Structural Decomposition Methods and Islands of Tractability for NP-hard Problems

Georg Gottlob, Gianluigi Greco, and Francesco Scarcello

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

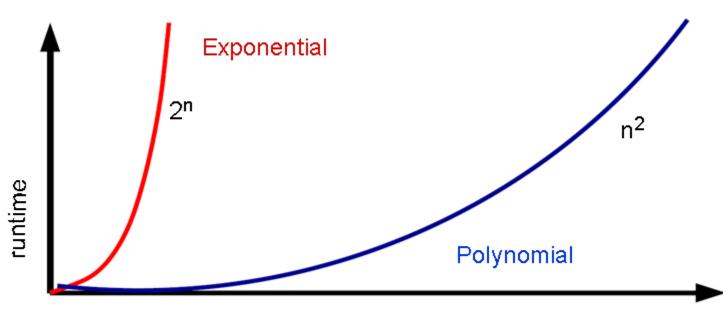
Inherent Problem Complexity

- Problems *decidable* or *undecidable*.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

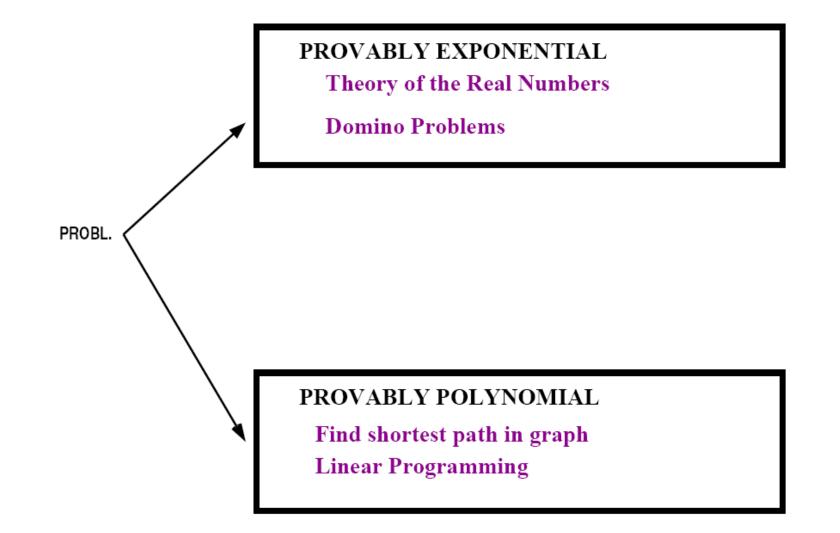
Inherent Problem Complexity

- Problems *decidable* or *undecidable*.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

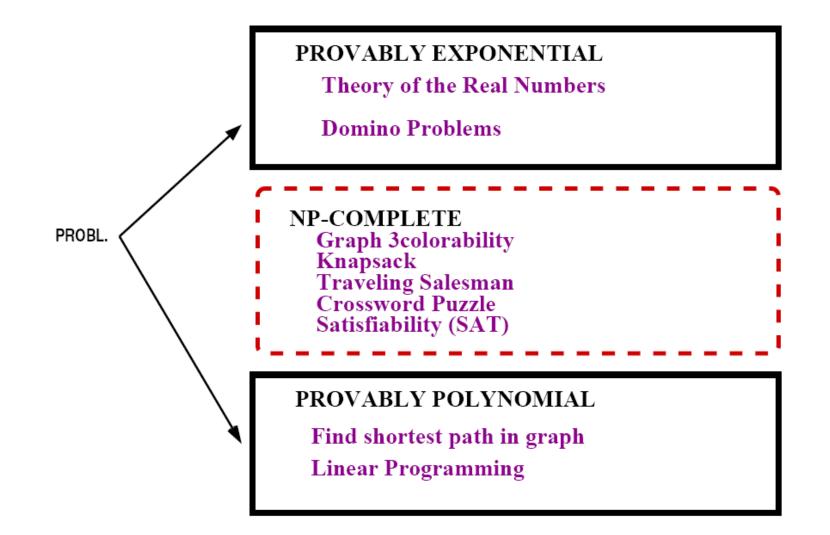
Number of steps it takes for input of size n



Time Complexity



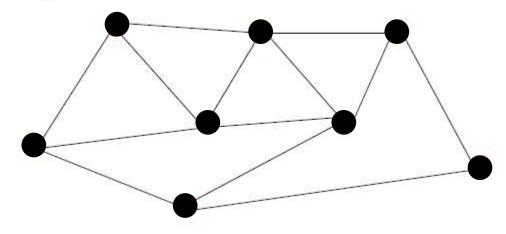
Time Complexity



Instance: A graph G.

Question: Is G 3-colorable?

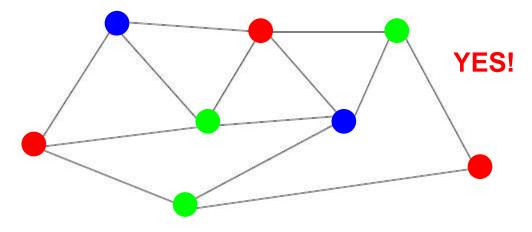
Examples of instances:



Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:



Approaches for Solving Hard Problems

- NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
 - Randomized local search
 - Approximation
 - Identification of easy (=polynomial) subclasses.

Approaches for Solving Hard Problems

- NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
 - Randomized local search
 - Approximation

• Identification of easy (=polynomial) subclasses.

- High complexity often arises in "rare" worst case instances
- Worst case instances exhibit intricate structures
- In practice, many input instances have simple structures
- Therefore, our goal is to
 - Define polynomially solvable subclasses (possibly, the largest ones)
 - Prove that membership testing is tractable for these classes
 - Develop efficient algorithms for instances in these classes

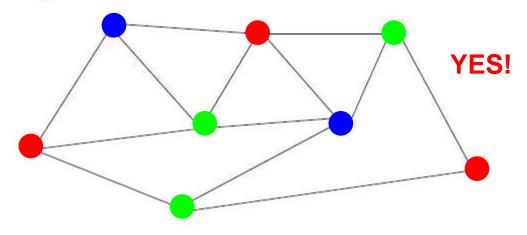
The evil in Computer science is hidden in (vicious) cycles.

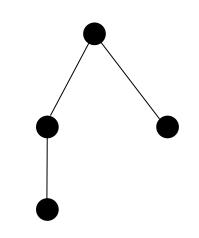
- We need to get them under control!
- <u>Decompositions</u>: Tree-Decomposition, path decompositions, hypertree decompositions,...
 Exploit bounded degree of cyclicity.

Instance: A graph G.

Question: Is G 3-colorable?

Examples of instances:





IJCAI-13

Problems with a Graph Structure

 With graph-based problems, high complexity is mostly due to *cyclicity*.

Problems restricted to *acyclic* graphs are often trivially solvable (\rightarrow 3COL).

• Moreover, many graph problems are polynomially solvable if restricted to instances of *low cyclicity*.

Problems with a Graph Structure

 With graph-based problems, high complexity is mostly due to *cyclicity*.

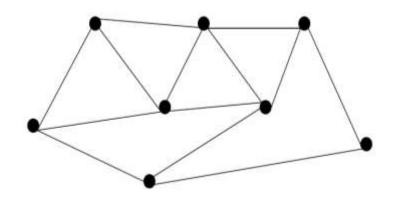
Problems restricted to *acyclic* graphs are often trivially solvable (\rightarrow 3COL).

• Moreover, many graph problems are polynomially solvable if restricted to instances of *low cyclicity*.

How can we measure the degree of cyclicity?

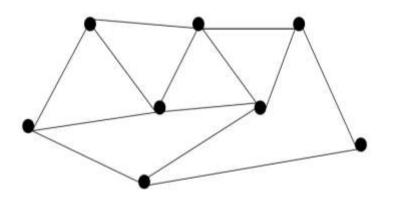
How much "cyclicity" in this graph?

Suggest a measure of distance from an acyclic graph

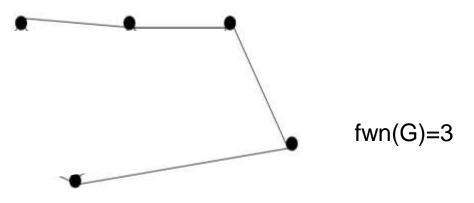


Feedback vertex set

Set of vertices whose deletion makes the graph acyclic



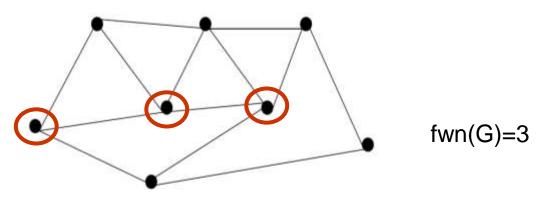
Min. number of vertices I need to eliminate to make the graph acyclic



FVN: Properties

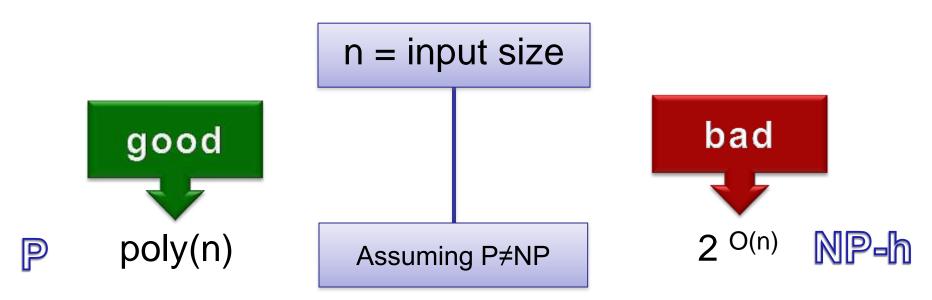
Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic



- Is this really a good measure for the "degree of acyclicity" ?
- **Pro:** For fixed k we can check efficiently whether $fwn(G) \le k$
 - What does it mean *efficiently* when parameter k is fixed?

Classical Computational Complexity



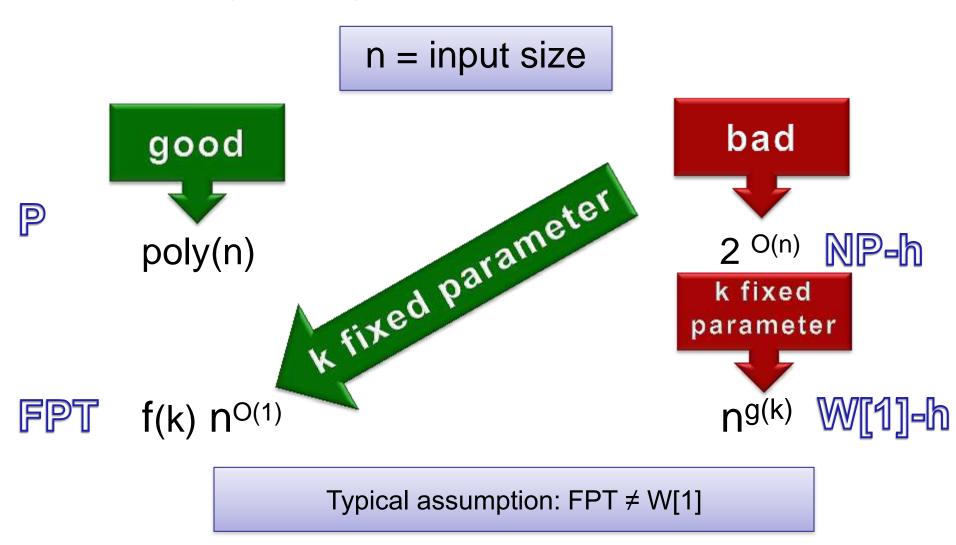
IJCAI-13

But...

- In many problems there exists some part of the input that are quite small in practical applications
- Natural parameters
- Many NP-hard problems become easy if we fix such parameters (or we assume they are below some fixed threshold)
- Positive examples: k-vertex cover, k-feedback vertex set, k-clique, …
- Negative examples: k-coloring, k-CNF, …

Parameterized Complexity

Initiated by Downey and Fellows, late '80s



IJCAI-13

W[1]-hard problems: k-clique

JJCAI-13

k-clique is hard w.r.t. fixed parameter complexity!

INPUT: A graph *G*=(*V*,*E*)

PARAMETER: Natural number k

Does G have a clique over k vertices?

FPT races

http://fpt.wikidot.com/

Problem	f(k)	vertices in kernel	Reference/Comments
Vertex Cover	1.2738^{k}	2k	1
Connected Vertex Cover	2 ^k	no k ⁰⁽¹⁾	26, randomized algorithm
Multiway Cut	2 ^k	not known	21
Directed Multiway Cut	$2^{O(k^{s})}$	no \$k^{O(1)}\$	34
Almost-2-SAT (VC-PM)	4 ^k	not known	21
Multicut	2 ^{O(k³)}	not known	22
Pathwidth One Deletion Set	4.65^{k}	$O(k^2)$	28
Undirected Feedback Vertex Set	3.83^{k}	$4k^2$	2, deterministic algorithm
Undirected Feedback Vertex Set	3^k	$4k^2$	23, randomized algorithm
Subset Feedback Vertex Set	$2^{O(k \log k)}$	not known	29
Directed Feedback Vertex Set	$4^k k!$	not known	27
Odd Cycle Transversal	3 ^k	k ⁰⁽¹⁾	24, randomized kernel
Edge Bipartization	2 ^k	k ⁰⁽¹⁾	25, randomized kernel
Planar DS	$2^{11.98\sqrt{k}}$	67k	3
1-Sided Crossing Min	$2^{O(\sqrt{k}\log k)}$	$O(k^2)$	4
Max Leaf	3.72^{k}	3.75k	5
Directed Max Leaf	3.72^{k}	$O(k^2)$	6
Set Splitting	1.8213^{k}	k	7
Nonblocker	2.5154^{k}	5k/3	8
Edge Dominating Set	2.3147^{k}	$2k^2 + 2k$	10
k-Path	4 ^k	no k ⁰⁽¹⁾	11a, deterministic algorithm
k-Path	1.66 ^k	no k ⁰⁽¹⁾	11b, randomized algorithm
Convex Recolouring	4 ^k	$O(k^2)$	12
VC-max degree 3	1.1616 ^k		13
Clique Cover	2 ^{2^k}	2 ^k	14
Clique Partition	2 ^{k²}	k^2	15
Cluster Editing	1.62^{k}	2k	16, weighted and unweighted
Steiner Tree	2 ^k	no k ⁰⁽¹⁾	17
3-Hitting Set	2.076^{k}	$O(k^2)$	18

FPT Tractability of Feedback Vertex Set

JCAI-13

INPUT: A graph *G*=(*V*,*E*)

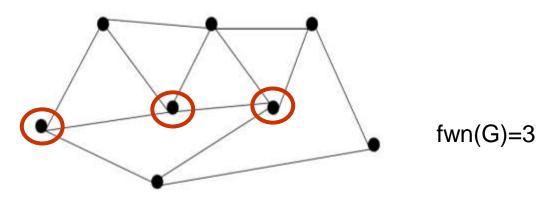
PARAMETER: Natural number k

Does G has a feedback vertex set of k vertices?

- Naïve algorithm: $O(n^{k+1})$ Not good!
- Solvable in O((2k+1)^kn²) [Downey and Fellows '92]
- A practical randomized algorithm runs in time: O(4^kkn) [Becker et al 2000]

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

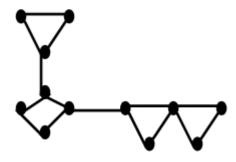


Is this really a good measure for the "degree of acyclicity" ?

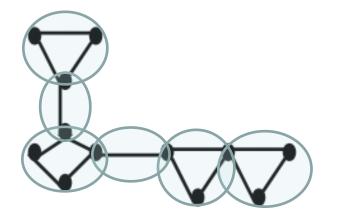
Pro:For fixed k we can check in quadratic time if fwn(G)=k(FPT).Con:Very simple graphs can have large FVN:

Feedback edge number

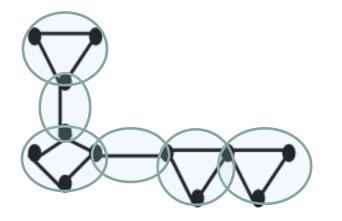
Feedback <u>edge</u> number \rightarrow same problem.



Any idea for further techniques?



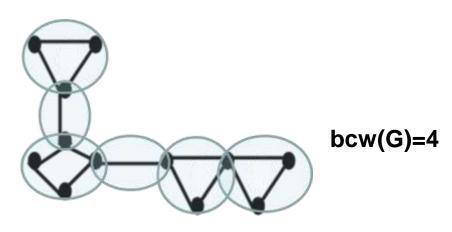
Yes! A tree of clusters (subproblems)



IJCAI

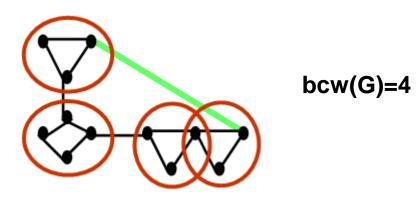
- Well known graph properties:
 - A biconnected component is a maximal subgraph that remains connected after deleting any single vertex
 - In any graph, its biconnected components form a tree

Maximum size of biconnected components



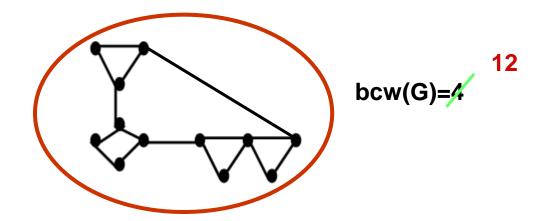
Pro: Actually bcw(G) can be computed in linear time

Maximum size of biconnected components



Pro: Actually bcw(G) can be computed in linear timeCon: Adding a single edge may have tremendous effects to bcw(G)

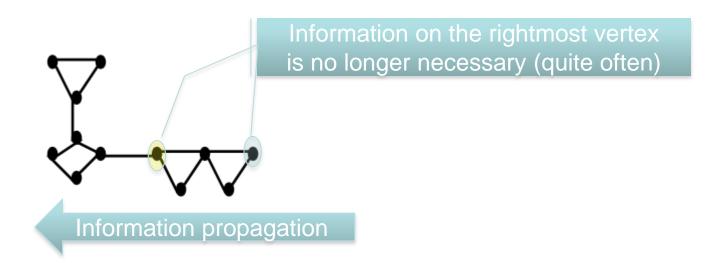
Maximum size of biconnected components



Pro: Actually bcw(G) can be computed in linear timeCon: Adding a single edge may have tremendous effects to bcw(G)

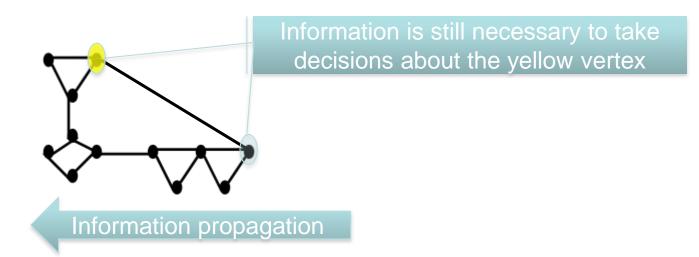
Hint:

- why should clusters of vertices be of this limited kind?
- Use arbitrary (possibly small) sets of vertices!
 - How can we arrange them in some tree-shape?
 - What is the key property of tree-like structures (in most applications)?



Hint:

- why should clusters of vertices be of this limited kind?
- Use arbitrary (possibly small) sets of vertices!
 - How can we arrange them in some tree-shape?
 - What is the key property of tree-like structures, in applications?

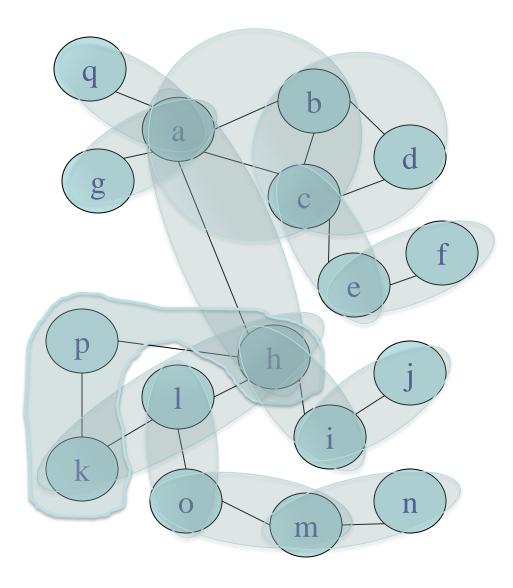


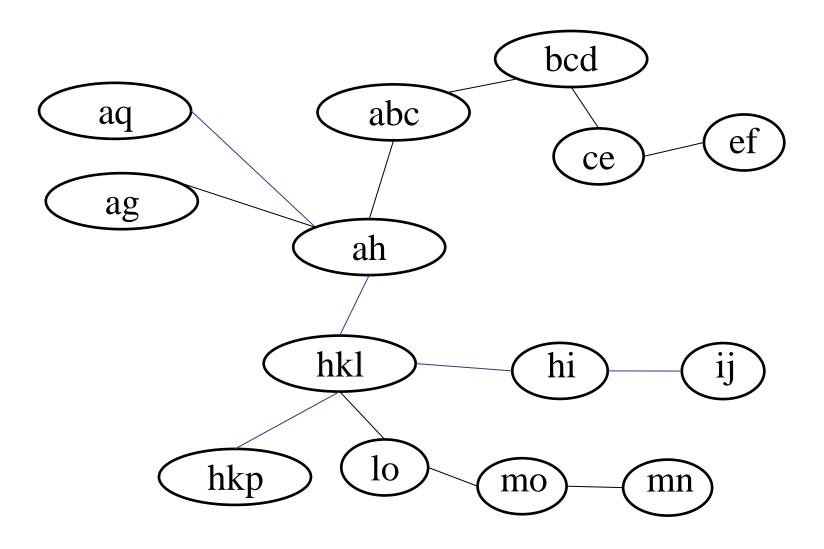
Outline of PART I

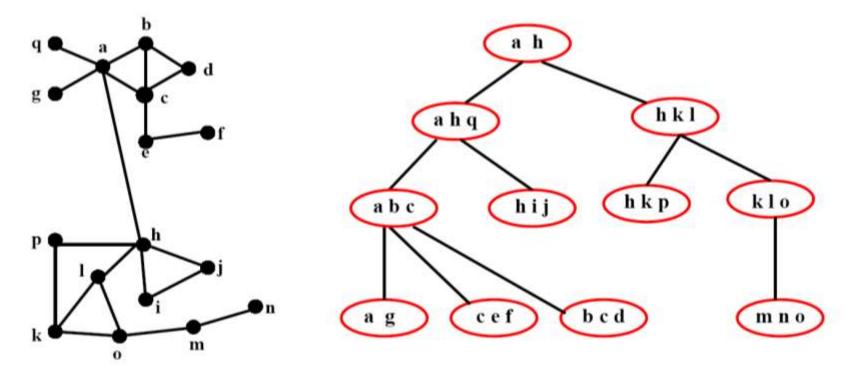
Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions



