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Appendix: Beyond Hypertree Width




ftroduction to Decomposition Methods




@ Problems decidable or undecidable.

@ We concentrate on decidable problems here.

@ A problem is as complex as the best possible algorithm which solves it.



Inherent Problem Complexity

@ Problems decidable or undecidable.
@ We concentrate on decidable problems here.

@ A problem is s complex ag the best possible algorithm which solves it.

Number of steps it takes for input of size n

f

Exponential

2[1

runtime

Polynomial

instance size



Time Complexity /AN
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PROVABLY EXPONENTIAL
Theory of the Real Numbers

Domino Problems

PROBL.

PROVABLY POLYNOMIAL
Find shortest path in graph

Linear Programming




Time Complexity /AN

IJCAI-13

PROVABLY EXPONENTIAL
Theory of the Real Numbers

Domino Problems

NP-COMPLETE
Graph 3colorability
Knapsack
Traveling Salesman
Crossword Puzzle
Satisfiability (SAT)

PROBL.

PROVABLY POLYNOMIAL

Find shortest path in graph

Linear Programming




Graph Three-colorability

Instance: A graph G.
Question: Is G 3-colorable?

Examples of instances:




{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

YES!



Approaches for Solving Hard Problems /n\

@ NP-complete problems often occur in practice.
@ They must be solved by acceptable methods.
@ Three approaches:

e Randomized local search

e Approximation

e Identification of easy (=polynomial) subclasses.



Approaches for Solving Hard Problems /n\

@ NP-complete problems often occur in practice.
@ They must be solved by acceptable methods.
@ Three approaches:

e Randomized local search

e Approximation

e Identification of easy (=polynomial) subclasses. |
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Identification of Polynomial Subclasses  PAN

@ High complexity often arises in “rare” worst case
Instances

@ Worst case instances exhibit intricate structures

@ In practice, many input instances have simple structures

@ Therefore, our goal is to

@ Define polynomially solvable subclasses
(possibly, the largest ones)

@ Prove that membership testing is tractable for these
classes

@ Develop efficient algorithms for instances in these classes



Graph and Hypergraph Decompositions

@ The evil in Computer science is hidden in (vicious)
cycles.

@ We need to get them under control!

@ Decompositions: Tree-Decomposition, path
decompositions, hypertree decompositions,...

Exploit bounded degree of cyclicity.



{Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:

ASANES




Problems with a Graph Structure

@ With graph-based problems, high complexity is mostly
due to cyclicity.
Problems restricted to acyclic graphs are often

trivially solvable (—3COL).

@ Moreover, many graph problems are polynomially

solvable if restricted to instances of low cyclicity.



@ With graph-based problems, high complexity is mostly

due to cyclicity.

Problems restricted to acyclic graphs are often
trivially solvable (—3COL).

@ Moreover, many graph problems are polynomially
solvable if restricted to instances of low cyclicity.

How can we measure the degree of cyclicity?



How much “cyclicity” in this graph? /u\

@ Suggest a measure of distance from an acyclic graph



[J]] Feedback vertex set

Set of vertices whose deletion makes the graph acyclic



The feedback vertex number

[|1|l] Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic

* — @ @
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FVN: Properties

[|1|l] Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic
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@ Is this really a good measure for the “degree of

acyclicity” ?
@ Pro: For fixed k we can check efficiently whether

fwn(G) <k
@ What does it mean efficiently when parameter k is fixed?

/
/
/
/
/
/
/



Classical Computational Complexity /n\

N = Input size

P poly(n) Assuming P#NP 2 0 N[P=h

But...

@ In many problems there exists some part of the input that are quite small in
practical applications

@ Natural parameters

@ Many NP-hard problems become easy if we fix such parameters (or we
assume they are below some fixed threshold)

@ Positive examples: k-vertex cover, k-feedback vertex set, k-clique, ...

@ Negative examples: k-coloring, k-CNF, ...



Parameterized Complexity

@ Initiated by Downey and Fellows, late ‘80s

poly(n)

n = input size

200 NP-h

k fixed
parameter

FRT  fk) now n9® WI]<h

Typical assumption: FPT # W[1]




W[1]-hard problems: k-clique

@ k-clique is hard w.r.t. fixed parameter complexity!
INPUT: A graph G=(V,E)
PARAMETER: Natural number k

[ @ Does G have a cligue over k vertices? J




@ http://fpt.wikidot.com/

Problem f(k) vertices in kernel Reference/Comments
Vertex Cover 1.2738* 2k 1
Connected Vertex Cover gk no k91 26, randomized algorithm
Multiway Cut gk not known 21
Directed Multiway Cut o Ok no 3k~{0(1)}% 34
Almost-2-SAT (WVC-PM) FL not known 21
Multicut 9 O(k*) not known 22
Pathwidth One Deletion Set 4.65¢% o) 28
Undirected Feedback Vertex Set 3.83% 42 2, deterministic algorithm
Undirected Feedback Vertex Set 2L 42 23, randomized algorithm
Subset Feedback Vertex Set 2Ok log &) not known 29
Directed Feedback Vertex Set FLYY not known 27
Odd Cycle Transversal 3" kOUJ 24, randomized kernel
Edge Bipartization gk o) 25, randomized kernel
Planar DS gllesyE 6Tk 3
1-Sided Crossing Min 200F e k) | O(k?) 4
Max Leaf 3.72% 3.75k 5
Directed Max Leaf 3.72* O(kz) 6
Set Splitting 1.5213* k 7
Nonblocker 2.5154% 5k/3 8
Edge Dominating Set 2.3147* 28 42k 10
k-Path 44 no koW 11a, deterministic algorithm
k-Path 1.66% no kO[ij 11b, randomized algorithm
Convex Recolouring 4k O(k?) 12
VC-max degree 3 1.1616* 13
Clique Cover g2 2k 14
Cligue Partition gk k2 15
Cluster Editing 1.62*% 2k 16, weighted and unweighted
Steiner Tree 2k no k% 17
3-Hitting Set 2.076* O(k*) 18




FPT Tractability of Feedback Vertex Set

-
INPUT: A graph G=(V,E)
g PARAMETER: Natural number k

p
@ Does G has a feedback vertex set of k vertices? J
L

@ Naive algorithm: O(nk+*1) Not good!
@ Solvable in O((2k+1)kn?) [Downey and Fellows ‘92]

@ A practical randomized algorithm runs in time: O(4%kn)
[Becker et al 2000]



Feedback Vertex Set: troubles

[|1|] Feedback vertex number

Min. number of vertices | need to eliminate to make the graph acyclic

R
/N /N /\
| / A \ ’ \\\\
C // e W(E)=3
\\\‘ /:—__—____'___-f——"'-

Is this really a good measure for the “degree of acyclicity” ?
Pro: For fixed k we can check in quadratic time if fwn(G)=k  (FPT).

Con: Very simple graphs can have large FVN:

VVVVVVYYVY



Feedback edge number

[IZ]J Feedback edge number = same problem.






Yes! A tree of clusters (subproblems) /AN

\/

o —
V.V,

@ Well known graph properties:

@ A biconnected component is a maximal subgraph that
remains connected after deleting any single vertex

@ In any graph, its biconnected components form a tree




[|3Jl] Maximum size of biconnected components
-

bew(G)=4

Pro: Actually bcw(G) can be computed in linear time



Drawbacks of BiComp

[@l] Maximum size of biconnected components
=)

& o
A,

{ Pro: Actually bcw(G) can be computed in linear time

Con: Adding a single edge may have tremendous effects to bcw(G)



Drawbacks of BiComp

[|3Jl] Maximum size of biconnected components
=)

12
bew(G)=4

{ Pro: Actually bcw(G) can be computed in linear time

Con: Adding a single edge may have tremendous effects to bcw(G)



Can we do better?

@ Hint:
@ why should clusters of vertices be of this limited kind?

@ Use arbitrary (possibly small) sets of vertices!
@ How can we arrange them in some tree-shape?

@ What is the key property of tree-like structures (in most
applications)?

tWt




Can we do better?

@ Hint:
@ why should clusters of vertices be of this limited kind?

@ Use arbitrary (possibly small) sets of vertices!
@ How can we arrange them in some tree-shape?

@ What is the key property of tree-like structures, Iin
applications?

.










Tree Decompositions [Robertson & Seymour "86] /ﬁ\




Tree Decompositions [Robertson & Seymour “86] /A

Graph G Tree decomposition of width 2 of G




Tree Decompositions [Robertson & Seymour “86] /A

Graph G Tree decomposition of width 2 of G

* Every edge realized in some bag
* Connectedness condition




Connectedness condition for h

klo

mno



Tree Decompositions and Treewidth
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width(T,X,) = max |X|| -1
tw(G) = min width(T,X))

~

J




IJCAI-13

Playing the Robber & Cops Game /AN













Properties of Treewidth

tw(acyclic graph)=1
tw(cycle) =2
tw(G+v) <tw(G)+1
tw(G+e) <tw(G)+1
tw(K,) = n-1

tw is fixed-parameter tractable (parameter: treewidth)

©e © © © © ©






Use of Tree Decompositions /AN

1. Prove Tractability of bounded-width instances

a) Genuine tractability: O(n'"™)-bounds

b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability
a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width



Use of Tree Decompositions /AN
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1. Prove Tractability of bounded-width instances
a) Genuine tractability: O(nfW)-bounds

constraint satisfaction = conjunctive database queries

b) Fixed-Parameter tractability: f(w)*O(n¥)

multicut problem

2. Tool for proving general tractability
a) Prove tractability for both large & small width

finding even cycles in graphs — ESO over graphs

b) Prove all yes-instances to have small width

the Partner Unit Problem



Use of Tree Decompositions /AN

1. Prove Tractability of bounded-width instances

E) Genuine tractability: O(nfW)-bounds |
In PART II

b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability
a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width



Use of Tree Decompositions /AN

1. Prove Tractability of bounded-width instances

a) Genuine tractability: O(n'"™)-bounds

b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability
a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width



An important Metatheorem

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in
Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth




An important Metatheorem

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in
Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

@ Theorem. (Fagin): Every NP-property over graphs can be

represented by an existential formula of Second Order Logic.

NP=ESO

@ Monadic SO (MSO): Subclass of SO, only set variables, but no

relation variables of higher arity.

3-colorability € MSO.



(Va (R(x) VG(x) V B(x)))

[

(AR. G, B)

(Ve,y(E(xr,y) = (R(x) = (G(x) V B(y)))))

(Va,y(E(x,y) = (G(zx) = (R(z) V B(y)))))
(Va,y(E(x,y) = (B(x) = (R(x) VG(y)))))]

(Ve (R(x) = (-G(x) A =B(x))))

L £ € € £ K



Master Theorems for Treewidth /N

Courcelle's Theorem: Problems expressible in MSO,
are solvable In linear time on structures of bounded
treewidth

...and in LOGSPACE [Elberfeld, Jacoby, Tantau]

Example — Graph Coloring

3P vxVy : (E(x,y)2> (P(X) z P(y))



Master Theorems for Treewidth

Arnborg, Lagergren, Seese '91:

Optimization version of Courcelle's Theorem:

Finding an optimal set P such that G |= ®(P)
IS FP-linear over inputs G of bounded treewidth.

Example:
Given a graph G=(V,E)

Find a smallest P such that
vxvy : (E(Xy)=2 (P(x) = P(y))



Unrestricted Vertex Multicut Problems /n\

N

IE

Sl Tl 'I'3 B Seffi Maor

>2 13 Find minimum-cardinality vertex set separating
S2 T2 | Sifrom Tjfor each tuple <Si,Tj>in relation H




Unrestricted Vertex Multicut Problems

O

T @ Seffi M
S1iT1 T, 32t Naor




Unrestricted Vertex Multicut Problems

N
S, T
Results o
T
H:
S1T1 T, ssmue
$S2 T3
S2 T2

[Guo et al. 06] UVMC FPT if [S], |C| and tree-width fixed

|G. & Tien Lee] UVMC FPT if overall structure has bounded tw.

using master theorem by Arnborg, Lagergren and Seese.



