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   Inherent Problem Complexity 
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Number of steps it takes for input of size n 



  Time Complexity 



  Time Complexity 



Graph Three-colorability 



YES! 

Graph Three-colorability 



 Approaches for Solving Hard Problems 

  

  

  



 Approaches for Solving Hard Problems 

  

  

  



 Identification of Polynomial Subclasses 

High complexity often arises in “rare” worst case 

instances 

Worst case instances exhibit intricate structures  

In practice, many input instances have simple structures 

 Therefore, our goal is to 

Define polynomially solvable subclasses  
(possibly, the largest ones) 

Prove that membership testing is tractable for these 
classes 

Develop efficient algorithms for instances in these classes 

 



Graph and Hypergraph Decompositions 

The evil in Computer science is hidden in  (vicious) 

cycles.  
 

We need to get them under control! 

 

Decompositions: Tree-Decomposition, path 

decompositions, hypertree  decompositions,… 

    Exploit bounded degree of cyclicity. 

 



YES! 

Graph Three-colorability 



Problems with a Graph Structure 

  

 

 

 

  



Problems with a Graph Structure 

  

 

 

 

  



  

 

How much “cyclicity” in this graph? 

Suggest a measure of distance from an acyclic graph 



Feedback vertex set 

   

Set of vertices whose deletion makes the graph acyclic 

  

 

Three Early Approaches 



Feedback vertex number 

   

Min. number of vertices I need to eliminate to make the graph acyclic 

  

 

The feedback vertex number 

fwn(G)=3 



Feedback vertex number 

   

Min. number of vertices I need to eliminate to make the graph acyclic 

  

 

FVN: Properties 

 

 

 

 

 

 

Is this really a good measure for the “degree of 

acyclicity” ?  

Pro:   For fixed k we can check efficiently whether 

fwn(G) ≤ k 

What does it mean efficiently when parameter k is fixed? 

         

fwn(G)=3 

 

 

 

   



Classical Computational Complexity 

n = input size 

poly(n) 2 O(n)   Assuming P≠NP 

In many problems there exists some part of the input that are quite small in 

practical applications 

Natural parameters 

Many NP-hard problems become easy if we fix such parameters (or we 

assume they are below some fixed threshold) 

Positive examples: k-vertex cover, k-feedback vertex set, k-clique, … 

Negative examples: k-coloring, k-CNF, … 

 



Parameterized Complexity 

Initiated by Downey and Fellows, late ‘80s 

n = input size 

poly(n) 2 O(n) 

f(k) nO(1) ng(k) 

Typical assumption: FPT ≠ W[1] 

 
 

  



W[1]-hard problems: k-clique 

 INPUT: A graph G=(V,E) 

 PARAMETER: Natural number k 

Does G have a clique over k vertices?  

k-clique is hard w.r.t. fixed parameter complexity!  



FPT races 

http://fpt.wikidot.com/ 



FPT Tractability of Feedback Vertex Set 

 

 

 

 

 

Naïve algorithm: O(nk+1)   Not good! 

Solvable in O((2k+1)kn2) [Downey and Fellows ‘92] 

A practical randomized algorithm runs in time: O(4kkn) 

[Becker et al 2000] 

 INPUT: A graph G=(V,E) 

 PARAMETER: Natural number k 

Does G has a feedback vertex set of k vertices?  



Feedback vertex number 

   

Min. number of vertices I need to eliminate to make the graph acyclic 

  

 

Feedback Vertex Set: troubles 

fwn(G)=3 

Is this really a good measure for the “degree of acyclicity” ?  

 

  Pro:   For fixed k we can check in quadratic time if fwn(G)=k      (FPT) . 

 

  Con:   Very simple graphs can have large FVN: 



Feedback edge  number   same problem. 

 

 

   

       

Feedback edge number 



 

 

 

 

   

       

Any idea for further techniques? 



 

 

 

   

       

Well known graph properties: 

A biconnected component is a maximal subgraph that 
remains connected after deleting any single vertex 

In any graph, its biconnected components form a tree 

 

Yes! A tree of clusters (subproblems) 



 

 

Maximum size of biconnected components 

   

       

bcw(G)=4 

    Pro:   Actually  bcw(G) can be computed in linear time  

     

Biconnected width 



 

 

Maximum size of biconnected components 

   

       

bcw(G)=4 

    Pro:   Actually  bcw(G) can be computed in linear time  

    Con:  Adding a single edge may have tremendous effects to bcw(G) 

Drawbacks of BiComp  



 

 

Maximum size of biconnected components 

   

       

bcw(G)=4 

12 

    Pro:   Actually  bcw(G) can be computed in linear time  

    Con:  Adding a single edge may have tremendous effects to bcw(G) 

Drawbacks of BiComp  



Can we do better? 

Hint:  

why should clusters of vertices be of this limited kind? 

Use arbitrary (possibly small) sets of vertices! 

How can we arrange them in some tree-shape? 

What is the key property of tree-like structures (in most 
applications)? 

Information propagation 

Information on the rightmost vertex  

is no longer necessary (quite often)  



Can we do better? 

Hint:  

why should clusters of vertices be of this limited kind? 

Use arbitrary (possibly small) sets of vertices! 

How can we arrange them in some tree-shape? 

What is the key property of tree-like structures, in 
applications? 

Information propagation 

Information is still necessary to take 

decisions about the yellow vertex 
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Tree Decompositions [Robertson & Seymour ‘86] 
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Tree Decompositions [Robertson & Seymour ‘86] 



Tree Decompositions [Robertson & Seymour ‘86] 



Tree Decompositions [Robertson & Seymour ‘86] 

• Every edge realized in some bag 

• Connectedness condition 



Connectedness condition for h 

ah 

ahq 

hij abc 

hkl 

hkp klo 

mno 

bcd cef ag 



Tree Decompositions and Treewidth 
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tw(acyclic graph)=1 
 

tw(cycle) = 2 
 

tw(G+v)  tw(G)+1 
 

tw(G+e)  tw(G)+1 
 

tw(Kn) = n-1   

 

 

  

    

  

  

  

 tw is fixed-parameter tractable (parameter: treewidth) 

 

 

       

Properties of Treewidth 
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1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
 

     b) Fixed-Parameter tractability: f(w)O(nk) 

 

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
 

     b) Prove all yes-instances to have small width 

Use of Tree Decompositions 



1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
                         constraint satisfaction = conjunctive database queries 

     b) Fixed-Parameter tractability: f(w)O(nk) 
                                                                 multicut problem 
    

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
                                   finding even cycles in graphs – ESO over graphs 
 

     b) Prove all yes-instances to have small width 
                      the Partner Unit Problem 

                       

Use of Tree Decompositions 



1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
 

     b) Fixed-Parameter tractability: f(w)O(nk) 

 

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
 

     b) Prove all yes-instances to have small width 

In PART II 

Use of Tree Decompositions 



1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
 

     b) Fixed-Parameter tractability: f(w)O(nk) 

 

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
 

     b) Prove all yes-instances to have small width 

Use of Tree Decompositions 



Courcelle’s  Theorem  [1987] 

 

Let P be a problem on graphs that can be formulated in  

Monadic Second Order Logic (MSO). 

 

Then P can be solved in liner time on graphs of bounded treewidth   

An important Metatheorem 



Courcelle’s  Theorem  [1987] 

 

Let P be a problem on graphs that can be formulated in  

Monadic Second Order Logic (MSO). 

 

Then P can be solved in liner time on graphs of bounded treewidth   

An important Metatheorem 

 

 

 

 
 

  

 

 

  

 



Three Colorability in MSO 



Courcelle's Theorem:  Problems expressible in MSO2  

are solvable in linear time on structures of bounded 

treewidth   

 

…and in LOGSPACE [Elberfeld, Jacoby,Tantau]  

P xy :  (E(x,y) (P(x)  P(y))   

 

Example – Graph Coloring 

Master Theorems for Treewidth 



Arnborg, Lagergren, Seese  '91: 
 

Optimization version of Courcelle's Theorem: 
 

Finding an optimal set P such that   G |= (P) 

is FP-linear over inputs G of bounded treewidth. 

Find a smallest P such that  

        xy :  (E(x,y) (P(x)  P(y))   

Given a graph G=(V,E) 

Example: 

Master Theorems for Treewidth 



Find minimum-cardinality vertex set separating 

 Si from Tj for each tuple <Si,Tj> in relation H 

H: 

Unrestricted Vertex Multicut Problems 



H: 

Unrestricted Vertex Multicut Problems 



[Guo et al. 06]  UVMC FPT if   |S|, |C| and tree-width fixed 

Results  

[G. & Tien Lee]  UVMC FPT if  overall structure has bounded tw. 

                     
using  master theorem by Arnborg, Lagergren and Seese.   

                     

H: 

Unrestricted Vertex Multicut Problems 



PROOF    

Minimize X in uvmc 

 X intersects each set that connects x and y  

Unrestricted Vertex Multicut Problems 



1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
 

     b) Fixed-Parameter tractability: f(w)O(nk) 

 

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
 

     b) Prove all yes-instances to have small width 

Use of Tree Decompositions 



INPUT:  A graph G, a constant k. 
 

QUESTION:  Decide whether G  has a cycle   

  of length 0 (mod k)   

In the past century, this was an open 

problem for a long time.   

Carsten Thomassen  in 1988 proved it polynomial 

for all graphs using treewidth as a tool.   

The Generalized Even Cycle Problem 



Small Treewidth (c) Large  Treewidth (>c) 

"cycle of length 0 (mod k)" 

can be expressed un MSO  

k=4 

example 

Courcelle's Theorem 
  

(but was not known then…)  

k c: each graph  G with 

tw(G)>c contains a subdivision 

of the f(k)-grid.    [for suitable f]   

n>f(k),  each subdivision of  

f(k)-grid contains a cycle of 

length 0 (mod k).  