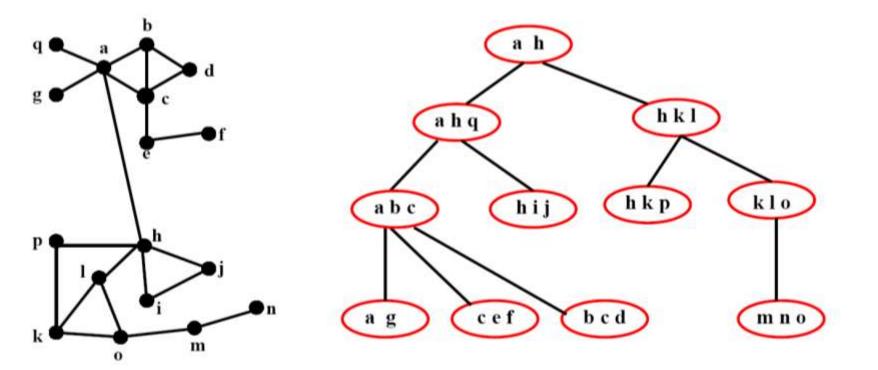




Graph G

Tree decomposition of width 2 of G

IJCAI-13



Graph G

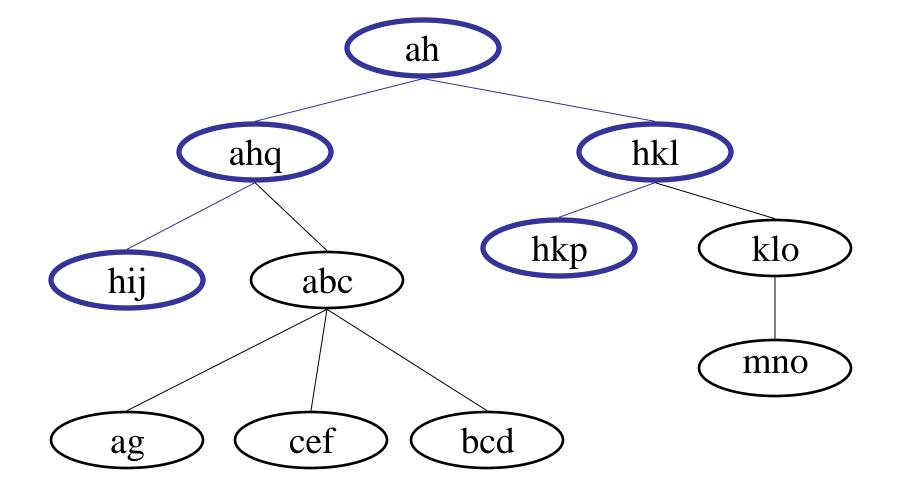
Tree decomposition of width 2 of G

• Every edge realized in some bag

IJCAI-13

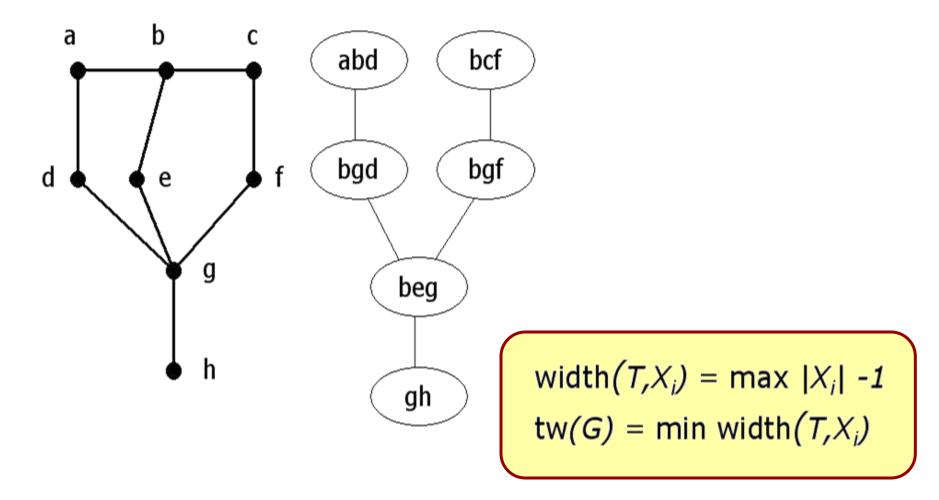
Connectedness condition

Connectedness condition for *h*

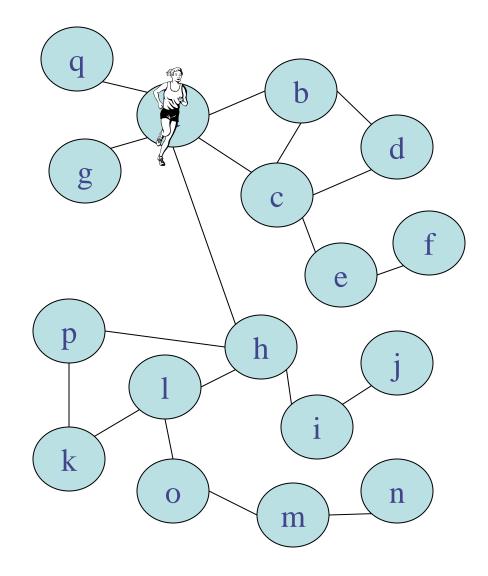


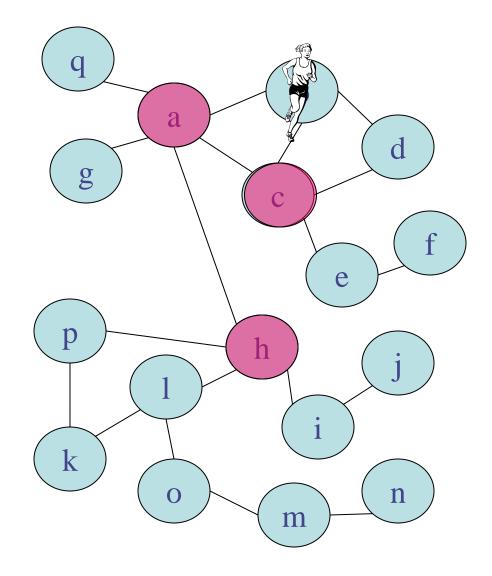
IJCAI-13

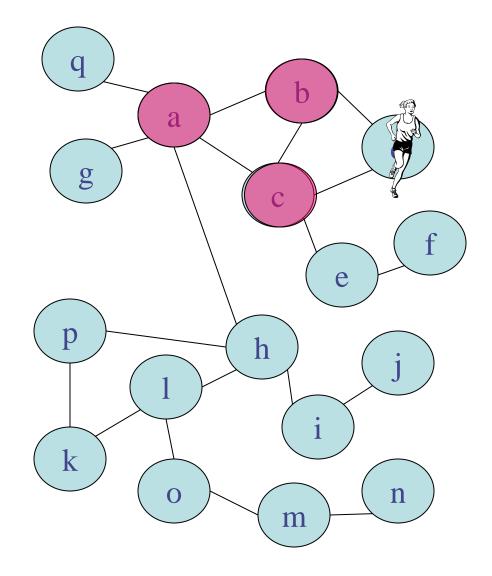
Tree Decompositions and Treewidth

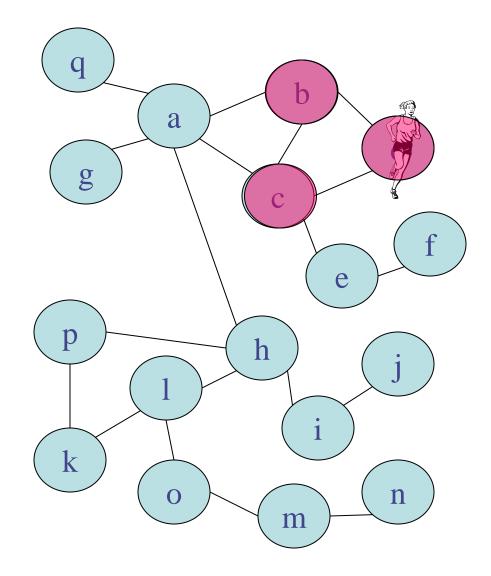


IJCAI-13









Properties of Treewidth

- tw(acyclic graph)=1
- tw(cycle) = 2
- $tw(G+v) \le tw(G)+1$
- $tw(G+e) \le tw(G)+1$
- tw(K_n) = n-1
- tw is fixed-parameter tractable (parameter: treewidth)

IJCAI-13

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Prove Tractability of bounded-width instances
 a) Genuine tractability: O(n^{f(w)})-bounds

b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractabilitya) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

- $1. \ {\rm Prove\ Tractability\ of\ bounded-width\ instances}$
 - a) Genuine tractability: O(n^{f(w)})-bounds constraint satisfaction = conjunctive database queries
 - b) Fixed-Parameter tractability: f(w)*O(n^k) multicut problem
- 2. Tool for proving general tractability

 a) Prove tractability for both large & small width finding even cycles in graphs – ESO over graphs
 b) Prove all yes-instances to have small width

the Partner Unit Problem

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

a) Genuine tractability: O(n^{f(w)})-bounds In PART II b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractabilitya) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

Prove Tractability of bounded-width instances
 a) Genuine tractability: O(n^{f(w)})-bounds

b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractabilitya) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

- Theorem. (Fagin): Every NP-property over graphs can be represented by an existential formula of Second Order Logic. NP=ESO
- Monadic SO (MSO): Subclass of SO, only set variables, but no relation variables of higher arity.

3-colorability \in MSO.

$(\exists R, G, B) [(\forall x (R(x) \lor G(x) \lor B(x))) \land (\forall x (R(x) \Rightarrow (\neg G(x) \land \neg B(x)))) \land \dots \land \dots \land \dots \land \dots \land \dots \land \dots$

- $\land \quad (\forall x, y(E(x, y) \Rightarrow (R(x) \Rightarrow (G(x) \lor B(y)))))$
- $\land \quad (\forall x, y(E(x, y) \Rightarrow (G(x) \Rightarrow (R(x) \lor B(y)))))$
- $\land \quad (\forall x, y(E(x, y) \Rightarrow (B(x) \Rightarrow (R(x) \lor G(y)))))]$

Courcelle's Theorem: Problems expressible in MSO₂ are solvable in linear time on structures of bounded treewidth

...and in LOGSPACE [Elberfeld, Jacoby, Tantau]

Example – Graph Coloring

 $\exists \mathsf{P} \forall \mathsf{x} \forall \mathsf{y} : (\mathsf{E}(\mathsf{x},\mathsf{y}) \rightarrow (\mathsf{P}(\mathsf{x}) \neq \mathsf{P}(\mathsf{y}))$

Arnborg, Lagergren, Seese '91:

Optimization version of Courcelle's Theorem:

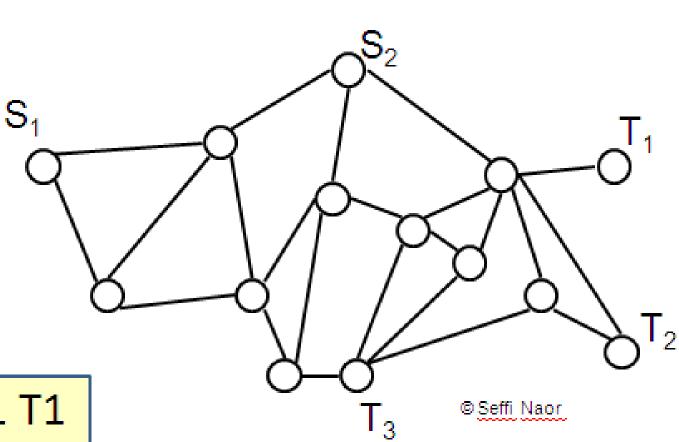
Finding an optimal set P such that $G \models \Phi(P)$ is FP-linear over inputs G of bounded treewidth.

Example:

Given a graph G=(V,E)

Find a *smallest* P such that $\forall x \forall y : (E(x,y) \rightarrow (P(x) \neq P(y))$

Unrestricted Vertex Multicut Problems



S1 T1 S2 T3 S2 T2

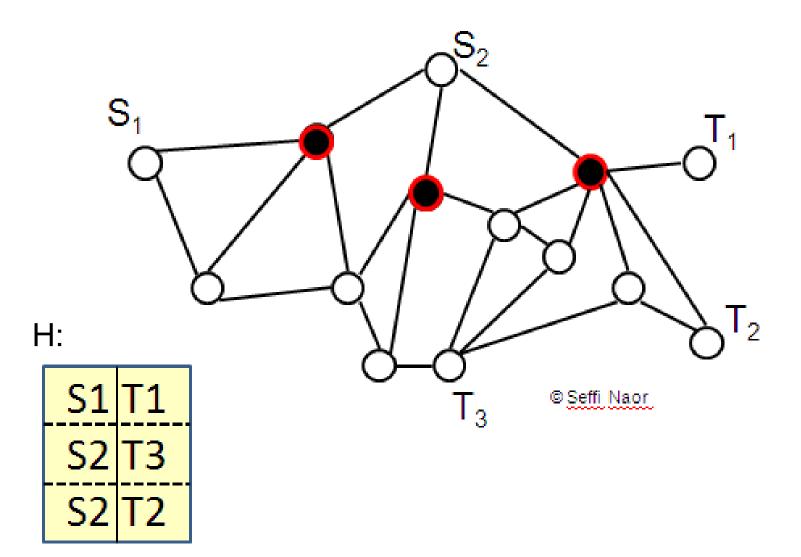
H:

Find minimum-cardinality vertex set separating Si from Tj for each tuple <Si,Tj> in relation H

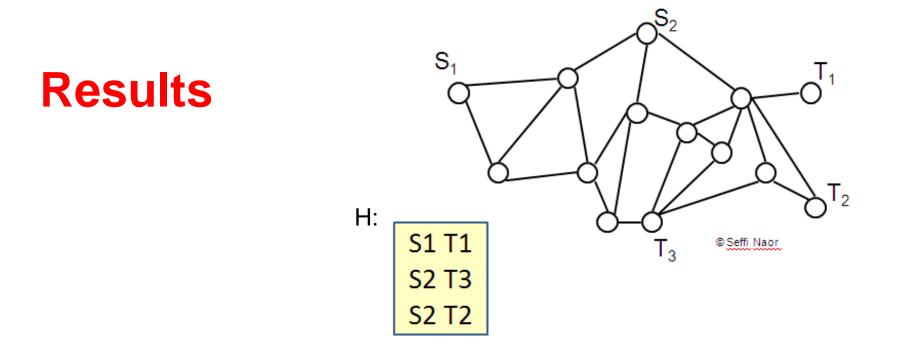
IJCAI-13

Unrestricted Vertex Multicut Problems

IJCAI-13



Unrestricted Vertex Multicut Problems



[Guo et al. 06] UVMC FPT if |S|, |C| and tree-width fixed

[G. & Tien Lee] UVMC FPT if overall structure has bounded tw. using master theorem by Arnborg, Lagergren and Seese.

PROOF

Definition 8. On structures $\mathcal{A} = (V, E, H)$ as above, let connects(S, x, y) be defined as follows:

$$S(x) \wedge S(y) \wedge \forall P\Big(\Big(P(x) \wedge \neg P(y)\Big) \to \Big(\exists v \exists w \, (S(v) \wedge S(w) \wedge P(v) \wedge \neg P(w) \wedge E(v,w))\Big)\Big).$$

$$uvmc(X) \quad \equiv \quad \forall x \, \forall y \, \Big(\, H(x,y) \to \forall S \big(\operatorname{connects}(S,x,y) \to \exists v(X(v) \wedge S(v)) \big) \, \Big)$$

Minimize X in *uvmc*

X intersects each set that connects x and y

- Prove Tractability of bounded-width instances
 a) Genuine tractability: O(n^{f(w)})-bounds
 - b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractability

a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

INPUT: A graph G, a constant k.

QUESTION: Decide whether G has a cycle of length 0 (mod k)

In the past century, this was an open problem for a long time.

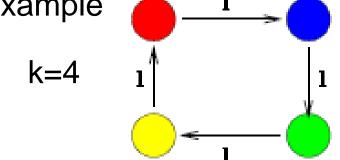
Carsten Thomassen in 1988 proved it polynomial for *all graphs* using treewidth as a tool.

Proof Idea

Small Treewidth (≤c)

"cycle of length 0 (mod k)" can be expressed un MSO

example



 \rightarrow Courcelle's Theorem

(but was not known then...)

Large Treewidth (>c)

 $\forall k \exists c: each graph G with$ tw(G)>c contains a subdivision of the f(k)-grid. [for suitable f]

		J		
	_			
_	-		_	
-	 -		-	
	 -		-	

 \forall n>f(k), each subdivision of f(k)-grid contains a cycle of length 0 (mod k).

Determine the complexity of SO fragments over finite structures.

Finite structures: words (strings), graphs, relational databases

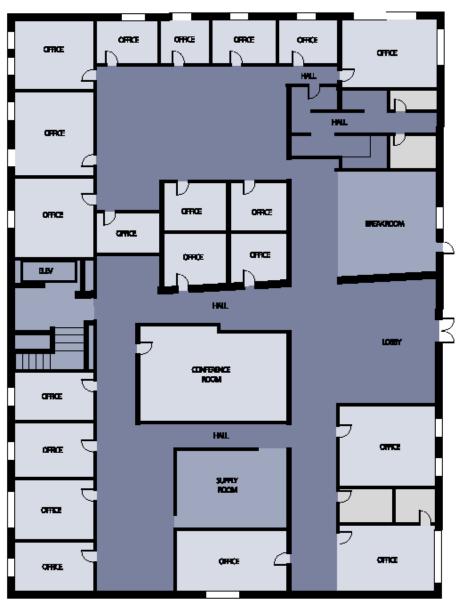
Known: SO=PH; ESO = NP

Which SO-fragments can be evaluated in polynomial time?

Which SO-fragments express regular languages on strings ?

More modestly: What about prefix classes?

A "simple" Facility Placement Problem



Every room should be equipped with a computer.

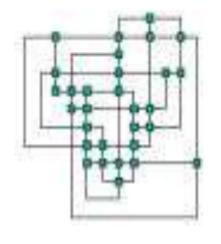
If a printer is not present in a room, then one should be available in an adjacent room.

No room with a printer should be a meeting room.

Every room is at most 5 rooms distant from a meeting room.

 $[\ldots]$

Given an office layout as a graph, decide whether the facility placement constraints are satisfiable.



 $\exists P \exists M \dots \forall x \exists y ((P(x) \lor E(x,y) \& P(y)) \& \dots$

Observe that this is an E_1^* ae formula

This leads to the questions:

Are formulas of the type E_1^* as or even E^* ae polynomially verifiable over <u>graphs?</u>

What about other fragments of ESO or SO?

Simplest Form

This motivates the following question:

Can formulas in classes such as $E_2(ae_2)$ or even ESO(e*ae*) be evaluated in polynomial time over strings ?

More generally:

Which ESO-fragments admit polynomial-time model checking over strings ?

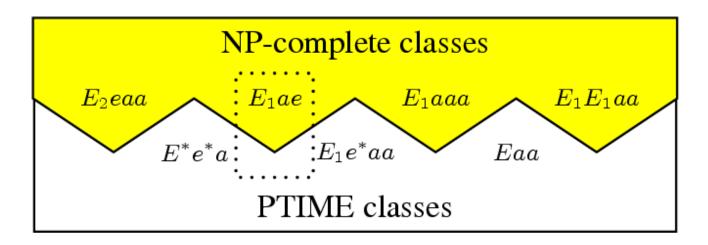
A similar, even more important question can be asked for graphs and general finite structures:

Which ESO-fragments admit polynomial-time model checking over graphs or arbitrary finite structures?

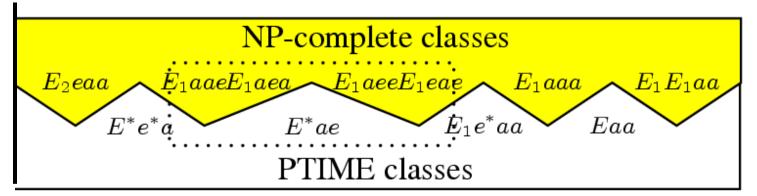
Complexity of ESO Prefix Classes

[G.,Kolaitis, Schwentick 2000]

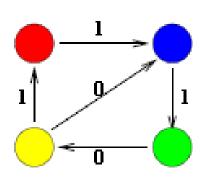
Directed graphs (or undirected graphs with self-loops):

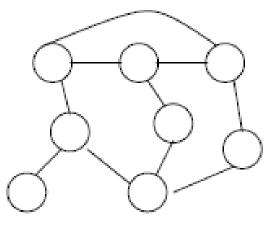


Undirected graphs w/o self-loops:

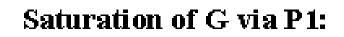


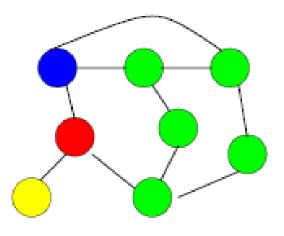
The Saturation Problem



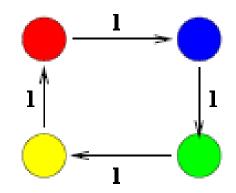


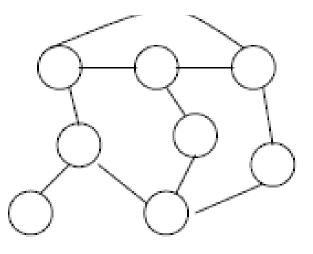
Pattern graph P1





Relating E_1^*ae to the Saturation Problem

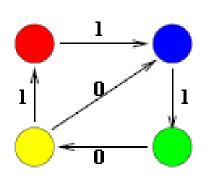


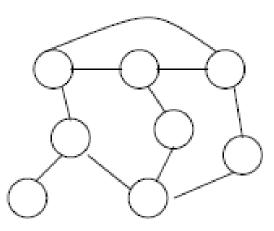


Pattern graph P2

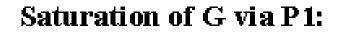
Saturation of G via P2 impossible! No cycle of length 0 (mod 4) in G.

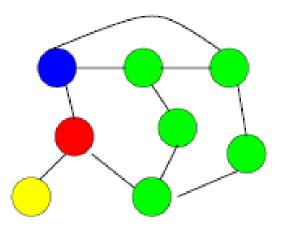
The Saturation Problem





Pattern graph P1





Relating E_i^*ae to the Saturation Problem

 $\exists P_1, P_2 \forall x \exists y$ $[(E(x,y) \land P_1(x) \land P_2(x) \land P_1(y) \land \neg P_2(y)) \lor$ $(E(x,y) \land P_1(x) \land \neg P_2(x) \land \neg P_1(y) \land \neg P_2(y)) \lor$ $(\neg E(x,y) \land \neg P_1(x) \land \neg P_2(x) \land P_1(y) \land P_2(y))]$

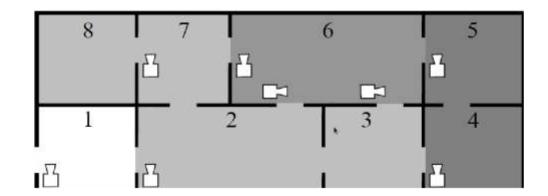
Prove Tractability of bounded-width instances
 a) Genuine tractability: O(n^{f(w)})-bounds

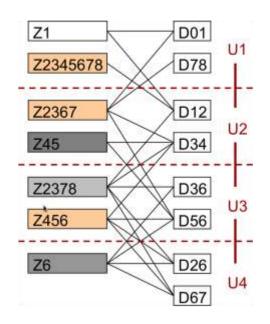
b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractabilitya) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

- Track People in Buildings
- Sensors on Doors, Rooms Grouped into Zones

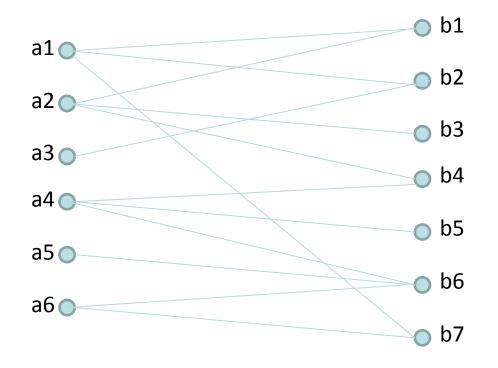


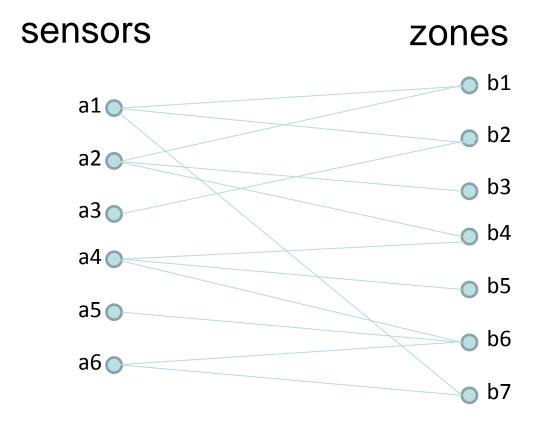


 Assigning Sensors and Zones to Control Units

 Respect Adjacency Constraints

IJCAI-13



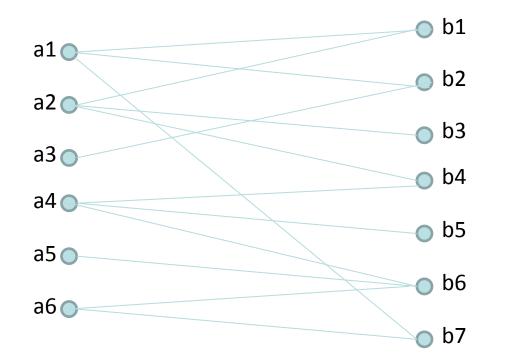


Replace connections by connections to units

ai 🔵 💿 bj

The Partner-Unit Problem

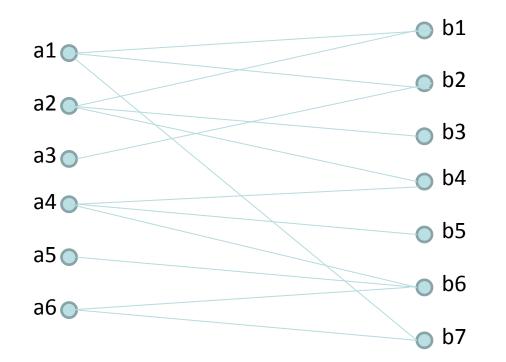
Bipartite graph G=(V,E) V=Va∪Vb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb



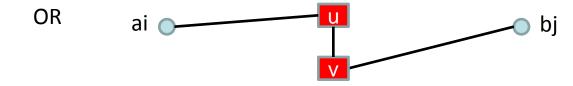
Replace connections by connections to units

The Partner-Unit Problem

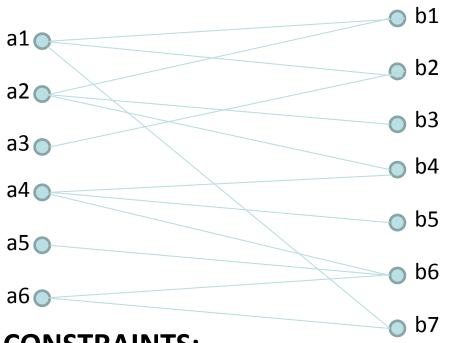
Bipartite graph G=(V,E) V=Va∪Vb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb



Replace connections by connections to units



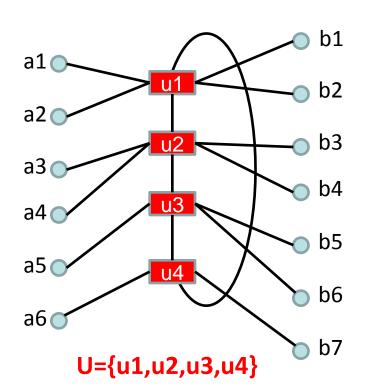
The Partner-Unit Problem



CONSTRAINTS:

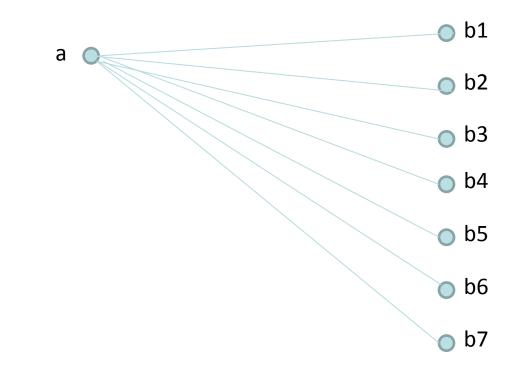
- •Each ai or bi is connected to exactly 1 unit.•Each unit connected to:
 - at most 2 other units,
 - at most 2 elements from Va,
 - at most 2 elements from Vb,
- •If ai connected to bj in G, then dist(ai,bi)≤3 in G*

G



Assume one node a is connected to 7 nodes b1,...,b7 in G. Then instance G is unsolvable.