Unrestricted Vertex Multicut Problems /N

PROOF

- Definition 8. On structures A = (V, B, H) az above, let connects( 8, , ) be defined as follows:

Slz) A Sy A “;’P((P(m} AP() — (3w (8(w) A S(w) A P(v) A ~Plw) A B, w}))).

wme(X) = Va'ty (H(m; y) — V5 {connects(S, 2, y) — Jv(X (v) A S(vn))

Minimize X in uvmc

X intersects each set that connects x and y



Use of Tree Decompositions /AN

1. Prove Tractability of bounded-width instances

a) Genuine tractability: O(n'"™)-bounds

b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability
a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width



The Generalized Even Cycle Problem /AN

INPUT: A graph G, a constant k.

QUESTION: Decide whether G has a cycle
of length 0 (mod k)

In the past century, this was an open
problem for a long time.

Carsten Thomassen in 1988 proved it polynomial
for all graphs using treewidth as a tool.



Proof Idea /AN

Small Treewidth (<c) Large Treewidth (>c)

"cycle of length O (mod k)" vk 3c: each graph G with
can be expressed un MSO tw(G)>c contains a subdivision
of the f(k)-grid. [for suitable f]

example . 1 .

k=4 11 1
= 1 4 vn>f(k), each subdivision of
f(k)-grid contains a cycle of
—>Courcelle's Theorem length O (mod k).

(but was not known then...)



Long Term Research Programme

Determine the complexity of SO fragments over finite
structures.

Finite structures: words (strings), graphs, relational databases

Known: SO=PH; ESO = NP
Which SO-fragments can be evaluated in polynomial time?
Which SO-fragments express regular languages on strings ?

More modestly: What about prefix classes?



A “simple” Facility Placement Problem /n\

Every room should be equipped
with a computer.

If a printer is not present in a
room, then one should be
available in an adjacent room.

No room with a printer should be
a meeting room.

Every room is at most 5 rooms
distant from a meeting room.

[...]




Simplest Form

Given an office layout as a graph, decide whether
the facility placement constraints are satisfiable.

dPIM... vx3y ((P(X) v E(x,y) & P(y)) & ...

Observe that this is an E,"ae formula

This leads to the questions:

Are formulas of the type E, ae or even E*ae
polynomially verifiable over graphs?

What about other fragments of ESO or SO?


http://images.google.at/imgres?imgurl=http://www.ads.tuwien.ac.at/AGD/images/ortho_thumbnailgif.gif&imgrefurl=http://www.ads.tuwien.ac.at/AGD/&h=115&w=119&sz=2&tbnid=KymP7IpN2HQJ:&tbnh=80&tbnw=82&start=128&prev=/images?q=planar+graph+&start=120&hl=de&lr=&ie=UTF-8&sa=N

Simplest Form

This motivates the following question:

Can formulas in classes such as E,(ae,) or even ESO(e*ae*) be
evaluated in polynomial time over strings ?

More generally:

Which ESO-fragments admit polynomial-time model
checking over strings ?

A similar, even more important question can be asked for graphs
and general finite structures:

Which ESO-fragments admit polynomial-time model
checking over graphs or arbitrary finite structures?



Complexity of ESO Prefix Classes /N
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[G.,Kolaitis, Schwentick 2000]
Directed graphs (or undirected graphs with self-loops):

NP-complete classes

PTIME classes

Undirected graphs w/o self-loops:

NP-complete classes

1aeeEeae Eiaaa

E*e*a E*ae F.e*aa Faa

PTIME classe




ZIRIEN

Pattern graph P1 Graph G

Saturation of & viaP1:

In PTIME!



The Saturation Problem

Relating /7 ce to the Saturation Problem

L O
1.] ]1 I"'x )I& | I,'L

- Ty
=, : fF - L
S 1 "'«.) If{_)\l/'\{______,--’}ﬁ_-:l
Pattern graph P2 ~ ~
Graph

Saturation of - via P2 impossible!
No cycle of length 0 {mod 4) In .



N

Pattern graph P1 Graph G

Saturation of G viaP1:




The Saturation Problem

Relating %7 xe to the Saturation Problem

4 Fy, Favr3dy
(Elz,y) A Pilz) A Balz) A Pily) A —Faly)) v
(B, y) A File) A—Fa(x) A JRY%
(B (z, ) A A Pily) A FPaly))]

corresponding pattern graph




Use of Tree Decompositions /AN

1. Prove Tractability of bounded-width instances

a) Genuine tractability: O(n'"™)-bounds

b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability
a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width



@ Track People in Buildings

@ Sensors on Doors, Rooms Grouped into Zones




@ Assigning Sensors and
Zones to Control Units

@ Respect Adjacency
Constraints



The Partner-Unit Problem

Bipartite graph G=(V,E) V=VauVb;

Va={al,...,ar},
Vb={b1,...,bs},
E: edges btw. Va and Vb

al
a2

a3

a4
a5

ab

bl

b2

b3
b4

b5

b6

b7




The Partner-Unit Problem

SENSsors Z0Nes

bl
al

b2
a2

b3
a3

b4
a4

b5
ab

b6
ab

b7

Replace connections by connections to units

ai bj




The Partner-Unit Problem /N

Bipartite graph G=(V,E) V=VauVb; Va= {al,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

bl
al

b2
a2

b3
a3

b4
a4

b5
a5

b6
ab

b7

Replace connections by connections to units
ai bj

OR



The Partner-Unit Problem /u\

Bipartite graph G=(V,E) V=VauVb; Va= {al,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

bl
al

b2
a2

b3
a3

b4
a4

b5
a5

b6
ab

b7

Replace connections by connections to units
OR 3 —in




The Partner-Unit Problem

bl
al

b2
a2

b3
a3

b4
ad

b5
a5

b6
ab

b7
CONSTRAINTS:

*Each ai or bi is connected to exactly 1 unit.
*Each unit connected to:
- at most 2 other units,
- at most 2 elements from Va,
- at most 2 elements from Vb,
*If ai connected to bj in G,
then dist(ai,bi)<3 in G*

al

a2

a5

ab

U={ul,u2,u3,ud}

bl

b2

b3

b4

b5

b6



A No-Instance of Partner-Unit

Assume one node a Is connected to 7 nodes

bl,....b7 In G. Then instance G Is unsolvable.

bl
b2

b3
b4

b5
b6

b7

Thus, no vertex can have more than 6 neighbours in G.




The PU Problem(s)

@ PU DECISION PROBLEM (PUDP):
Given G, is there a G* satisfying the constraints?
(Number of units irrelevant.)

@ PU SEARCH PROBLEM (PUSP)
Given G, find a suitable G* whenever possible.

@ PU OPTIMIZATION PROBLEM (PUOP)
Given G, find a suitable G* with minimum
number of units |U| (whenever possible).




PUDP

ASSUMPTION: G Is connected.

Note: This assumption can be made wlog,
because the PUDP can be otherwise
decomposed into a conjunction of independent
PUDPs, one for each component.

Lemma 1: If G Is connected and solvable, then there exists
a solution G* in which the unit-graph UG=G*[U] is
connected.



Topology of the Unit-Graph /AN

IJCAI-13

Lemma 2: If G Is connected and solvable, then there exists
a solution G* whose unit graph is a cycle.

-

U2
- u3_
oy

Note: We still don’t know |U|, but we may just try all cycles
of length max(|Val,|Vb|)/2 to length |Va|+]|Vb].
There are only linearly many! (Guessable in logspace)



Result A

Theorem:

Assume G is solvable through solution G* with |U|=n and
having
unit function f . Then:

(1) pw(G) <11
(2) tw(G) < 5

(3) There is a path decomposition T=(W,A)
that can be locally check to witnss PUDP solution G*



bl
al

b2
a2

b3
a3

b4
a4

b5
a5

b6
ab

b7

U={ul,u2,u3,ud}

T

tl[

al, a2, a3, a4, b1, b2, b3,
b4

]

2 [ al, a2, a3, a4, ab, bl, b2, b3, b4, b5,

b6

|

3 [al, a2, ab, a6, b1, b2, b3, b5, b6

07

J




Example

al

a2

a3

a4

a5

ab

G* T
b1
al, a2, a3, a4, b1, b2, b3,
mt— b3
7@ ., o [al, a2, a3, a4, aSBgl’ b2, b3, b4, b5,
/ b5 l
/ b6 ., [al, a2, a5, a6, b1, b2, b3, b5, b6
b7 b7

U={ul,u2,u3,ud}

Note: We cannot do better, thus the bound 11 is actually tight!



Example

/N
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al

a2

a3

a4

a5

ab

We now show (2)

Strip off the Vb-elements and put them into separate bags.

+

ALY
’

U={ul,u2,u3,ud}

bl

b2

b3
bl

b5

b6

b7

T
al, a2, a3, a4

t1

al’ a 1T T anD h11 eieee

b1 b2 2 3L

t2 al, a2, a3, a4, ab

Note: Other examples show, we cannot do better, thus the bound 5 is actually tight



Example for lower bound 5

G

alo
a20)

a3o

adoO
a50

abO

AN

all edges

/

AN

O b2
O b3
O b4

O b5
O b6



Example for lower bound 5

... and this G is actually solvable:

al bl
22 4 b2
a3 b3
ad b4
a5 b5

26 b6



Result /u\

Theorem : pubpPisin polynomial time and is solvable by
dynamic programming techniques.

QED



dbl-40

dblv-30 65.49

triple-30

grid-90



Case N>2 /N

For constant N totally open. Could well be NP-hard.
In fact, Unit Graph does not need to have bounded treewidth!

If N is not-constant, then NP-complete:

For Siemens, it seems that very small values of N are
relevant.









Beyond Treewidth

@ Treewidth is currently the most successful measure of
graph cyclicity. It subsumes most other methods.

@ However, there are “simple” graphs that are heavily
cyclic. For example, a clique.



Beyond Treewidth /N

@ Treewidth is currently the most successful measure of
graph cyclicity. It subsumes most other methods.

@ However, there are “simple” graphs that are heavily
cyclic. For example, a clique.

P
Y
4 ) N
There are also problems whose structure zZ NV >
Is better described by hypergraphs
rather than by graphs... Y

\_ J




Database queries

@ Database schema (scopes):
o Enrolled (Pers#, Course, Reg-Date)
o Jeaches (Pers#, Course, Assigned)
o Parent (Persl1, Pers2)

@ Is there any teacher having a child enrolled in
her course?

ans €& Enrolled(S,CR) A Teaches(PCA) A
Parent(PS)



Database queries

TN
o e ) (e

John Algebra 2003 Nicola  Algebra March Mimmo Luisa
Anita  Logic 2003 Georg Logic May Georg Anita
Sara DB 2002 Frank DB June Frank Sara
Luisa DB 2003 Mimmo DB May

QUERY: Is there any teacher having a child enrolled in her
course?

ans €& Enrolled(s,CR) A Teaches(P,CA) A
Parent(P.S)



Queries and Hypergraphs /AN

Ans € Enrolled(S,C,R) . Teaches(P,C,A) . Parent(P,S)




Queries and Hypergraphs (2) N

@ Database schema (scopes):
o Enrolled (Pers#, Course, Reg-Date)
o Jeaches (Pers#, Course, Assigned)

o Parent (Persl, Pers2)
] &
\ </

@ Is there any teacher whose child attend some
course?