 

Proof Idea 



Long Term Research Programme 

Determine the complexity of SO fragments over finite  

structures. 

 

Finite structures: words (strings), graphs, relational databases 

 

    Known:  SO=PH;  ESO = NP 

 

Which SO-fragments can be evaluated in polynomial time? 

 

Which SO-fragments express regular languages on strings ? 

 

More modestly: What about prefix classes? 



Every room should be equipped 

with a computer. 

 

If a printer is not present in a 

room, then one should be 

available in an adjacent room. 

 

No room with a printer should be  

a meeting room. 

 

Every room is at most 5 rooms  

distant  from a meeting room. 

 

[…] 

A “simple” Facility Placement Problem 



 

Given an office layout as a graph, decide whether  

the facility placement constraints are satisfiable.  

 P  M …  x  y ((P(x)   E(x,y) & P(y)) & … 

This leads to the questions:  

 

Are formulas of the type  E1
*ae or even E*ae  

polynomially verifiable over graphs? 

 

What about other fragments of ESO or SO? 

 

Observe that this is an E1
*ae formula  

Simplest Form 

http://images.google.at/imgres?imgurl=http://www.ads.tuwien.ac.at/AGD/images/ortho_thumbnailgif.gif&imgrefurl=http://www.ads.tuwien.ac.at/AGD/&h=115&w=119&sz=2&tbnid=KymP7IpN2HQJ:&tbnh=80&tbnw=82&start=128&prev=/images?q=planar+graph+&start=120&hl=de&lr=&ie=UTF-8&sa=N


This motivates the following question: 

 

Can formulas in classes such as  E2(ae2)  or even ESO(e*ae*)   be 

evaluated in polynomial time over strings ? 

 

More generally: 

 

Which ESO-fragments admit polynomial-time model 

checking  over strings ? 
 

A similar,  even more important  question can be asked for graphs 

and general finite structures: 

 

Which ESO-fragments admit polynomial-time model 

checking  over graphs or arbitrary finite structures? 

Simplest Form 



[G.,Kolaitis, Schwentick 2000] 

Complexity of ESO Prefix Classes 



In PTIME!  

The Saturation Problem 



The Saturation Problem 



The Saturation Problem 



The Saturation Problem 



1. Prove Tractability of bounded-width instances 
      

     a) Genuine tractability: O(nf(w))-bounds 
 

     b) Fixed-Parameter tractability: f(w)O(nk) 

 

2. Tool for proving general tractability 
 

     a) Prove tractability for both large & small width 
 

     b) Prove all yes-instances to have small width 

Use of Tree Decompositions 



Partner Units Scenario 

Track People in Buildings 

Sensors on Doors, Rooms Grouped into Zones 



Partner Units Solution 

Assigning Sensors and 

Zones to Control Units 

 

Respect Adjacency 

Constraints 

 

 



The Partner-Unit Problem 

Bipartite graph G=(V,E) V=VaVb;  
Va= {a1,...,ar},  
Vb={b1,...,bs},  
E: edges btw. Va and Vb 

a1 

a2 

a3 

a4 

a5 

a6 

b1 

b2 

b3 

b4 

b5 

b6 

b7 



The Partner-Unit Problem 

a1 

a2 

a3 

a4 

a5 

a6 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

Replace connections by connections to units 

ai bj 

sensors zones 



The Partner-Unit Problem 

Bipartite graph G=(V,E) V=VaVb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb 

a1 

a2 

a3 

a4 

a5 

a6 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

Replace connections by connections to units 

ai bj u 

OR 



The Partner-Unit Problem 

Bipartite graph G=(V,E) V=VaVb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb 

a1 

a2 

a3 

a4 

a5 

a6 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

Replace connections by connections to units 

ai bj u OR 

v 



a1 

a2 

a3 

a4 

a5 

a6 

b2 

b3 

b4 

b5 

b6 

b7 

b1 

a1 

a2 

a3 

a4 

a5 

a6 

b2 

b3 

b4 

b5 

b6 

b7 

b1 

u1 

u2 

u3 

u4 

CONSTRAINTS: 

•Each ai or bi is connected to exactly 1 unit. 
•Each unit connected to: 
    -  at most 2 other units, 
    -  at most 2 elements from Va, 
    -  at most 2 elements from Vb,  
•If ai connected to bj in G,  
                 then dist(ai,bi)≤3 in G*   

G*  

G  

U={u1,u2,u3,u4} 

The Partner-Unit Problem 



Assume one node a is connected to 7 nodes 

b1,...,b7 in G. Then instance G is unsolvable.  

 
a 

b2 

b3 

b4 

b5 

b6 

b7 

b1 

Thus, no vertex can have more than 6 neighbours in G. 

A No-Instance of Partner-Unit 



The PU Problem(s) 

PU DECISION PROBLEM (PUDP):  

    Given G, is there a G* satisfying the constraints?  

    (Number of units irrelevant.) 

 

 PU SEARCH PROBLEM (PUSP) 

     Given G, find a suitable G* whenever possible. 

  

 PU OPTIMIZATION PROBLEM (PUOP) 

     Given G, find a suitable G* with minimum  

     number of  units |U| (whenever possible).  

      



PUDP  

 

ASSUMPTION:  G is connected.  
 

Note: This assumption can be made wlog, 

because the PUDP  can be otherwise 

decomposed into a conjunction of independent 

PUDPs, one for each component. 

 

Lemma 1: If G is connected and solvable, then there exists 

a solution G* in which the unit-graph UG=G*[U] is 

connected. 



Topology of the Unit-Graph 

Lemma 2: If G is connected and solvable, then there exists 

a solution G* whose unit graph is a cycle. 

u1 

u2 

u3 

u4 

u1 

u2 

u3 

u4 

Note: We still don’t know |U|, but we may just try all cycles 
            of length max(|Va|,|Vb|)/2   to  length |Va|+|Vb|. 
            There are only linearly many! (Guessable in logspace) 



Theorem:   
 

  Assume G is solvable through solution G* with  |U|=n and 
having  
  unit function f . Then: 
 

       (1)  pw(G) ≤ 11 
 

       (2)  tw(G) ≤  5 
 

       (3) There is a path decomposition T=(W,A) 
             that can be locally check to witnss PUDP solution G* 

Result 
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G*  

U={u1,u2,u3,u4} 

a1, a2, a3, a4, b1, b2, b3, 

b4  

a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, 

b6  

a1, a2, a5, a6, b1, b2, b3, b5, b6 

,b7 

T 

t1 

t2 

t3 

Example 
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a5 

a6 

b2 

b3 

b4 

b5 

b6 

b7 

b1 

u1 

u2 

u3 

u4 

G*  

U={u1,u2,u3,u4} 

a1, a2, a3, a4, b1, b2, b3, 

b4  

a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, 

b6  

a1, a2, a5, a6, b1, b2, b3, b5, b6 

,b7 

T 

t1 

t2 

t3 

Note: We cannot do better, thus the bound 11 is actually tight! 

Example 
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a6 

b2 

b3 

b4 

b5 

b6 

b7 

b1 

u1 

u2 

u3 

u4 

U={u1,u2,u3,u4} 

a1, a2, a3, a4 

a1, a2, a3, a4, a5  

a1, a2, a5, a6,  

T 

t1 

t2 

t3 

a1, 

b1 

a1, 

b2 
a2, b1 …… 

…… …… 

…… …… 

We now show  (2)  
Strip off the Vb-elements and put them into separate bags. 

Note: Other examples show, we cannot do better, thus the bound 5 is actually tight 

Example 



Example for lower bound 5 

a1 

a2 b2 

b3 a3 

b1 

b5 

b4 a4 

a5 

b6 a6 

all edges …… …… 

tw=5 

G 

Example 



a1 

a2 b2 

b3 a3 

b1 

b5 

b4 a4 

a5 

b6 a6 

u1 

u2 

u3 

… and this G is actually solvable:  

Example for lower bound 5 



Result 

Theorem :  PUDP is in polynomial time and is solvable by 

dynamic programming techniques.  

QED 



Name Sensors Zones Edges Cost CSP DECPUP 

dbl-20 28 20 56 14 * 0.01 

dbl-40 58 40 116 29 * 0.05 

dbl-60 88 60 176 44 * 0.08 

dblv-30 28 30 92 15 * 65.49 

dblv-60 58 60 192 30 * * 

triple-30 40 30 78 20 * 0.50 

triple-34 40 34 93 / * * 

grid-90 50 68 97 34 * 0.03 

Partner Units Results 



Case N>2 

For constant N totally open.  Could well be NP-hard.  
In fact, Unit Graph  does not need to have bounded treewidth! 
 
If N is not-constant, then NP-complete:  
 
For Siemens, it seems that very small values of N are 
relevant.   



Outline of PART II 

Beyond Tree Decompositions 

Applications to Databases and CSPs 

Structural and Consistency Properties 



Outline of PART II 

Beyond Tree Decompositions 

Applications to Databases and CSPs 

Structural and Consistency Properties 



Beyond Treewidth 

Treewidth is currently the most successful measure of 

graph cyclicity. It subsumes most other methods. 

However, there are “simple”  graphs that are heavily 

cyclic. For example, a clique. 

 

   



Beyond Treewidth 

Treewidth is currently the most successful measure of 

graph cyclicity. It subsumes most other methods. 

However, there are “simple”  graphs that are heavily 

cyclic. For example, a clique. 