IJCAI-13



Thus, no vertex can have more than 6 neighbours in G.

The PU Problem(s)

PU DECISION PROBLEM (PUDP):

Given G, is there a G* satisfying the constraints? (Number of units irrelevant.)

PU SEARCH PROBLEM (PUSP)

Given G, find a suitable G* whenever possible.

PU OPTIMIZATION PROBLEM (PUOP)

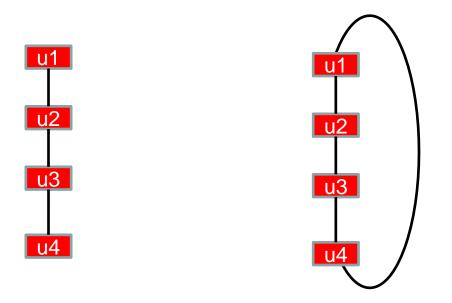
Given G, find a suitable G* with minimum number of units |U| (whenever possible).

ASSUMPTION: G is connected.

Note: This assumption can be made wlog, because the PUDP can be otherwise decomposed into a conjunction of independent PUDPs, one for each component.

Lemma 1: If G is connected and solvable, then there exists a solution G* in which the unit-graph UG=G*[U] is connected.

Lemma 2: If G is connected and solvable, then there exists a solution G* whose unit graph is a cycle.



Note: We still don't know |U|, but we may just try all cycles of length max(|Va|,|Vb|)/2 to length |Va|+|Vb|. There are only linearly many! (Guessable in logspace)

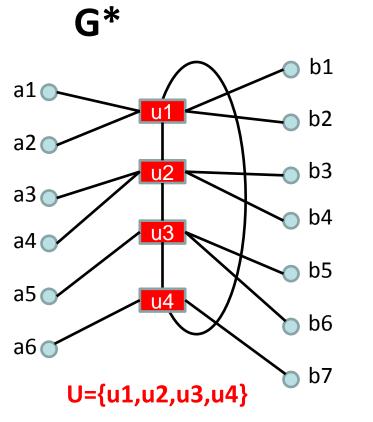
Result

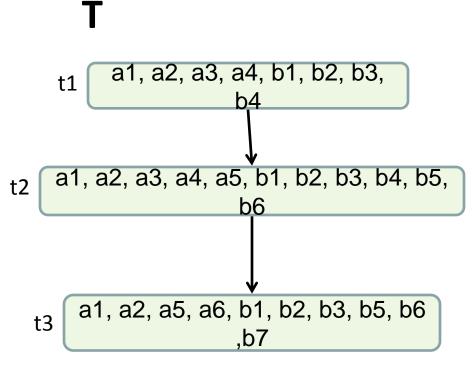
Theorem:

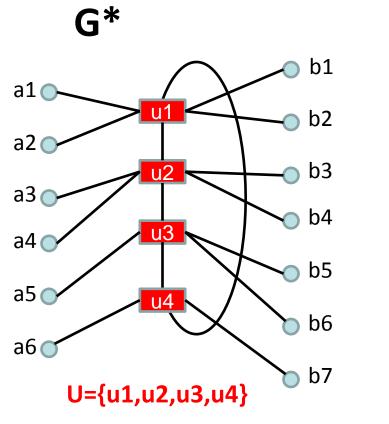
Assume G is solvable through solution G* with |U|=n and having unit function f. Then:

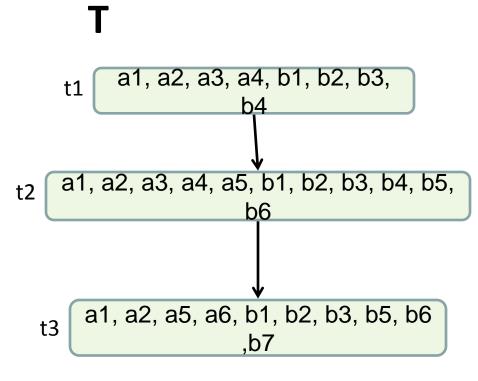
- (1) $pw(G) \le 11$
- (2) $tw(G) \leq 5$

(3) There is a path decomposition T=(W,A) that can be locally check to witnss PUDP solution G*





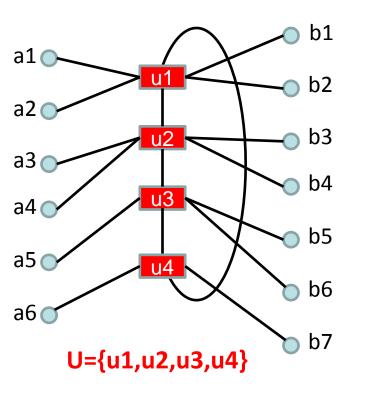


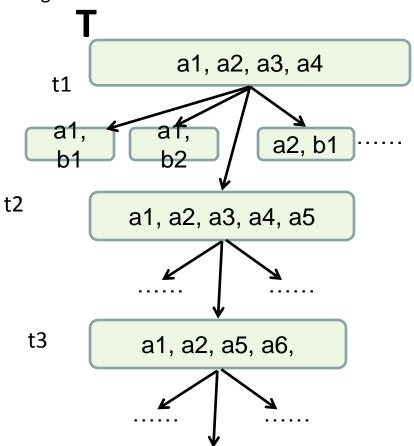


Note: We cannot do better, thus the bound 11 is actually tight!

We now show (2)

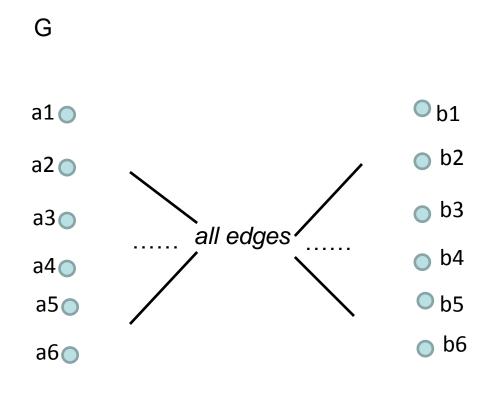
Strip off the Vb-elements and put them into separate bags.





Note: Other examples show, we cannot do better, thus the bound 5 is actually tight

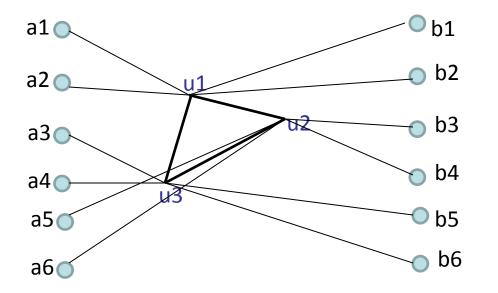
Example for lower bound 5



tw=5

Example for lower bound 5

... and this G is actually solvable:



Theorem : PUDP is in polynomial time and is solvable by dynamic programming techniques.

Name	Sensors	Zones	Edges	Cost	CSP	DECPUP
dbl-20	28	20	56	14	*	0.01
dbl-40	58	40	116	29	*	0.05
dbl-60	88	60	176	44	*	0.08
dblv-30	28	30	92	15	*	65.49
dblv-60	58	60	192	30	*	*
triple-30	40	30	78	20	*	0.50
triple-34	40	34	93	1	*	*
grid-90	50	68	97	34	*	0.03

For constant N totally open. Could well be NP-hard. In fact, Unit Graph does not need to have bounded treewidth!

If N is not-constant, then NP-complete:

For Siemens, it seems that very small values of N are relevant.

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Outline of PART II

Beyond Tree Decompositions

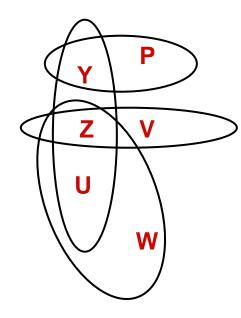
Applications to Databases and CSPs

Structural and Consistency Properties

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

There are also problems whose structure is better described by **hypergraphs** rather than by graphs...

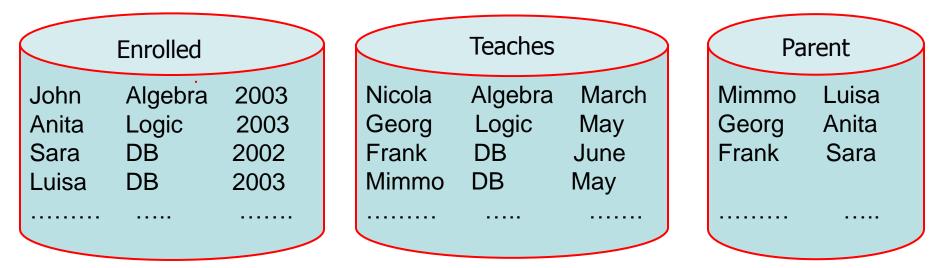


Database schema (scopes):

- Enrolled (Pers#, Course, Reg-Date)
- Teaches (Pers#, Course, Assigned)
- Parent (Pers1, Pers2)

Is there any teacher having a child enrolled in her course?

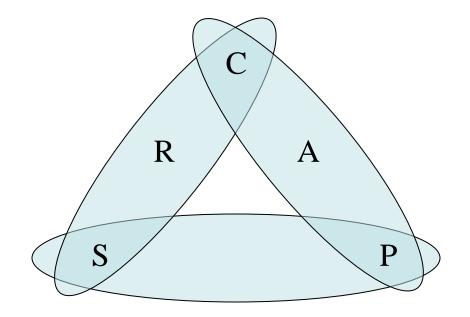
Database queries



QUERY: Is there any teacher having a child enrolled in her course?

ans ← Enrolled(S,C,R) ∧ Teaches(P,C,A) ∧ Parent(P,S)

Ans *Enrolled*(*S*,*C*,*R*) ~ *Teaches*(*P*,*C*,*A*) ~ *Parent*(*P*,*S*)

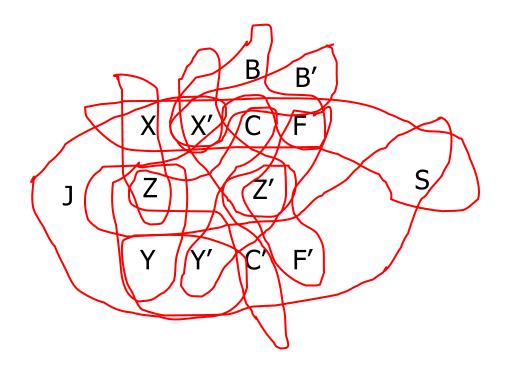


Queries and Hypergraphs (2)

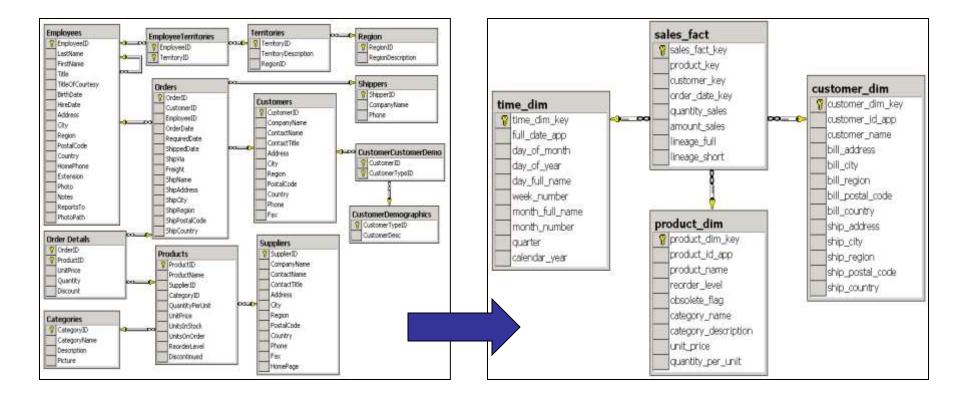
- Database schema (scopes):
 Enrolled (Pers#, Course, Reg-Date)
 Teaches (Pers#, Course, Assigned)
 Parent (Pers1, Pers2)
 C'
 R
 C
 R
 P
- Is there any teacher whose child attend some course?

Ans ← Enrolled(S,C',R) ∧ Teaches(P,C,A) ∧ Parent(P,S)

$ans \leftarrow a(S, X, X', C, F) \land b(S, Y, Y', C', F') \land c(C, C', Z) \land d(X, Z) \land$ $e(Y, Z) \land f(F, F', Z') \land g(X', Z') \land h(Y', Z') \land$ $j(J, X, Y, X', Y') \land p(B, X', F) \land q(B', X', F)$

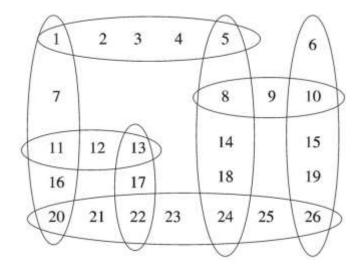


Populating datawarehouses

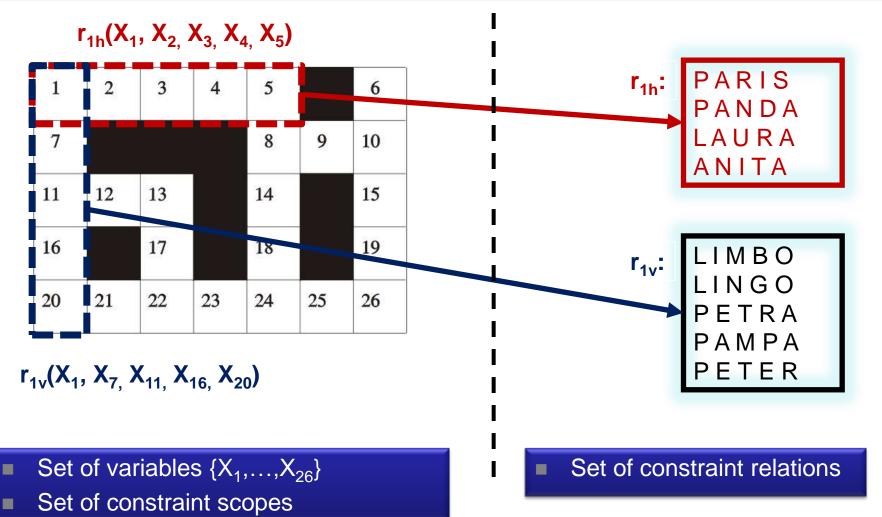


Crossword puzzle

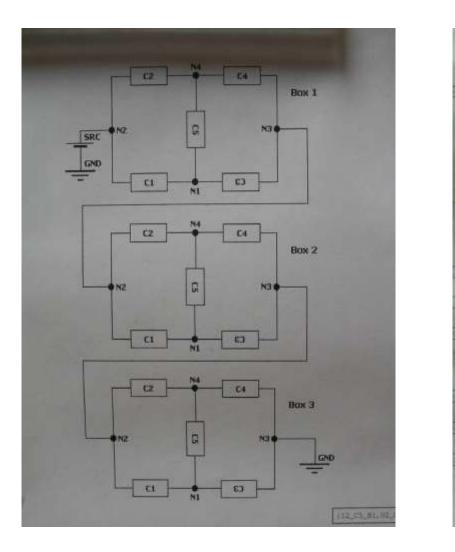
1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26



Constraint Satisfaction Problems



Problems on Electric Circuits



Part of relations for the Nasa problem

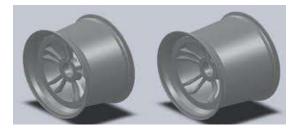
cid_260(Vid_49, Vid_366, Vid_224) cid_261(Vid_100, Vid_391, Vid_392) cid_262(Vid_273, Vid_393, Vid_246) cid_263(Vid_329, Vid_394, Vid_249) cid_264(Vid_133, Vid_360, Vid_356 cid_265(Vid_314, Vid_348, Vid_395 cid_266(Vid_67, Vid_352, Vid_396 cid_267(Vid_182, Vid_364, Vid_392 cid_268(Vid_313, Vid_349, Vid_398) cid_269(Vid_339, Vid_348, Vid_399) cid_270(Vid_98, Vid_366, Vid_400) cid_271(Vid_161, Vid_364, Vid_401) cid_272(Vid_131, Vid_353, Vid_234) cid_273(Vid_126, Vid_402, Vid_245) cid_274(Vid_146, Vid_252, Vid_228) cid_275(Vid_330, Vid_360, Vid_361),

- 680 constraints
- 579 variables

...

Configuration problems (Renault example)

- Renault Megane configuration [Amilhastre, Fargier, Marquis AIJ, 2002] Used in CSP competitions and as a benchmark problem
- Variables encode type of engine, country, options like air cooling, etc.
- 99 variables with domains ranging from 2 to 43.
- 858 constraints, which can be compressed to 113 constraints.
- The maximum arity is 10 (hyperedge cardinality/size of constraint scopes)
- Represented as extensive relations, the 113 constraints comprise about 200 000 tuples



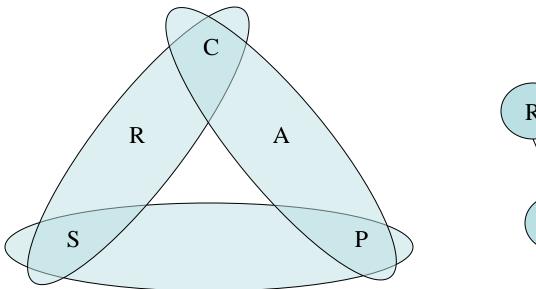
IJCA

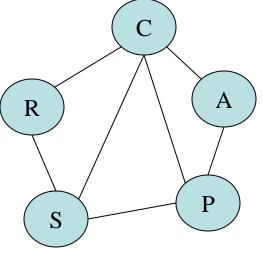
• 2.84 × 10¹² solutions.

Further examples...

In the third part

Representing Hypergraphs via Graphs

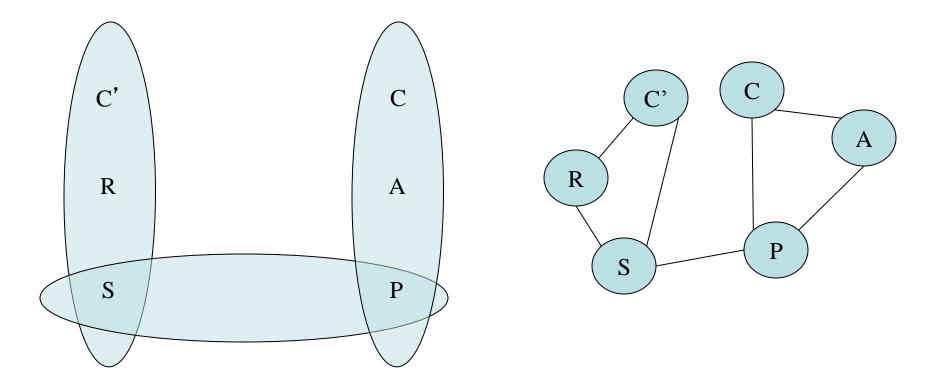




Hypergraph H(Q)

Primal graph G(Q)

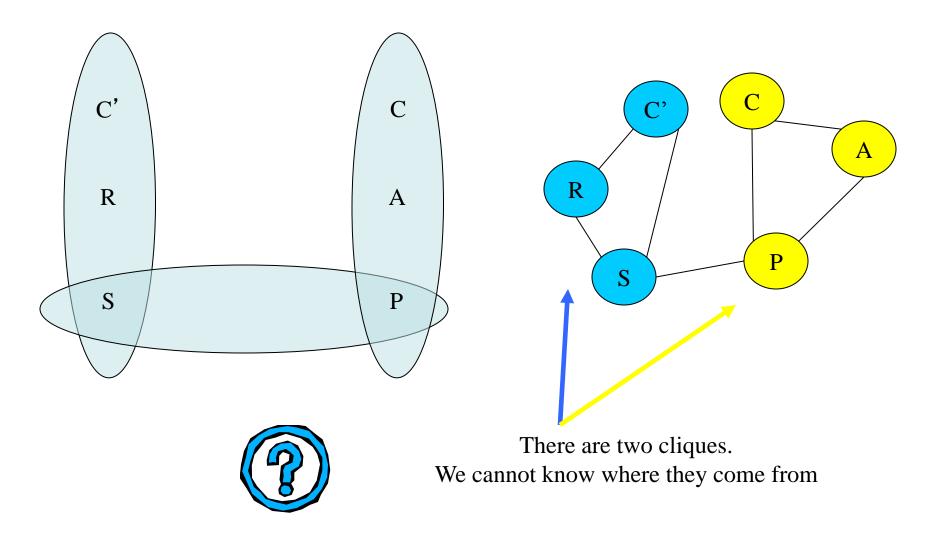
Hypergraphs vs Graphs



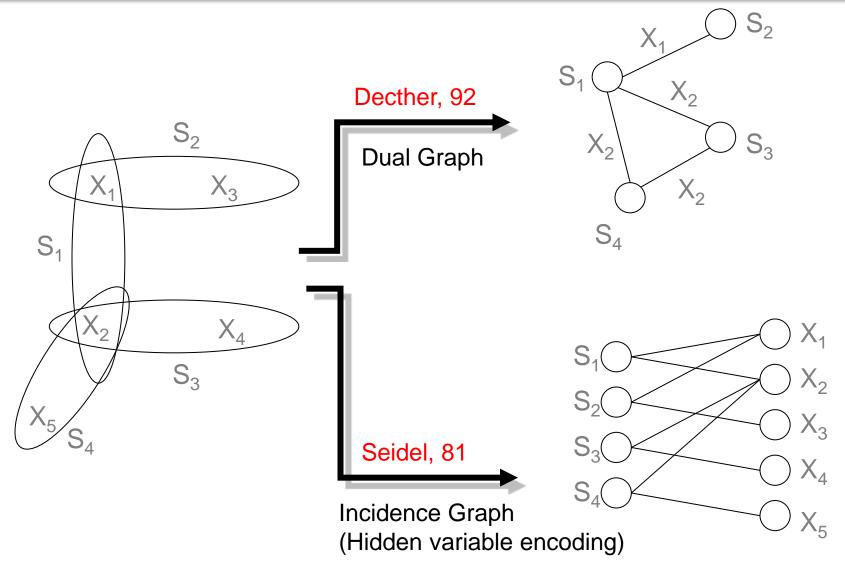
An acyclic hypergraph

Its cyclic primal graph

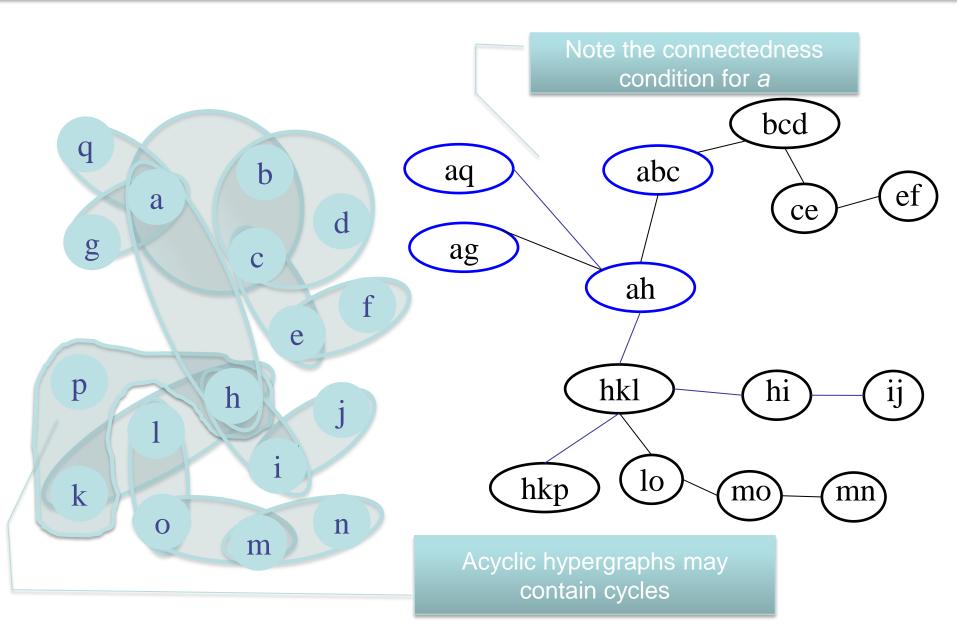
Hypergraphs vs Graphs



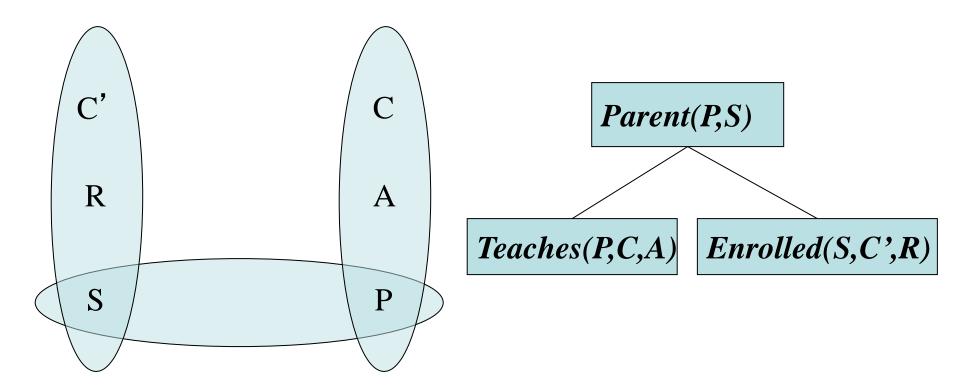
Further Graph Representations



α-acyclic Hypergraphs



Ans \leftarrow Enrolled(S,C',R) \land Teaches(P,C,A) \land Parent(P,S)



