biconnected Components Cycle Cutset

[ Outline of the Tutorial _

dfTree Decompositions ]

Fharacterizations of Hypertree Width ]

Nolo ".4:‘.‘,‘ 3
Applications ]

Applications

22/06/2010
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{ Comparison Results _

[Cohen, Jeavons, Gyssens’08]

Hypertree Decomposition W Spread cuts

\ [ Cycle Hypercutset

Hinge Decompeosition
+

Tree Clustering
Hinge Tree Clustering
Decomposition w* = treewidth

—
Biconnected Components W Cycle Cutset

{ Comparison Results _

Are all tractable classes
of CSPs of bounded GHW?

Hypertree Decomposition W

\ Cycle Hypercutset
Hinge Tree Clustering
Decomposition w* = treewidth

—
Biconnected Components W Cycle Cutset

Spread cuts

Hinge Decompeosition
+

Tree Clustering

@ Treewidth and Hypertree width are based on tree-like
aggregations of subproblems that are efficiently solvable

@ k variables (resp. k atoms) = ||I||* solutions (per subproblem)

@ |s there some more general property that makes the
number of solutions in any bag polynomial?

@ YES!
[Grohe & Marx '06]

22/06/2010
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{ Fractional (edge) Covering _

An edge cover of a hypergraph is a subset of the edges such that every vertex
is covered by at least one edge.
o(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.
" (H): smallest total weight of a fractional edge cover.

e (H)=15

From Marx's presentation about
fractional covers

Fact: It is NP-hard to determine the edge cover number o(H ).
Fact: The fractional edge cover number p* (H') can be determined in
polynomial time using linear progamming.

The gap between o(H ) and p* (H') can be arbitrarily large.

Example:
(’:] vertices: all the possible strings with k& O's and k 1's
2k hyperedges: edge E; contains the vertices with 1 at the i-th position.

Edge cover: if only k edges are selected, then there is a vertex that contains
1's only at the remaining k positions, hence not covered = p(H) > k + 1.

Fractional edge cover: assign weight 1/k to each edge, each vertex is cov-
ered by exactly k edges = p"(H) < 2k - 1/k = 2.

From Marxs presentation about
fractional covers

[ Solutions and Fractional Edge Co:

Lemma: If the hypergraph of instance I has edge cover number w,
then there are at most || 1||™ satisfying assignments.

Proof: Assume that €'y, ..., C'w cover the instance. Fixing a satisfying
assignment for each '; determines all the variables.

Lemma: If the hypergraph of instance I has fractional edge cover number w:,
then there are at most || I'||*™ satisfying assignments (and they can be
enumerated in polynomial time).

Proof: By Shearer’s Lemma.

From Marx's presentation about
fractional covers

22/06/2010
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[ Shearer’s Lemma (Combin

Shearer's Lemma: Let H = (V. E) be a hypergraph, and let 4,, A5
Ay be (not necessarily distinct) subsets of V" such that each v € V' is
contained in at least g of the A,'s. Denote by E; the edge set of the
hypergraph projected to A:. Then

,
1B < [] 1Bale.

i=1

Example:
E={1,13.2,23,234,24} g = 2
A =123 Az =124 As =34
Eq={1,13,2,23} Ea={1.2,24} Es={0,3,4,34}
6= |E| < (£ |E2| - |Es)"/? = (4-3-4)"/* = 6.028

From Marx's presentation about
fractional covers

[ Shearer’s Lemma (Entropy

Shearer's Lemma: Assume we have the following random variables:

X1,00e, Xn,

Ya,..., Y, where each Vi = (Xi,,.... X, ) is a combination of some
Xi's

X =(X1,....0 n)

If each X; appears in at least ¢ of the ¥i's, then H(X) < 13 H(Yi).

Entropy: “information content”
H(X)=-%,P(X =z)log, P(X =2)

From Marxs presentation about
fractional covers

[ Bounding the Number of Sc

Lemma: If the hypergraph of instance I has fractional edge cover number w,
then there are at most || I[|™ satisfying assignments.

Example: Let C'y (1, x2) A Ca(ira, xa) A sy, xa) be an instance where
each constraint is satisfied by at most » pairs.