 

   

There are also problems whose structure  

 is better described  by hypergraphs  

rather than by graphs… 

Y 

Z 

U 

P 

V 

W 



Database queries 

Database schema  (scopes): 
Enrolled (Pers#, Course, Reg-Date) 

Teaches (Pers#, Course, Assigned) 

Parent (Pers1, Pers2) 

 

Is there any teacher having a child enrolled in 
her course? 

 ans    Enrolled(S,C,R)  Teaches(P,C,A)    
 Parent(P,S) 
 



Database queries 

 

 

 

  

 

 

QUERY: Is there any teacher having a child enrolled in her 
course? 

 ans    Enrolled(S,C,R)  Teaches(P,C,A)   
  Parent(P,S) 
 

John     Algebra   2003 

Anita Logic        2003 

Sara      DB           2002 

Luisa      DB           2003 

………     …..          …….   

Nicola      Algebra    March 

Georg   Logic       May  

Frank       DB          June 

Mimmo    DB          May 

………       …..          …….   

Mimmo    Luisa 

Georg      Anita   

Frank       Sara 

  

………        …..     

Enrolled Teaches Parent 



Queries and Hypergraphs 

Ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S) 
 

S 

C 

A R 

P 



Queries and Hypergraphs (2) 

Database schema (scopes): 
Enrolled (Pers#, Course, Reg-Date) 

Teaches (Pers#, Course, Assigned) 

Parent (Pers1, Pers2) 

 

 

Is there any teacher whose child attend some 
course? 
Ans  Enrolled(S,C’,R)  Teaches(P,C,A)    

  Parent(P,S) 

 

S 

C’ 

A R 

P 

C 



A more intricate query 

),','(),',()',',,,(

)','()','()',',(),(

),(),',()',',',,(),,',,(

FXBqFXBpYXYXJj

ZYhZXgZFFfZYe

ZXdZCCcFCYYSbFCXXSaans







S 

X X’ C F 

Y Y’ C’ F’ 

Z Z’ J 

B B’ 



Populating datawarehouses 



Constraint Satisfaction Problems 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

1h: L I M B O 

L I N G O 

P E T R A 

P A M P A 

P E T E R       

1v: 

and so on 

Crossword puzzle 



Constraint Satisfaction Problems 

 Set of variables {X1,…,X26} 

 Set of constraint scopes  

r1h(X1, X2, X3, X4, X5) 

r1v(X1, X7, X11, X16, X20) 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

r1h: 

 Set of constraint relations 

L I M B O 

L I N G O 

P E T R A 

P A M P A 

P E T E R       

r1v: 



Problems on Electric Circuits 



A problem from Nasa 

 

 

 

 

680 constraints  

579 variables 

 ... 

 cid_260(Vid_49, Vid_366, Vid_224), 
cid_261(Vid_100, Vid_391, Vid_392), 
cid_262(Vid_273, Vid_393, Vid_246), 
cid_263(Vid_329, Vid_394, Vid_249), 
cid_264(Vid_133, Vid_360, Vid_356), 
cid_265(Vid_314, Vid_348, Vid_395), 
cid_266(Vid_67, Vid_352, Vid_396), 
cid_267(Vid_182, Vid_364, Vid_397), 
cid_268(Vid_313, Vid_349, Vid_398), 
cid_269(Vid_339, Vid_348, Vid_399), 
cid_270(Vid_98, Vid_366, Vid_400), 
cid_271(Vid_161, Vid_364, Vid_401), 
cid_272(Vid_131, Vid_353, Vid_234), 
cid_273(Vid_126, Vid_402, Vid_245), 
cid_274(Vid_146, Vid_252, Vid_228), 
cid_275(Vid_330, Vid_360, Vid_361), 
 
... 

Part of relations for the Nasa problem 



Configuration problems (Renault example) 

Renault Megane configuration 
[Amilhastre, Fargier, Marquis AIJ, 2002] 

Used in CSP competitions and as a 

benchmark problem 

Variables encode type of engine, country, 

options like air cooling, etc.  

99 variables with domains ranging from 2 

to 43. 

858 constraints, which can be 

compressed to 113 constraints. 

The maximum arity is 10 (hyperedge 

cardinality/size of constraint scopes) 

Represented as extensive relations, the 

113 constraints comprise about 200 000 

tuples 

2.84 × 1012 solutions. 



Further examples… 

In the third part 



Representing Hypergraphs via Graphs 

S 

C 

A R 

P 

C 

A R 

S 
P 

Hypergraph H(Q) Primal graph G(Q) 



Hypergraphs vs Graphs 

S 

C’ 

A R 

P 

C C 

A 

R 

S 
P 

C’ 

An acyclic hypergraph Its cyclic primal graph 



Hypergraphs vs Graphs 

S 

C’ 

A R 

P 

C C 

A 

R 

S 
P 

C’ 

There are two cliques. 

We cannot know where they come from 



Further Graph Representations 

X1 

S1 

S2 

S3 

X2 

X3 

X4 

X5 
S4 

S1 

S2 

S3 

S4 

X1 

X2 

X2 

X2 Dual Graph 

Decther, 92 

Incidence Graph 

(Hidden variable encoding) 

Seidel, 81 

S1 

S2 

S3 

S4 

X1 

X2 

X3 

X4 

X5 
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α-acyclic Hypergraphs 

ah 

aq 

hi 
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hkl 

hkp lo mo 
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mn 

Note the connectedness 

condition for a 

Acyclic hypergraphs may 

contain cycles 



Teaches(P,C,A) 

Parent(P,S) 

Again on the simplest query 

Ans  Enrolled(S,C’,R)  Teaches(P,C,A)  Parent(P,S) 
 

S 

C’ 

A R 

P 

C 

Enrolled(S,C’,R) 

Join Tree α-acyclic hypergraph 



  

Input: Hypergraph H 

Method: Apply the following two rules as long as possible: 

   (1) Eliminate vertices that are contained in at most one hyperedge 

   (2) Eliminate hyperedges that are empty or contained in other hyperedges 
 

H is (α-)acyclic iff the resulting hypergraph empty 

Proof:  Easy by considering leaves of join tree  

Deciding Hypergraph Acyclicity 

Can be done in linear time 

by GYO-Reduction 

[Yu and Özsoyoğlu, IEEE Compsac’79; see also Graham, Tech Rep’79] 



Y 

Z 

U 

P 

V 

W 

Y 

Z 

U 

Y 

Z 

U 

H*= (ø,ø) 

GYO reduct 

H 

rule 1  rule 2  

rule 1  

rule 2  

Example of GYO-Reduction 



 1 

 2  3  4 

 5 

 6  7 

 8 

 9 

 0 
 6 

 9 

 0 

Example of GYO-irreducible Hypergraph 



Tree decompositions as Join trees 

Tree decomposition as a way of clustering vertices to 

obtain a join tree (acyclic hypergraph) 

Implicitly defines  an equivalent acyclic instance 
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Graph width 2 tree decomposition Acyclic instance 



From graphs to acyclic hypergraphs 

The “degree of cyclicity” is the treewidth  
(maximum number of vertices in a cluster -1) 

In this example, the treewidth is 2 

That’s ok! We started with a cyclic graph… 
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Input Graph width 2 tree decomposition 
Equivalent acyclic 

instance 



Not good for hypergraph-based problems 

Here the input instance is acyclic (hence, easy) 

However, its treewidth is 2! 

(similar troubles for all graph representations) 
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Input: acyclic hypergraph Primal graph width-2 tree decomposition 



A different notion of “width” 

Exploit the fact that a single hyperedge covers many 

vertices 

Degree of cyclicity: maximum number of hyperedges 

needed to cover every cluster 
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Input: acyclic instance One hyperedge covers each cluster: width 1 



Generalizing acyclicity and treewidth 

Tree decomposition as a way of clustering vertices to obtain a join 

tree (acyclic hypergraph) 

Implicitly defines an equivalent acyclic instance 

Width of a decomposition: maximum number of hyperedges needed 

to cover each bag of the tree decomposition 

Generalized Hypertree Width (ghw): minimum width over all 

possible decompositions 

also known as (acyclic) cover width 

 

Generalizes both acyclicity and treewidth: 

Acyclic hypergraphs are precisely those having ghw = 1 

The “covering power” of a hyperedge is always greater than the 
covering power of a vertex (used in the treewidth) 

[Gottlob, Leone, Scarcello, JCSS’03] 



Tree Decomposition of a Hypergraph 
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2 hyperedges suffice for each bag 
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Generalized Hypertree Decomposition 

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

h8(1,11), h15(1,17,19)

h4(5,7), h5(6,8,9) 

h2(_,4,5,6),  h3(3,4,7,8) h10(12,_,19), h14(16,17,18)

h9(11,12,18), h15(_,17,19)h1(1,2,3), h2(1,4,5,6)

h9(_,12,18), h13(15,16,19)

h10(12,13,19),  h12(14,15,18)h6(7,9,10)

Generalized hypetree decomposition of width 2 

Notation:  

• label decomposition vertices by hyperedges 

• omit hyperedge elements not used for bag covering 

(hidden elements are replaced by “_”) 
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a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Generalized Hypertree Decompositions 



Basic Conditions(1/3) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

  We group edges 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

Original (direct) definition 



Basic Conditions(2/3) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

 Edges can partially  
   be used 

j(_,_,_,X’,Y’), f(F,F’,Z’) 



Connectedness Condition(3/3) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 



Computational Question 

Can we determine in polynomial time whether             

ghw(H) < k  for constant k ?  



Computational Question 

Can we determine in polynomial time whether             

ghw(H) < k  for constant k ?  