α -acyclic hypergraph

Join Tree

Deciding Hypergraph Acyclicity

Can be done in linear time by <u>GYO-Reduction</u>

[Yu and Özsoyoğlu, IEEE Compsac'79; see also Graham, Tech Rep'79]

Input: Hypergraph H

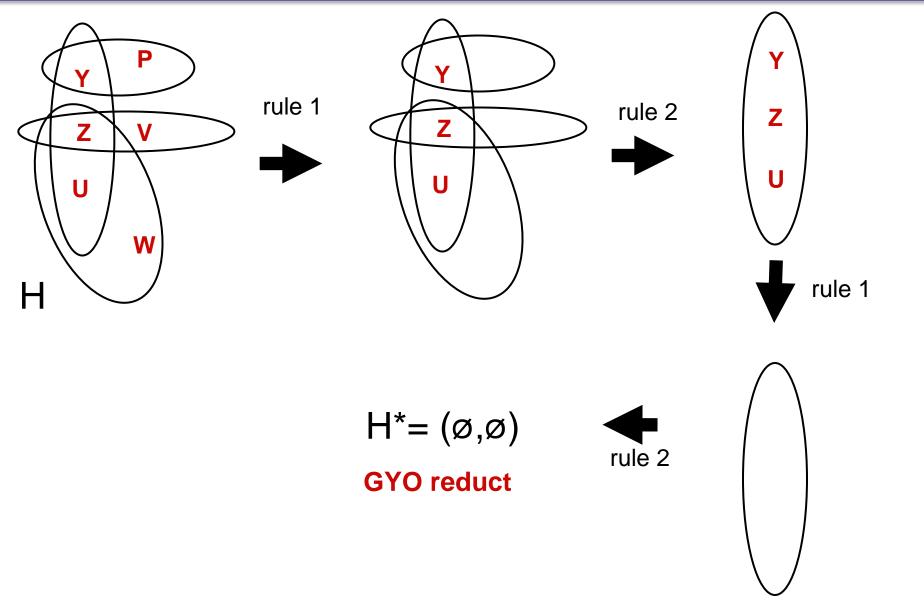
Method: Apply the following two rules as long as possible:

(1) Eliminate vertices that are contained in at most one hyperedge(2) Eliminate hyperedges that are empty or contained in other hyperedges

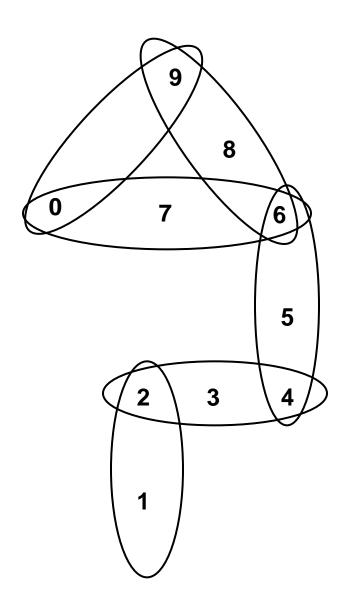
H is (α -)acyclic iff the resulting hypergraph empty

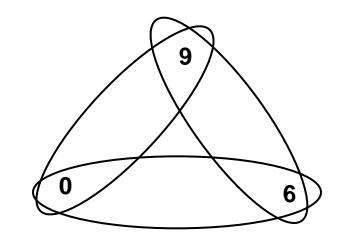
Proof: Easy by considering leaves of join tree

Example of GYO-Reduction



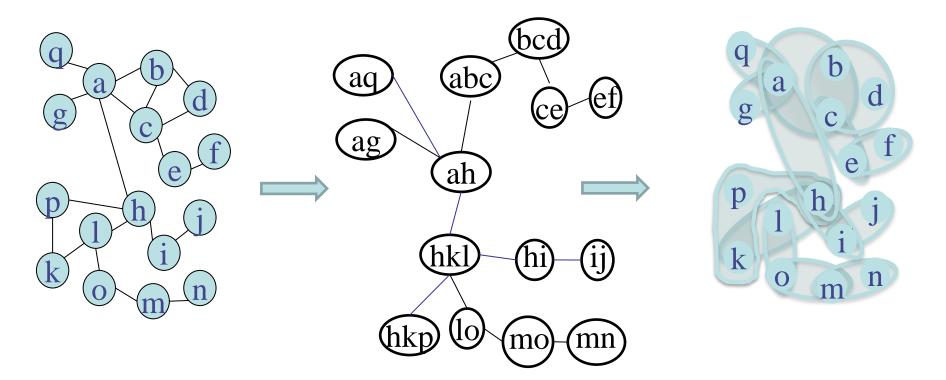
Example of GYO-irreducible Hypergraph





Tree decompositions as Join trees

- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance

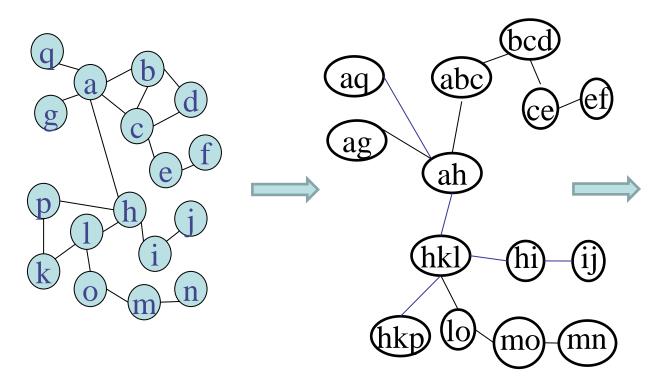


width 2 tree decomposition

Acyclic instance

From graphs to acyclic hypergraphs

- The "degree of cyclicity" is the treewidth (maximum number of vertices in a cluster -1)
- In this example, the treewidth is 2
- That's ok! We started with a cyclic graph...



q b d d c d e f e f k o m n

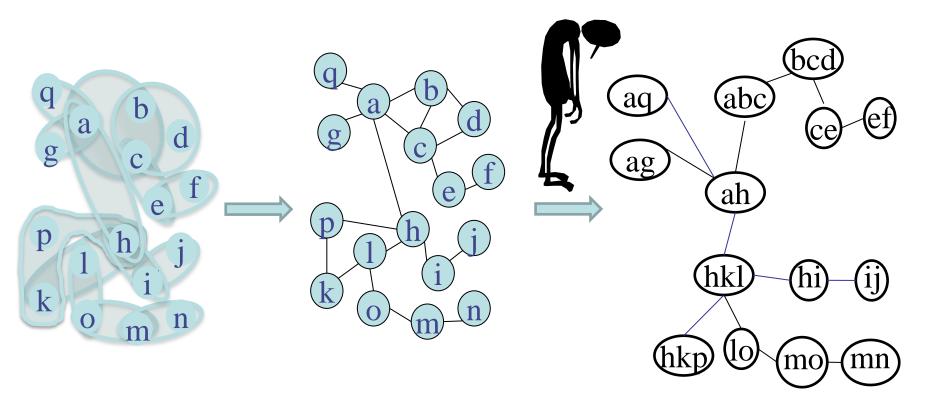
IJCAI-13

Equivalent acyclic instance

Input Graph

Not good for hypergraph-based problems

- Here the input instance is acyclic (hence, easy)
- However, its treewidth is 2! (similar troubles for all graph representations)

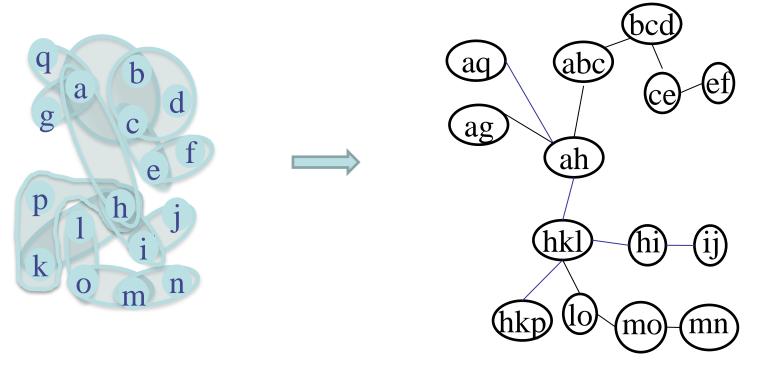


Primal graph

width-2 tree decomposition

A different notion of "width"

- Exploit the fact that a single hyperedge covers many vertices
- Degree of cyclicity: maximum number of hyperedges needed to cover every cluster



Input: acyclic instance

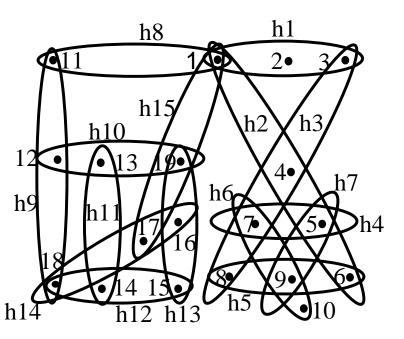
One hyperedge covers each cluster: width 1

Generalizing acyclicity and treewidth

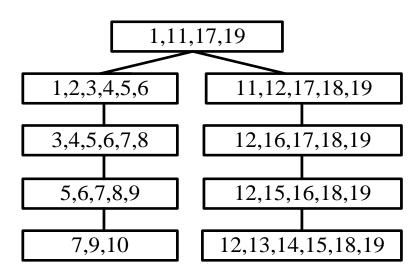
- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance
- Width of a decomposition: maximum number of hyperedges needed to cover each bag of the tree decomposition
- Generalized Hypertree Width (ghw): minimum width over all possible decompositions [Gottlob, Leone, Scarcello, JCSS'03]
 - also known as (acyclic) cover width
- Generalizes both acyclicity and treewidth:
 - Acyclic hypergraphs are precisely those having ghw = 1
 - The "covering power" of a hyperedge is always greater than the covering power of a vertex (used in the treewidth)

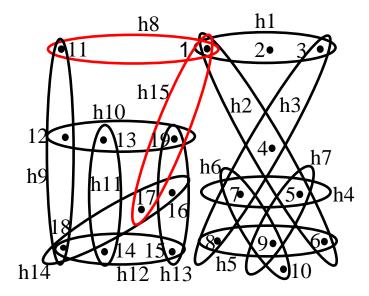
Tree Decomposition of a Hypergraph

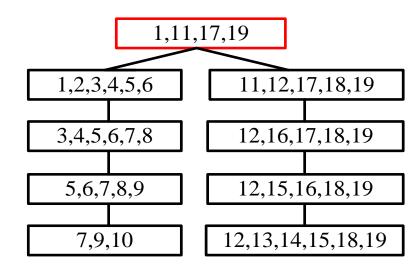
Η

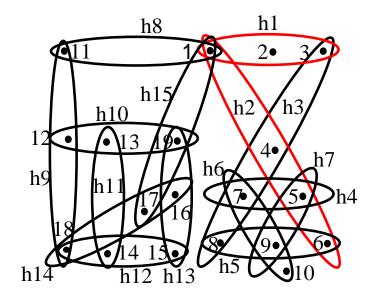


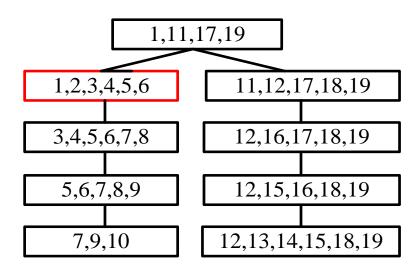
Tree decomp of G(H)

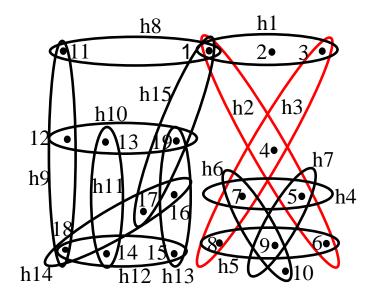


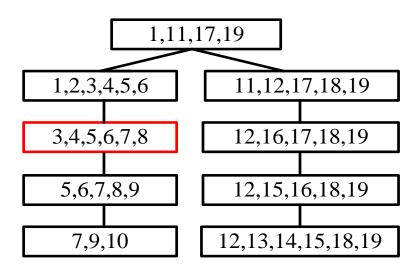


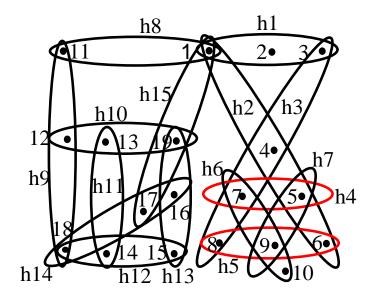


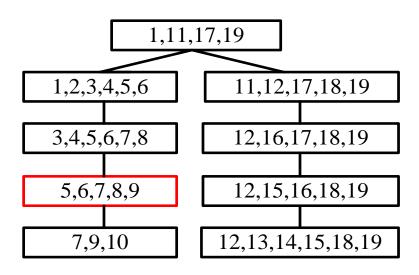


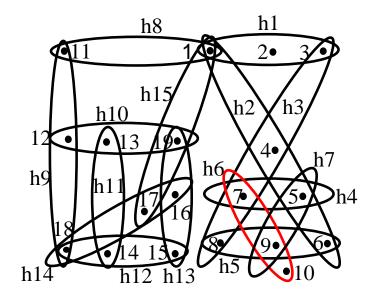


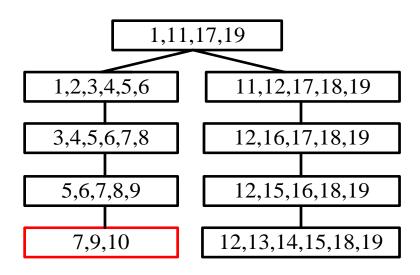


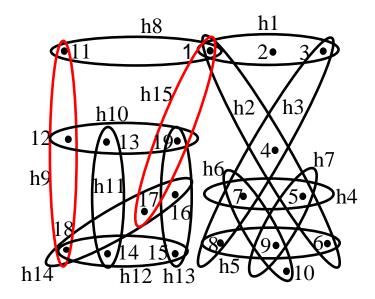


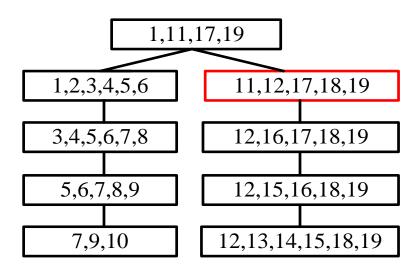


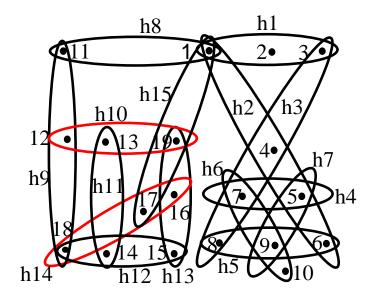


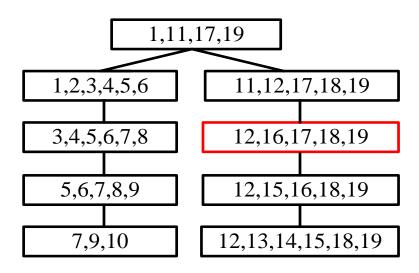


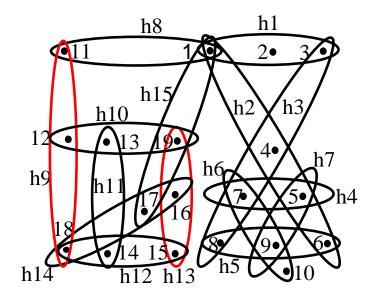


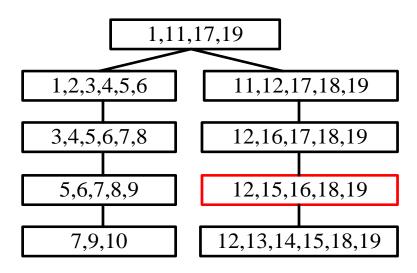










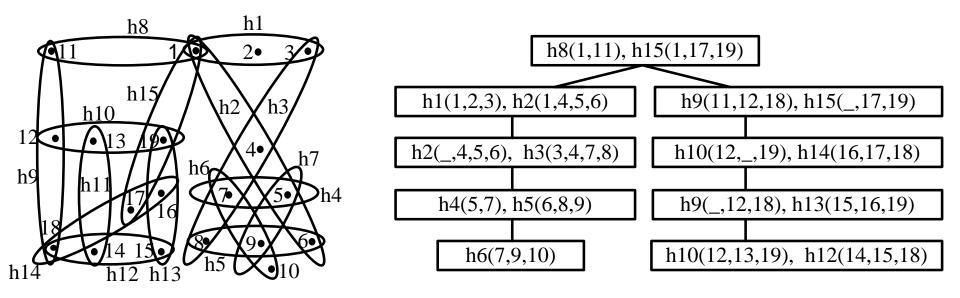


Generalized Hypertree Decomposition

JCAI-13

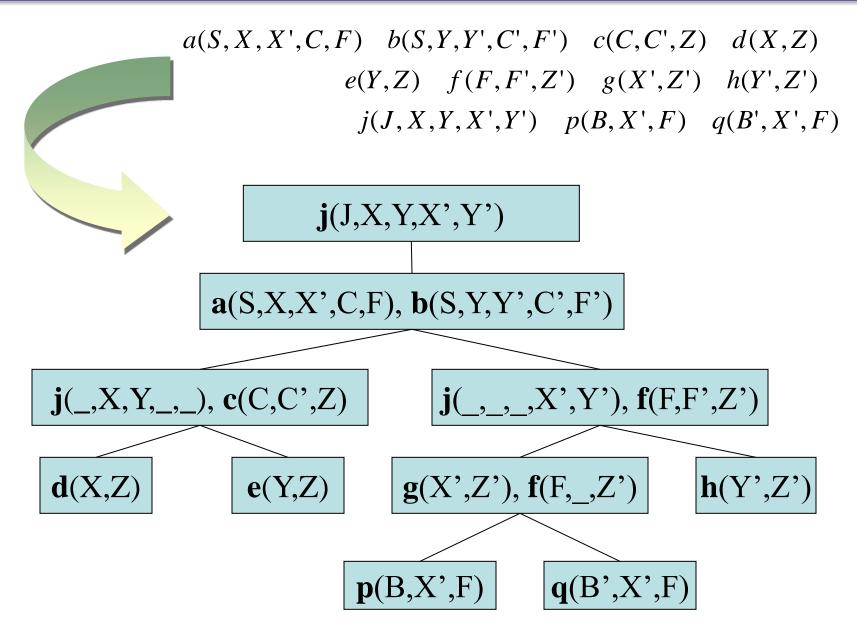
Notation:

- label decomposition vertices by hyperedges
- omit hyperedge elements not used for bag covering (hidden elements are replaced by "_")



Generalized hypetree decomposition of width 2

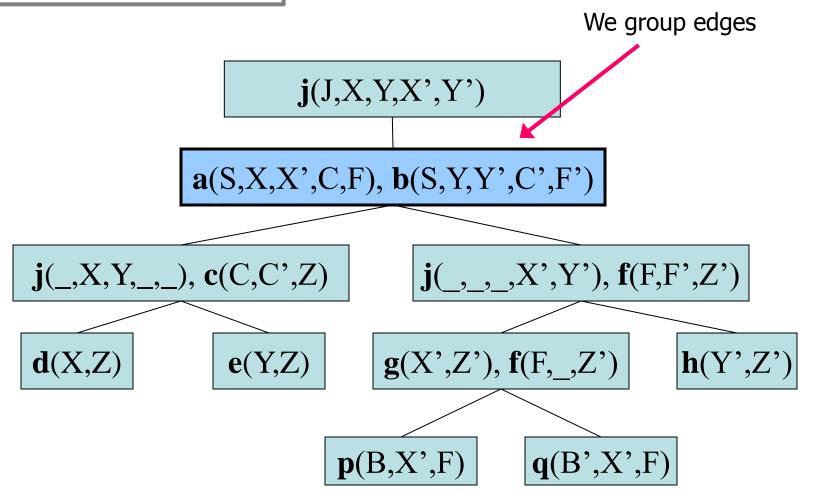
Generalized Hypertree Decompositions



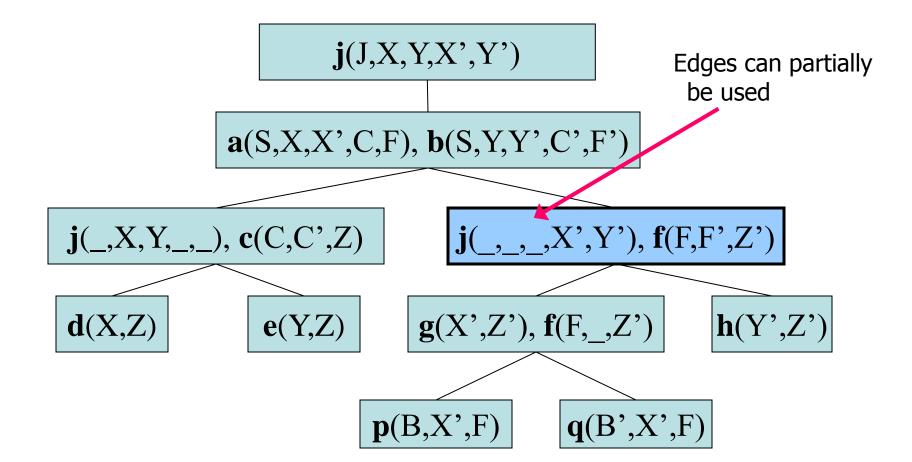
Basic Conditions(1/3)