Fractonal edge cover number: 3/2 = we have to show that there are at most
n®* solutions.

Let X = (&, x2.x3) be a random variable with uniform distribution over the
satisfying assignments of the instance

¥y = (21, @2) Ya = (wa.aa) Ya = (21, x3)
H(Y:) < log, n (has at most n different values)
H(X)< 2(H(Y))+ H(Ya) + H(Ys)) < 2log, n

X has uniform distribution, hence it has 28(X) — g%lesan _ ,9/2 different

values. From Marx's presentation about
fractional covers

22/06/2010
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{ The Result is Tight! _

Theorem  Let 2 be a class of join queries. Then the following statements are equivalent:

(1) Queries in @ have answers of polynomial size.
(2) Queries in 2 can be evaluated in polynomial time.
(3) Queries in 2 can be evaluated in polynontial time by an explicit join-project plan.
(4) 2 has bounded fractional edge cover number.
[Atserias, Grohe, Marx ‘08]
@ Note that this tractability result does not cover “tractable” classes of
queries as the acyclic queries
@ Why that?
@ Because acyclic queries may have an exponential number of
solutions, but computable efficiently (and with anytime algorithms)
@ |dea: Combine fractional covers with hypertrees!

[ Fractional Hypertree Decompt

In a fractional hypertree decomposition of width w, bags of vertices are
arranged in a tree structure such that

1. For every edge ¢, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. Afractional edge cover of weight w is given for each bag.
Fractional hypertree width: width of the best decomposition.
Note: fractional hypertree width < generalized hypertree width
[Grohe & Marx ‘06]

@ Aquery may be solved efficiently, if a fractional hypertree
decomposition is given

@ FHDs are approximable: If the the width is < w, a decomposition of
width O(w3) may be computed in polynomial time [Marx ‘09]

| More Beyond? s

@ A new notion: the submodular width

@ Bounded submodular width is a necessary and sufficient
condition for fixed-parameter tractability
(under a technical complexity assumption)
[Marx “10]

22/06/2010
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{ Outline of the Tutorial _

Fhiaracterizations of Hypertree Width ]

[ Characterizations of Hype

@ Logical characterization:
Loosely guarded logic

@ Game characterization:
The robber and marshals game

[ Guarded Formulas _

C3AX(gA)...

Guard atom: free((p) c Var(g)

k-guarded Formulas (loosely guarded):
L 3AX (G, AQ, A AT AP) ...
|
k-guard

‘ GF(FO), GF(Fo) are well-studied
fragments of Fo (van Benthem'97, Grader'99)

22/06/2010
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[ Logical Characterization of

Theorem: HW =GF (L)

From this general result, we also get a
nice logical characterization of acyclic queries:

Corollary: HW = ACYCLIC =GF(L )

{ An Example

IX,Y,Z,T,UW.(p(X,Y,Z)Aq(X,Y,T)Ar(Y,Z,U)As(T,W))

Is acyclic: p(X.Y.2)

| q(x,Y.T) | | 1(Y.Z,U) |

Indeed, there exists an equivalent guarded formula:

EIX,Y,Z.fp(X,Y,Z)/\
Guard

Guarded subformula

3T.(@(X,Y,T) ATW.S(T,W)) A
A3U.I(Y,Z,U))

[ An Example s

3X,Y,Z,T,UW.(p(X,Y,Z)Aq(X,Y, T)Ar(Y,Z,U) As(T,W))

Is acyclic: p(X,Y.2)

| qxY,T) | | "(Y.ZU) |

Indeed, there exists an equivalent guarded formula:

51,200,202 57 GO )

Guard A3U.r(Y,z,U))

Guarded subformula
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{ Game Characterization: RobberandiViaisiils

@ A robber and k marshals play the game on a
hypergraph

@ The marshals have to capture the robber

@ The robber tries to elude her capture, by running
arbitrarily fast on the vertices of the hypergraph

[ Robbers and Marshals: The

@ Each marshal stays on an edge of the hypergraph
and controls all of its vertices at once

@ The robber can go from a vertex to another vertex
running along the edges, but she cannot pass
through vertices controlled by some marshal

@ The marshals win the game if they are able to
monotonically shrink the moving space of the robber,
and thus eventually capture her