Bad news:  ghw(H) < 4?  NP-complete 

           

                             [Gottlob, Miklós, and Schwentick, J.ACM‘09] 



Hypertree Decomposition (HTD) 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Does not appear in 

the subtrees rooted at v 

J X Y 

HTD = Generalized HTD +Special Condition 

Each variable not used  

at some vertex v 

[Gottlob, Leone, Scarcello, PODS’99; JCSS’02] 



Special Condition 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Each variable not used  

at some vertex v 

Does not appear in 

the subtrees rooted at v 

J X Y 



Special Condition 

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’) 

j(J,X,Y,X’,Y’) 

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’) 

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’) 

p(B,X’,F) q(B’,X’,F) 

Thus, e.g., all available variables in the 

root must be used 



Positive Results on Hypertree Decompositions 

For fixed k, deciding whether  
hw(Q)  k is in polynomial time (LOGCFL) 

Computing hypertree decompositions is   
feasible in polynomial time (for fixed k). 

    But:  FP-intractable wrt k:   W[2]-hard. 



Relationship  GHW vs HW 

Observation: 

ghw(H)  = hw(H*) 

 

where H* = H  {E´| E in edges(H): E´  E}  

  ghw(H) <= 3hw(H)+1 

Exponential! 

 Approximation Theorem [Adler,Gottlob,Grohe  ‚05] : 

GHW and HW identify the same  

set of classes having bounded width  



Game Characterization: Robber and Marshals 

V P R 

S 

X Y 

Z T U 

W 



V 

Marshals block hyperedges 

V P R 

S 

X Y 

Z T U 

W 



Game Characterization: Robber and Marshals 

A robber and k marshals play the game on a 

hypergraph 

 

The marshals have to capture the robber  

 

The robber tries to elude her capture, by running 

arbitrarily fast on the vertices of the hypergraph 

 



Robbers and Marshals: The Rules 

Each marshal stays on an edge of the hypergraph 
and controls all of its vertices at once 

The robber can go from a vertex to another vertex 
running along the edges, but she cannot pass 
through vertices controlled by some marshal 

The marshals win the game if they are able to 
monotonically shrink the moving space of the robber, 
and thus eventually capture her 

Consequently, the robber wins if she can go back to 
some vertex previously controlled by marshals 



Step 0: the empty hypergraph 

V P R 

S 

X Y 

Z T U 

W 



Step 1: first move of the marshals 

V P R 
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X Y 

Z T U 

W 



Step 2a: shrinking the space 

V P R 
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X Y 

Z T U 

W 



Step 2a: shrinking the space 

V P R 

S 

X Y 

Z T U 

W 



Step 2a: shrinking the space 

V P R 

S 

X Y 

Z T U 

W 



The capture 

V P R 

S 

X Y 

Z T U 

W 



V 

A different robber’s choice 

V P R 

S 

X Y 

Z T U 

W 



V 

Step 2b: the capture 

V P R 
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X Y 

Z T U 
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V 



V P  R 
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X Y 

Z T U 
W 

Strategies and Decompositions 
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V V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

First choice of the two marshals 



V V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

A possible choice for the robber 



V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

f(R,P,V) 

V 

The capture 



V V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

f(R,P,V) 

The second choice for the robber 



V V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

f(R,P,V) g(X,Y), c(T,Z,U) 

The marshals corner the robber 



V V P R 

S 

X Y 

Z T U 
W 

a(S,X,T,R), b(S,Y,U,P) 

f(R,P,V) g(X,Y), c(T,Z,U) 

g(X,Y), d(W,X,Z) 

The capture 



Let H be a hypergraph. 

Theorem: H has hypertree width  k if and only 
if k  marshals have a winning strategy on H. 

Corollary: H is acyclic if and only if one marshal 
has a winning strategy on H. 

 

Winning strategies on H correspond to hypertree 
decompositions of H and vice versa. 

R&M Game and Hypertree Width 

[Gottlob, Leone, Scarcello, PODS’01, JCSS’03] 



A Useful Tool: Alternating Turing Machines 

Generalization of non-deterministic Turing machines 

There are two special states:      and    

Acceptation: Computation tree 

ALOGSPACE = PTIME 

$ "



ATMs and LOGCFL 

LOGCFL: class of problems/languages that are 

logspace-reducible to a CFL 

Admit efficient parallel algorithms 

 

NPPACNCNCACSACLOGCFLNLAC 2110  

Characterization of LOGCFL  [Ruzzo ‘80]: 

 

LOGCFL = Class of all problems solvable with a logspace ATM 

                   with polynomial tree-size 

LOGCFL 



Coming back to Marshals… 

S

R

C1 Ci

CR

...



A polynomial algorithm: ALOGSPACE 

S

R

C1 Ci

CR

...

Marshals

Robber



S

R

C1 Ci

CR

...

Marshals

Robber

Monotonicity:  E edges(CR): (EUR)  US 

 

Strict shrinking: (US)  CR  

• LOGSPACE checkable 

• Polynomial proof-tree 

 

 Once I have guessed R, how to guess the next marshal position S ? 

Actually, LOGCFL 



Outline of PART II 

Beyond Tree Decompositions 

Applications to Databases and CSPs 

Structural and Consistency Properties 



Some hypergraph based problems 

HOM: The homomorphism problem 

CSP:  Constraint satisfaction problem 

BCQ:  Boolean conjunctive query evaluation 

Important problems in different areas. 
All these problems are hypergraph based. 

 
[e.g., Kolaitis & Vardi, JCSS’98] 



The Homomorphism Problem 
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Example: graph colorability 
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Example: graph colorability 
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h 
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red green 

red 

red 

red 

 green 
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Complexity: HOM is NP-complete 

Membership: Obvious, guess h. 

Hardness:  Transformation from 3COL. 

(well-known, independently proved in various contexts) 
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Graph 3-colourable iff HOM(A,B ) yes-instance. 
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Conjunctive Database Queries 

DATABASE:  

 

 

  

 

 

 

QUERY: 

      Is there any teacher having a child enrolled in her course? 

 

  ans    Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S) 
 

John      Algebra     2003 

Robert  Logic         2003 

Mary     DB             2002 

Lisa      DB             2003 

……      …..            …….   

McLane    Algebra    March 

Verdi        Logic        May  

Lausen     DB           June 

Rahm       DB            May 

………      …..          …….   

McLane    Lisa 

Verdi         Robert   

Rahm       Mary 

  

………        …..     

Enrolled Teaches Parent 



Conjunctive Database Queries 
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QUERY: 
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Rahm       Mary 

  

………        …..     

Enrolled Teaches Parent 

homomorphism 



CSPs as Homomorphism Problems 

 Set of variables {X1,…,X26} 

 Set of constraint scopes  

r1h(X1, X2, X3, X4, X5) 

r1v(X1, X7, X11, X16, X20) 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

r1h: 

 Set of (finite) 

constraint relations 

L I M B O 

L I N G O 

P E T R A 

P A M P A 

P E T E R       

r1v: 



CSPs as Homomorphism Problems 
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CSPs as Homomorphism Problems 
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r1h: 
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Endomorphisms and cores 

Sometimes the two structures coincide 

Core: minimal substructure to which there is an 

endomorphism 

Cores are isomorphic to each other 



Endomorphisms and cores 

Sometimes the two structures coincide 

Core: minimal substructure to which there is an 

endomorphism 

Cores are isomorphic to each other 



Endomorphisms and cores 

Sometimes the two structures coincide 

Core: minimal substructure to which there is an 

endomorphism 

Cores are isomorphic to each other 

Two isomorphic 

cores 



Cores and equivalent instances 

Can be used to simplify problems 

There is a homomorphism from A to B if and only if 

there is a homomorphism from a/any core of A to B 

Sometimes terrific simplifications: 

 

 

 

 

 

This undirected grid is equivalent to a single edge. 

That is, it is equivalent to an acyclic instance! 

 



Structurally Restricted CSPs 



Structurally Restricted CSPs 

The hypergraph is 

acyclic 



Structurally Restricted CSPs 

We have seen that Acyclicity is efficiently recognizable 

We shall see that Acyclic CSPs can be efficiently solved 

 

 

The hypergraph is 

acyclic 



Basic Question 

Is there a homomorphism from     to     ? 

 INPUT: 
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LOGCFL-complete 
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Is there a homomorphism from     to     ? 
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Feasible in polynomial time O(||   || ||   || log||   ||) 
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Basic Question (on Acyclic Instances) 

Is there a homomorphism from     to     ? 

 INPUT: 

Feasible in polynomial time O(||   || ||   || log||   ||) 

LOGCFL-complete 

[Gottlob, Leone, Scarcello, J.ACM’00] 



A Polynomial-time Algorithm 

HOM: The homomorphism problem 

CSP:   Constraint satisfaction problem 

BCQ:  Boolean conjunctive query evaluation 

Yannakakis’s Algorithm (Acyclic structures): 

 

• Dynamic Programming over a Join Tree, 

where each vertex contains the relation associated 

with the corresponding hyperedge 

 

• Therefore, if there are more constraints over the 

same relation, it may occur (as a copy) at different 

vertices 
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«Answering» Acyclic Instances 

HOM: The homomorphism problem 

CSP:   Constraint satisfaction problem 

BCQ:  Boolean conjunctive query evaluation 

Solutions can be computed by adding a top-down  
phase to Yannakakis’ algorithm for acyclic instances 

 

 

 

Yannakakis’s Algorithm (Acyclic structures): 

Dynamic Programming over a Join Tree 
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A solution:  Y=3, P=7, Z=8, U=9, W=4, V=9 



Computing the result (Acyclic) 

The result size can be exponential (even in the acyclic case). 

Even when the result is of polynomial size, it is in general hard 
to compute. 

In case of  acyclic instances, the result can be computed in time 
polynomial in the result size  
(and with polynomial delay: first solution, if any, in 
polynomial time, and each subsequent solution within 
polynomial time from the previous one). 

This will remain true for the subsequent generalizations of 
acyclicity. 