JCAI-13

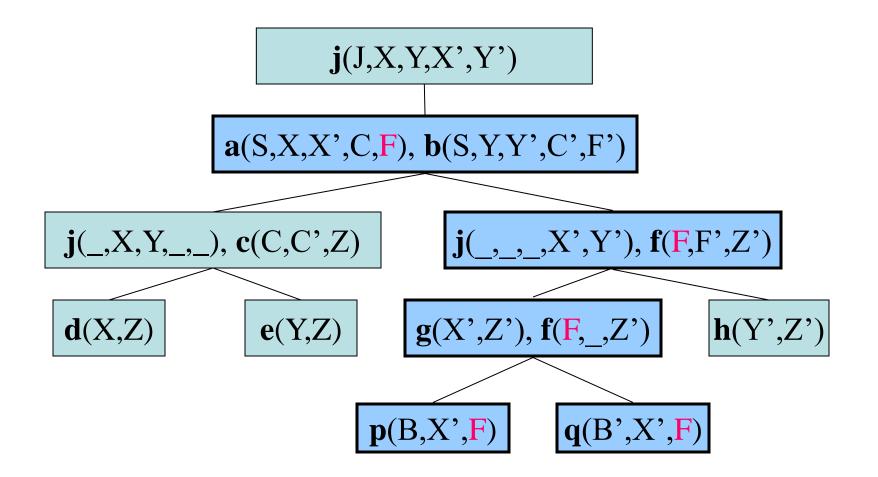
Original (direct) definition



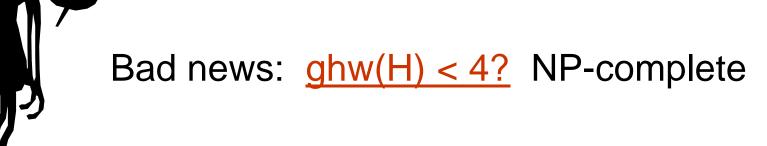
Basic Conditions_(2/3)



Connectedness Condition(3/3)



Can we determine in polynomial time whether ghw(H) < k for constant k ?</p> Can we determine in polynomial time whether ghw(H) < k for constant k ?</p>

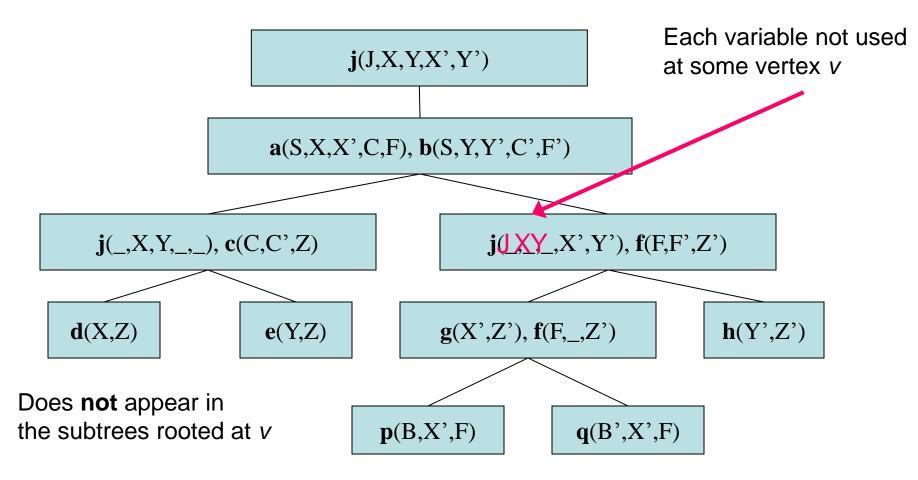


[Gottlob, Miklós, and Schwentick, J.ACM'09]

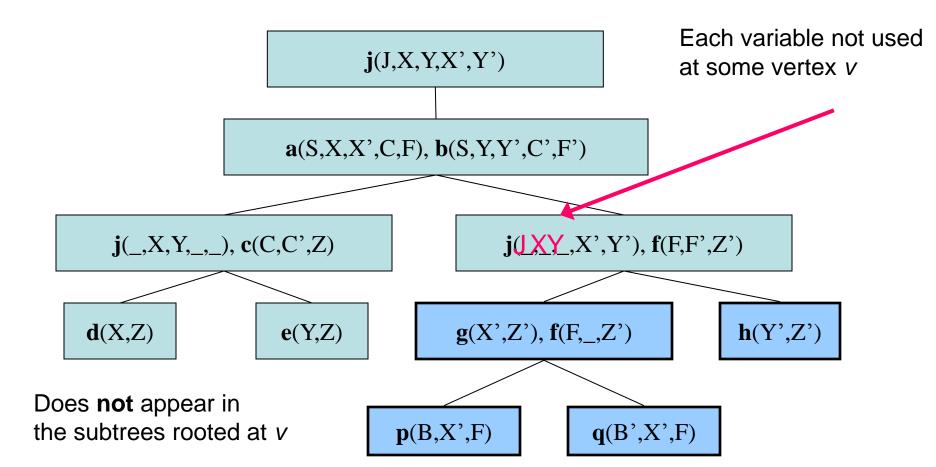
Hypertree Decomposition (HTD)

HTD = Generalized HTD +Special Condition

[Gottlob, Leone, Scarcello, PODS'99; JCSS'02]

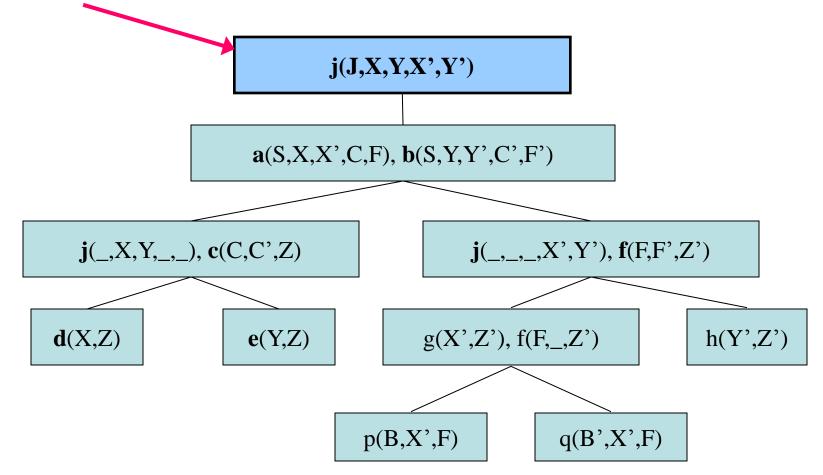


Special Condition



Special Condition

Thus, e.g., all available variables in the root must be used



- For fixed k, deciding whether hw(Q) ≤ k is in polynomial time (LOGCFL)
- Computing hypertree decompositions is feasible in polynomial time (for fixed k).
 - But: FP-intractable wrt k: W[2]-hard.

Observation: ghw(H) = hw(H*)

```
where H^* = H \cup \{E' \mid \exists E \text{ in edges}(H): E' \subseteq E\}
```

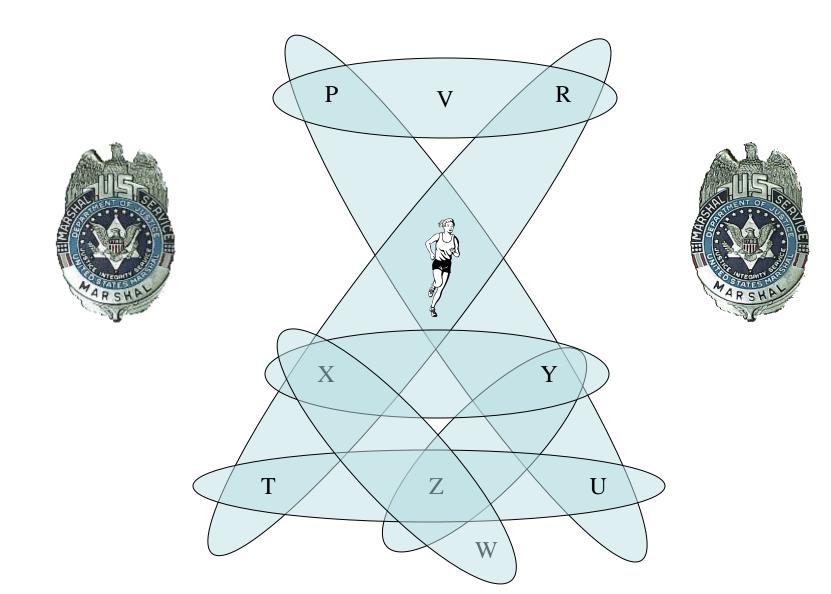
Exponential!

Approximation Theorem [Adler,Gottlob,Grohe ,05]:

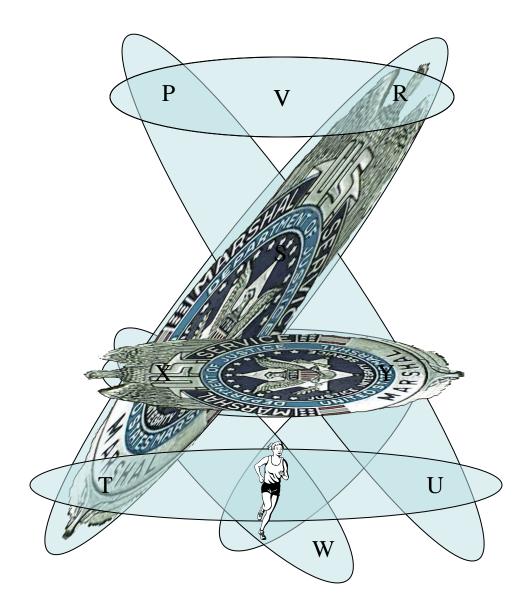
 $ghw(H) \le 3hw(H)+1$

GHW and HW identify the same set of classes having bounded width

Game Characterization: Robber and Marshals



Marshals block hyperedges



Game Characterization: Robber and Marshals

A robber and k marshals play the game on a hypergraph

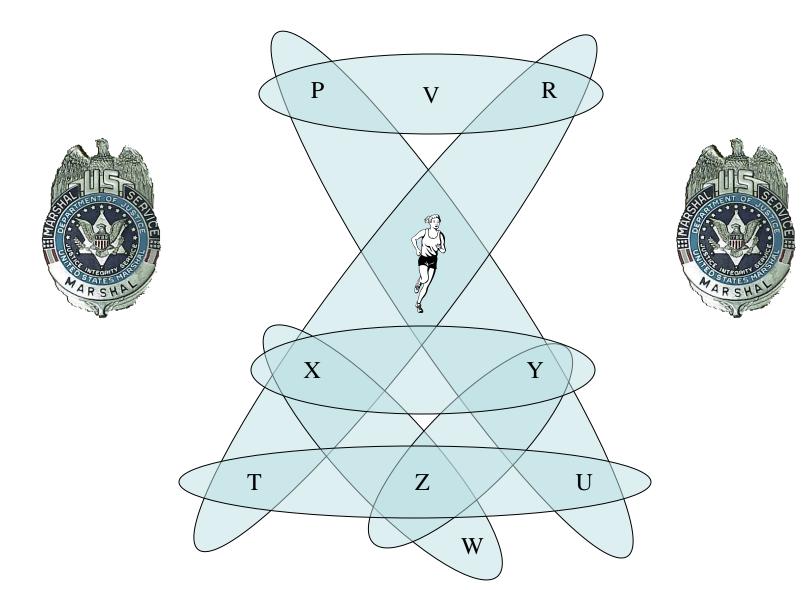
The marshals have to capture the robber

The robber tries to elude her capture, by running arbitrarily fast on the vertices of the hypergraph

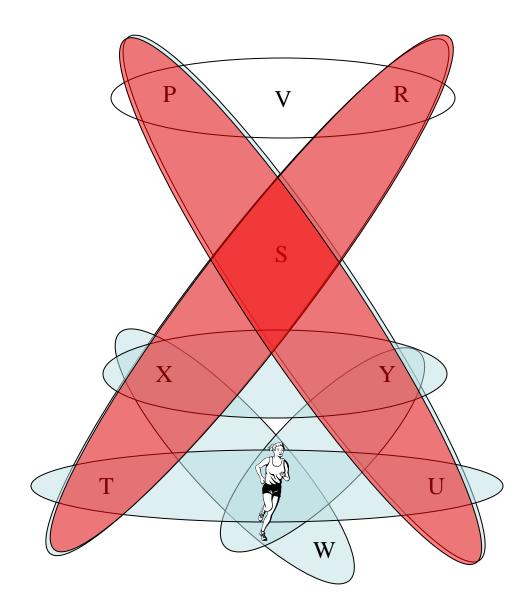
Robbers and Marshals: The Rules

- Each marshal stays on an edge of the hypergraph and controls all of its vertices at once
- The robber can go from a vertex to another vertex running along the edges, but she cannot pass through vertices controlled by some marshal
- The marshals win the game if they are able to monotonically shrink the moving space of the robber, and thus eventually capture her
- Consequently, the robber wins if she can go back to some vertex previously controlled by marshals

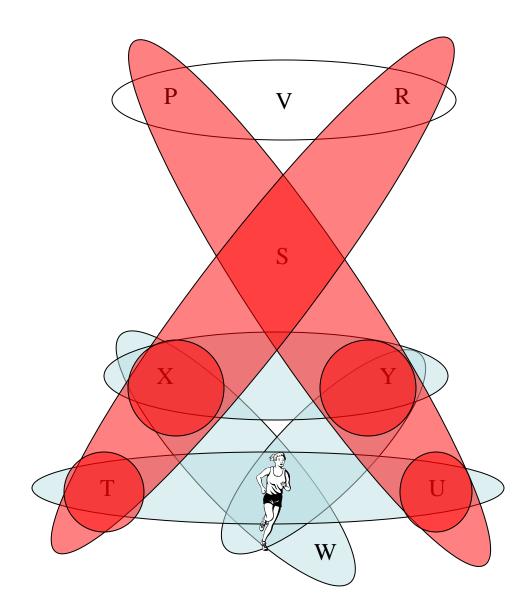
Step 0: the empty hypergraph



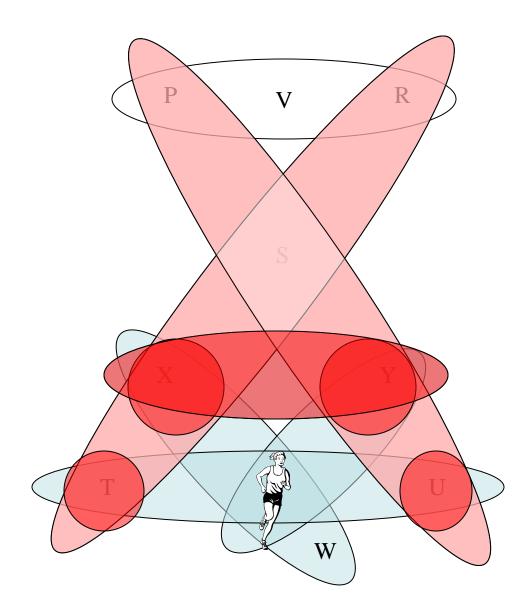
Step 1: first move of the marshals



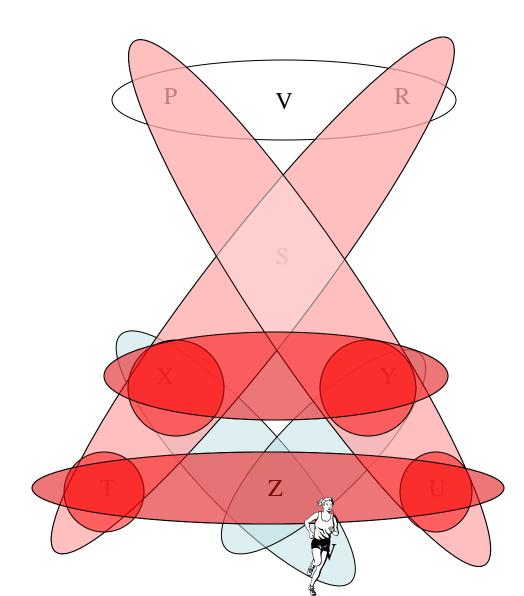
Step 2a: shrinking the space



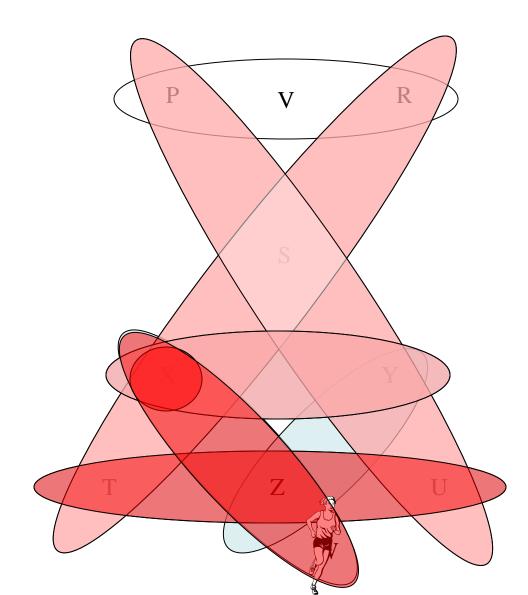
Step 2a: shrinking the space



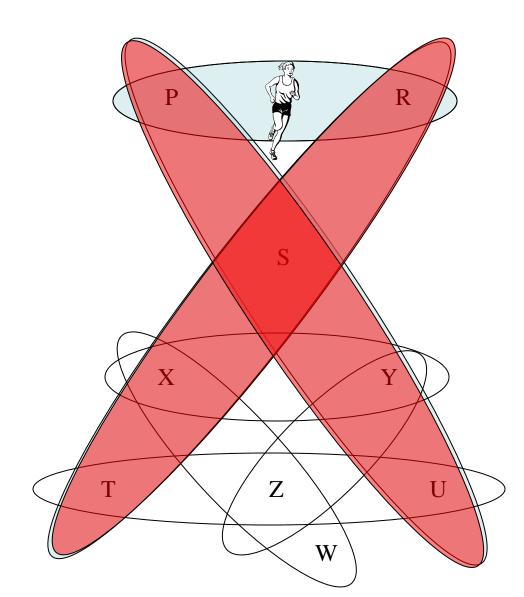
Step 2a: shrinking the space



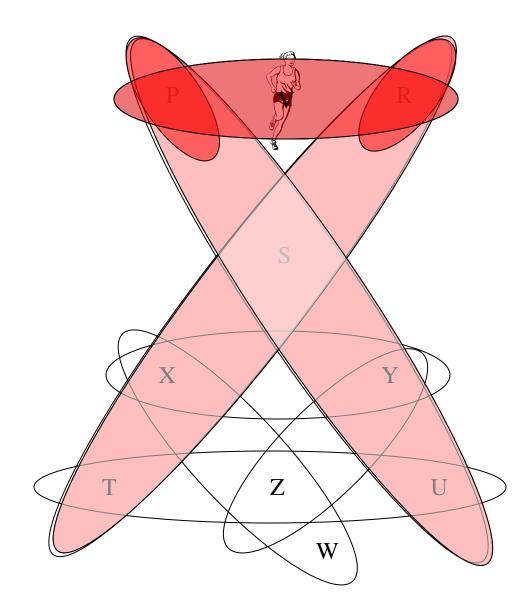
The capture



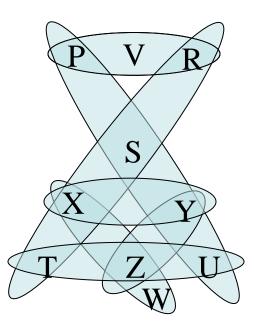
A different robber's choice



Step 2b: the capture

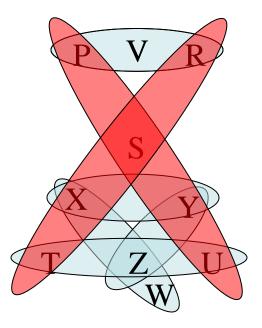


$ans \leftarrow a(S, X, T, R) \land b(S, Y, U, P) \land c(T, U, Z) \land e(Y, Z) \land$ $g(X, Y) \land f(R, P, V) \land \land d(W, X, Z)$



First choice of the two marshals

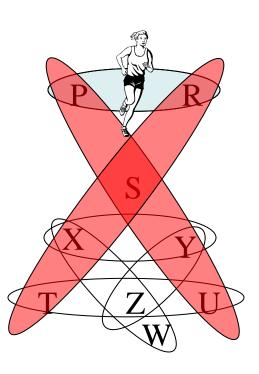
a(S,X,T,R), **b**(S,Y,U,P)



IJCAI-13

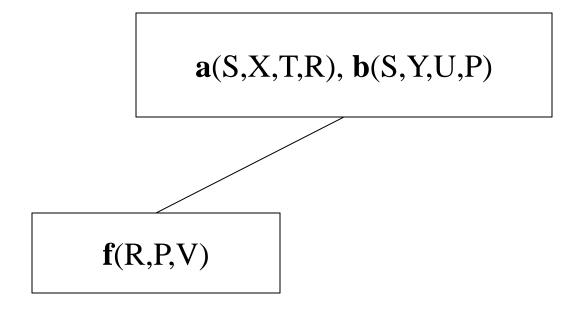
A possible choice for the robber

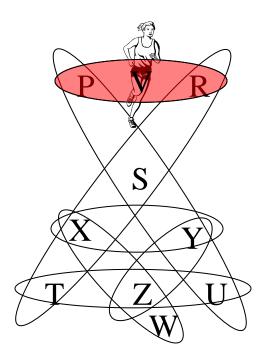
a(S,X,T,R), **b**(S,Y,U,P)



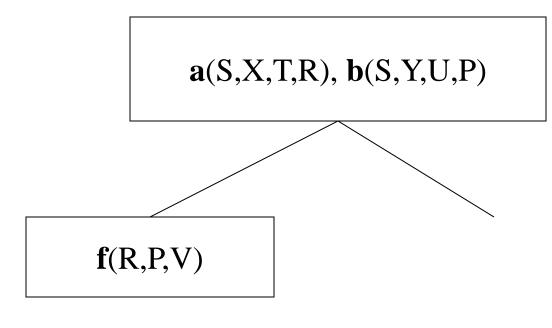
IJCAI-13

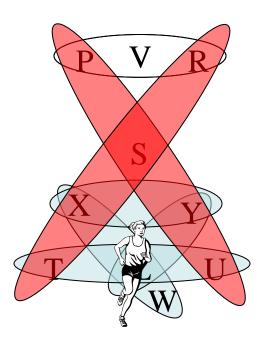
The capture



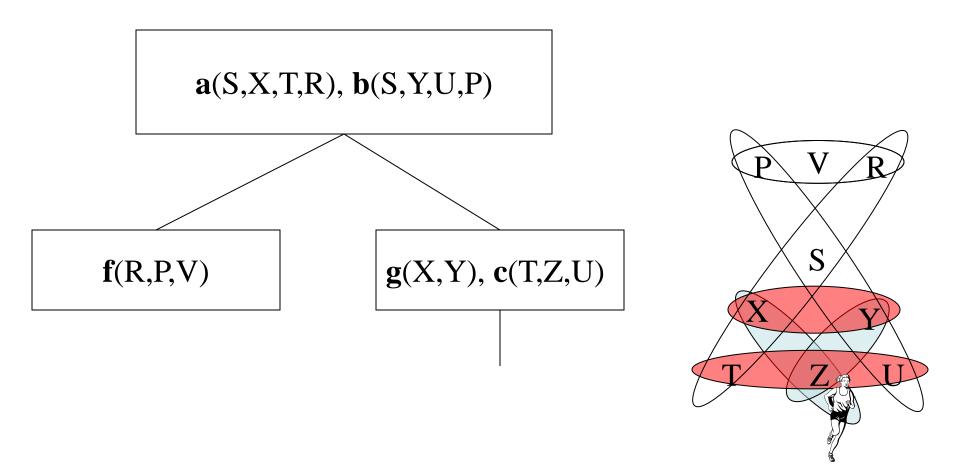


The second choice for the robber



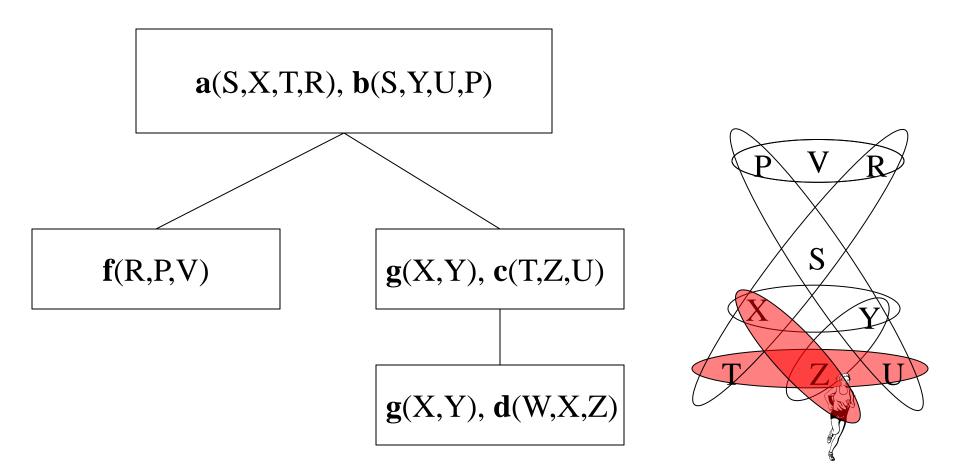


The marshals corner the robber



IJCAI-13

The capture



Let *H* be a hypergraph.