Ans €& Enrolled(S,C,R) » Teaches(P,CA) »
Parent(P,S)



A more intricate query

ans <« a(s, X, X",C,F)ADb(S,Y,Y',C',F')Ac(C,C"' Z)Ad(X,Z) A
e(Y,Z)AT(F,F',Z)YAQ(X",Z)YAD(Y"',Z") A
J(J, XY, XNY)YAp(B, X' F)Aq(B', X', F)
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Constraint Satisfaction Problems

1h:

Crossword puzzle

PARIS
PANDA
LAURA

ANITA

1v:

LIMBO
LINGO

PETRA
PAMPA
PETER

( | 2 ‘z { l“: )
| \_ i_i 5\ )
| |1' III| _‘|1—1!|_
) | |
] . | 9 10
d 11 |12 /13D 14 i35
il |
\ ) pl (8 | B
1] Tl
20/ 21\ 22/23 \24 /25 \ 26
e A AT
and so on




Constraint Satisfaction Problems

F1n(X1, Xg, X3, X4 Xo)

r(X1s X7 Xq1, X16, X50)

Set of variables {X,,...,X5}

Set of constraint relations

Set of constraint scopes
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Part of relations for the Nasa problem

cid_260(Vid_49, Vid_366, Vid_224),

cid_261(Vid_100, Vid_391, Vid_392),
cid_262(Vid_273, Vid_393, Vid_246),
cid_263(Vid_329, Vid_394, Vid_249),
cid_264(Vid_133, Vid_360, Vid_356),
cid_265(Vid_314, Vid_348, Vid_395),
cid_266(Vid_67, Vid_352, Vid_396),

cid_267(Vid_182, Vid_364, Vid_397),
cid_268(Vid_313, Vid_349, Vid_398),

cid_269(Vid_339, Vid_348, Vid_399),
cid_270(Vid_98, Vid_366, Vid_400),

cid_271(Vid_161, Vid_364, Vid_401),
cid_272(Vid_131, Vid_353, Vid_234),
cid_273(Vid_126, Vid_402, Vid_245),
cid_274(Vid_146, Vid_252, Vid_228),
cid_275(Vid_330, Vid_360, Vid_361),

@ 680 constraints
@ 579 variables



Configuration problems (Renault example) N

IJCAI-13

@ Renault Megane configuration
[Amilhastre, Fargier, Marquis AlJ, 2002]
Used in CSP competitions and as a
benchmark problem

@ Variables encode type of engine, country,
options like air cooling, etc.

@ 99 variables with domains ranging from 2
to 43.

@ 858 constraints, which can be
compressed to 113 constraints.

@ The maximum arity is 10 (hyperedge
cardinality/size of constraint scopes)

@ Represented as extensive relations, the
113 constraints comprise about 200 000
tuples

@ 2.84 x 1012 solutions.
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Representing Hypergraphs via Graphs /AN

‘

A VL

Hypergraph H(Q) Primal graph G(Q)




Hypergraphs vs Graphs

@

G
& | ®
SR R

An acyclic hypergraph Its cyclic primal graph




There are two cliques.
We cannot know where they come from



Further Graph Representations

Decther, 92
Dual Graph
X
S, '
X2
S,
X3
Seidel, 81 S,
X4
Incidence Graph ! X

ol

(Hidden variable encoding)



a-acyclic Hypergraphs

Cbed >

0
. b @ @ @

d (e
g c (a9 >

f Cah >

e
plh ; Chkl D>—D)—(iD
o O @@



Again on the simplest query /AN

IJCAI-13

Ans & Enrolled(S,C ’,R) . Teaches(P,C,A) . Parent(P,S)

Parent(P,S)

Teaches(P,C,A) |Enrolled(S,C’,R)

D
s g

\

a-acyclic hypergraph Join Tree



Deciding Hypergraph Acyclicity

@ Can be done In linear time
by GYO-Reduction

[Yu and Ozsoyoglu, IEEE Compsac’79; see also Graham, Tech Rep’79]

Input: Hypergraph H
Method: Apply the following two rules as long as possible:

(1) Eliminate vertices that are contained in at most one hyperedge
(2) Eliminate hyperedges that are empty or contained in other hyperedges

H is (a-)acyclic iff the resulting hypergraph empty

Proof: Easy by considering leaves of join tree



Example of GYO-Reduction

P

Y Y
rule 1 < rule 2
Z NV > AN
AT N (AN
W
H * rule 1
H*= (2,9) <=

rule 2
GYO reduct



Example of GYO-irreducible Hypergraph




Tree decompositions as Join trees /N

@ Tree decomposition as a way of clustering vertices to
obtain a join tree (acyclic hypergraph)

@ Implicitly defines an equivalent acyclic instance

g

gacdf
e

AN

Graph width 2 tree decomposition Acyclic instance



From graphs to acyclic hypergraphs

@ The “degree of cyclicity” is the treewidth
(maximum number of vertices in a cluster -1)

@ In this example, the treewidth is 2

@ That's ok! We started with a cyclic graph...

Input Graph width 2 tree decomposition

q
abd
9 C
ef
plhij
k
0 g N

Equivalent acyclic
iInstance



Not good for hypergraph-based problems PZ.%

IJCAI-13

@ Here the input instance is acyclic (hence, easy)

@ However, its treewidth is 2!
(similar troubles for all graph representations)

q
abd
9 C
ef
plhij
k
0 g N

Input: acyclic hypergraph Primal graph width-2 tree decomposition



A different notion of “width” /N

@ EXxploit the fact that a single hyperedge covers many
vertices

@ Degree of cyclicity: maximum number of hyperedges
needed to cover every cluster

g
abd
0 C
ef
plhij
k
0 g N

Input: acyclic instance One hyperedge covers each cluster: width 1



Generalizing acyclicity and treewidth /AN

@ Tree decomposition as a way of clustering vertices to obtain a join
tree (acyclic hypergraph)

@ Implicitly defines an equivalent acyclic instance

@ Width of a decomposition: maximum number of hyperedges needed
to cover each bag of the tree decomposition

@ Generalized Hypertree Width (ghw): minimum width over all
possible decompositions [Gottlob, Leone, Scarcello, JCSS'03]
@ also known as (acyclic) cover width

@ Generalizes both acyclicity and treewidth:
@ Acyclic hypergraphs are precisely those having ghw =1

@ The “covering power” of a hyperedge is always greater than the
covering power of a vertex (used in the treewidth)



Tree Decomposition of a Hypergraph /A

H Tree decomp of G(H)

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

h8 hi
ﬁi 2 111.17.19
hl n2'%h3 1,2.3,456 11.12.17.18.19
12/‘ o\13 °
de
he h 7 3,4,5,6,7,8 12,16,17,18,19
1 | Mo AaX X6eXon4
. 567809 12.15.16.18.19
e/14 18e Qe -
hl T2 hi3~ N 910 7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

h8 hl
ﬁi AL 111.17.19
hl h2\h3 1,2,3,4,5.6 11,12,17.18,19
126 o\13 ° le
h7 3,4,5,6,7,8 12,16,17,18,19
hc h ) ) ) ) ) ) ) ) )
N1 Vo] XX XBeXOn4
. 5.6,7.8,9 12,15,16,18,19
/14 1856 Qe 2
h1 5 ra3” N 310 7.9.10 12,13,14.15,18,19




2 hyperedges suffice for each bag

1,11,17,19
—_—
1,2,3,4,5,6 11,12,17,18,19
3,4,5,6,7,8 12,16,17,18,19
5,6,7,8,9 12,15,16,18,19
7,9,10 12,13,14,15,18,19




2 hyperedges suffice for each bag

h8 hl
ﬁi AL 111.17.19
hl _
hl h2\h3 1,2,3,4,5.6 11,12,17.18,19
126 o\13 ° le
h7 3,4,5,6,7,8 12,16,17,18,19
hc h ) ) ) ) ) ) ) ) )
"o XX XBeXOn4
. 5.6,7.8,9 12,15,16,18,19
/14 156 Qe 2
h1 513" N 310 7.9.10 12,13,14,15,18,19




Generalized Hypertree Decomposition /AN

Notation:
 label decomposition vertices by hyperedges
« omit hyperedge elements not used for bag covering

(hidden elements are replaced by “ ")

h8 hl
ﬁE D\ 2 e h8(1,11), h15(1,17,19)
A
0 hl AN\/h3 h1(1,2,3), h2(1,4.5,6) h9(11,12,18), h15( ,17,19)
1235] /i3 [de
o NEA b7 h2(_,4,5,6), h3(3,4,7.8) h10(12, ,19), h14(16,17,18)
hC
9 |
T ] CAR X X204 h4(5.7), h5(6,8,9) h9( ,12,18), h13(15,16,19)
oY \Ge
- : 121 9 Ot h6(7,9,10) h10(12,13,19), h12(14.15,18)

Generalized hypetree decomposition of width 2



Generalized Hypertree Decompositions  PA)

a(s, x,X",C,F) b(s,Yy,y,C,F') c(C,C''2Z) d(X,2)

e(v,z) f(F,F,Z") g(X'“Z') h(Y'ZzZ")
(3, X, Y, XYY p(B, X' F) q(B', X', F)

S~ X YX,Y)
a(S, X, X’,C,F), b(S,Y,Y’,C’,F)
1, XY, , ), c(C,C,7Z) 1, ., X Y)), [(EF.2)
d(X,2) e(Y,2) 9(X’,2°), f(F, ,Z°) n(Y’,Z)

P(B,X’,F) q(B’,X’,F)




Basic Conditions

Original (direct) definition

J(1L.XY, X, Y?)

We group edges
//
d

a(S,X,X’,C,F), b(S,Y,Y’,C’.F")

JGXY, ), ¢(C,C2) 1C X0 Y), (B F,Z)

d(X,2) e(Y,Z) 9(X’,2°), 1(F, ,Z") h(Y’,Z2’)

p(B.,X"F)| |aB’.X"F)




Basic Conditions ,,

j(J XY, X7, Y?) Edges can partially
be used

a(S.X,X",C,F), b(s,Y,Y’,C’,F’),/

—

JC,X)Y,_, ), c(C,C,Z) 1C, L, . XY)), f(FF,Z2)

d(X,2) e(V,2) | |92, f(F, .Zz)| |h(Y’.2)

P(B,X’,F) q(B’,X’,F)




Connectedness Condition ;

J(1L.XY, X, Y?)

a(S,X,X’,C,F), b(S,Y,Y’,C’.F)

JC,X)Y,_, ), c(C,C,Z) 1C, L, . XY)), f(RF,2)

d(X,2) e(Y.2) | |gx.2), f(F, ,2>)| |h(Y’,2)

pP(B,X’,F) q(B’.X",F)




Computational Question

@ Can we determine in polynomial time whether
ghw(H) < k for constant k ?



Computational Question

@ Can we determine in polynomial time whether
ghw(H) < k for constant k ?

®

Bad news: ghw(H) <4? NP-complete

[Gottlob, Miklos, and Schwentick, J. ACM‘09]




Hypertree Decomposition (HTD) /N

HTD = Generalized HTD +Special Condition
[Gottlob, Leone, Scarcello, PODS’99; JCSS’02]

: o Each variable not used
JUXY.XY) at some vertex v

a(SlXIX,ICIF)i b(S,Y,Y,,C,,F,) /

—

JCXY, ), c(C,C,2) JO XY, X, Y), f(FF,2°)

d(X,2) e(Y,2) g(X*,2°), f(F,_,2°) h(Y’,Z°)

Does not appear in
the subtrees rooted at v p(B,X’,F) q(B’,X’,F)




Special Condition /N

: o Each variable not used
JUXY.XY) at some vertex v

a(S,X,X*,C,F), b(S,Y,Y",C*,F’)

JCXY, ), c(C,C,2) JO XY, X, Y), f(FRF,2°)

d(X,2) e(Y,2) g(X*,2°), f(F,_,2°) h(Y’,Z’)

Does not appear in
the subtrees rooted at v p(B,X’,F) q(B’,X’,F)




Special Condition

Thus, e.g., all available variables in the
root must be used

\“ j(J,X’Y’X”Y,)

a(S,X,X*,C,F), b(S,Y,Y",C*,F’)

JCXY, ), c(C,C,2) 1., X Y), f(FRF,2°)

d(X,2) e(Y,2) g(X*,2°), f(F,_,2°) h(Y’,Z’)

T~

p(B,X’,F) q(B’,X’,F)




Positive Results on Hypertree Decompositions

@ For fixed k, deciding whether
hw(Q) < k Is In polynomial time (LoGcFL)

@ Computing hypertree decompositions Is
feasible in polynomial time (for fixed k).