Add a top-down phase to Yannakakis’ algorithm for acyclic 
instances, thus obtaining a full reducer, and join the partial 
results (or perform a backtrack free visit) 

 

 

 



Decomposition Methods 



Decomposition Methods 

Transform the hypergraph into an acyclic one:  

   Organize its edges (or nodes) in clusters 

Arrange the clusters as a tree,         

by satisfying the connectedness condition 

 



(Generalized) Hypertree Decompositions 

Transform the hypergraph into an acyclic one:  

   Organize its edges (or nodes) in clusters 

Arrange the clusters as a tree,         

by satisfying the connectedness condition 

 



(Generalized) Hypertree Decompositions 

Transform the hypergraph into an acyclic one:  

   Organize its edges (or nodes) in clusters 

Arrange the clusters as a tree,         

by satisfying the connectedness condition 

 

Each cluster can be seen as a subproblem 



(Generalized) Hypertree Decompositions 

Each cluster can be seen as a subproblem 

Relations: 

1V 20H 1H {1V,20H}= 1V          20H   

Relations: 



Toward an equivalent acyclic instance 

• Each cluster can be seen as a subproblem 

• Associate each subproblem with a fresh constraint 



Toward an equivalent acyclic instance 

• Each cluster can be seen as a subproblem 

• Compute solutions for subproblems (exponential dependency on the width) 

• Associate each subproblem with a fresh constraint 

• Get an equivalent problem (all original constraints are there…) 



The structure of the equivalent instance 

A join tree of the 

new instance 

• Each cluster can be seen as a subproblem 

• Compute solutions for subproblems (exponential dependency on the width) 

• Associate each subproblem with a fresh constraint 

• Get an equivalent problem (all original constraints are there…) 



An acyclic equivalent instance 

Solve the acyclic instance with any known technique 

• Each cluster can be seen as a subproblem 

• Compute solutions for subproblems (exponential dependency on the width) 

• Associate each subproblem with a fresh constraint 

• Get an equivalent problem (all original constraints are there…) 



Tree Projection (idea) 

Generalization where suproblems are arbitrary 

(not necessarily clusters of k edges or vertices) 

 

 

 

 

 

 

 

 

More information in the appendix 

 

Structure Sandwich acyclic hypergraph 

(Tree Projection) 
Available 

Subproblems 



Hypertrees for Databases 

Weighted HDs, 

which exploit 

quantitative data, 

too. 



Inside PostgreSQL 



Some experiments 



Large width example: Nasa problem 

 

 

 

 

680 relations  

579 variables 

 ... 

 cid_260(Vid_49, Vid_366, Vid_224), 
cid_261(Vid_100, Vid_391, Vid_392), 
cid_262(Vid_273, Vid_393, Vid_246), 
cid_263(Vid_329, Vid_394, Vid_249), 
cid_264(Vid_133, Vid_360, Vid_356), 
cid_265(Vid_314, Vid_348, Vid_395), 
cid_266(Vid_67, Vid_352, Vid_396), 
cid_267(Vid_182, Vid_364, Vid_397), 
cid_268(Vid_313, Vid_349, Vid_398), 
cid_269(Vid_339, Vid_348, Vid_399), 
cid_270(Vid_98, Vid_366, Vid_400), 
cid_271(Vid_161, Vid_364, Vid_401), 
cid_272(Vid_131, Vid_353, Vid_234), 
cid_273(Vid_126, Vid_402, Vid_245), 
cid_274(Vid_146, Vid_252, Vid_228), 
cid_275(Vid_330, Vid_360, Vid_361), 
 
... 

Part of relations for the Nasa problem 



Nasa problem: Hypertree 

cid_198, cid_269, cid_374, cid_421, cid_563, cid_666 

cid_216, cid_547

...

... ...

cid_216, cid_218, cid_375

cid_193, cid_216, cid_218

cid_265 cid_268

cid_160, cid_216, cid_218

cid_333 cid_296

Part of hypertree for the Nasa problem  

Best known hypertree-width for the Nasa problem is 22 

 



Further Structural Methods 

Many proposals in the literature, besides (generalized) hypertree 

width (see [Gottlob, Leone, Scarcello. Art. Int.’00]) 

For the binary case, the method based on tree decompositions (first 

proposed as heuristics in [Dechter and Pearl. Art.Int.’88 and Art.Int.‘89])   

is the most powerful [Grohe. J.ACM’07] 

Let us recall some recent proposals for the general (non-binary) 

case: 

Fractional hypertree width [Grohe and Marx. SODA’06] 

Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS’08] 

Component Decompositions [Gottlob,Miklòs,and Schwentick. J.ACM’09] 

Greedy tree projections [Greco and Scarcello, PODS’10, ArXiv’12] 

Computing a width-k decomposition is in PTIME for all of them  

(for any fixed k>0). 

If we relax the above requirement, we can consider fixed-parameter 

tractable methods. If the size of the hypergraph structure is the fixed 

parameter, the most powerful is the Submodular width [Marx. STOC’10] 

 



Heuristics for large width instances (CSPs) 

1. Computing decompositions 

• Heuristics to get variants of (hyper)tree decompositions 

2. Evaluating instances 

• Computing all solutions of the subproblems involved at 
each node may be prohibitive 

• Memory explosion 

Solution: combine with other techniques. E.g., in CSPs, 

use (hyper)tree decompositions for bounding the search 
space [Otten and Dechter. UAI‘08] 

use (hyper)tree decompositions for improving the performance of 
consistency algorithms (hence, speeding-up propagations) 
[Karakashian, Woodward, and Choueiry. AAAI’13] 

… 

 



Alternative constraint encodings 

Some tractability results hold only on constraint 

encodings where allowed tuples are listed as finite 

relations 

Alternative encodings make sense 

For instance, 

constraint satisfaction with succinctly specified relations 
[Chen and Grohe. J.CSS’10] 

see also [Cohen, Green, and Houghton. CP’09] 

 



Outline of PART II 

Beyond Tree Decompositions 

Applications to Databases and CSPs 

Structural and Consistency Properties 



Local (pairwise) consistency 

 

For every relation/constraint: 

each tuple matches some tuple in every other relation 

Can be enforced in polynomial time:  

take the join of all pairs of relations/constraints until a 

fixpoint is reached, or some relation becomes empty 

 

See [Beeri, Fagin, Maier, and Yannakakis. J.ACM’83] or 
[Janssen, Jégou, Nougier, and Vilarem. IEEE WS Tools for AI’89], 
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Enforcing pairwise consistency 
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3  8  9 

9  3  8 

8  3  8 

3  8  4 

3  8  3 

8  9  4 

9  4  7 
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3  7 
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6  7 

d: 

9  8   

9  3 

9  5  

t: 

3  8  9 

9  3  8 

8  3  8 

3  8  4 

3  8  3 

8  9  4 

9  4  7 

  

r: 

Enforcing pairwise consistency 



d(Y,P) r(Y,Z,U) 

s(Z,U,W) t(V,Z) 

3  8  9 

9  3  8 

8  3  8 

3  8  4 

3  8  3 

8  9  4 

9  4  7 

  

s: 

3  8   

3  7 

5  7  

6  7 

d: 

9  8   

9  3 

9  5  

t: 

3  8  9 

9  3  8 

8  3  8 

3  8  4 

3  8  3 

8  9  4 

9  4  7 

  

r: 

Enforcing pairwise consistency 

Further steps are useless, because the instance is now 

locally consistent 

On acyclic instances,  

same result as Yannakakis’ algorithm on the join tree! 



Easy on Acyclic Instances 

Computing a join tree 
(in linear time, and logspace-complete [GLS’98+ SL=L]) 
may be viewed as a clever way to enforce pairwise 
consistency 

 

 

 

 

Cost for the computation of the locally consistent 
instance: 
 

N.B. n is the (maximum) number of tuples in a relation 
and may be very large (esp. in database applications) 

 

O(m n2 log n)  vs  O(m n log n) 
 



Global and pairwise Consistency 

Yannakakis’ algorithm actually solves acyclic instances 
because of their following crucial property: 

Local (pairwise) consistency  Global consistency 
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83] 

Global consistency: Every tuple in each relation can be 
extended to a full (global) solution 

In particular, if all relations/constraints are pairwise 
consistent, then the result is not empty 

Not true in the general case: 
ans:- a(X,Y)  b(Y,Z)  c(Z,X) 

 

1  1   

2  2 

a 

1  1   

2  2 

b 

1  2   

2  1 

c 

X 

Y Z 



Consistency in Databases and CSPs 

Huge number of works in the database and constraint 

satisfaction literature about different kinds (and levels) of 

consistencies 

(e.g., recall the seminal paper [Mackworth. Art. Int., 1977] 

or [Beeri, Fagin, Maier, and Yannakakis. J.ACM’83], 

[Dechter. Art. Int., 1992], and [Dechter and van Beek. TCS’97]) 

Most theoretical papers in the database community 

Also practical papers in the constraint satisfaction 

community: 

Local consistencies are crucial for filtering domains and 
constraints 

Allow tremendous speed-up in constraint solvers 

Sometimes allow backtrack-free computations 
 



Global consistency in Databases and CSPs 

Global consistency (GC): Every tuple in each relation can be 
extended to a full (global) solution 
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83] 

For instances with m constraints, it is also known as  

m-wise consistency [Gyssens. TODS’86] 

relational (i;m)-consistency [Dechter and van Beek. TCS’97] 

R(*,m)C [Karakashian, Woodward, Reeson, Choueiry and 
Bessiere. AAAI’10] 

… 

Remark: 

In the CSP literature, “global consistent network” sometimes 
means “strongly n-consistent network”, which is a different 
notion (see, e.g., [Constraint Processing, Dechter, 2003]). 