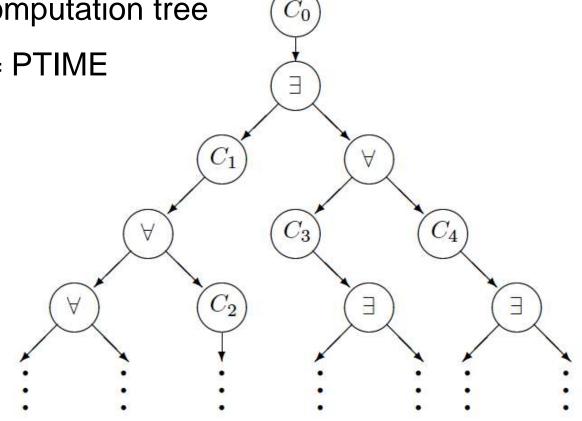
- **Theorem**: *H* has hypertree width $\leq k$ if and only if *k* marshals have a winning strategy on *H*.
- Corollary: H is acyclic if and only if one marshal has a winning strategy on H.

Winning strategies on H correspond to hypertree decompositions of H and vice versa.

[Gottlob, Leone, Scarcello, PODS'01, JCSS'03]

A Useful Tool: Alternating Turing Machines

- Generalization of non-deterministic Turing machines
- There are two special states: \$ and
- Acceptation: Computation tree
- ALOGSPACE = PTIME



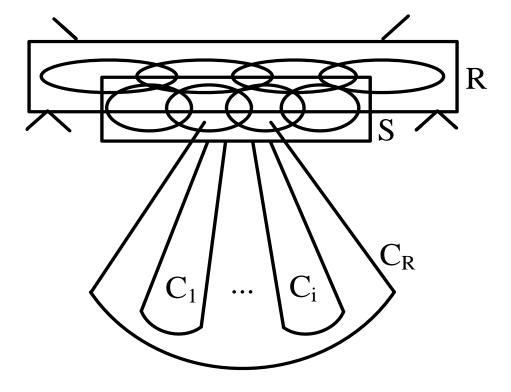
- LOGCFL: class of problems/languages that are logspace-reducible to a CFL
- Admit efficient parallel algorithms

$AC_0 \subseteq NL \subseteq \underline{\mathsf{LOGCFL}} = SAC_1 \subseteq AC_1 \subseteq NC_2 \subseteq \cdots \subseteq NC = AC \subseteq P \subseteq NP$

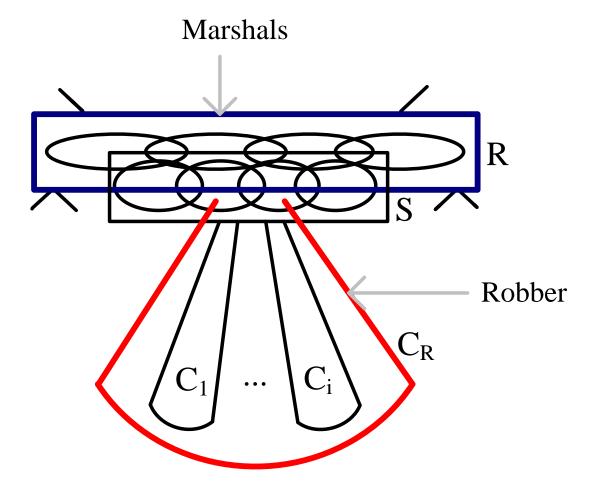
Characterization of LOGCFL [Ruzzo '80]:

LOGCFL = Class of all problems solvable with a logspace ATM with polynomial tree-size

Coming back to Marshals...



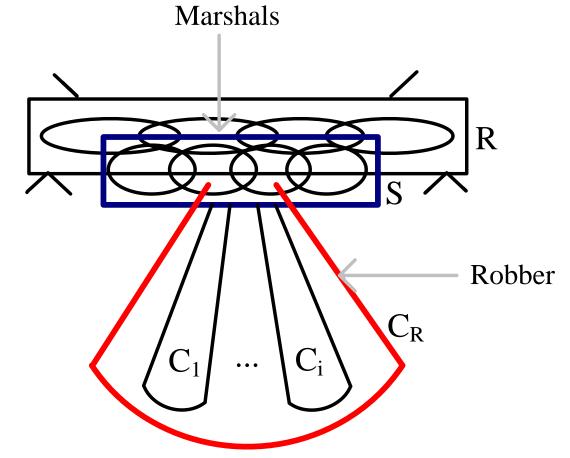
A polynomial algorithm: ALOGSPACE



IJCAI-13

Actually, LOGCFL

Once I have guessed R, how to guess the next marshal position S?



Monotonicity: $\forall \ E \in edges(C_R)$: $(E \cap UR) \subseteq US$

Strict shrinking: (US) $\cap C_R \neq \emptyset$

LOGSPACE checkablePolynomial proof-tree

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

HOM: The homomorphism problem BCQ: Boolean conjunctive query evaluation CSP: Constraint satisfaction problem

Important problems in different areas. All these problems are hypergraph based.

[e.g., Kolaitis & Vardi, JCSS'98]

Given two relational structures

$$\mathbb{A} = (U, R_1, R_2, ..., R_k)$$

$$\mathbb{B} = (V, S_1, S_2, ..., S_k)$$

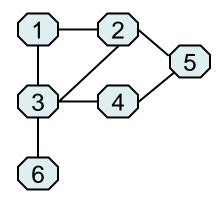
Decide whether there exists a homomorphism **h** from A to B

$$h\colon U \longrightarrow V$$

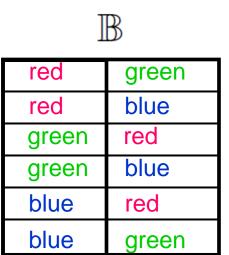
such that $\forall \mathbf{x}, \forall i$

 $\mathbf{x} \in R_i \implies h(\mathbf{x}) \in S_i$

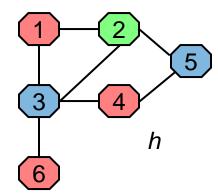
Example: graph colorability

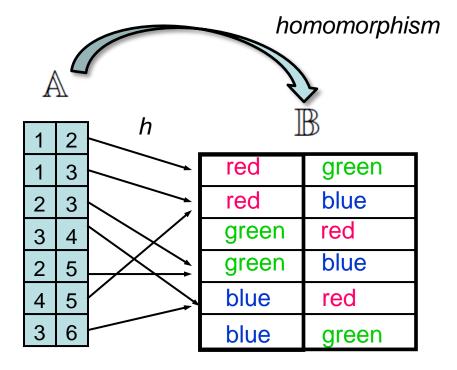


\mathbb{A}		
	1	2
	1	3
	2	3
	3	4
	2	5
	4	5
	3	6



Example: graph colorability



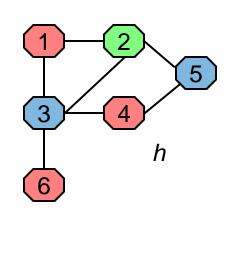


Complexity: HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

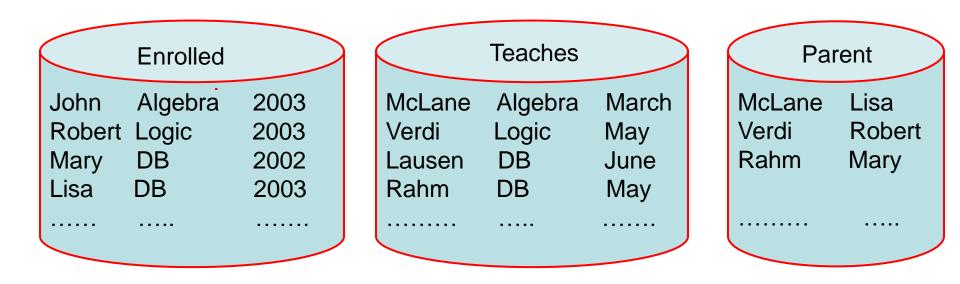




Graph 3-colourable *iff* HOM(A,B) yes-instance.

Conjunctive Database Queries

DATABASE:



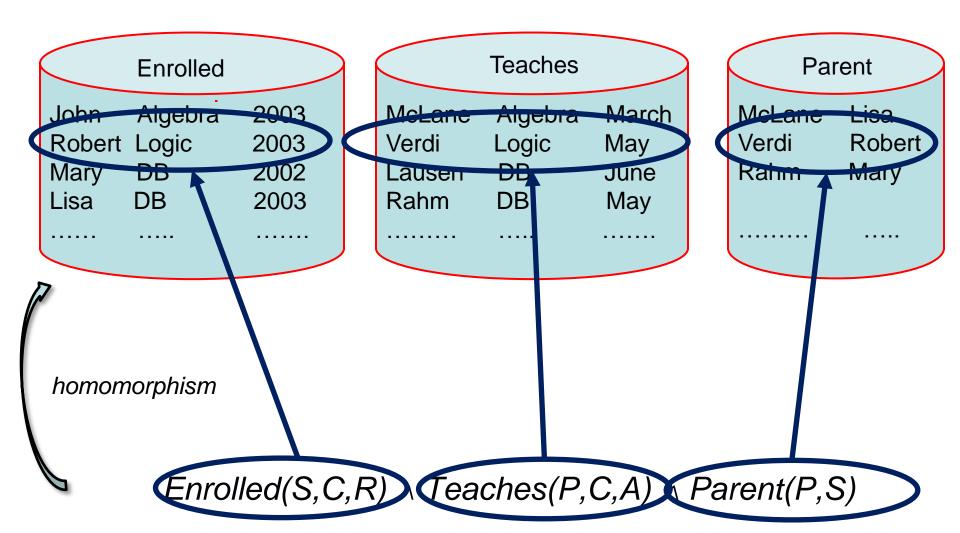
QUERY:

Is there any teacher having a child enrolled in her course?

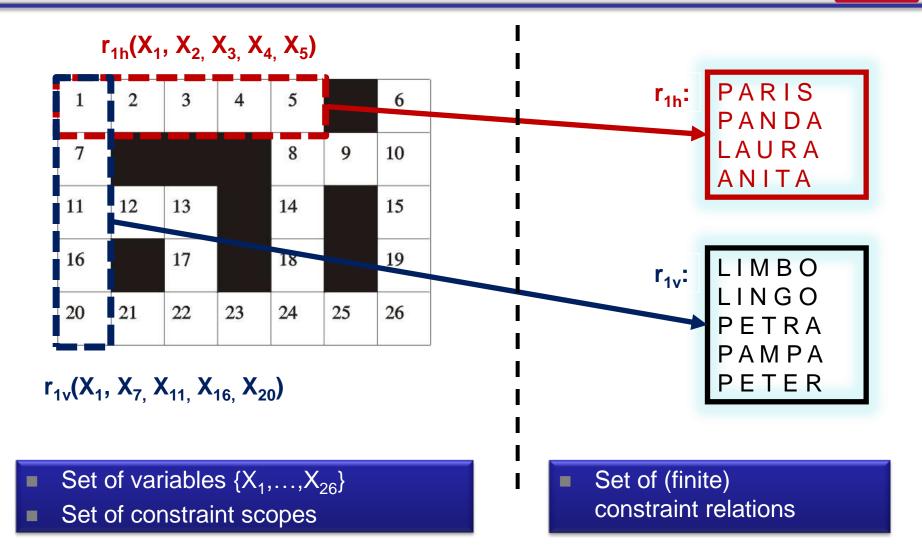
ans \leftarrow Enrolled(S,C,R) \land Teaches(P,C,A) \land Parent(P,S)

Conjunctive Database Queries

DATABASE:

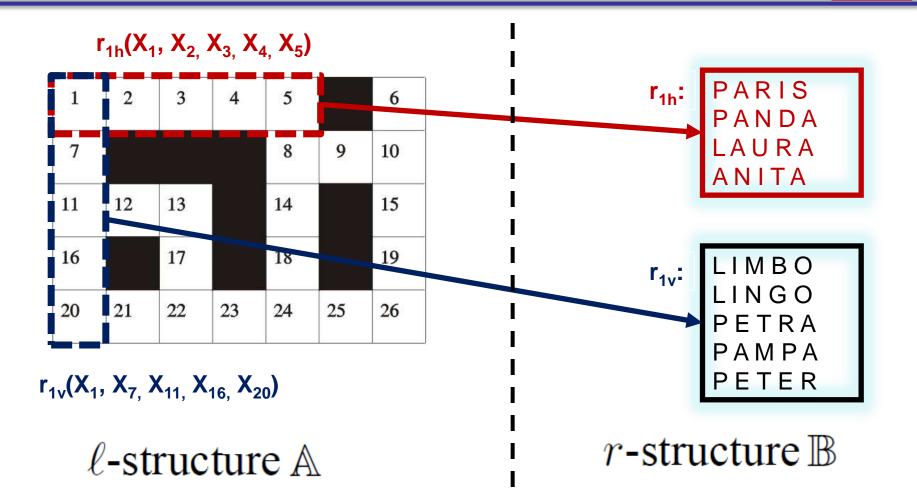


CSPs as Homomorphism Problems



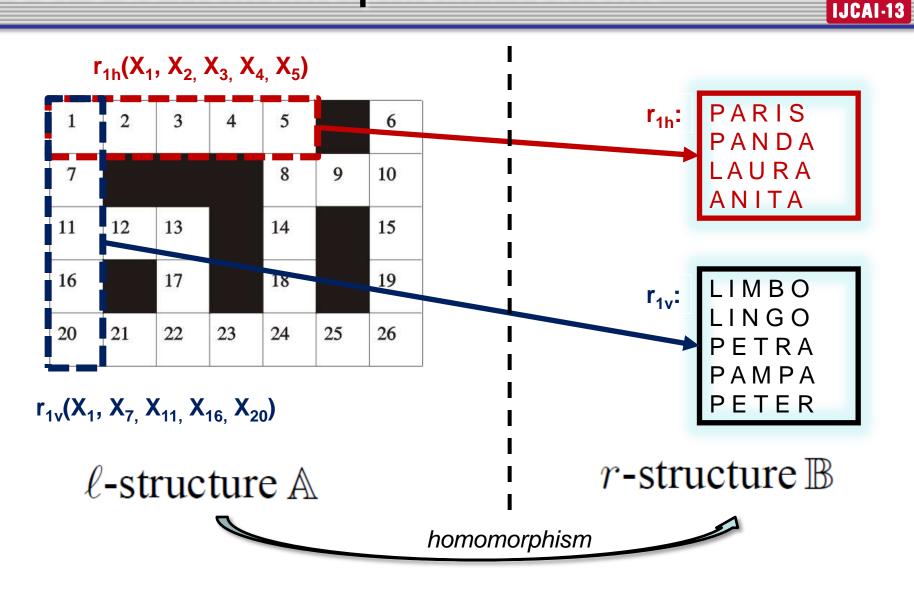
IJCAI-13

CSPs as Homomorphism Problems



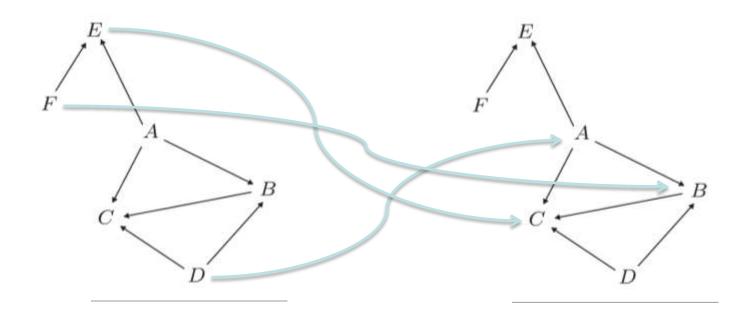
IJCAI-13

CSPs as Homomorphism Problems



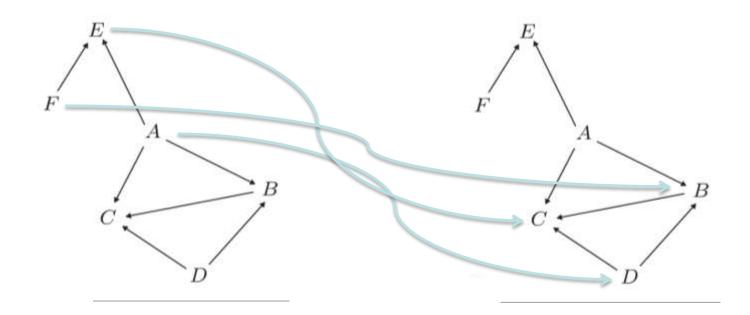
Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other



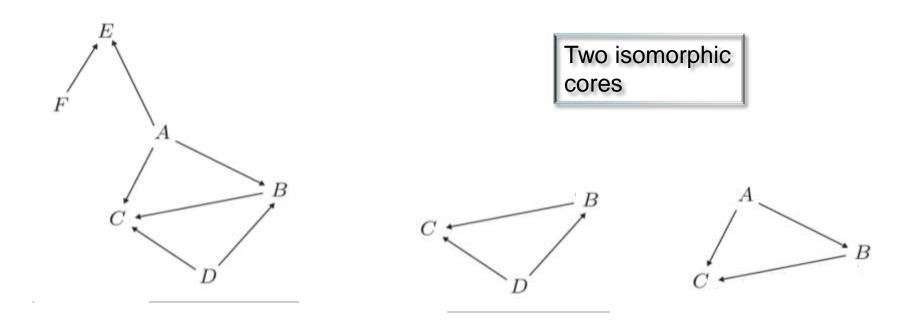
Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other



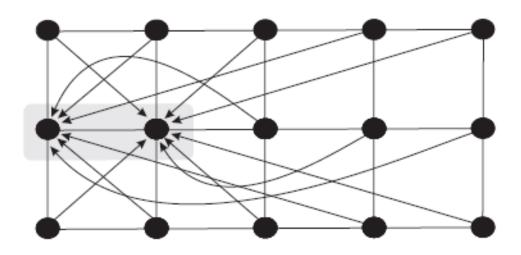
Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other



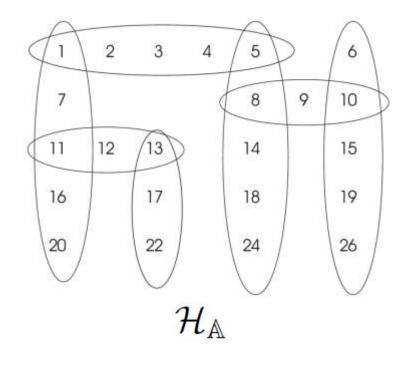
Cores and equivalent instances

- Can be used to simplify problems
- There is a homomorphism from A to B if and only if there is a homomorphism from a/any core of A to B
- Sometimes terrific simplifications:

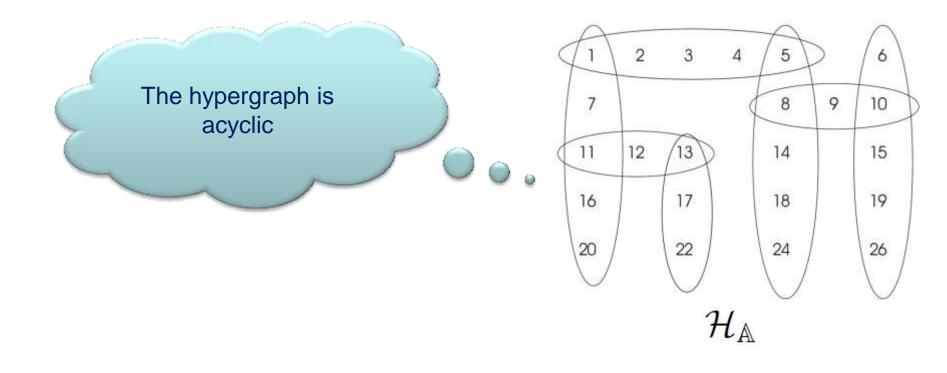


This undirected grid is equivalent to a single edge. That is, it is equivalent to an acyclic instance!

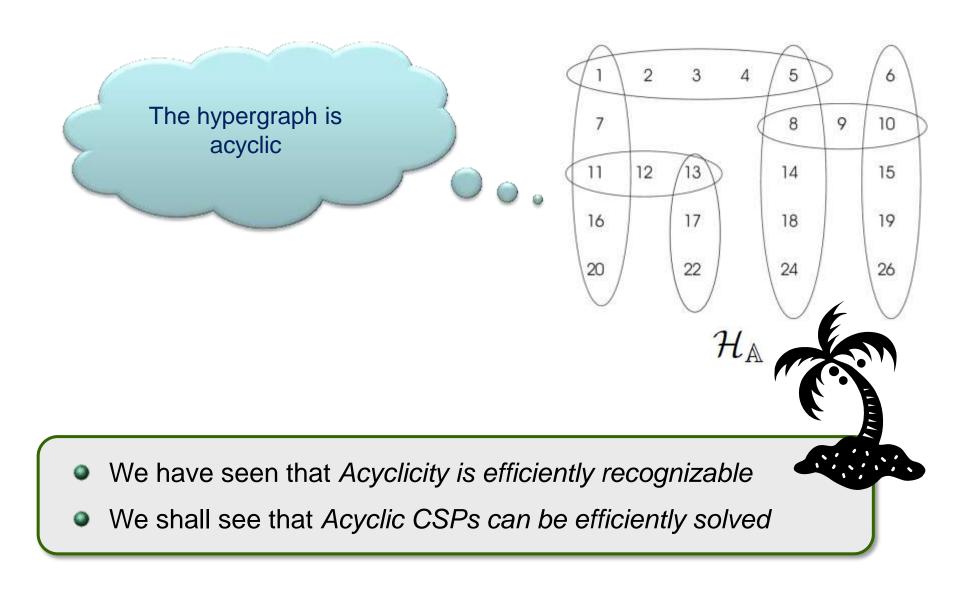
Structurally Restricted CSPs



Structurally Restricted CSPs



Structurally Restricted CSPs



INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

Basic Question (on Acyclic Instances)

IJCA

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

- Feasible in polynomial time O(||A|| ||B|| log||B||)
- LOGCFL-complete

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

• Feasible in polynomial time $O(||A|| ||B|| \log ||B||)$

LOGCFL-complete

[Yannakakis, VLDB'81]

IJCAI

Basic Question (on Acyclic Instances)

INPUT: CSP instance (\mathbb{A}, \mathbb{B})

• Is there a homomorphism from \mathbb{A} to \mathbb{B} ?