But: FP-intractable wrt k: WI[2]-hard.




Relationship GHW vs HW

g Observation:

ghw(H) = hw(H*)

where H*=H U {E’| 3E in edges(H): E” < E}

~ Exponentiall

Approximation Theorem [Adier,Gottiob,Grohe ,05] -

ghw(H) <= 3hw(H)+1

GHW and HW identify the same
set of classes having bounded width
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Game Characterization: Robber and Marshals /N




Marshals block hyperedges /AN

IJCAI-13




Game Characterization: Robber and Marshals /N

IJCAI-13

@ A robber and k marshals play the game on a
hypergraph

@ The marshals have to capture the robber

@ The robber tries to elude her capture, by running
arbitrarily fast on the vertices of the hypergraph



Robbers and Marshals: The Rules

@ Each marshal stays on an edge of the hypergraph
and controls all of its vertices at once

@ The robber can go from a vertex to another vertex
running along the edges, but she cannot pass
through vertices controlled by some marshal

@ The marshals win the game if they are able to
monotonically shrink the moving space of the robber,
and thus eventually capture her

@ Consequently, the robber wins if she can go back to
some vertex previously controlled by marshals



Step 0: the empty hypergraph /AN

IJCAI-13

























Strategies and Decompositions /AN

ans < a(S, X, T,R)Ab(S,Y,U,P)Ac(T,U,Z)Are(Y,Z) A
g(X,Y)A f(R,PV)AAAW, X,Z)




a(S, X, T,R), b(S,Y,U,P)




a(S, X, T,R), b(S,Y,U,P)




a(S, X, T,R), b(S,Y,U,P)

f(R,P,V)




a(S, X, T,R), b(S,Y,U,P)

f(R,P,V)




The marshals corner the robber

a(S, X, T,R), b(S,Y,U,P)

f(R,P,V) g(X,Y), c(T,Z,U)




The capture

a(S, X, T,R), b(S,Y,U,P)

f(R,P,V)

g(X,Y), c(T,Z,U)

g(X,Y), d(W,X,2)




R&M-Game and Hypertree Width /AN

Let H be a hypergraph.

@ Theorem: H has hypertree width < k if and only
If K marshals have a winning strategy on H.

@ Corollary: H is acyclic if and only if one marshal
has a winning strategy on H.

@ Winning strategies on H correspond to hypertree
decompositions of H and vice versa.

[Gottlob, Leone, Scarcello, PODS'01, JCSS’03]



A Useful Tool: Alternating Turing Machines P48

(o)
n
IJCAI-13

@ Generalization of non-deterministic Turing machines
@ There are two special states: $ and "
@ Acceptation: Computation tree @
@ ALOGSPACE =PTIME e

ol
(@) (o)
9 1R



ATMs and LOGCFL

@ LOGCFL: class of problems/languages that are
logspace-reducible to a CFL

@ Admit efficient parallel algorithms

ACoc NLc LOGCFL=SAC, cAC, cNC, c---c NC=ACcPcNP

Characterization of LOGCFL [Ruzzo ‘80]:

LOGCFL = Class of all problems solvable with a logspace ATM
with polynomial tree-size




Coming back to Marshals...




A polynomial algorithm: ALOGSPACE

Marshals

-AﬁA"A'-1 R

Robber




Actually, LOGCFL

Once | have guessed R, how to guess the next marshal position S ?
Marshals

Robber

Monotonicity: V Ee edges(Cg): (ENUR) c US } . LOGSPACE checkable

: L Polynomial proof-tree
Strict shrinking: (US) n C, =&



Applications to Databases and CSPs ]

ol




Some hypergraph based problems /N

.
HOM: The homomorphism problem

< BCQ: Boolean conjunctive query evaluation

\ CSP: Constraint satisfaction problem

Important problems in different areas.
All these problems are hypergraph based.

[e.g., Kolaitis & Vardi, JCSS'98]



The Homomorphism Problem

@ Given two relational structures

A =U,Ry Rz,...,Rk)
B =(,Sy S2,..., S)

@ Decide whether there exists a homomorphism h from Ato B

h: U >\
such that VX, Vi
XeRi = h(x)eS




Example: graph colorability

1|2

113 red green
@ 2|3 red blue

3|4 green | red

2|5 green | blue

415 blue red

316 blue green




Example: graph colorability

homomorphism
DG W\
o ®
(4

1|2
h 13 s red green
@ >3 red blue
314 §< green | red
2|5 green | blue
415 > blue red
316 blue green




Complexity: HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

homomorphism
Af—\

TSl b B
13 T red green
2113 \ red blue
32 §< green | red
215 green | blue
415 / \. blue red
316 — blue green

Graph 3-colourable iff HOM(A,B ) yes-instance.



Conjunctive Database Queries /N

DATABASE:

— N Teach N TN
\Enrolled A e leaches @nt/
John Algebra 2003 McLane Algebra March McLane Lisa
Robert Logic 2003 Verdi Logic May Verdi Robert
Mary DB 2002 Lausen DB June Rahm Mary
Lisa DB 2003 Rahm DB May

QUERY:

Is there any teacher having a child enrolled in her course?

ans « Enrolled(S,C,R) A Teaches(P,C,A) A Parent(P,S)



Conjunctive Database Queries /N

DATABASE:

Teaches

\ lGi=i e . \/ . e
Verdi Logic May | Verdi Robert
ause == ne =t =TS

Rahm DB May

homomorphism

K nrolled(S,C,R

(

Qeaches(P,C,A) X Parent(P,S)



CSPs as Homomorphism Problems /A

IJCAI-13

F1n(X1, Xg, X3, X4 Xo)

r(X1s X7 Xq1, X16, X50)

Set of variables {X;,..., X5} Set of (finite)
Set of constraint scopes constraint relations



r(X1s X7 Xq1, X16, X50)

/-structure A

r-structure B



CSPs as Homomorphism Problems

F1n(X1 X Xg X, Xs)

ERERERERER
!T 3

r(X1s X7 Xq1, X16, X50)

26

(-structure A r-structure B
S homomorphism =




Endomorphisms and cores

@ Sometimes the two structures coincide

@ Core: minimal substructure to which there is an
endomorphism

@ Cores are isomorphic to each other

/\ /\
iy i

D D




Endomorphisms and cores

@ Sometimes the two structures coincide

@ Core: minimal substructure to which there is an
endomorphism

@ Cores are isomorphic to each other

/\ /\
gy s

D D




Endomorphisms and cores

@ Sometimes the two structures coincide

@ Core: minimal substructure to which there is an
endomorphism

@ Cores are isomorphic to each other

Two isomorphic
cores

/\
'~
¢ ///7 o ey / \

D



Cores and equivalent instances

@ Can be used to simplify problems

@ There is a homomorphism from A to B if and only if
there is a homomorphism from a/any core of A to B

@ Sometimes terrific simplifications:

@ This undirected grid is equivalent to a single edge.
That is, it is equivalent to an acyclic instance!






The hypergraph is )
acyclic

1

16




Structurally Restricted CSPs

The hypergraph is ; 8 ‘.

; | l‘ T e
acyclic / | | T~

-
@ We have seen that Acyclicity is efficiently recognizable

@ We shall see that Acyclic CSPs can be efficiently solved

&




INPUT: CSP instance (A, B)

-
@ |s there a homomorphism from A to B ? '




Basic Question (on Acyclic Instances)

{ INPUT: CSP instance (A, B) }

[ @ Is there a homomorphism from A to [ ? ]

@ Feasible in polynomial time O(|[A || [|BI| 109]|B]])
@ LOGCFL-complete



Basic Question (on Acyclic Instances)

{ INPUT: CSP instance (A, B) }

[ @ Is there a homomorphism from A to [ ? ]

( @ Feasible in polynomial time O(||A || |IB|| 109]|BI) )
@ LOGCFL-complete

[Yannakakis, VLDB’81]



Basic Question (on Acyclic Instances)

{ INPUT: CSP instance (A, B) }

[ @ Is there a homomorphism from A to [ ? ]

@ Feasible in polynomial time O(||A|| [IBI| 1og||BI|)
( @ LOGCFL-complete )

[Gottlob, Leone, Scarcello, J ACM’00]



A Polynomial-time Algorithm /AN

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

.1 B

Yannakakis’s Algorithm (Acyclic structures):

« Dynamic Programming over a Join Tree,
where each vertex contains the relation associated
with the corresponding hyperedge

 Therefore, if there are more constraints over the
same relation, it may occur (as a copy) at different
vertices
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«Answering» Acyclic Instances /N

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

.1 B

Yannakakis’s Algorithm (Acyclic structures):
Dynamic Programming over a Join Tree

\\/~/ . .
-~ Solutions can be computed by adding a top-down
phase to Yannakakis’ algorithm for acyclic instances



s(Z,U,W) t(V,2)

A solution: Y=3, P=7, Z=8, U=9, W=4, V=9




Computing the result (Acyclic) %

@ The result size can be exponential (even in the acyclic case).

@ Even when the result is of polynomial size, it is in general hard
to compute.

@ In case of acyclic instances, the result can be computed in time
polynomial in the result size
(and with polynomial dela%: first solution, if any, in
polynomial time, and each subsequent solution within
polynomial time from the previous one).

@ This will remain true for the subsequent generalizations of
acyclicity.

@ Add a top-down %hase to Yannakakis’ algorithm for acyclic
instances, thus obtaining a full reducer, and join the partial
results (or perform a backtrack free visit)



Decomposition Methods /N
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Decomposition Methods /N
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7 Transform the hypergraph into an acyclic one: ) -

@ Organize its edges (or nodes) in clusters

@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition
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Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters
@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition )




e B
{1,2,3,4,5,20,21,22,23,24,25,26} {1H,20H} 4 2 3 4 [5\D 6 \
/ | 7 (8 |9 [0
{1,7,11,16,20,22} {1V,20H} {5,8,14,18,24,26} {5V,20H} J —— | T "
n 112 N3)) ‘ 14 15
‘ = I \
—4 __‘1 Il ‘ ‘
|
| 16 w7 | {8 [ |19 ]
| . I '. . 'L'——i \ ———y'—-,‘ll_ '|
11,12,13,17, 11H,13V 8,9,10,6,15,19,26} {8H,6V L —7 | | | | R vy
‘{ IR | } ’{ 17208 4 ; 20 /21 (2 |23 \24 |25 |26 ]
\ Each cluster can be seen as a subproblem HA
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Transform the hypergraph into an acyclic one:
@ Organize its edges (or nodes) in clusters
@ Arrange the clusters as a tree,
\ by satisfying the connectedness condition )
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Toward an equivalent acyclic instance
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« Each cluster can be seen as a subproblem
» Associate each subproblem with a fresh constraint
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« Each cluster can be seen as a subproblem

« Compute solutions for subproblems (exponential dependency on the width)
» Associate each subproblem with a fresh constraint

« Get an equivalent problem (all original constraints are there...)



The structure of the equivalent instance /u\

{1.2,3.4,5,20,21,22,23,24,25,26}

{1.7,11,16,20,22} {5.8.14,18,24,26}

| {11,12,13,17.22} ’ {8,9,10,6,15,19,26}

« Each cluster can be seen as a subproblem

« Compute solutions for subproblems (exponential dependency on the width)
» Associate each subproblem with a fresh constraint

« Get an equivalent problem (all original constraints are there...)