On the desirability of Global Consistency 

If an instance is globally consistent, we can immediately 

read partial solutions from the constraint/database 

relations 

full solutions are often computed efficiently 

can be exploited in heuristics by constraint solvers. 

For a very recent example, see 

[Karakashian, Woodward, and Choueiry. AAAI’13]: enforce 
global consistency on groups of subproblems (tree-like 
arranged) for bolstering propagations 
 

 



When pairwise consistency entails GC 

We have seen that it happens in acyclic instances… 

Is it the case that this condition is also necessary? 

What is the real power of local (pairwise) consistency? 

i.e., relational arc-consistency (more precisely,  

arc-consistency on the dual graph) 

Also known as  
- 2-wise consistency [Gyssens. TODS’86], 
- R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and 

Bessiere. AAAI’10]  
- … 

A 

D 

B 

C F E 



When pairwise consistency entails GC 

We have seen that it happens in acyclic instances… 

The classical result that this is also necessary  
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83] 

actually holds only if relations cannot be used in more than one 
constraint/query atoms 

In fact, it works even on some cyclic instances 

We now have a precise structural characterization of the 

instances where local consistency entails global 

consistency 

it applies to the binary case, too 

it applies to the more general case where pairwise 
consistency is enforced between each pair of arbitrary 
defined subproblems (see appendix)! 

[Greco and Scarcello. PODS’10] 
 



The Power of Pairwise Consistency 

Let us describe when local (pairwise) consistency (LC) 

entails global consistency (GC), on the basis of the 

constraint structure 

That is, we describe the condition such that: 

whenever it holds, LC entails GC for every possible CSP 
instance (i.e., no matter on the constraint relations) 

if it does not hold, there exists an instance where LC fails 

 

For binary (or fixed arity) instances: if we are interested 

only in the decision problem (is the CSP satisfiable?) 

than this condition is the existence of an acyclic core 
[Atserias, Bulatov, and Dalmau. ICALP’07] 

 



The Power of Pairwise Consistency 

Does pairwise consistency entail global consistency in 

this case? 

A 

D 

B 

C 

e(A,B) 

e(A,C) 

e(D,C) 

e(D,B) 

Constraints 



The Power of Pairwise Consistency 

A B 

C D 

A B 

Does pairwise consistency entail global consistency in 

this case? 

Yes! No matter of the tuples in the constraint relation e 

Every constraint is a core of the instance 

e(A,B) 

e(A,C) 

e(D,C) 

e(D,B) 

Constraints 



The Power of Pairwise Consistency 

A B 

C D 

C D 

Does pairwise consistency entail global consistency in 

this case? 

Yes! No matter of the tuples in the constraint relation e 

Every constraint is a core of the instance 

e(A,B) 

e(A,C) 

e(D,C) 

e(D,B) 

Constraints 



tp-covering (acyclic version) 

The constraint e(X,Y) is tp-covered in an acyclic 

hypergraph if, 

add a fresh constraint e’(X,Y) (where e’ is a fresh relational 
symbol), 

a core of the new instance has an acyclic hypergraph 

 

Intuitively the “coloring” of e(X,Y) forces the core of the 

new structure to deal with the ordered pair (X,Y) 

Indeed, every core must contain e’(X,Y) 

Instead, the usual notion of the core does not preserve 

the meaning of variables  

this is crucial for computing solutions, but not for the 
decision problem 



The Power of Pairwise Consistency 

The constraint e(X,Y) is tp-covered in an acyclic 

hypergraph if, 

add a fresh constraint e’(X,Y) (where e’ is a fresh relational 
symbol), 

a core of the new instance has an acyclic hypergraph 

Local (pairwise) consistency entails Global 

consistency if and only if every constraint is  

tp-covered in an acyclic hypergraph 



tp-covering by Example 

The constraint e(X,Y) is tp-covered in an acyclic 

hypergraph if, 

add a fresh constraint e’(X,Y) (where e’ is a fresh relational 
symbol), 

a core of the new instance has an acyclic hypergraph 

A 

D 

B 

C F A B 

e(A,B) is tp-covered 

Note that e(F,C) does 

not occur in any core 



tp-covering by Example 

A 

D 

B 

C F D C F 

e(F,C) is tp-covered 

The constraint e(X,Y) is tp-covered in an acyclic 

hypergraph if, 

add a fresh constraint e’(X,Y) (where e’ is a fresh relational 
symbol), 

a core of the new instance has an acyclic hypergraph 



tp-covering by Example 

Here pairwise consistency solves the satisfaction 

problem 

The structure of any core is an undirected acyclic graph 

A 

D 

B 

C F E D C F E 



The power of Pairwise Consistency 

A 

D 

B 

C F E 

Here pairwise consistency solves the satisfaction 

problem 

The structure of any core is an undirected acyclic graph 

However, it does not entail global consistency 

There is an instance that is pairwise consistent but 

e(A,B) contains wrong tuples 

e(A,B) is not tp-covered: 

the core of the new structure 

is cyclic 



A generalization: Local k-consistency 

Consider subproblems of k constraints 

Local k-consistency: pairwise consistency over such (k-

constraints) subproblems 

Equivalent to relational k-consistency [Dechter and van Beek. 

TCS’97] 

 

 

 

 

See the appendix for a further generalization to arbitrary 

subproblems in the general framework of  

tree projections 

 

 

Local k-consistency entails Global consistency if 

and only if every constraint is tp-covered in a 

hypergraph having Generalized Hypertree width k 

[Greco and Scarcello. PODS’10] 
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Constraint Optimization Problems  

Classically, CSP: Constraint Satisfaction Problem 

However, sometimes a solution is  

enough to “satisfy” (constraints), 

but not enough to make (users) “happy” 

 

 

 

Hence, several variants of the basic CSP framework: 

E.g., fuzzy, probabilistic, weighted, lexicographic, penalty, 
valued, semiring-based, … 

Any solution  Any best  

(or at least good) solution  



Classical CSPs 

 Set of variables {X1,…,X26} 

 Set of constraint scopes  

r1h(X1, X2, X3, X4, X5) 

r1v(X1, X7, X11, X16, X20) 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

r1h: 

 Set of constraint relations 

L I M B O 

L I N G O 

P E T R A 

P A M P A 

P E T E R       

r1v: 



Puzzles for Experts… 

E.g., find the solution that minimizes the total number of vowels 

occurring in the words 

   The puzzle in general admits 
more than one solution... 



A Classification for Optimization Problems 

 Each mapping variable-value has a cost.  

  Then, find an assignment: 
Satisfying all the constraints, and  

Having the minimum total cost. 

  

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       



A Classification for Optimization Problems 

 Each mapping variable-value has a cost.  

  Then, find an assignment: 
Satisfying all the constraints, and  

Having the minimum total cost. 

 

 Each tuple has a cost.  

  Then, find an assignment: 
Satisfying all the constraints, and  

Having the minimum total cost. 

  

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       



A Classification for Optimization Problems 

 Each mapping variable-value has a cost.  

  Then, find an assignment: 
Satisfying all the constraints, and  

Having the minimum total cost. 

 

 Each tuple has a cost.  

  Then, find an assignment: 
Satisfying all the constraints, and  

Having the minimum total cost. 

 

 Each constraint relation has a cost.  

  Then, find an assignment: 
Minimizing the cost of violated relations. 

 

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       



Adapt the dynamic programming approach in (Yannakakis’81) 

 

A   B   E  F 
 

A1 B1 E1 F1 
A1 B1 E2 F2 

A   B   C  D 
 

A1 B1 C1 D1 
A1 B1 C2 D2 

A   B   H 
 

A1 B1 H1 
A2 B1 H2 

[Gottlob & Greco, EC‘07] 

CSOP: Tractability of Acyclic Instances 



Adapt the dynamic programming approach in (Yannakakis’81) 

 

A   B   E  F 
 

A1 B1 E1 F1 
A1 B1 E2 F2 

A   B   C  D 
 

A1 B1 C1 D1 
A1 B1 C2 D2 

A   B   H 
 

A1 B1 H1 
A2 B1 H2 

 With a bottom-up computation: 

 Filter the tuples that do not match 

 

CSOP: Tractability of Acyclic Instances 



Adapt the dynamic programming approach in (Yannakakis’81) 
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A   B   H 
 

A1 B1 H1 
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 With a bottom-up computation: 
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 Compute the cost of the best partial 

solution, by looking at the children 

 

cost(C/C1)=cost(D/D1)=0 
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Adapt the dynamic programming approach in (Yannakakis’81) 

 

A   B   E  F 
 

A1 B1 E1 F1 
A1 B1 E2 F2 

A   B   C  D 
 

A1 B1 C1 D1 
A1 B1 C2 D2 

A   B   H 
 

A1 B1 H1 
A2 B1 H2 

 With a bottom-up computation: 

 Filter the tuples that do not match 

 Compute the cost of the best partial 

solution, by looking at the children 

 

cost(C/C1)=cost(D/D1)=0 
cost(C/C2)=cost(D/D2)=1 
cost(E/E1)=cost(F/F1)=0 
cost(E/E2)=cost(F/F2)=1 

cost(A/A1)+ 
cost(B/B1)+ 
cost(H/H1)+ 
cost(C/C1)+ 
cost(D/D1)+ 
cost(E/E1)+ 
cost(F/F1) 

CSOP: Tractability of Acyclic Instances 



Adapt the dynamic programming approach in (Yannakakis’81) 

 

A   B   E  F 
 

A1 B1 E1 F1 
A1 B1 E2 F2 

A   B   C  D 
 

A1 B1 C1 D1 
A1 B1 C2 D2 

A   B   H 
 

A1 B1 H1 
A2 B1 H2 

 With a bottom-up computation: 