@ Consequently, the robber wins if she can go back to
some vertex previously controlled by marshals

[ Step 0: the empty hypergrap
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[ Step 1: first move of the marshals
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[ Step 2a: shrinking the sp
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[ A different robber’s choi
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{ Marshals... _

Marshals

Robber

{ Polynomial algorithm: Alternating’COGSEAG:

Once | have guessed R, how to guess the next marshal position S ?
Marshals

Robber

Monotonicity: V Ee edges(Cg): (ENUR) c US
} roespace cHEckasLE

Strict shrinking: (US) n Cg#@

[ Strategies and Decompositio

ans < a(S, X, T,R)Ab(S,Y,U,P)Ac(T,U,Z) re(Y,Z) A
g(X,Y)A f(R,PV)AAdW, X,2Z)

22/06/2010
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{ First choice of the two ma

‘ a(S,X,T,R), b(S,Y,U,P) ‘

{ A possible choice for the robber

a(S,X,T,R), b(S,Y,U,P)

a(S,X,T,R), b(S,Y,U,P)

f(R,PV)

S
AN
-~

22/06/2010
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{ The second choice for the

‘ a(S,X,T,R), b(S,Y,U,P) ‘

f(RPV)

{ The marshals corner the ro

a(S,X,T,R), b(S,Y,U,P)

f(R,PV) ‘ ‘ g(X,Y),c(T.Z,U) ‘

| The capture s

a(S,X,T,R), b(S,Y,U,P)

f(R,PV) ‘ ‘ g(X,Y), ¢c(T.Z,U) ‘

g(Xx,Y), d(W,X,2)

22/06/2010
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[ R&M Game and Hypertree

Let H be a hypergraph.

@ Theorem: H has hypertree width <k if and only
if k marshals have a winning strategy on H.

@ Corollary: H is acyclic if and only if one marshal
has a winning strategy on H.

@ Winning strategies on H correspond to hypertree
decompositions of H and vice versa.

{ Outline of the Tutorial _

Applications ]

[ Applications (beyond que

answering)

@ Query optimization

Query containment

Constraint Satisfaction

Clause subsumption
Belief Networks

Diagnosis

Game Theory

¢ ¢ © ¢ ¢ ¢ ¢
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{ Combinatorial Auctions _

® = g
v :ﬁ "" EZ
o

{ Combinatorial Auctions _

[ Combinatorial Auctions _
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Winner Determination Problem

@ Determine the outcome that maximizes the sum of
accepted bid prices

{ Combinatorial Auctions _

Total £ 180.--

[ ANegative Result B

remains NP-hard even in case of

Theorem: The Winner Determination Problem
acyclic hypergraphs

[Gottlob & Greco '07]

\\/

[Wwork on the dual hypergraph instead |
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ni|o
\I‘o/ // h,

item hypergraph

{ Dual Hypergraph

h,

[ T "
[ | ¢ gk

\I‘o/ _"h, 7
7 dual hypergraph

item hypergraph

| The Approach s

\ / (h [
|/ \n, Y
\ | h, e’/
N, / , (5
7 X %Inul hypergraph
item hypergraph N
vi[ (L} (hhh ]
[Gottlob & Greco '07] 2

va[ 1 () | v 01 _Gh.__h‘_h..h‘l |

hypertree decomposition of dual hypergraph

va[ 1L} (nn) |

22/06/2010

73



[ Quantifed CSPs B

Bad News: [Gottlob, Greco, Scarcello '05]

« Even tree-structured QCSPs with
prefix 82 intractable.

* For fixed domains, the tractability
of bounded-treewidth QCSPs is
optimal: even QCPS with acyclic
hypergraphs and bounded
treewidth incidence graphs are
intractable

Good News:

¢ k-guarded QCSPs are tractable,
without any restriction on domains
or quantified alternations. .

quamiifer
allerntions

For further results - [Hubie Chen]

[ (CSP) Optimization Problem_

7 8 9 10 The puzzle may admit more than
one solution...
n 12 13 14 15
16 . 17 18 . 19 =
\\/

9@ E.g., find the solution that minimizes the total number of vowels
occurring in the words

[ A Classification for Optimization ProbiGHEHNNN

Each mapping variable-value has a cost. @ 345

Then, find an assignment:

@@@@ +  Satisfying all the constraints, and fﬁ RIS
+  Having the minimum total cost. PANDA

LAURA
ANITA
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{ A Classification for Optimizatio_

Each mapping variable-value has a cost.
Then, find an assignment:

@@@@ +  Satisfying all the constraints, and
+  Having the minimum total cost.