An acyclic equivalent instance /N

IJCAI-13

{1.2,3.4,5,20,21,22,23,24,25,26}

{1.7,11,16,20,22} {6.8,14,18,24,26}

| {11,12,13,17.22} ’ {8,9,10,6,15,19,26}

« Each cluster can be seen as a subproblem

« Compute solutions for subproblems (exponential dependency on the width)
« Associate each subproblem with a fresh constraint

« Get an equivalent problem (all original constraints are there...)



Tree Projection (idea)

@ Generalization where suproblems are arbitrary
(not necessarily clusters of k edges or vertices)

se— /'\

A Y8 ¢
F{ E [
K - \_/G'\H
I/
H HVU s
\ - > 4 | 4 \ - _J
~" ~" "
Structure Sandwich acyclic hypergraph Available
(Tree Projection) Subproblems

@ More information in the appendix



Hypertrees for Databases
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Large width example: Nasa problem /n\

Part of relations for the Nasa problem

cid_260(Vid_49, Vid_366, Vid_224),

cid_261(Vid_100, Vid_391, Vid_392),
cid_262(Vid_273, Vid_393, Vid_246),
cid_263(Vid_329, Vid_394, Vid_249),
cid_264(Vid_133, Vid_360, Vid_356),
cid_265(Vid_314, Vid_348, Vid_395),

St S %) o
Ci | , Vid_364, Vid_397), :

- 349’ Vid_398)’ @ 579 variables
cid_269(Vid_339, Vid_348, Vid_399),

cid_270(Vid_98, Vid_366, Vid_400),

cid_271(Vid_161, Vid_364, Vid_401),
cid_272(Vid_131, Vid_353, Vid_234),
cid_273(Vid_126, Vid_402, Vid_245),
cid_274(Vid_146, Vid_252, Vid_228),

cid_268(Vid_313, Vid
cid_275(Vid_330, Vid_360, Vid_361),



Nasa problem: Hypertree

cid 198, cid 269, cid 374, cid_421, cid 563, cid_666

[ —

—
am—

cid_216, cid_547

cid_216, cid 218, cid_375

/\

cid_193, cid_216, cid_218 cid_160, cid_216, cid_218
cid_265 cid_268 cid_333 cid_296

Part of hypertree for the Nasa problem
Best known hypertree-width for the Nasa problem is 22



Further Structural Methods /N

@ Many proposals in the literature, besides (generalized) hypertree
width (see [Gottlob, Leone, Scarcello. Art. Int.’00])

@ For the binary case, the method based on tree decompositions (first
proposed as heuristics in [Dechter and Pearl. Art.Int.’88 and Art.Int.'89])
IS the most powerful [Grohe. J. ACM’07]

@ Let us recall some recent proposals for the general (non-binary)
case:
@ Fractional hypertree width [Grohe and Marx. SODA’06]
@ Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS’08]
@ Component Decompositions [Gottlob,Miklos,and Schwentick. J. ACM’'09]
@ Greedy tree projections [Greco and Scarcello, PODS’10, ArXiv'12]

@ Computing a width-k decomposition is in PTIME for all of them
(for any fixed k>0).

@ If we relax the above requirement, we can consider fixed-parameter
tractable methods. If the size of the hypergraph structure is the fixed
parameter, the most powerful is the Submodular width [Marx. STOC’10]



Heuristics for large width instances (CSPs) P4

IJCAI-13

1. Computing decompositions
Heuristics to get variants of (hyper)tree decompositions

2. Evaluating instances

Computing all solutions of the subproblems involved at
each node may be prohibitive

Memory explosion

@ Solution: combine with other techniques. E.g., in CSPs,
@ use (hypentree decompositions for bounding the search
Space [Otten and Dechter. UAI'08]

@ use (hyper)tree decompositions for improving the performance of
consistency algorithms (hence, speeding-up propagations)
[Karakashian, Woodward, and Choueiry. AAAI’13]



Alternative constraint encodings

@ Some tractability results hold only on constraint

encodings where allowed tuples are listed as finite
relations

@ Alternative encodings make sense

@ For instance,

@ constraint satisfaction with succinctly specified relations
[Chen and Grohe. J.CSS'10]

@ see also [Cohen, Green, and Houghton. CP’09]



Stiictural and Consistency Properties J




Local (pairwise) consistency

@ For every relation/constraint:
each tuple matches some tuple in every other relation

@ Can be enforced in polynomial time:
take the join of all pairs of relations/constraints until a

fixpoint is reached, or some relation becomes empty

See [Beeri, Fagin, Maier, and Yannakakis. J. ACM’83] or
[Janssen, Jégou, Nougier, and Vilarem. IEEE WS Tools for AlI'89],



Enforcing pairwise consistency
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Enforcing pairwise consistency

. 389

g ga; ' 938

838
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Enforcing pairwise consistency

. 3809
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Enforcing pairwise consistency /AN

IJCAI-13

@ Further steps are useless, because the instance is now
locally consistent

@ On acyclic instances,
same result as Yannakakis’ algorithm on the join tree!

389
4 38 " 938
37 838
<=7 |d(Y,P) r(Y,Z,U) 3-g—4
57 383
894
389
947
S 838 . 98
394 |sS(Z,UW) t(V,2) - 93
383 95
8 9 4

f



Easy on Acyclic Instances

@ Computing a join tree
(in linear time, and logspace-complete [GLS'98+ SL=L])
may be V|ewed as a clever way to enforce pairwise

consistency

s

d(Y.P)

| sZUw)
4

— fYZU)

><|'_

— (v,2)

J

N

r

%

d(Y.P)

nY.Z,U)

s(Z,UWwW)

Yv.z2)

|
J

@ Cost for the computation of the locally consistent
nstance:  o(m n2log n) vs O(m nlog n)

@ N.B. n is the (maximum) number of tuples in a relation
and may be very large (esp. in database applications)



Global and pairwise Consistency

@ Yannakakis’ algorithm actually solves acyclic instances
because of their following crucial property:

¢ Local (pairwise) consistency =» Global consistency
[Beeri, Fagin, Maier, and Yannakakis. J. ACM’'83]

@ Global consistency: Every tuple in each relation can be
extended to a full (global) solution

e In particular, if all relations/constraints are pairwise
consistent, then the result is not empty

@ Not true in the general case:
ans?— a? %(Y,Z) A €(Z,X)

S uleivle

/N

IJCAI-13



Consistency in Databases and CSPs

@ Huge number of works in the database and constraint
satisfaction literature about different kinds (and levels) of

consistencies

(e.qg., recall the seminal paper [Mackworth. Art. Int., 1977]
or [Beeri, Fagin, Maier, and Yannakakis. J . ACM’83],

[Dechter. Art. Int., 1992], and [Dechter and van Beek. TCS’97])

@ Most theoretical papers in the database community

@ Also practical papers in the constraint satisfaction
community:

@ Local consistencies are crucial for filtering domains and
constraints

@ Allow tremendous speed-up in constraint solvers
@ Sometimes allow backtrack-free computations

/N




Global consistency in Databases and CSPs PZ4.S

IJCAI-13

@ Global consistency (GC): Every tuple in each relation can be
extended to a full (global) solution
[Beeri, Fagin, Maier, and Yannakakis. J. ACM’83]

@ For instances with m constraints, it is also known as
@ m-wise consistency [Gyssens. TODS’86]
@ relational (I;m)-consistency [Dechter and van Beek. TCS'97]

@ R(*,m)C [Karakashian, Woodward, Reeson, Choueiry and
Bessiere. AAAI'10]

@ ...

@ Remark:

In the CSP literature, “global consistent network” sometimes
means “strongly n-consistent network”, which is a different
notion (see, e.g., [Constraint Processing, Dechter, 2003]).



On the desirability of Global Consistency P4y

IJCAI-13

@ If an instance is globally consistent, we can immediately
read partial solutions from the constraint/database
relations

@ full solutions are often computed efficiently

@ can be exploited in heuristics by constraint solvers.
For a very recent example, see
o [Karakashian, Woodward, and Choueiry. AAAI'13]: enforce

global consistency on groups of subproblems (tree-like
arranged) for bolstering propagations



When pairwise consistency entails GC

@ We have seen that it happens in acyclic instances...

@ Is it the case that this condition is also necessary?

@ What is the real power of local (pairwise) consistency?
l.e., relational arc-consistency (more precisely,
arc-consistency on the dual graph)

Also known as

- 2-wise consistency [Gyssens. TODS’86],

- R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and
Bessiere. AAAI'10]

B—®)
? G@'@@




When pairwise consistency entails GC /AN

@ We have seen that it happens in acyclic instances...

@ The classical result that this is also necessary
[Beeri, Fagin, Maier, and Yannakakis. J. ACM’83]
actually holds only if relations cannot be used in more than one
constraint/query atoms

@ In fact, it works even on some cyclic instances

@ We now have a precise structural characterization of the
Instances where local consistency entails global
consistency

@ It applies to the binary case, too

@ it applies to the more general case where pairwise
consistency is enforced between each pair of arbitrary
defined subproblems (see appendix)!

[Greco and Scarcello. PODS’10]



The Power of Pairwise Consistency /AN

@ Let us describe when local (pairwise) consistency (LC)
entails global consistency (GC), on the basis of the

constraint structure

@ That is, we describe the condition such that:

@ whenever it holds, LC entails GC for every possible CSP
Instance (i.e., no matter on the constraint relations)

¢ If it does not hold, there exists an instance where LC falils

@ For binary (or fixed arity) instances: if we are interested
only in the decision problem (is the CSP satisfiable?)

than this condition is the existence of an acyclic core
[Atserias, Bulatov, and Dalmau. ICALP’07]



The Power of Pairwise Consistency /u\

@ Does pairwise consistency entail global consistency in
this case?

Constraints

A—B) e(A.B)
o
G @ e(D,C)

e(D,B)



The Power of Pairwise Consistency

@ Does pairwise consistency entail global consistency in
this case?

@ Yes! No matter of the tuples in the constraint relation e

@ Every constraint is a core of the instance

Constraints

Q.@ e(AB)

e(A,C)
e(D,C)
@ e(D,B)

/N




The Power of Pairwise Consistency

@ Does pairwise consistency entail global consistency in
this case?

@ Yes! No matter of the tuples in the constraint relation e

@ Every constraint is a core of the instance

Constraints

Q.@ e(AB)

e(A,C)
e(D,C)
@ e(D,B)

/N




tp-covering (acyclic version) /A

@ The constraint e(X,Y) is tp-covered in an acyclic
hypergraph if,
@ add a fresh constraint €'(X,Y) (where €' is a fresh relational
symbol),
@ a core of the new instance has an acyclic hypergraph

@ Intuitively the “coloring” of e(X,Y) forces the core of the
new structure to deal with the ordered pair (X,Y)
@ Indeed, every core must contain e’(X,Y)

@ Instead, the usual notion of the core does not preserve

the meaning of variables

@ this is crucial for computing solutions, but not for the
decision problem



The Power of Pairwise Consistency /AN

@ The constraint e(X,Y) is tp-covered in an acyclic
hypergraph if,

@ add a fresh constraint €'(X,Y) (where €'’ is a fresh relational
symbol),

@ a core of the new instance has an acyclic hypergraph



tp-covering by Example /AN

@ The constraint e(X,Y) is tp-covered in an acyclic
hypergraph if,

@ add a fresh constraint €'(X,Y) (where €'’ is a fresh relational
symbol),

@ a core of the new instance has an acyclic hypergraph

A—B)
G @iib



tp-covering by Example /AN

@ The constraint e(X,Y) is tp-covered in an acyclic
hypergraph if,

@ add a fresh constraint €'(X,Y) (where €'’ is a fresh relational
symbol),

@ a core of the new instance has an acyclic hypergraph




tp-covering by Example /u\

@ Here pairwise consistency solves the satisfaction
problem

@ The structure of any core is an undirected acyclic graph

Q.@
B—C—"0—FE B—C—"0—FE



The power of Pairwise Consistency /AN

@ Here pairwise consistency solves the satisfaction
problem

@ The structure of any core is an undirected acyclic graph
@ However, it does not entail global consistency

@ There is an instance that is pairwise consistent but
e(A,B) contains wrong tuples

A—®)
G G.(D G



A generalization: Local k-consistency /N

@ Consider subproblems of k constraints

@ Local k-consistency: pairwise consistency over such (k-
constraints) subproblems

Equivalent to relational k-consistency [Dechter and van Beek.
TCS'97]

[Greco and Scarcello. PODS’10]

@ See the appendix for a further generalization to arbitrary
subproblems in the general framework of
tree projections



Appendix: Beyond Hypertree Width




ptimization Problems
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Constraint Optimization Problems

@ Classically, CSP: Constraint Satisfaction Problem

@ However, sometimes a solution is
enough to “satisfy” (constraints),
but not enough to make (users) “happy”

Any solution Any best
> -

@ Hence, several variants of the basic CSP framework:

@ E.qg., fuzzy, probabilistic, weighted, lexicographic, penalty,
valued, semiring-based, ...