 Filter the tuples that do not match 

 Compute the cost of the best partial   

solution, by looking at the children 

 Propagate the best partial solution 

(resolving ties arbitrarily) 

 

C   D   E   F 
 

C1 D1 E1 F1 

CSOP: Tractability of Acyclic Instances 



1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

WCSP: Tractability of Acyclic Instances 

[Gottlob, Greco, and Scarcello, ICALP‘09] 



  The mapping:  
 

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

1 2 3 4 5 
 

P A R I S 

P A N D A 

L A U R A 

A N I T A       

6 
 

PARIS 

PANDA 

LAURA 

ANITA       

 Is feasible in linear time  

 Preserves the solutions 

 Preserves acyclicity 

WCSP: Tractability of Acyclic Instances 



Maximize the number of words placed 

in the puzzle 

In-Tractability of MAX-CSP Instances 

[Gottlob, Greco, and Scarcello, ICALP‘09] 



Maximize the number of words placed 

in the puzzle 

Add a “big” constraint with no tuple  

The puzzle is satisfiable   exactly one constraint is violated in the acyclic MAX-CSP  

In-Tractability of MAX-CSP Instances 



1. Consider the incidence graph 

2. Compute a Tree Decomposition 

Tractability of MAX-CSP Instances 



ah 

1,2,1H 

Tractability of MAX-CSP Instances 



ah 

1 2         1H 
 

P A      PARIS 

P A      PANDA 

L A       LAURA 

A N      ANITA  
 

A A     unsat 

A B     unsat  

...        unsat 

1,2,1H 

1 2       
 

P A 

P A 

L A  

A N        

Cost 1, 
otherwise cost 0 

Tractability of MAX-CSP Instances 



ah 

1,2,1H 

Cost 1, 
otherwise cost 0 

  The mapping:  
 

 Is feasible in time exponential in the width 

 Preserves the solutions 

 Leads to an Acyclic CSOP Instance 

1 2         1H 
 

P A      PARIS 

P A      PANDA 

L A       LAURA 

A N      ANITA  
 

A A     unsat 

A B     unsat  

...        unsat 

1 2       
 

P A 

P A 

L A  

A N        

In-Tractability of MAX-CSP Instances 
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Game Theory (in a Nutshell) 

Which actions have to be performed?  

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 
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Which actions have to be performed?  

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 



Non-Cooperative Games(1/3) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

2 0 

0 1 

out 

 John goes out Bob 

 home 

      John stays at home 

1 1 

0 0 

out 

 Bob goes out John 

 home 

      Bob stays at home 

 

Payoff maximization problem 



Non-Cooperative Games(2/3) 

 

Nash equilibria 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 
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0 1 

out 

 John goes out Bob 

 home 

      John stays at home 
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0 0 

out 

 Bob goes out John 
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      Bob stays at home 

 

Payoff maximization problem 
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Non-Cooperative Games(2/3) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

2 0 

0 1 

out 

 John goes out Bob 

 home 

      John stays at home 

1 1 

0 0 

out 

 Bob goes out John 

 home 

      Bob stays at home 

 

Payoff maximization problem 

 

Nash equilibria 



Non-Cooperative Games(3/3) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

Every game admits a mixed Nash equilibrium,  

 where players chose their strategies according to probability distributions 

   pure Nash equilibria 

 

Payoff maximization problem 

 

Nash equilibria 



Succint Game Representations 

Players: 

Maria, Francesco                                           

Choices:  

movie, opera If 2 players, then size = 22 

2 0 

0 1 

movie 

 Francesco, movie Maria 

 opera 

      Francesco, opera 



Succint Game Representations 

Players: 

Maria, Francesco, Paola 

Choices:  

movie, opera If 2 players, then size = 22 

If 3 players, then size = 23 

2 0 2 1 

0 1 2 2 

movie 

 Fmovie and Pmovie    Fmovie and Popera     Fopera and Pmovie       Fopera and Popera  Maria 

 opera 



Succint Game Representations 

Players: 

Maria, Francesco, Paola, Roberto, and Giorgio 

Choices:  

movie, opera If 2 players, then size = 22 

If 3 players, then size = 23 

If N players, then size = 2N 

… 

2 …….. …….. …….. 

0 …….. …….. …….. 

movie 

 Fmovie and Pmovie  and Rmovie and Gmovie     ……………………….. Maria 

 opera 



Succint Game Representations 

Players: 

Francesco, Paola, Roberto, Giorgio, and Maria 

Choices:  

movie, opera 

24 

23 

23 

23 

22 



Succinct Game Representations 

Players: 

Francesco, Paola, Roberto, Giorgio, and Maria 

Choices:  

movie, opera 



Pure Equilibria 

Players: 

Francesco, Paola, Roberto, Giorgio, and Maria 

Choices:  

movie, opera 



Pure Equilibria 

Players: 

Francesco, Paola, Roberto, Giorgio, and Maria 

Choices:  

movie, opera 



Pure Equilibria 

Players: 

Francesco, Paola, Roberto, Giorgio, and Maria 

Choices:  

movie, opera 



Nash Equilibrium 

Existence 

Constraint Satisfaction Problem 

Solve CSP in polynomial time using known methods  

Pure Nash Equilibria and Easy Games 

[Gottlob, Greco, and Scarcello, JAIR’05] 



303 

Encoding Games in CSPs 
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Encoding Games in CSPs 



305 

Encoding Games in CSPs 



G(FRIENDS) 

Interaction Among Players: Friends 

The interaction structure of a game G can be represented by: 

the dependency graph G(G)  according to Neigh(G) 

a hypergraph H(G) with edges:  H(p)=Neigh(p)  {p} 

H(FRIENDS) 



Interaction Among Players: Friends 

H(FRIENDS) 

This is the same structure as the one of the associated CSP 



Interaction Among Players: Friends 

This is the same structure as the one of the associated CSP 

On (nearly)-Acyclic Instances, 
Nash equilibria are easy  

H(FRIENDS) 



Outline of Part III 

Application: Nash Equilibria 

Application: Coalitional Games 

Application: Combinatorial Auctions 

Appendix: Beyond Hypertree Width 



Game Theory (in a Nutshell) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

Which actions have to be performed?  



Cooperative Game Theory(1/2) 

 

To perform some task     Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

 

Utility distribution, if the task is performed  

Jointly perform the task (with some cost) 
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3$ 

1$ 

2$ 2$ 

1$ 



Cooperative Game Theory(1/2) 

 

To perform some task     Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

 

Utility distribution, if the task is performed  

Jointly perform the task (with some cost) 

  Players get 9$, if they enforce connectivity 

  Enforcing connectivity over an edge as a cost 

2$ 

1$ 

1$ 3$ 

1$ 

Coalition {F,P,R,M} gets 9$, and pays 6$ 

worth v({F,P,R,M}) = 9$ - 6$  



Cooperative Game Theory(1/2) 

 

To perform some task     Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

 

Utility distribution, if the task is performed  

Jointly perform the task (with some cost) 

2$ 

1$ 

1$ 3$ 

1$ 

coalition worth 

{F} 0 

… 0 

{G,P,R,M} 0 

{F,P,R,M} 3 

{G,F,P,R,M} 4 

How to distribute 4$, based on such worths? 



Cooperative Game Theory(2/2) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 

2$ 

1$ 

1$ 3$ 

1$ 

 

fairness 

coalition worth 

{F} 0 

… 0 

{G,P,R,M} 0 

{F,P,R,M} 3 

{G,F,P,R,M} 4 

How to distribute 4$, based on such worths? 



Cooperative Game Theory(2/2) 

    Each player: 

 Has a goal to be achieved 

 Has a set of possible actions   

 Interacts with other players 

 Is rational 
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How to distribute 4$, based on such worths? 
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Cooperative Game Theory(2/2) 

2$ 

1$ 

1$ 3$ 

1$ 

coalition worth 

{F} 0 

… 0 

{G,P,R,M} 0 

{F,P,R,M} 3 

{G,F,P,R,M} 4 

How to distribute 4$, based on such worths? 

Find the distribution(s) that: 

 Each coalition has a non-positive excess 

 Lexicographically minimize the excess vector 

 Is immune against deviations of coalitions 

 …   

value excess 

0 0 

… … 

4 -4 

0 3 

4 0 

G 4$ 

P,F,R,M 0$  

core 

nucleolus 

bargaing  



The Model 

  

 Players form coalitions 

 Each coalition is associated with a worth 

 A total worth has to be distributed  

Outcomes belong to the imputation set 

 Efficiency 

 

 

 Individual Rationality 



The Model 

  

 Players form coalitions 

 Each coalition is associated with a worth 

 A total worth has to be distributed  

Solution Concepts characterize outcomes in terms of 
Fairness 

Stability 

 



The Model 

  

 Players form coalitions 

 Each coalition is associated with a worth 

 A total worth has to be distributed  

Solution Concepts characterize outcomes in terms of 
Fairness 

Stability 

 ∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 

 

The Core: 

0 ≥ 𝑒 𝑆, 𝑥 = 𝑣 𝑆 − ∑𝑖∈𝑆𝑥𝑖 



Complexity of Solution Concepts 
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coalition worth 

{F} 0 

… 0 

{G,P,R,M} 0 

{F,P,R,M} 3 

{G,F,P,R,M} 4 

    Graph games: 

 Succinct specification 

 Core existence is coNP-complete 

• Nucleolus 

• Kernel 

• Bargaining Set 

• Stable Sets 



Reductions for graph games 

Ellipsoid method  

+ 

NP separation oracles 

Complexity of Solution Concepts 

• Nucleolus 

• Kernel 

• Bargaining Set 

• Stable Sets 

    Succinct games: 