Each tuple has a cost.

Then, find an assignment: 12345
+  Satisfying all the constraints, and PARIS
W@S@ +  Having the minimum total cost. PANDA
[TroRA—]
ANITA

{ A Classification for Optimizatio_

Each mapping variable-value has a cost.
Then, find an assignment:
@@@@ +  Satisfying all the constraints, and
+  Having the minimum total cost.
Each tuple has a cost.
Then, find an assignment:

+  Satisfying all the constraints, and
W@S@ +  Having the minimum total cost.

Each constraint relation has a cost.

Then, fln.d‘ a‘n‘aSS|gnment:v ! 72345
+  Minimizing the cost of violated relations.
650
PANDA
LAURA
ANITA

[ Tractability of CSOP Instances N

@ Over acyclic instances, adapt the dynamic programming approach in
(Yannakakis’81)

A B H

A1 B1 H1

Al B1 H2
A B CD A BEF
Al Bl C1D1 A1B1E1F1
A2 B1 C2 D2 A1B1E2F2
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{ Tractability of CSOP Instanc_

@ Over acyclic instances, adapt the dynamic programming approach in
(Yannakakis’81)

With a bottom-up computation:
# Filter the tuples that do not match

A B CD A BEF
Al Bl C1D1 A1B1E1F1
A2 B1 C2 D2 A1 B1E2 F2

[ Tractability of CSOP Instanc_

@ Over acyclic instances, adapt the dynamic programming approach in

(Yannakaki:

cost(A/A1)+
cost(B/B1)+

581)

cost(H/H1)+ A BH

cost(C/C1)+ ALBLHL

cost(D/D1)+

With a bottom-up computation:
# Filter the tuples that do not match
# Compute the cost of the best partial
solution, by looking at the children

cost(E/E1)+

cost(F/F1) /’ '\

ABCD

A2 B1 C2 D2

[[A1B1 C1D1L

i

cost(C/C1)=cost(D/D1)=0

ABEF cost(C/C2)=cost(D/D2)=1
[TaiBiELFL ] cost(E/E1)=cost(F/F1)=0
A1 B1 E2 F2 cost(E/E2)=cost(F/F2)=1

[ Tractability of CSOP Instances N

@ Over acyclic instances, adapt the dynamic programming approach in
(Yannakakis’81)

With a bottom-up computation:

A B H

CDEF

| # Filter the tuples that do not match

A1 B1H1

# Compute the cost of the best partial
C1D1ELF1 solution, by looking at the children

# Propagate the best partial solution
/ \ (resolving ties arbitrarily)

cb
[A1BIC1D1 | |
A2 D

A BEF

L

A1B1E1F1 ||

A1B1E2F2
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{ Tractability of CSOP Instanc_

@ Over acyclic instances, adapt the dynamic programming
approach in (Yannakakis’81)

@ Over “nearly-acyclic” instances...

[ Tractability of CSOP Instanc_

@ Over acyclic instances, adapt the dynamic programming
approach in (Yannakakis’81)

@ Over “nearly-acyclic” instances. ..
=

Apply “acyclicization” via
decomposition methods

/

Bounded Hypertree Width Instances are Tractable

[ Tractability of WCSP Instances

12345 12345
PARIS ' |PARIS |
PANDA ———111 granDA D
LAURA CAURA
ANITA ANITA

CSoP esP

22/06/2010

77



22/06/2010

[ Tractability of WCSP Instances

12345 ) 12345
PARIS P L |PARLS |
PANDA (PANDD)| 1 PaNDA D
LAURA CAURA
ANITA  [ANITA ANITA

CS0P WesP

. # s feasible in linear time
The mapping: + Preserves the solutions
+ Preserves the Hypertree Width