● Feasible in polynomial time O(||A|| ||B|| log||B||)

LOGCFL-complete

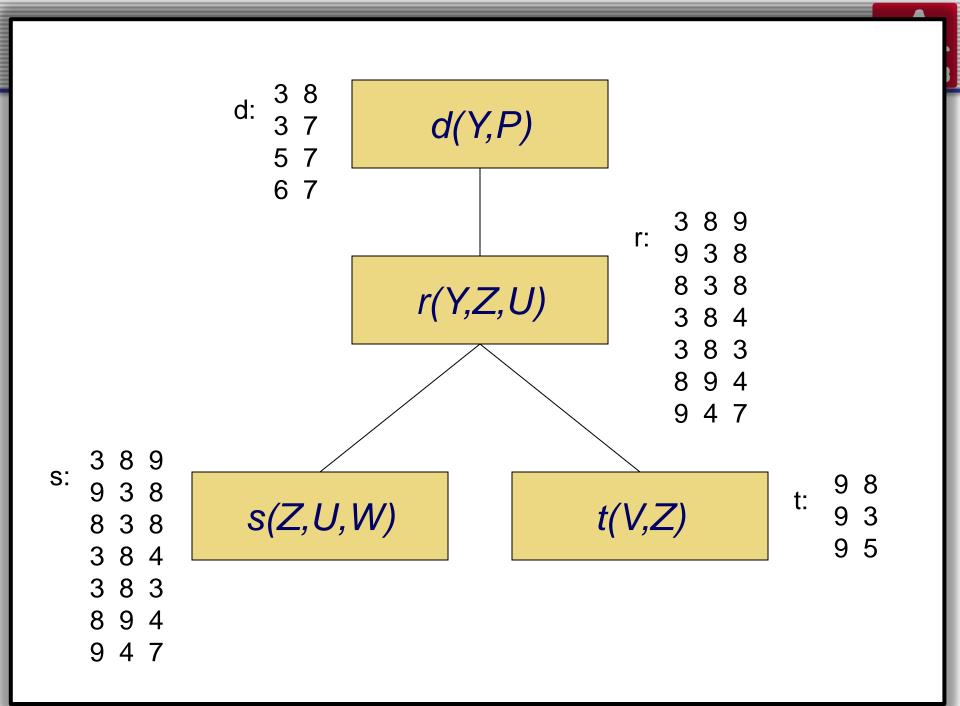
[Gottlob, Leone, Scarcello, J.ACM'00]

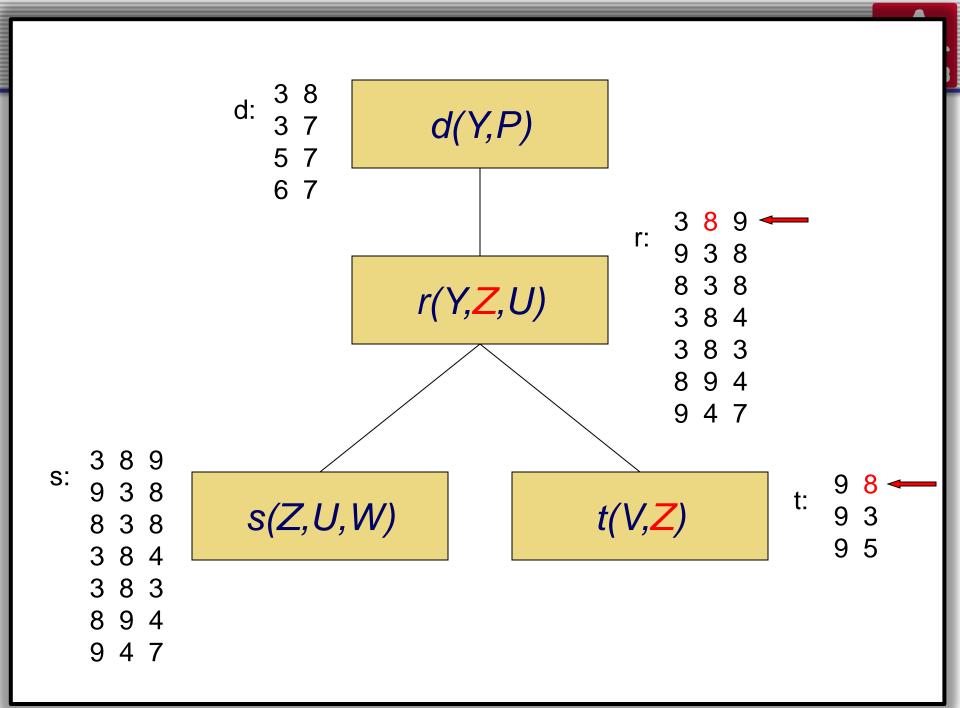
HOM: The homomorphism problem

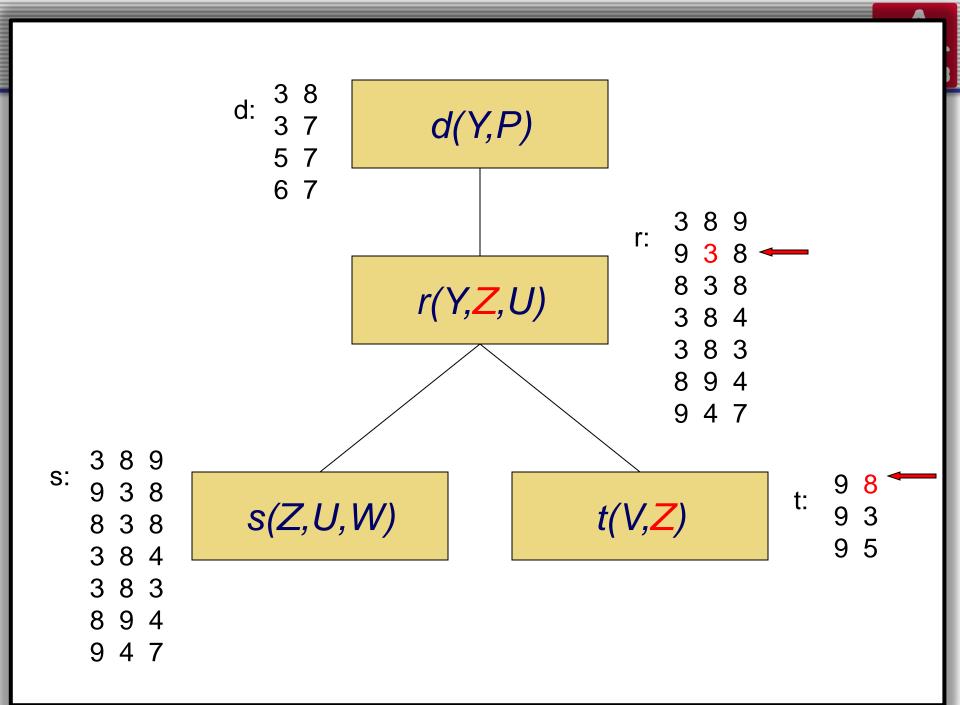
- BCQ: Boolean conjunctive query evaluation
- CSP: Constraint satisfaction problem

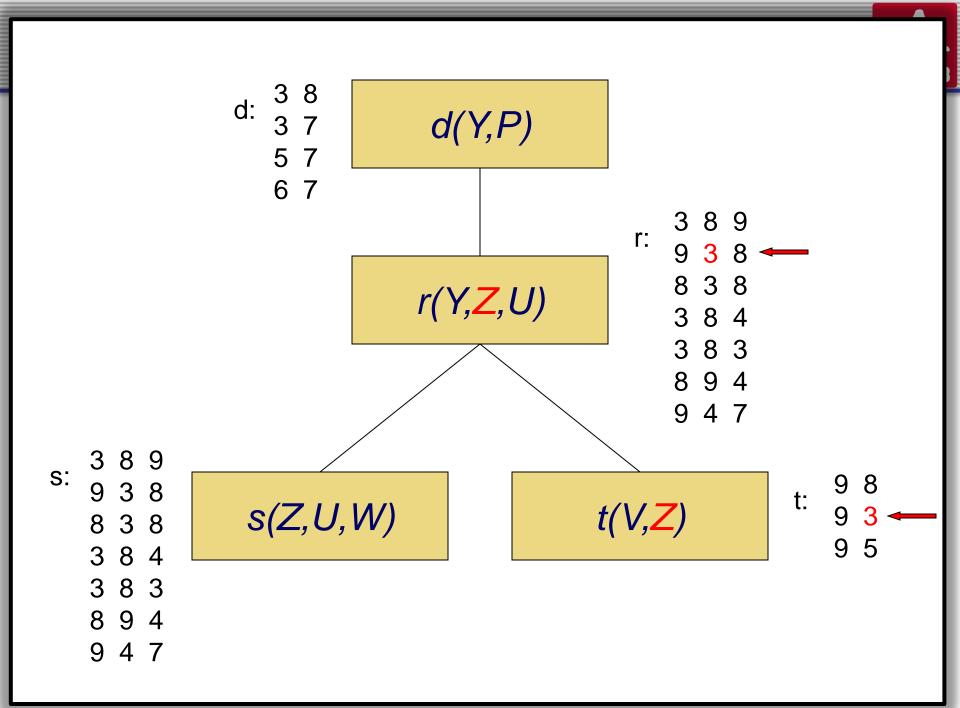
Yannakakis's Algorithm (Acyclic structures):

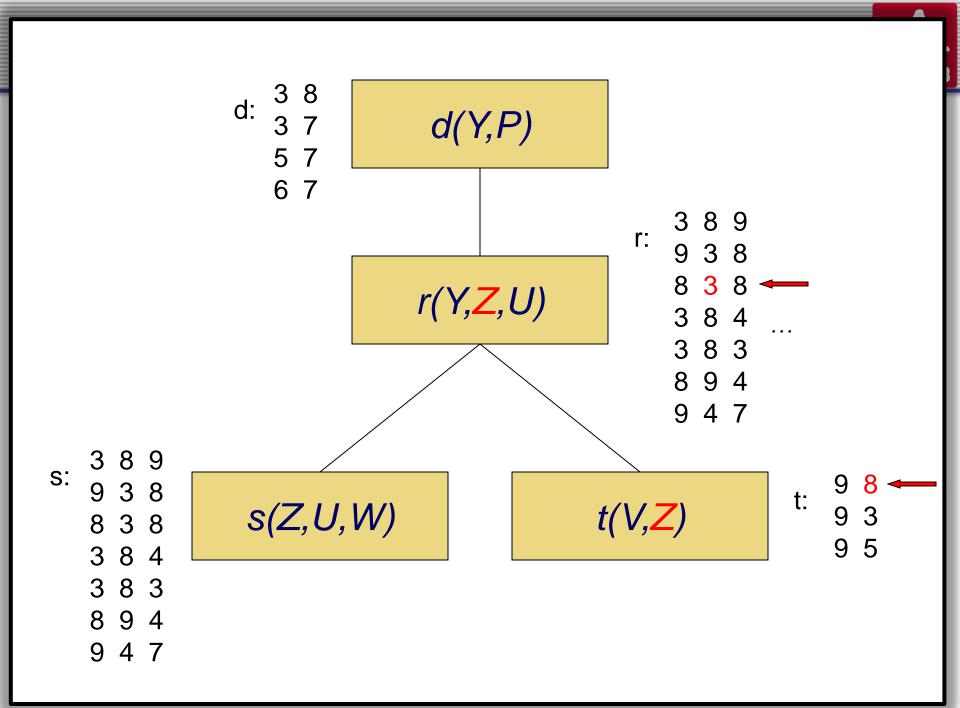
- Dynamic Programming over a Join Tree, where each vertex contains the relation associated with the corresponding hyperedge
- Therefore, if there are more constraints over the same relation, it may occur (as a copy) at different vertices