Classical CSPs /AN

IJCAI-13

F1n(X1, Xg, X3, X4 Xo)

r(X1s X7 Xq1, X16, X50)

Set of variables {X;,..., X5} Set of constraint relations

Set of constraint scopes




Puzzles for Experts...

The puzzle in general admits
more than one solution...

|

V4

@ E.g., find the solution that minimizes the total number of vowels
occurring in the words



A Classification for Optimization Problems

Each mapping variable-value has a cost. @ 345
Then, find an assignment:

@@@@ #  Satisfying all the constraints, and @ RIS
¢  Having the minimum total cost. NDA




A Classification for Optimization Problems

Each mapping variable-value has a cost.
Then, find an assignment:

@@@@ &  Satisfying all the constraints, and
&

Having the minimum total cost.

Each tuple has a cost. 12345

Then, find an assignment: PAR
W@@@ ¢  Satisfying all the constraints, and TPANDA )

¢  Having the minimum total cost. At R—=A
ANITA




A Classification for Optimization Problems /N

IJCAI-13

Each mapping variable-value has a cost.
Then, find an assignment:

@@@@ &  Satisfying all the constraints, and
&

Having the minimum total cost.

Each tuple has a cost.

Then, find an assignment:
W@@@ @ Satisfying all the constraints, and

#  Having the minimum total cost.

Each constraint relation has a cost. (1 2345 ))

M'M”@@P Then, find an assignment: PARIS
PANDA

#  Minimizing the cost of violated relations.
LAURA

ANITA




CSOP: Tractability of Acyclic Instances /ﬁ\

@ Adapt the dynamic programming approach in (Yannakakis’81)

A B H

Al B1 H1
A2 B1 H2

T

A B CD

Al B1 C1 D1
Al B1 C2 D2

A B EF

Al Bl E1 F1
Al B1 E2 F2

[Gottlob & Greco, EC‘07]



CSOP: Tractability of Acyclic Instances /ﬁ\

@ Adapt the dynamic programming approach in (Yannakakis’81)

With a bottom-up computation:

# Filter the tuples that do not match

A B CD

A B EF

Al B1 C1 D1
Al B1 C2 D2

Al Bl E1 F1
Al B1 E2 F2




CSOP: Tractability of Acyclic Instances /N

@ Adapt the dynamic programming approach in (Yannakakis’81)

With a bottom-up computation:

A B H # Filter the tuples that do not match
Al B1 H1 4 Compute the cost of the best partial
N solution, by looking at the children
/ \ cost(C/C1)=cost(D/D1)=0
A BCD A B EF cost(C/C2)=cost(D/D2)=1
Al Bl C1 D1 Al B1 E1 F1 cost(E/E1)=cost(F/F1)=0
Al B1 C2 D2 Al Bl E2 F2 cost(E/E2)=cost(F/F2)=1




CSOP: Tractability of Acyclic Instances /N

@ Adapt the dynamic programming approach in (Yannakakis’81)

With a bottom-up computation:

A B H # Filter the tuples that do not match
A1 BL H1 X4 Co_mpute the gost of the be_st partial
N solution, by looking at the children
/ \ cost(C/C1)=cost(D/D1)=0
A BCD A BEF cost(C/C2)=cost(D/D2)=1
[TALB1CI1DI || | [A1B1E1FL || cost(E/E1)=cost(F/F1)=0
Al B1 C2 D2 Al Bl E2 F2 cost(E/E2)=cost(F/F2)=1




CSOP: Tractability of Acyclic Instances /N

@ Adapt the dynamic programming approach in (Yannakakis’81)

cost(A/AL)+ ) With a bottom-up computation:
Egigﬁ//ill)): A B H # Filter the tuples that do not match
cost(C/C1)+ » A1 BL H1 & Co_mpute the gost of the be_st partial
cost(D/D1)+ solution, by looking at the children
cost(E/E1)+ e i i

cost(F/F1) ) / '\
cost(C/C1)=cost(D/D1)=0

A BCD A B EF cost(C/C2)=cost(D/D2)=1
| |A1B1C1D1 || | [A1B1E1FL || cost(E/E1)=cost(F/F1)=0
Al B1 C2 D2 Al Bl E2 F2 cost(E/E2)=cost(F/F2)=1




CSOP: Tractability of Acyclic Instances /N

@ Adapt the dynamic programming approach in (Yannakakis’81)

With a bottom-up computation:
A B HI[C D E F | etof i best parta
A1 B1H1 ||C1D1E1F1 P "

N solution, by looking at the children

# Propagate the best partial solution
/ \ (resolving ties arbitrarily)

A BCD A B EF

[TAiBiCiD1 || [ [A1B1E1F1 ||
Al B1 C2 D2 Al B1 E2 F2




WCSP: Tractability of Acyclic Instances

12345 12345
PARIS - PARIS
PANDA ~— J1 gPanDA D
LAURA CRURA
ANITA ANITA

C30P WGS?

[Gottlob, Greco, and Scarcello, ICALP‘09]



WCSP: Tractability of Acyclic Instances

# |s feasible in linear time
The mapping: ¢ Preserves the solutions
# Preserves acyclicity

27 ¢




In-Tractability of MAX-CSP Instances /N

IJCAI-13

Maximize the number of words placed
in the puzzle

£ | 2 3 4[5\ gk
f \ o __u"- \ | \
| | | =0 =S S5y |
' | ik P
[ 7 | d 8 | 9 | 10
g SN S
I —\ ‘
11|12 /13D 14 ' 15 |
] ~~____' i A ‘-J!/ ’ ' l ’
II 16 [ l | " |8 | | ]9 I
T (O AN D e
A20/ 21\ 22/23 \24 /25 \ 26
\J’:‘ Gz= \ / “\ L I
N ™ l\‘-. o I\\'.‘

[Gottlob, Greco, and Scarcello, ICALP‘09]



In-Tractability of MAX-CSP Instances /N

IJCAI-13

@ Maximize the number of words placed
in the puzzle

&R lr_ 2 3 4 1{,"' 5 ‘r, 6 \

l" ',l »»______"1 | __IIL
. (8 |9 10D

_1 N I P, Rt RN O ‘

/By | “ ’ |15 |

171 R 1] . . \ N ‘ =1 ;_.)7/, |
@ Add a “big” constraint with no tuple N~ [ | || I
16 | 1 | |18 | 19
I'. tLI__ S TS L— S ’r'— ___.L_ ||
. ,-l",: :_3( ) ’,," 21 “‘l 2] 2 3 |III 4 I ” '|" > ?\;‘

4 |
\ J \ / \ | -
7 = _‘\__—.““ —_— e\ ,,"‘

The puzzle is satisfiable <> exactly one constraint is violated in the acyclic MAX-CSP




Consider the incidence graph

2. Compute a Tree Decomposition

1H 8H 1v 5V 20H

1 2 3 4 5 6_7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 26

6V 11H 13V






Tractability of MAX-CSP Instances /N

IJCAI-13

A Qs > GRS

Cost 1,
unsat otherwise cost 0

h . —_ L —— N ) V"-,_V
1213 14 15 16 17 18 19 20 21 2 28 24 25 2%
SN e
‘:":':fJ et -.._’;.AA_

6V 11H 13V



In-Tractability of MAX-CSP Instances

12 1H
PA [|PARIS | | 1]
PA |PANDA ~~
LA |LAURA S
AN |ANITA
DI HAHGH?
AB unsa T~ Cost 1,

unsat otherwise cost 0

# |s feasible in time exponential in the width

The mapping: « Preserves the solutions
# Leads to an Acyclic CSOP Instance



1 Equilibria




(]
o Interacts with other players
a

Is rational
- /

|
| |
| |
: % o i 4 Each player: A
i = : o Has agoal to be achieved
| ! Has a set of possible actions
: |
: 4 -
I |
|
i :
! |

o o o e e o S R R R R R S MEE MmN RSN RSN RSN RN SN REE MEE MEE REE RS R R e e e e e e

Which actions have to be performed?

Nucleolus Core

Kernel

SOhltiOH COnC epts Bargaining set Shapley value

Stable sets




(]
o Interacts with other players
a

Is rational
- /

|
| |
| |
: % o i 4 Each player: A
i = : o Has agoal to be achieved
! : Has a set of possible actions
| |
|
i :
| |
! |

o o o e e o S R R R R R S MEE MmN RSN RSN RSN RN SN REE MEE MEE REE RS R R e e e e e e

Which actions have to be performed?

Solution Concepts



Non-Cooperative Games ; 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

o Has @ be achieved

o Has a set of possible actions
o Interacts with other players
a

K Is rational /
Bob John goes out John stays at home
out 2 0
home 0 1
John Bob goes out Bob stays at home

home 0 0




Non-Cooperative Games 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

o Has @ be achieved

Has a set of possible actions

(]
Nash equilibria <= o Interacts with other players
a S
N Y

Bob John goes out John stays at home
out 2 0
home 0 1
John Bob goes out Bob stays at home

home 0 0




Non-Cooperative Games 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

o Has @ be achieved

Has a set of possible actions

(]
Nash equilibria <= o Interacts with other players
a S
N Y

Bob John goes out John stays at home
out 2 0
: :
John Bob goes out Bob stays at home
out <1

home 0




Non-Cooperative Games 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

o Has @ be achieved

Has a set of possible actions

(]
Nash equilibria <= o Interacts with other players
a S
N Y

«© 0

John Bob goes out Bob stays at home

out 1 1

home 0 0




Non-Cooperative Games 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

o Has @ be achieved

Has a set of possible actions

(]
Nash equilibria <= o Interacts with other players
a S
N Y

Bob John goes out John stays at home
out 2 0
home 0 1
John Bob goes out Bob stays at home

home 0 0




Non-Cooperative Games 5, N

IJCAI-13

~

Payoff maximization problem < ach player:

Has a set of possible actions

Nash equilibria <= Interacts with other players
N Y

[ pure Nash equilibria ]

1

LEvery game admits a mixed Nash equilibrium, }

o where players chose their strategies according to probability distributions




Succint Game Representations

@ Players:
@ Maria, Francesco

@ Choices:
@ movie, opera

Maria Francesco, movie  Francesco, opera
movie 2 0
opera 0 1

If 2 players, then size = 22




Succint Game Representations

@ Players:
@ Maria, Francesco, Paola

@ Choices:
@ movie, opera

If 2 players, then size = 22

If 3 players, then size = 23

Maria I:movie and I:)movie Fmovie and I:)opera |:opera and I:)movie I:opera and I:)opera
movie 2 0 2 1
opera 0 1 2 2