[ In-Tractability of MAX-CSP Instancesul

1 |2 |3 |4 |5 . 6 @ Maximize the number of words placed
in the puzzle

7 8 |9 10

MY 14 15

16 | s 19
LA |

20/ 2\ 22/2 |2 [25 |2

[ In-Tractability of MAX-CSP Instancesul

1 2 3 4 5 - 6 @ Maximize the number of words placed
in the puzzle

@ Add a “big” constraint with no tuple

N

The puzzle is satisfiable <> exactly one constraint is violated in the acyclic MAX-CSP
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[ Tractability of MAX-CSP Instancesh

1. Consider the incidence graph
2. Compute a Tree Decomposition

" s v sV 0H
e = o~
s — s ~
3 7 9 10 12 13 14 15 16 9 o »
& 1H 13V

[ Tractability of MAX-CSP Instancesh
(e

sH I sV 208
_h—— _,7';,-{‘—7’_‘-"'- —_— "":_
e ey e | N
I A T A v e

A\ =l

[ Tractability of MAX-CSP Instances
o pe | <<=

LA [LAURA
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[ Tractability of MAX-CSP InstancesN
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C0P
# |s feasible in time exponential in the width

The mapping: + Preserves the solutions
# Leads to an Acyclic CSOP Instance

[ Weighted Hypertree Decompos

@ Hypertree decompositions having k-bounded width are not always
equivalent

@ We want to find the best ones

@ We need a way for weighting decompositions according to a given
criterium

Hypertree Weighting Functions

Let 7/ be a hypergraph, w,is any polynomial-time function that maps
each hypertree decomposition HD = <T,x, A> of # to a real number,
called the weight of HD.

Example: w?{(HD) = max pevertices(T) |)\(p)|

4 T p——

Results
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{ Hypertrees vs a well-known commeri

-

(6) Acyclic Queries

A

A

I

i v Sty 90 Do Sy 0 1 g Sty £0 8 gyt Sebctney 93

il

q

8 qiD s oty 5308 D

(b) Chain Queries

8 D

{ TPC-H queries

Total exccution time [s |
=)
s

200
180
160
140

) Chain Queries

Standard without statistics —< Standard with statistics - g-HD

1 m
—
— T
200 400 500 800 1000

(a) TPC-H Query 0,

[ TPC-H queries

Total execution time [s]

200

400

600
(b) TPC-H Query O,

1000
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{ Inside PostgreSQL _

Rewitad Query tree

User SQL query

| €Q solator

Statistics Commands
Picker Uility

Opimized
planree

Query Plan Generstor

[ Results Inside PostgreSQ_

BPosigreSQL standard B PosigeSQL UPVAR CPostgreSQL o-HD

Total Execution Time [s]

() Acyelic Querics (b) Chain Queries

| Nasa Problem s

Part of relations for the Nasa problem

cid_261(Vid_100, Vid_391, Vid_392
cid_262(Vid_273, Vid_393, Vid_246;
cid_263(Vid_329, Vid_394, Vid_249)
cid_264/

cid 260§Vid 49, Vid_366, Vid_224),
cid_265 &
Vid_67, Vid_352, Vid_396),

Vid_133, Vid_360, Vid_356
Vid_314, Vid_348, Vid_395
cid_266(Vid_

cid_267(Vid_182, Vid_364, Vid 397;

@ 680 relations
@ 579 variables

cid_268(Vid_313, Vid_349, Vid_398

cid_269(Vid_339, Vid_348, Vid_399
cid270(Vid_98, Vid_366, Vid_400),
cid_271(vid_161, Vid_364, Vid_401),

Vid_131, Vid_353, Vid_234
Vid_126, Vid_402, Vid_245
Vid_146, Vid_252, Vid_228
Vid_330, Vid_360, Vid_361.

|
INI

cid_275
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[ Nasa Problem: Hypert_

[ cid_198, cid_269, cid_374, cid_421, cid_563, cid_666 |

Cid 216, cid 547

Cid 216, cid_218, cid_375

[Lcid_193, cid_216, cid_218 | [ cid_160, cid_216, cid_218 |

[[cid_265 | [[cid_268 ] [Lcid_333 | [[cid_296 |

Part of hypertree for the Nasa problem
Best known hypertree-width for the Nasa problem is 22

[ Electric Circuits _
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{ Outline of the Tutorial
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