 Nucleolus is PNP-complete 

 Kernel is PNP-complete 

 Bargaing set is coNPNP-complete 

 Stable sets is still open 

[Greco, Malizia, Palopoli, Scarcello, AIJ‘11] 



Membership in the Core on Graph Games 

Consider the sentence,  

 over the graph where N is the set of nodes and E the set of edges : 

𝑝𝑟𝑜𝑗 𝑋, 𝑌 ≡ 𝑋 ⊆ 𝑁 ∧ 

                                ∀𝑐, 𝑐′  𝑌 𝑐, 𝑐′ → 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 

                                                 ∀𝑐, 𝑐′  𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 𝐸 𝑐, 𝑐′ → 𝑌 𝑐, 𝑐′      

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 

 

The Core: 



Membership in the Core on Graph Games 

Consider the sentence,  

 over the graph where N is the set of nodes and E the set of edges : 

…it tells that Y is the set of edges covered by the nodes in X 

𝑝𝑟𝑜𝑗 𝑋, 𝑌 ≡ 𝑋 ⊆ 𝑁 ∧ 

                                ∀𝑐, 𝑐′  𝑌 𝑐, 𝑐′ → 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 

                                                 ∀𝑐, 𝑐′  𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 𝐸 𝑐, 𝑐′ → 𝑌 𝑐, 𝑐′      

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 

 

The Core: 



Membership in the Core on Graph Games 

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌  be the formula stating that Y is the set of edges covered by the nodes in X 

Define the following weights: 𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ;       𝑤𝑁(𝑐) = 𝑥𝑐 

Value at the imputation Value of the edge (negated) 

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 
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Membership in the Core on Graph Games 

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌  be the formula stating that Y is the set of edges covered by the nodes in X 

Define the following weights: 𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ;       𝑤𝑁(𝑐) = 𝑥𝑐 

Value at the imputation Value of the edge (negated) 

Find the “minimum-weight” X and Y such that                    holds  𝑝𝑟𝑜𝑗 𝑋, 𝑌  

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 

 

The Core: 



Membership in the Core on Graph Games 

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌  be the formula stating that Y is the set of edges covered by the nodes in X 

Define the following weights: 

Value at the imputation Value of the edge (negated) 

Find the “minimum-weight” X and Y such that                    holds  𝑝𝑟𝑜𝑗 𝑋, 𝑌  

Max (value of edges – value of the imputation), i.e.,  𝑚𝑎𝑥𝑆⊆𝑁𝑒(𝑆, 𝑥) 

𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ;       𝑤𝑁(𝑐) = 𝑥𝑐 

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ; 
     𝑥 𝑁 = 𝑣(𝑁) 

 

The Core: 

0 ≥ 𝑒 𝑆, 𝑥 = 𝑣 𝑆 − ∑𝑖∈𝑆𝑥𝑖 



Outline of Part III 

Application: Nash Equilibria 

Application: Coalitional Games 

Application: Combinatorial Auctions 

Appendix: Beyond Hypertree Width 
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Winner Determination Problem 
Determine the outcome that maximizes the sum of 
accepted bid prices 

Example: Combinatorial Auctions 
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180 Winner Determination Problem 
Determine the outcome that maximizes the sum of 
accepted bid prices 

Example: Combinatorial Auctions 
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Other applications [Cramton, Shoham, and Steinberg, ‘06] 
airport runway access  
trucking 
bus routes 
industrial procurement  
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Structural Properties 

The Winner Determination Problem     
remains NP-hard even in case of            
acyclic hypergraphs  
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dual hypergraph 

h1 h3 h5 

0  0  0 
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0  1  0 

0  0  1 
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Dual Hypergraph 



The Approach 

[Gottlob & Greco, EC’07] 



Outline of Part III 

Application: Nash Equilibria 

Application: Coalitional Games 

Application: Combinatorial Auctions 

Appendix: Beyond Hypertree Width 



Going Beyond… 

Treewidth and Hypertree width are based on tree-like 

aggregations of subproblems that are efficiently solvable 

k variables (resp. k atoms)  ||I||k solutions (per subproblem)  

Is there some more general property that makes the 

number of solutions in any bag polynomial? 

 

YES! 
[Grohe & Marx ’06]  



Fractional Hypertree Decompositions 

[Grohe & Marx ‘06] 

A query may be solved efficiently, if a fractional hypertree 

decomposition is given 

FHDs are approximable: If the the width is ≤ w, a decomposition of 

width O(w3) may be computed in polynomial time  [Marx ‘09] 

 



More Beyond? 

A new notion: the submodular width  

Bounded submodular width is a necessary and sufficient 

condition for fixed-parameter tractability 

(under a technical complexity assumption) 

[Marx ‘10] 
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Revisiting Decomposition Methods 

Generalized hypertree width: 
take all views that can be 
computed by joining at most k 
atoms (k query views) 

Scopes Solutions 

Work on subproblems 



Revisiting Decomposition Methods 

Generalized hypertree width: 
take all views that can be 
computed by joining at most k 
atoms (k query views) 



Requirements on Subproblem Definition 

1. Every constraint is associated with a base subproblem 

2. Further subproblems can be defined 

1. Every subproblem is not more restrictive than 

the full problem 

2. Every base subproblem is at least restrictive as 

the corresponding constraint 



Acyclicity in Decomposition Methods 

   Working on subproblems is not 
necessarily beneficial… 



Acyclicity in Decomposition Methods 

Can some and/or portions of them be selected such that: 

• They still cover    , and 

• They can be arranged as a tree 

   Working on subproblems is not 
necessarily beneficial… 



Tree Projections (by Example) 

Structure of the CSP 
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Tree Projections (by Example) 

Structure of the CSP Tree Projection Available Views 



Tree Projections (by Example) 

Structure of the CSP Tree Projection Available Views 



(Noticeable) Examples 

Treewidth: take all views that can be computed with at most k 
variables 

Generalized hypertree width: take all views that can be computed by 
joining at most k atoms (k query views) 

Fractional hypertree width: take all views that can be computed 
through subproblems having fractional cover at most k (or use Marx’s 
O(k3) approximation to have polynomially many views)  



Tree Decomposition 



A General Framework, but 

Decide the existence of a tree projection is NP-hard 

[Gottlob, Miklos, and Schwentick, JACM‘09] 



A General Framework, but 

Decide the existence of a tree projection is NP-hard 

[Gottlob, Miklos, and Schwentick, JACM‘09] 

Hold on generalized hypertree width too. 



A Source of Complexity: The Core 

The core of a query Q is a query Q’ s.t.: 

1. atoms(Q’)  atoms(Q)  

2. There is a mapping h: var(Q)  var(Q’) 

s.t., r(X)atoms(Q),  r(h(X))atoms(Q’) 

3. There is no query Q’’ satisfying 1 and 2 and such 

that atoms(Q’’)  atoms(Q’)  
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The core of a query Q is a query Q’ s.t.: 

1. atoms(Q’)  atoms(Q)  

2. There is a mapping h: var(Q)  var(Q’) 

s.t., r(X)atoms(Q),  r(h(X))atoms(Q’) 

3. There is no query Q’’ satisfying 1 and 2 and such 

that atoms(Q’’)  atoms(Q’)  
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Q’ Example: 

Cores are isomorphic               The “Core” 

Cores are equivalent to the query 



Example 



Example 
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Structure of the CSP Tree Projection Available Views 
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Structure of the CSP Tree Projection Available Views 



Cores and Tree Projections 

Structure of the CSP Tree Projection Available Views 

core 



Cores and Tree Projections 

Structure of the CSP Tree Projection Available Views 

core 



CORE is NP-hard 

Deciding whether Q’ is the core of Q is NP-hard 

For instance, let 3COL be the class of all 3-

colourable graphs containing a triangle 

Clearly, deciding whether G3COL is NP-hard 

It is easy to see that G3COL K3 is the core of G 
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Enforcing Local Consistency (Decomposition) 



Enforcing Local Consistency 

If there is a tree projection, then                                                                              
enforcing local consistency over the views solves the decision problem 

[Sagiv & Smueli, ‘93] 



Enforcing Local Consistency  

If there is a tree projection, then                                                                              
enforcing local consistency over the views solves the decision problem 

[Sagiv & Smueli, ‘93] 

Does not need to be computed 



Even Better 

There is a polynomial-time algorithm that: 

- either returns that there is no tree projection,  

- or solves the decision problem 



Even Better 

There is a polynomial-time algorithm that: 

- either returns that there is no tree projection,  

- or solves the decision problem 

just check the 

given solution 



  

The Precise Power of Local Consistency 

The followings are equivalent: 

Local consistency solves the decision problem 

There is a core of the query having a tree projection 

[Greco & Scarcello, PODS‘10] 
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The Precise Power of Local Consistency 

The followings are equivalent 

Local consistency solves the decision problem 

There is a core of the query having a tree projection 

a core with TP 

a core without TP 



  

A Relevant Specialization (not immediate) 

The followings are equivalent 

Local consistency solves the decision problem 

There is a core of the query having a tree projection 

  Over all union of k atoms 

  The CSP has generalized hypertreewidth k at most 

[Greco & Scarcello, CP‘11] 



  

Back on the Result 

The followings are equivalent 

Local consistency solves the decision problem 

There is a core of the query having a tree projection 

There is no polynomial time algorithm that 

either solves the decision problem 

or disproves the promise 



Local consistency for computing solutions 

The followings are equivalent 

Local consistency entails «views containing variables O 
are correct» 

The set of variables O is tp-covered in a tree projection 



Local consistency for computing solutions 

The followings are equivalent 

Local consistency entails «views containing variables O 
are correct» 

The set of variables O is tp-covered in a tree projection 



Local and global consistency 

The followings are equivalent 

Local consistency entails global consistency 

Every query atom/constraint is tp-covered in a tree projection 