Succint Game Representations

@ Players:
@ Maria, Francesco, Paola, Roberto, and Giorgio
@ Choices:
@ movie, opera If 2 players, then size = 22
If 3 players, then size = 23
If N players, then size = 2N
Maria Frovie and P movie and Riovie and Griovie  rrrrrrrrre
movie 2 |

opera 0




@ Players:
@ Francesco, Paola, Roberto, Giorgio, and Maria

@ Choices:
@ movie, opera




Succinct Game Representations /AN

@ Players: @ G
@ Francesco, Paola, Roberto, Giorgio, and Maria
@ Choices: Q @

@ movie, opera

F Pi'i'i'Ri’i'i' j.r_.’.i‘.i‘i"'il?l:'.?' pl.‘.i'j??i'? R'JRE.? G Pi'i'i'Fi'i'i' p?i'?‘F:!'i' PI.‘.?'F?H pl:’.i'Fl:'.i'
m 2 2 | 0 m 2 0 0 1
0 0 2 | 2 0 2 0 0 1
R F.'rr;l Fm P Fm ‘F:!'J M Rm Rc':
m 0 1 m 2 0 m 1 ()

(R
2

0 0 () 1 0 ()




Pure Equilibria

@ Players:
@ Francesco, Paola, Roberto, Giorgio, and Maria

@ Choices:
@ movie, opera

F Pi'i'i'Ri’i'i' j.r_.’.i‘.i‘i"'il?l:'.?' pl.‘.i'j??i'? R'JRE.? G Pi'i'i'Fi'i'i' p?i'?‘F:!'i' PI.‘.?'F?H pl:’.i'Fl:'.i'
m 2 2 | 0 m 2 0 0 1
0 0 2 | 2 0 2 0 0 1
R F.'rr;l Fm P Fm ‘F:!'J M Rm Rc':
m 0 1 m 2 0 m 1 ()

(R
2

0 0 () 1 0 ()




Pure Equilibria

0 @ () 0 () 1

@ Players:
@ Francesco, Paola, Roberto, Giorgio, and Maria
@ Choices:
@ movie, opera
F Pi'i'i'R?i'i' pi'}i'}?f.i' pl.‘.i'j??i'? R'JRH G Pi'i'i'Fi'i'i' p?i'?P::'il PE.PF?H pf.i'Ff.i'
m 2 @ | 0 m @ 0 0 1
0 0 2 1 2 0 2 0 0 1
R F.'rr;l Fm P Fm ‘F:!'J —,ur Rm Rc':
m 0 1 m @ 0 m 1 0

0 () @




Pure Equilibria /AN

@ Players:

@ Francesco, Paola, Roberto, Giorgio, and Maria

@ Choices: NP- h d
@ movie, opera
F Pi'i'i'}??i'i' pi'}i'}?f.i' pl.‘.i'j??i'? R'JRH G Pi'i'i'Fi'i'i' P???P::'il PE.PF?H pf.i'Ff.i'
I 2 @ 1 () I @ 0 0 1
0 0 2 1 9 0 2 0 0 1
R F.'rr;l Fm P Fm ‘F:!'J —,ur Rm Rc':

m 0 1 m @ 0 m 1 ()
0 @ () 0O 0 1 0 () @




Pure Nash Equilibria and Easy Games /A

Nash Equilibrium
Existence

|

Constraint Satisfaction Problem

!

Solve CSP in polynomial time using known methods

[Gottlob, Greco, and Scarcello, JAIR'05]
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Encoding Games in CSPs /N

IJCAI-13
F PFH R?]‘! PFJ‘]! RD Pﬂ R?]‘i PI'J Rl‘.’-‘ G PFH FFJ‘? R]‘i FI'J PDFFH PD FG
m 2 @ 1 0 m @ () 0 1
0 0 2 1 2 0 2 () 0 1
R F?]‘E FG' P FF]‘? -FI'J ‘L{ }?FH RG

m () 1 m @ 0 m 1 ()

I
‘w (R | F | (P [ F |
'R: Qo | m D) 7P | m oy
B | 5 Emc
m m (=]
rE TG o |m| o
mpe = [M]R
=} o m rar
m| o | o BOs el
0 o o ‘g’




Interaction Among Players: Friends /A

IJCAI-13

@ The interaction structure of a game G can be represented by:
@ the dependency graph G(G) according to Neigh(G)
¢ a hypergraph H(G) with edges: H(p)=Neigh(p) v {p}

G(FRIENDS) H(FRIENDS)



H(FRIENDS)



Interaction Among Players: Friends /n\

[ This is the same structure as the one of the associated CSP ]

|

( )

On (nearly)-Acyclic Instances,
Nash equilibria are easy

. J

H(FRIENDS)






Game Theory (in a Nutshell)

I

! :

: % i 4 Each player: A
i = = ! o Has agoal to be achieved

! : o Has a set of possible actions

; Za : o Interacts with other players

| : i

i i \_ o Isrational )
! :

o o o e e o S R R R R R S MEE MmN RSN RSN RSN RN SN REE MEE MEE REE RS R R e e e e e e

Which actions have to be performed?

Nucleolus Core

Kernel

Solution Concepts

Bargaining set Shapley value

Stable sets




Cooperative Game Theory,,,

-

To perform some task <— Each player:

Utility distribution, if the task is performed <«—

Jointly perform the task (with some cost) «




Cooperative Game Theory,;, N

IJCAI-13

4 . )
To perform some task <— Each player:
Utility distribution, if the task is performed <«—
Jointly perform the task (with some cost) «
\

> Players get 9%, if they enforce connectivity
» Enforcing connectivity over an edge as a cost




Cooperative Game Theory,,,

4 . )
To perform some task <— Each player:
Utility distribution, if the task is performed <«—
Jointly perform the task (with some cost) «
\

> Players get 9%, if they enforce connectivity
» Enforcing connectivity over an edge as a cost

Coalition {F,P,R,Mg%, and pays@

worth v({F,P,R,M}) = 9% - 6%




Cooperative Game Theory,,,

4 . N
To perform some task <— Each player:
Utility distribution, if the task is performed <«—
Jointly perform the task (with some cost) «
-
coalition worth
{F} 0
0
{G,P,R,M} 0
{F,P,R,M} 3
{G,F,P,R,M} 4

How to distribute 4%, based on such worths?



Cooperative Game Theory,,, /N

4 Each player:

o Has agoal to be achieved
Has a set of possible actions

a
, o Int with other players
fairness .
= s rational /

coalition worth
{F} 0
0
{G,P,R,M} 0
{F,P,R,M} 3
{G,F,P,R,M} 4

How to distribute 4%, based on such worths?



Cooperative Game Theory,,s, N
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4 )

Each player:
o Has agoal to be achieved
Has a set of possible actions

a
_ o Int with other players
fairness .
= s rational /

G «4%
PF.R,M «0$
e A N
coalition worth value | excess
{F} 0 0 0
0
{G,P,R,M} 0 -4
{F,P,R,M} 3 3
{G,F,P,R,M} 4

How to distribute 4%, based on such worths?



Cooperative Game Theory,,,

\\\ | 7 [Find the distribution(s) that: ico;reé
= Each coalition has a non-p “

= Lexicographically minimize the ejcess v
'ons

= Is immune against de

G «4%
P,F.R,M «0%

e A I
coalition worth value | excess
{F} 0 0 0

0
{G,P,R,M} 0 -4
{F.P,R,M} 3 3
{G,F,P,R,M} 4

How to distribute 4%, based on such worths?



The Model

@ Players form coalitions
@ Each coalition is associated with a worth
@ A total worth has to be distributed

[ g:<N,v>,v:2N+—>R]

@ Outcomes belong to the imputation set X(G)

o Efficiency

x(N) = v(N)
x € X(G) <

@ Individual Rationality

xi>v({i}), VieN




The Model

@ Players form coalitions
@ Each coalition is associated with a worth
@ A total worth has to be distributed

G=(N,v),v:2N =R
[ J

@ Solution Concepts characterize outcomes in terms of
@ Fairness
o Stability



The Model

@ Players form coalitions
@ Each coalition is associated with a worth
@ A total worth has to be distributed

G=(N,v),v:2N =R
[ ]

@ Solution Concepts characterize outcomes in terms of
@ Fairness

¢ Stability 0=e(S,x) =v(S) — Yiesxi

A
The Core: VS € N, x(S) = v(S);

x(N) = v(N)



Complexity of Solution Concepts

* Nucleolus

» Kernel
 Bargaining Set
» Stable Sets

Graph games:
o Succinct specification
o Core existence is coNP-complete

coalition worth
{F} 0
0
{G,P,R,M} 0
{F,P,R,M} 3
{G,F,P,R,M} 4




Complexity of Solution Concepts /AN

* Nucleolus

» Kernel
 Bargaining Set
» Stable Sets

[ Reductions for graph games ]

2|
o S
Succinct games: @/
o Nucleolus is PNP-complete ®?
o Kernelis PNP-complete Q
o Bargaing set is coNPNP-complete
K o Stable sets is still open M )
“@@@@Z/"% ;

Ellipsoid method
+

[Greco, Malizia, Palopoli, Scarcello, AlJ*11] NP sepeiion orclss




Membership in the Core on Graph Games P4
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The Core: VS € N, x(S) = v(S);
x(N) = v(N)

Consider the sentence,
over the graph where N is the set of nodes and E the set of edges :

proj(X,Y)=XCS NA
Ve, c’( Y(c,c') » X(c) A X(c’)) A
Ve, c’( X(c)ANX(c)NE(c,c") - Y(c, c’))



Membership in the Core on Graph Games P4
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The Core: VS € N, x(S) = v(S);
x(N) = v(N)

Consider the sentence,
over the graph where N is the set of nodes and E the set of edges :

proj(X,Y)=XCS NA
Ve, c’( Y(c,c') » X(c) A X(c’)) A
Ve, c’( X(e)ANX(c)NE(c,c") - Y(c, c’))

...ittells that Y is the set of edges covered by the nodes in X



Membership in the Core on Graph Games P4
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The Core: VS € N, x(S) = v(S);
x(N) = v(N)

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:  wg(c,¢’) = —w(c,c’);  wy(c) = x,

! !

Value of the edge (negated) Value at the imputation



Membership in the Core on Graph Games P4
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The Core: VS € N, x(S) = v(S);
x(N) = v(N)

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: wg(c,c’) = —w(c,c¢’);  wy(c) = x,

! !

Value of the edge (negated) Value at the imputation

Find the “minimum-weight” X and Y such that proj(X,Y) holds



Membership in the Core on Graph Games P4

IJCAI-13

02 e(S,x) =v(S) — YiesXi

The Core: VS € N, x(S) = v(S); /7
x(N) = v(N)

Let proj(X,Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:  wg(c,¢’) = —w(c,c’);  wy(c) = x,

! !

Value of the edge (negated) Value at the imputation

Find the “minimum-weight” X and Y such that proj(X,Y) holds

L Max (value of edges — value of the imputation), i.e., maxscye(S,x)



binatorial Auctions
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Winner Determination Problem

@ Determine the outcome that maximizes the sum of
accepted bid prices
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Example: Combinatorial Auctions

Winner Determination Problem 1]

0 180

@ Determine the outcome that maximizes the sum of
accepted bid prices
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Example: Combinatorial Auctions

@ Other applications [Cramton, Shoham, and Steinberg, ‘06]
@ airport runway access
@ trucking
@ Dbusroutes
@ industrial procurement
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Example: Combinatorial Auctions

Winner Determination is NP-hard
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item hypergraph



Structural Properties

The Winner Determination Problem
remains NP-hard even in case of

acyclic hypergraphs




item hypergraph



dual hypergraph
item hypergraph




V,: {[,} {hj,hB,hS}

[Gottlob & Greco, EC’07] A

vor [ AL} {h,h} | vaif {L, L} {h,h,h h}

hypertree decomposition of dual hypergrah

vi:| {L} {h,h.}







Going Beyond... /AN

@ Treewidth and Hypertree width are based on tree-like
aggregations of subproblems that are efficiently solvable

@ kvariables (resp. k atoms) = ||I[|< solutions (per subproblem)

@ Is there some more general property that makes the
number of solutions in any bag polynomial?

@ YES!
|Grohe & Marx '06]



Fractional Hypertree Decompositions /u\

In a fractional hypertree decomposition of width w, bags of vertices are
arranged in a tree structure such that

1. For every edge e, there is a bag containing the vertices of e.
2. For every vertex v, the bags containing v form a connected subtree.
3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width < generalized hypertree width

[Grohe & Marx ‘06]

@ A query may be solved efficiently, if a fractional hypertree
decomposition is given

@ FHDs are approximable: If the the width is < w, a decomposition of
width O(w3) may be computed in polynomial time [Marx ‘09]



More Beyond? /N

@ A new notion: the submodular width

@ Bounded submodular width is a necessary and sufficient
condition for fixed-parameter tractability
(under a technical complexity assumption)
[Marx ‘10]



{1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}

\—._\\—--
T ——

{1.7.11,16,20,22} {1V,20H} {5.8,14,18,24,26} {5V,20H}

|

|
{11.12,13,17,22} {11H,13V} {8.9.10,6,15,19,26} {8H,6V}

AN

Each cluster can be seen as a subproblem HA

Relations: Relations:

- E\/,ZOH}: 1v><d 20@




{1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}

-_____\-
/ \-__

{1.7.11,16,20,22} {1V,20H} {5.8,14,18,24,26} {5V,20H}

|

|
{11,12,13,17,22} {11H,13V} {8.9.10,6,15,19,26} {8H,6V}

AN

Each cluster can be seen as a subproblem

Relations:

E%ZOH}: 1v><d 20@




Revisiting Decomposition Methods /A

IJCAI-13

{1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}

e

—
~———_

{1.7.11,16,20,22} {1V,20H} {5.8,14,18,24,26} {5V,20H}
{11,12,13,17,22} {11H,13V} {8.9.10,6,15,19,26} {8H,6V}
Relations:




Revisiting Decomposition Methods /n\

CSP instance (A, B)

9
—' \W/j
{1.,2,3,4,5,20,21,22,23,24,25,26} {1H,20H}

I —

—
~———_

AV = ff-DM(A): Bv — 7"-DM(A, B) {1,7.11,16,20,22} {1V20H} (5,8,14,18,24,26} {5V,20H]}
|
(11,12,13,17,22} {11H,13V} {8.9.10,6,15,19,.26} {8H,6V}
Relations:




Revisiting Decomposition Methods

/N

CSP instance (A, B)

iv

I
Ay = (f’-DM(A): By = r-DM(A,B)
\ Y J I\ Y J
Scopes Solutions

Work on subproblems

{1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}

{1,7,11,16,20,22} {1V,20H}

{5.8.14,18,24,26} {5V,20H}

{11,12,13,17,22} {11H,13V} {8.9.10,6,15,19,26} {8H,6V}




Revisiting Decomposition Methods

/N

CSP instance (A, B)

iv

{1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}

—

—

{1,7.11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}

I
Ay = éf-DM(A): By = r-DM(A,B)
\ Y J I\ Y J
Scopes Solutions

{11,12,13,17,22} {11H,13V}

{8.9.10,6,15,19,26} {8H.6V}

Work on subproblems

@ Generalized hypertree width:
take all views that can be
computed by joining at most k
atoms (k query views)




Revisiting Decomposition Methods /n\

CSP instance (

l {1.2,3.4,5,20,21,22,23,24,25,26} {1H,20H}
I >\\\\\\>\
A\/ — ( DM : B]/ — I-DM(A B) {1,7.11,16,20,22} {1V,20H} {5.8.14,18,24,26} {5V,20H}
U
{11,12,13,17,22} {11H,13V} {8.9.10,6,15,19,26} {8H,6V}

@ Generalized hypertree width:
take all views that can be EV' 20H}= 1VE><T 20H | =eveee
computed by joining at most k
atoms (k query views)




Requirements on Subproblem Definition

CSP instance (A, B)

>

1. Every subproblem is not more restrictive than

the full problem
2. Every base subproblem is at least restrictive as

the corresponding constraint

1. Every constraint is associated with a base subproblem
2. Further subproblems can be defined




Acyclicity in Decomposition Methods

CSP instance (A, B)

SV

Working on subproblems is not

necessarily beneficial...




Acyclicity in Decomposition Methods

CSP instance (

Working on subproblems is not

necessarily beneficial...

I

|
A, = (-DM(A :BVZIDM(AB)

U

Can some and/or portions of them be selected such that:
« They still cover A, and
 They can be arranged as a tree

O



A : r(A,B.C) (A F) ri(C,D) ryD,E,F)
rs(E,F,G) re(G,H,I) r7(I,J) rs(J,K) |

Structure of the CSP



A : r(A,B.C) (A F) ri(C,D) ryD,E,F)
rs(E,F,G) re¢(G,H,I) r+(I,J) 7rs8(J,K) |

Structure of the CSP Available Views



A : r(A,B.C) (A F) ri(C,D) ryD,E,F)
rs(E,F,G) re¢(G,H,I) rz(I,J) rs(J,K) |

Structure of the CSP Tree Projection Available Views



Structure of the CSP Tree Projection Available Views



(Noticeable) Examples

CSP instance (

[

|
Ay = (-DM(A :Bv_/DM(AIB%)

N/

@ Treewidth: take all views that can be computed with at most k
variables

@ Generalized hypertree width: take all views that can be computed by
joining at most k atoms (k query views)

@ Fractional hypertree width: take all views that can be computed
through subproblems having fractional cover at most k (or use Marx’s
O(k®) approximation to have polynomially many views)



ONONONC)

BN

V=Ll-two(A)




A General Framework, but /N

@ Decide the existence of a tree projection is NP-hard

{

[Gottlob, Miklos, and Schwentick, JACM‘09]



A General Framework, but /N

@ Decide the existence of a tree projection is NP-hard

[ Hold on generalized hypertree width too. ]

{

[Gottlob, Miklos, and Schwentick, JACM‘09]



A Source of Complexity: The Core

The core of a query Q is a query Q’s.t.:

1.
2.

atoms(Q’) < atoms(Q)

There is a mapping h: var(Q) — var(Q’)
s.t., V' r(X) eatoms(Q), r(h(X)) eatoms(Q’)

There is no query Q" satisfying 1 and 2 and such
that atoms(Q”) — atoms(Q’)

/N




A Source of Complexity: The Core /AN

The core of a query Q is a query Q’s.t.:
1. atoms(Q’) c atoms(Q)

2.  There is a mapping h: var(Q) — var(Q’)
s.t., V' r(X) eatoms(Q), r(h(X)) eatoms(Q’)

3. There is no query Q" satisfying 1 and 2 and such
that atoms(Q”) — atoms(Q’)

Example: Q 1 Q Q’ 1
e
B4 E 3;




A Source of Complexity: The Core /n\

[ Cores are isomorphic - The “Core” ]

[ Cores are equivalent to the query J




Q : r(A,B)Ar(B,CYANr(A,C)Ar(D,C)A
r(D,B)ANr(A,E)Ar(F,E),




Q : r(A,B)Ar(B,CYANr(A,C)Ar(D,C)A
r(D,B)ANr(A,E)Ar(F,E),




Structure of the CSP Tree Projection Available Views



/ A
C\D/ v’

Structure of the CSP Tree Projection Available Views
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E
2\
¥
A
g
o

Structure of the CSP Tree Projection Available Views



core

Structure of the CSP Tree Projection Available Views



CORE is NP-hard

@ Deciding whether Q' is the core of Q is NP-hard

@ For instance, let 3COL be the class of all 3-
colourable graphs containing a triangle

@ Clearly, deciding whether Ge3COL is NP-hard

@ Itis easy to see that Ge3COL < K; Is the core of G




Enforcing Local Consistency (Acyclic)

/N

\
d(Y,P)
r(Y,Z,U)
s(Z,U,W) t(V,2)
/




Enforcing Local Consistency (Acyclic)

d(Y,P)

r(Y,Z,U)

S(ZUW)

> |

t(V,2)

\

h—

/N

\
d(Y,P)
r(Y,Z,U)
s(Z,U,W) t(V,2)
/




Enforcing Local Consistency (Decompositioﬂ

CSP instance (

I

|
Ay = (-DM(A :Bp:IDM(AB)

U



Enforcing Local Consistency

CSP 1nstance

|
A, = (-DM(A :B]/ = r-DM(A, B)

If there is a tree projection, then
enforcing local consistency over the views solves the decision problem

[Sagiv & Smueli, ‘93]



Enforcing Local Consistency

CSP instance (

T

|
A, = (-DM(A :IBV = r-DM(A, B)

Does not need to be computed

If therey
enforcinO“ead

gy over the views solves the decision problem J

[Sagiv & Smueli, ‘93]



CSP mstance

|
= (-DM(A :IB%V = r-DM(A, B)

L

There is a polynomial-time algorithm that:

either returns that there is no tree projection,
or solves the decision problem




Even Better

CSP 1nstance just check the

given solution

|
A, = (-DM(A :B]/ = r-DM(A, B)

There is a polynomial-time algorithm that:
either returns that there is no tree projection,

or solves the decision problem




The Precise Power of Local Consistency

é ] ] )
@ The followings are equivalent:
@ Local consistency solves the decision problem
@ There is a core of the query having a tree projection
. J

[Greco & Scarcello, PODS10]



The Precise Power of Local Consistency

é . ] )
@ The followings are equivalent
@ Local consistency solves the decision problem
@ There is a core of the query having a tree projection
. J

D



The Precise Power of Local Consistency

é . ] )
@ The followings are equivalent
@ Local consistency solves the decision problem
@ There is a core of the query having a tree projection
. J

/L" a core with TP
F /

B

s, “’/7 a core without TP

D \

D



A Relevant Specialization (not immediate) ﬁ:\w
é . ] )
@ The followings are equivalent
@ Local consistency solves the decision problem
@ There is a core of the query having a tree projection
J

[The CSP has generalized hypertreewidth k at most ]

[ Over all union of k atoms ]

[Greco & Scarcello, CP11]



Back on the Result

é . ] )
@ The followings are equivalent
@ Local consistency solves the decision problem
@ There is a core of the query having a tree projection
. J

«Promise» tractability

@ There is no polynomial time algorithm that
@ either solves the decision problem
@ or disproves the promise



Local consistency for computing solutions P4

IJCAI-13

@ The followings are equivalent A

@ Local consistency entails «views containing variables O
are correct»

__©@ The set of variables O Is tp-covered In a tree projection

Q : r(A, B)Ar(B,C)Ar(A,C)Ar(D,C)A S
r(D,B)Ar(A,E)Ar(F,E), {A, E}is tp-covered
g "3.\ A core
/ / withaTP
F P

w(A,B,(C) is an additional
D availableview




Local consistency for computing solutions P4

IJCAI-13

@ The followings are equivalent A

@ Local consistency entails «views containing variables O
are correct»

__©@ The set of variables O Is tp-covered In a tree projection

Q : (A, B)Ar(B,C)Ar(A,C)ArD,C)A : _
r(D, B) A7(A, E) A r(F, E), {A,F}is not tp-covered
E E
/ Y, .
F F TP

D D



Local and global consistency

4 D
@ The followings are equivalent

@ Local consistency entails global consistency
@ Every query atom/constraint is tp-covered in a tree projection

\ J
Q : r(A,B)Ar(B,C)Ar(A,C)Ar(D,C)A ; ]
r(D, B) Ar(A, E) A r(F., E), {D,B}is not tp-covered
| 4 B
/ / e
F F TP



Thank you!