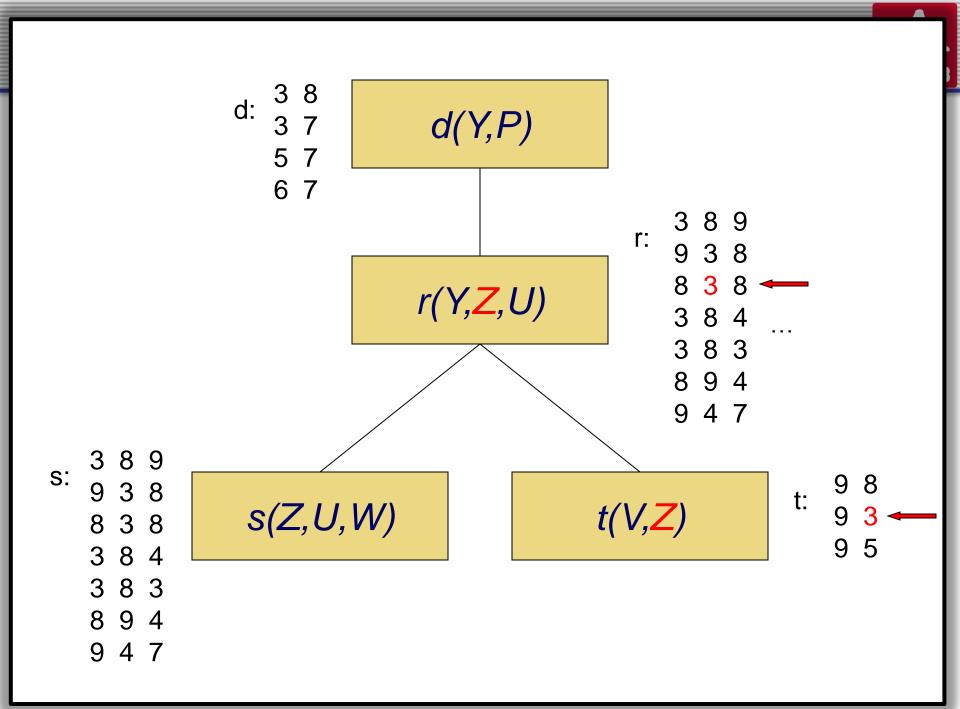


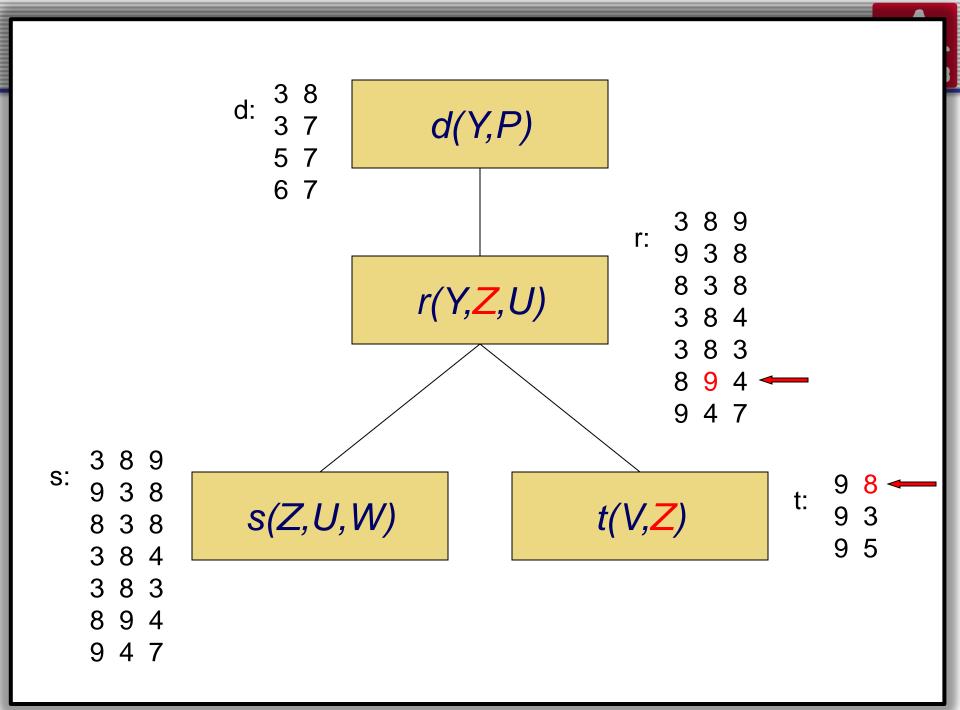


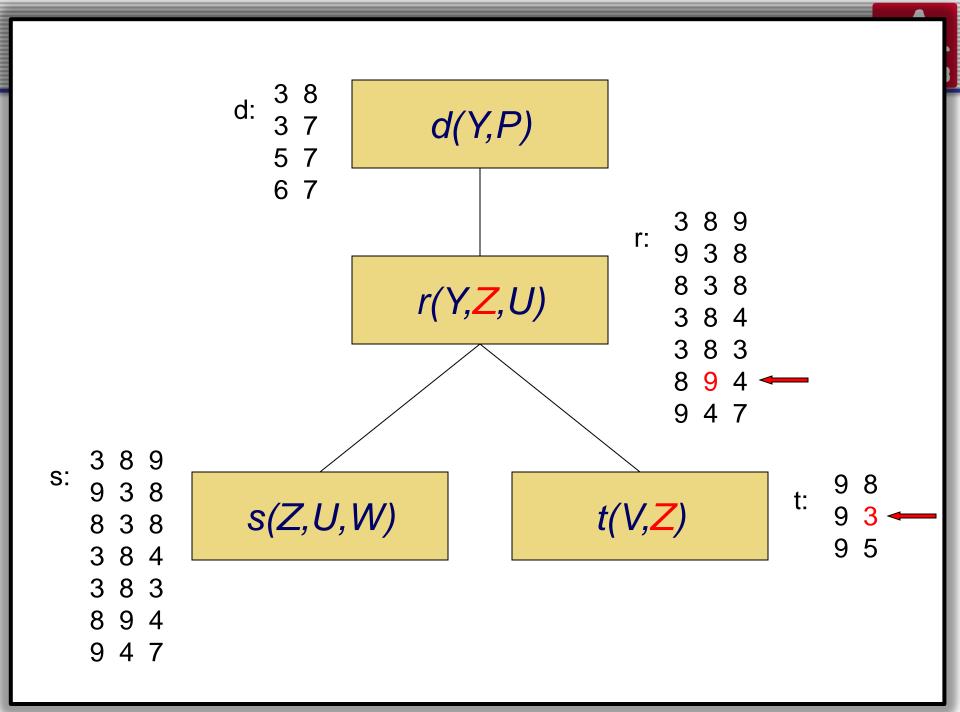


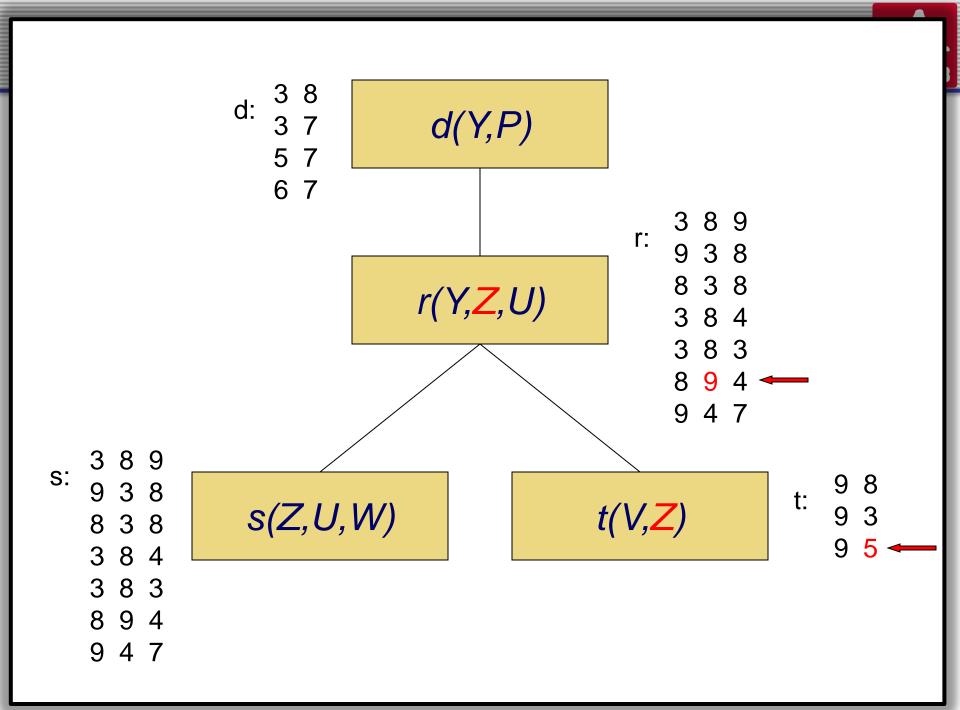


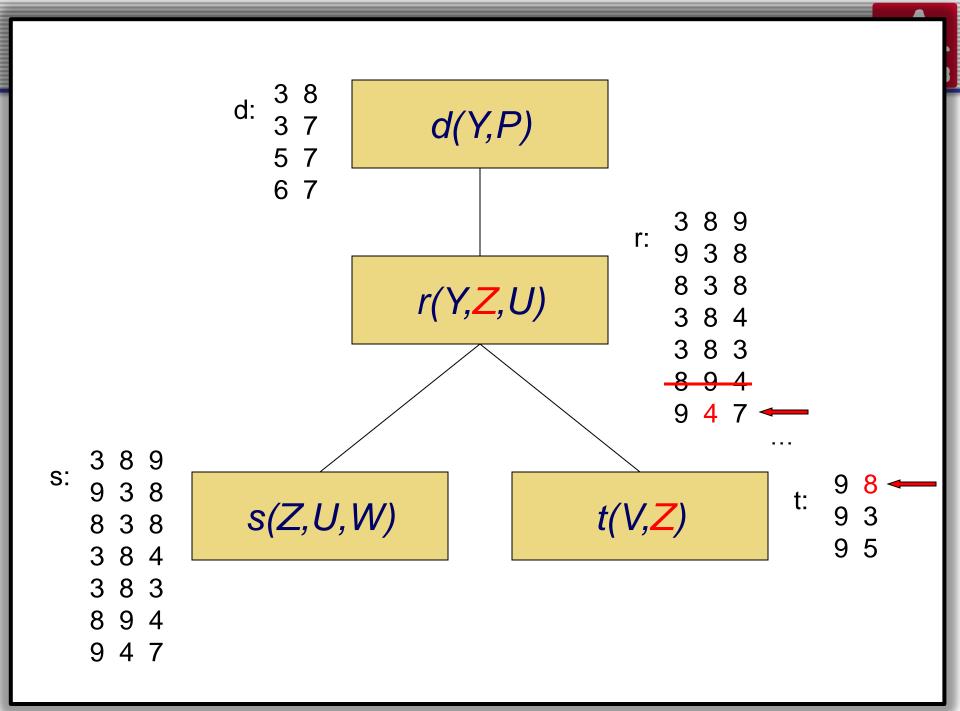


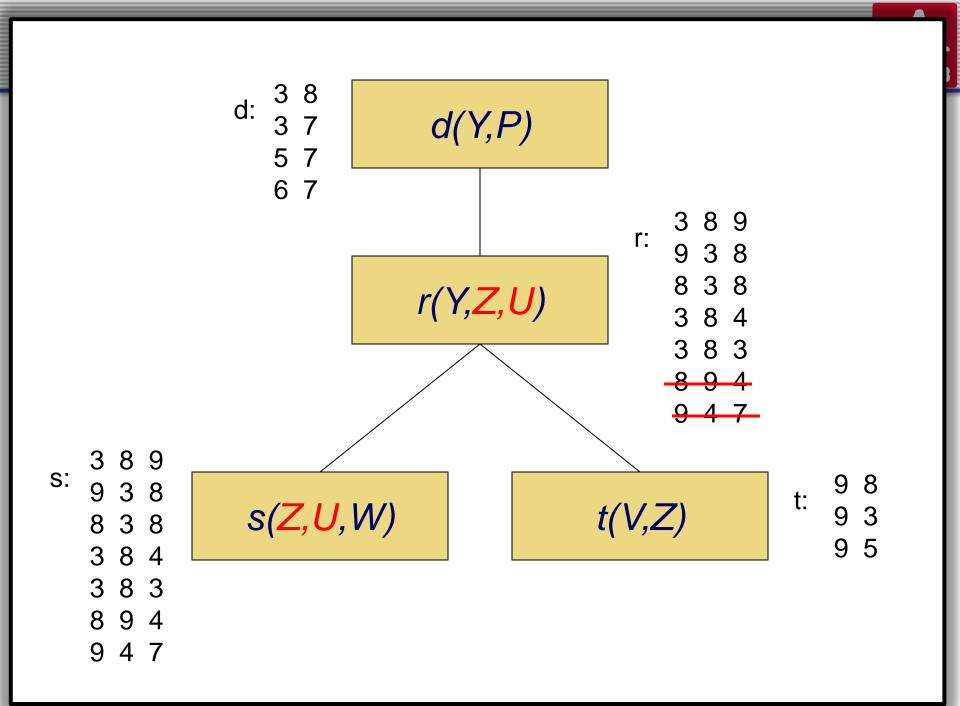


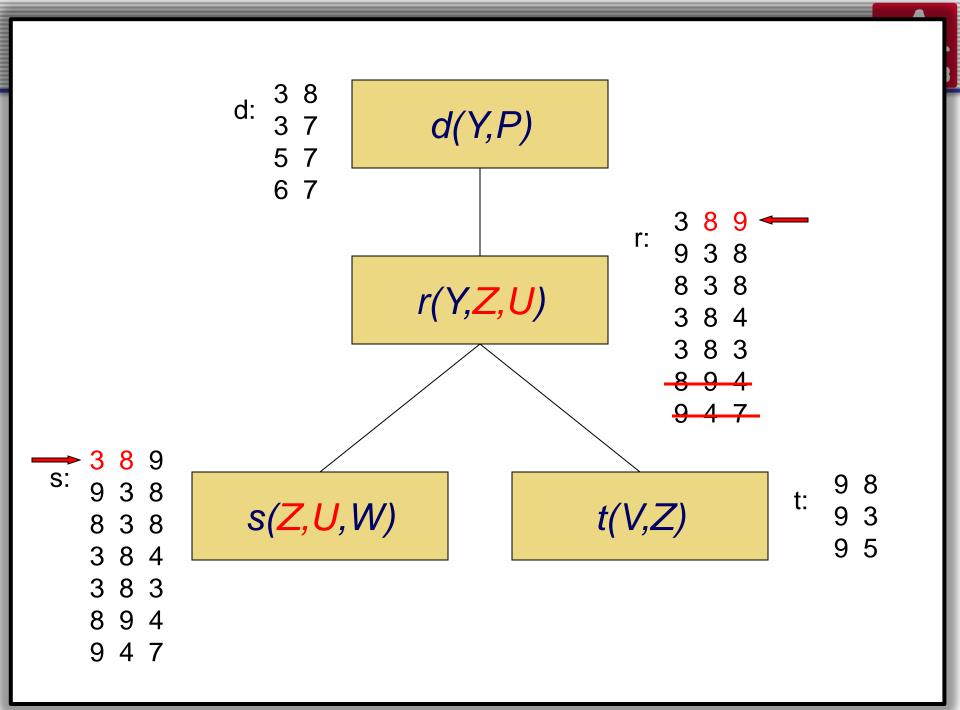


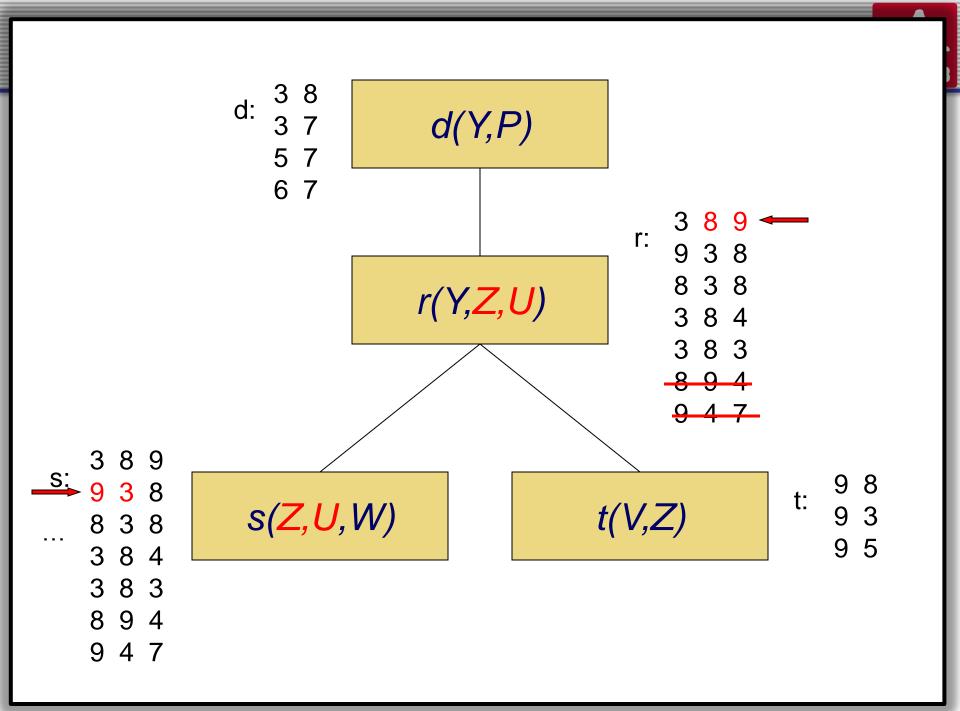


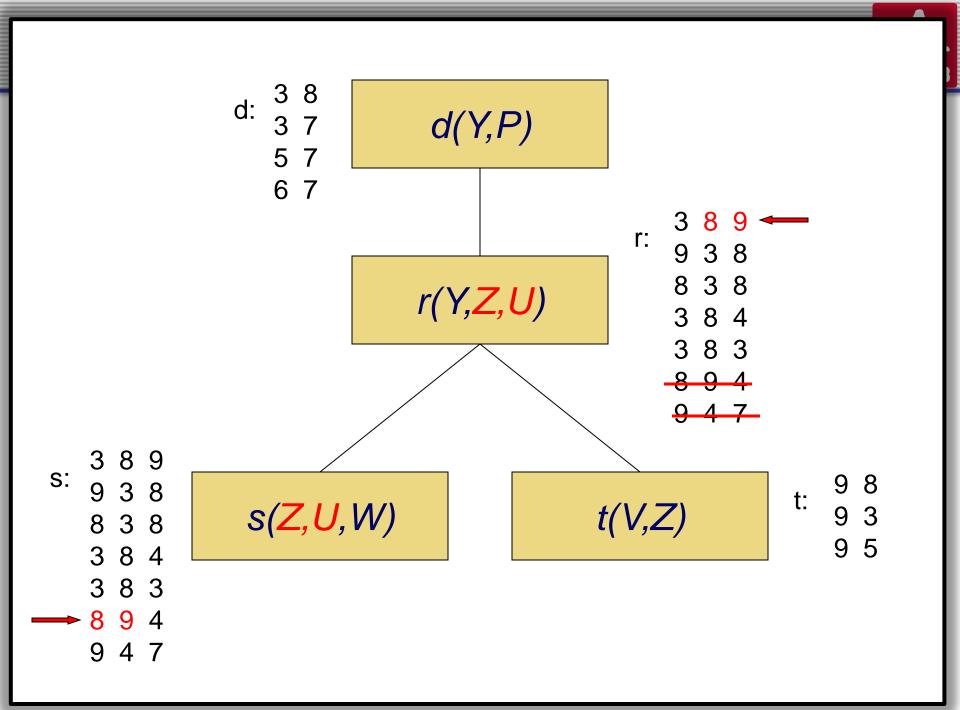


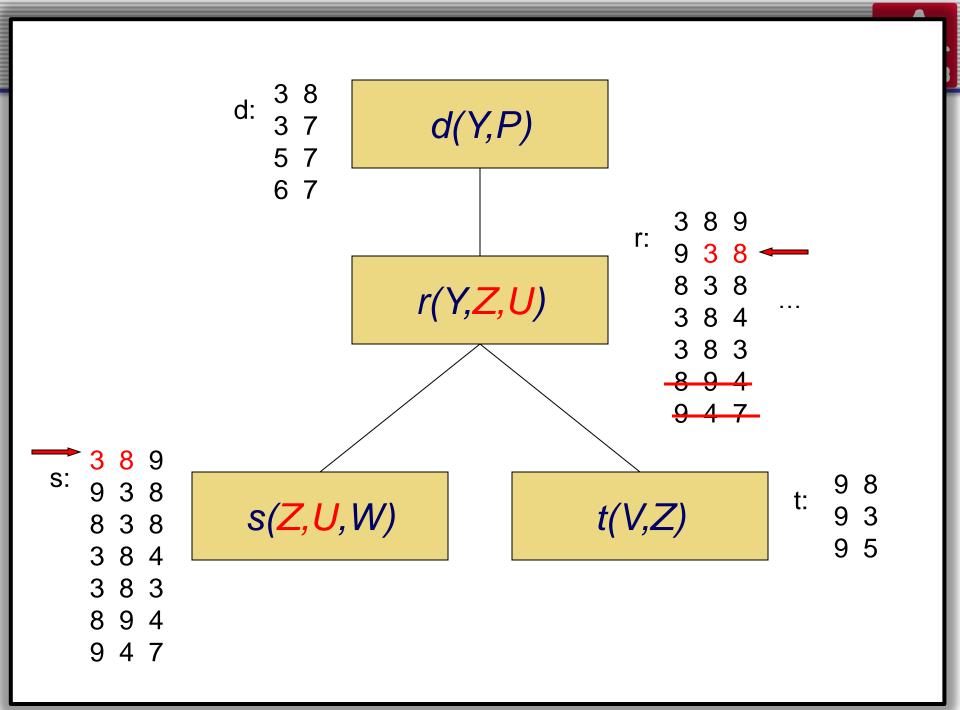


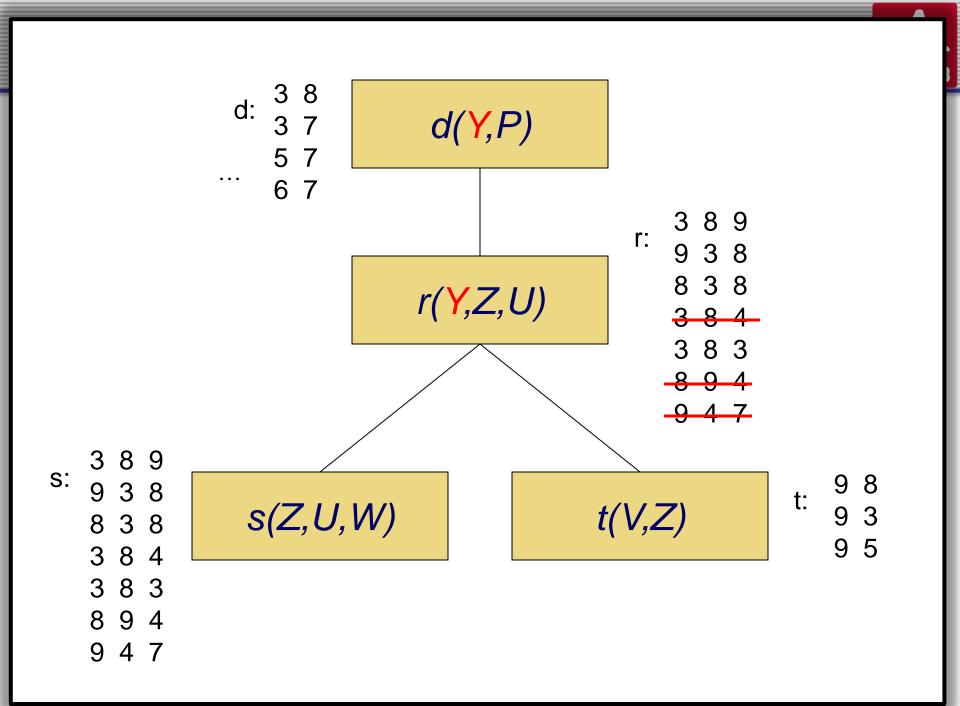


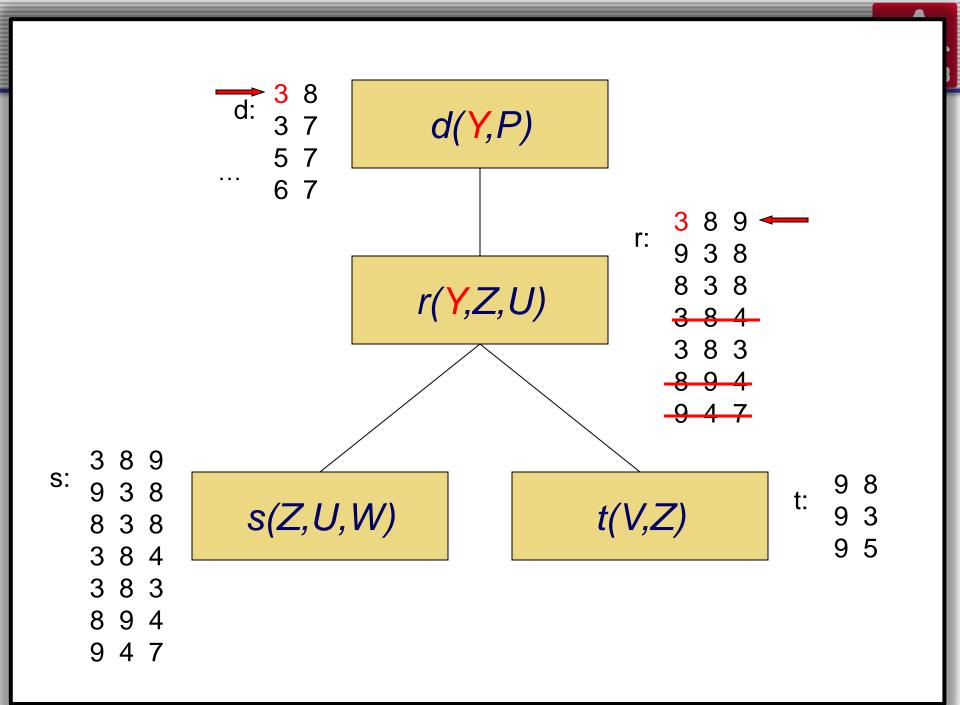


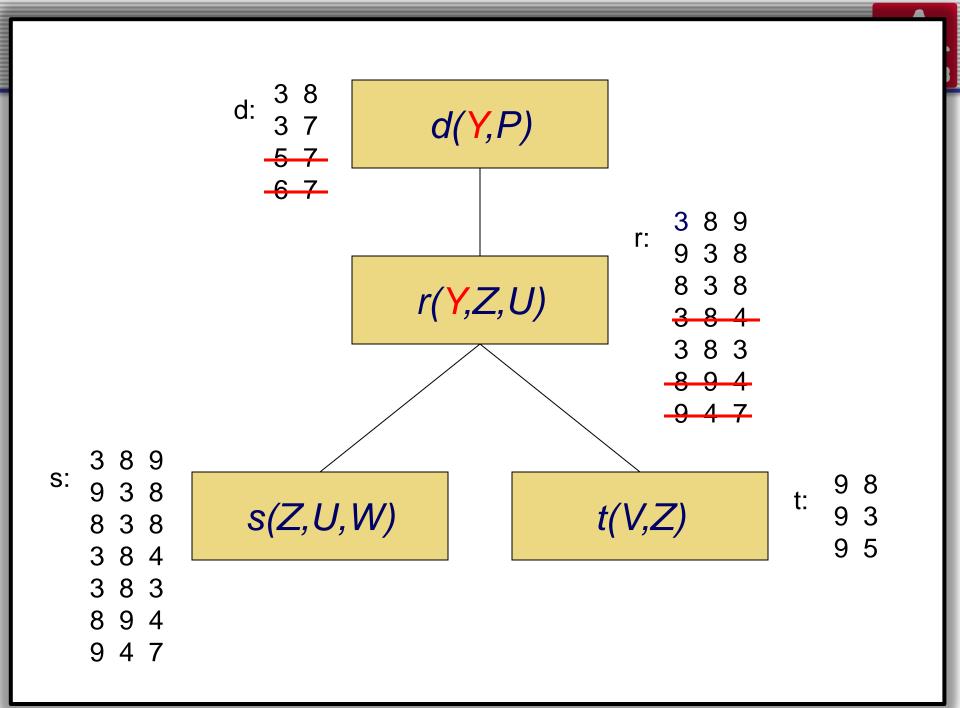










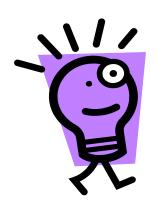


HOM: The homomorphism problem

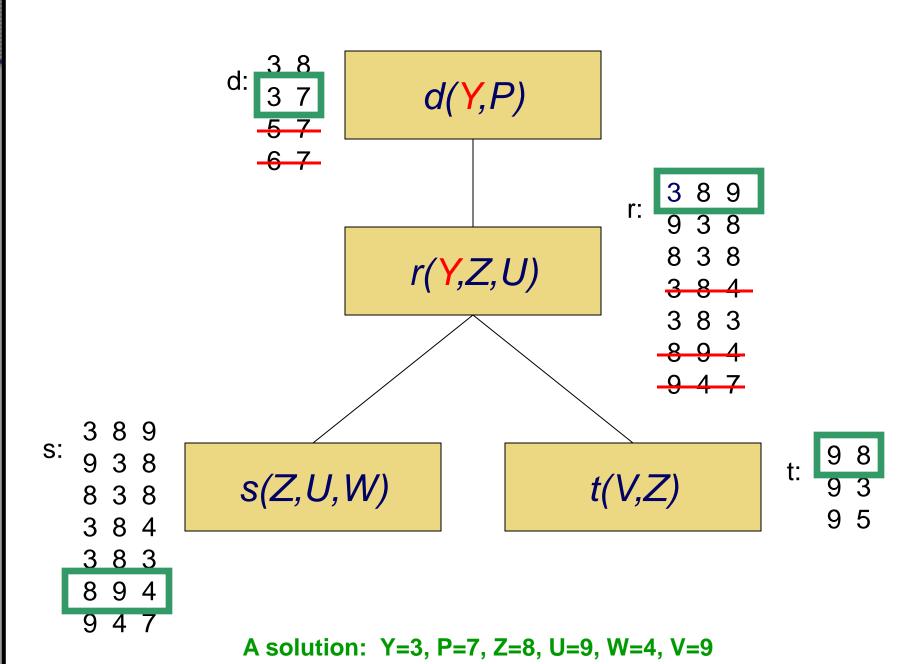
BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Yannakakis's Algorithm (Acyclic structures): Dynamic Programming over a Join Tree



Solutions can be computed by adding a top-down phase to Yannakakis' algorithm for acyclic instances

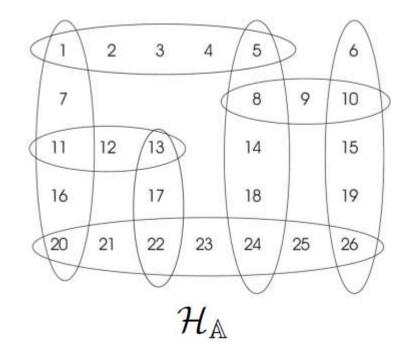


Computing the result (Acyclic)

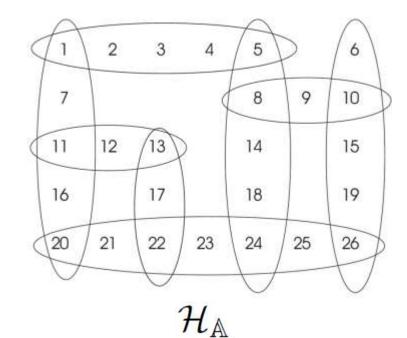
- The result size can be exponential (even in the acyclic case).
- Even when the result is of polynomial size, it is in general hard to compute.
- In case of acyclic instances, the result can be computed in time polynomial in the result size (and with polynomial delay: first solution, if any, in polynomial time, and each subsequent solution within polynomial time from the previous one).
- This will remain true for the subsequent generalizations of acyclicity.
- Add a top-down phase to Yannakakis' algorithm for acyclic instances, thus obtaining a full reducer, and join the partial results (or perform a backtrack free visit)

Decomposition Methods

1	2	3	4	5		6
7			1.	8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26



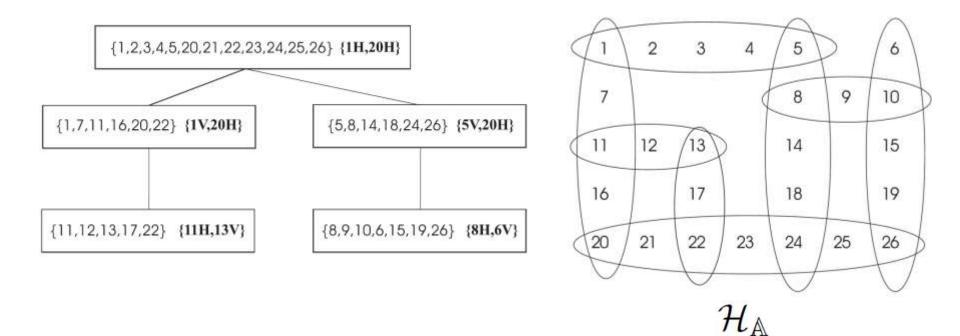
1/



Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

(Generalized) Hypertree Decompositions



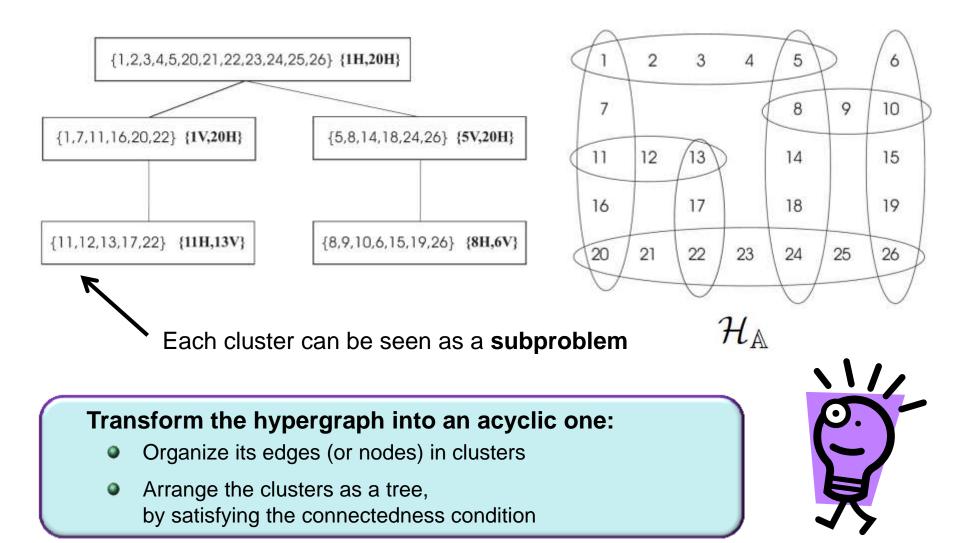
IJCAI-13

Transform the hypergraph into an acyclic one:

- Organize its edges (or nodes) in clusters
- Arrange the clusters as a tree, by satisfying the connectedness condition

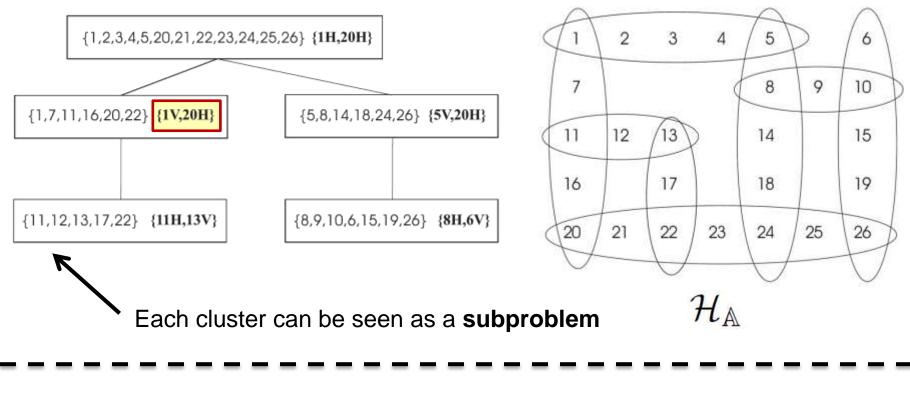
(Generalized) Hypertree Decompositions

IJCAI-13

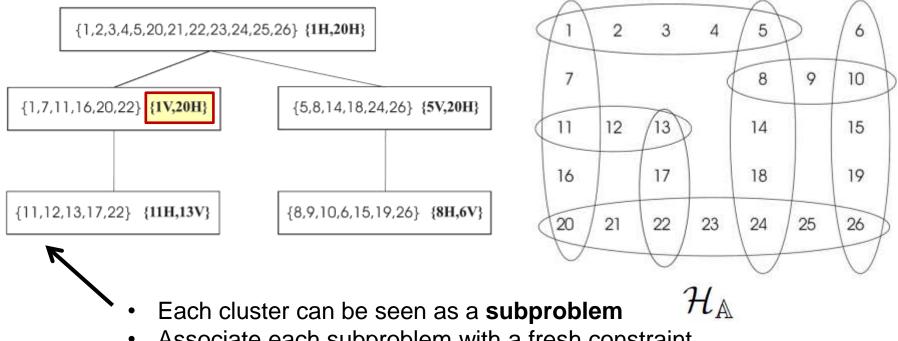


(Generalized) Hypertree Decompositions

IJCAI-13



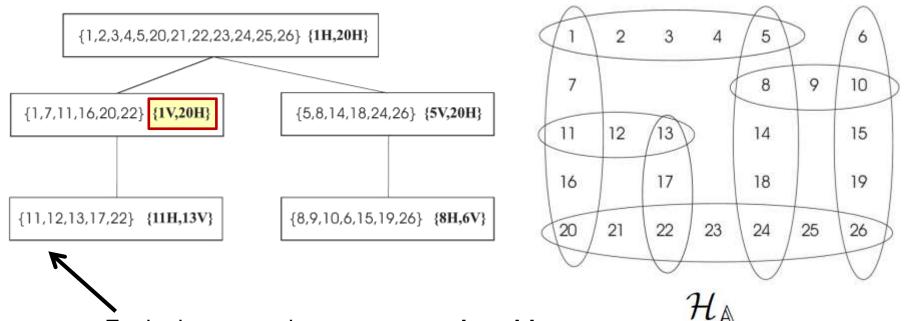
Toward an equivalent acyclic instance



IJCAI-13

• Associate each subproblem with a fresh constraint

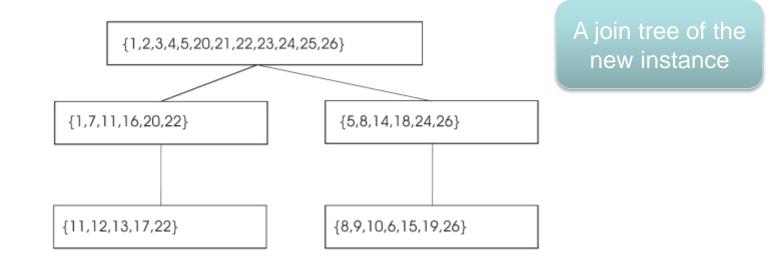
Toward an equivalent acyclic instance



IJCAI-13

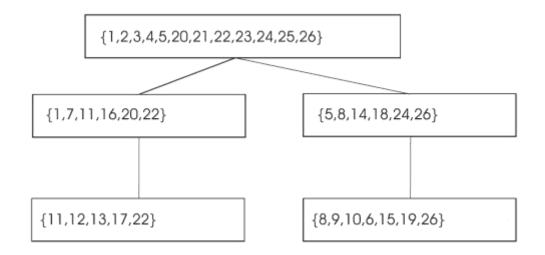
- Each cluster can be seen as a subproblem
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

The structure of the equivalent instance



- Each cluster can be seen as a **subproblem**
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

An acyclic equivalent instance



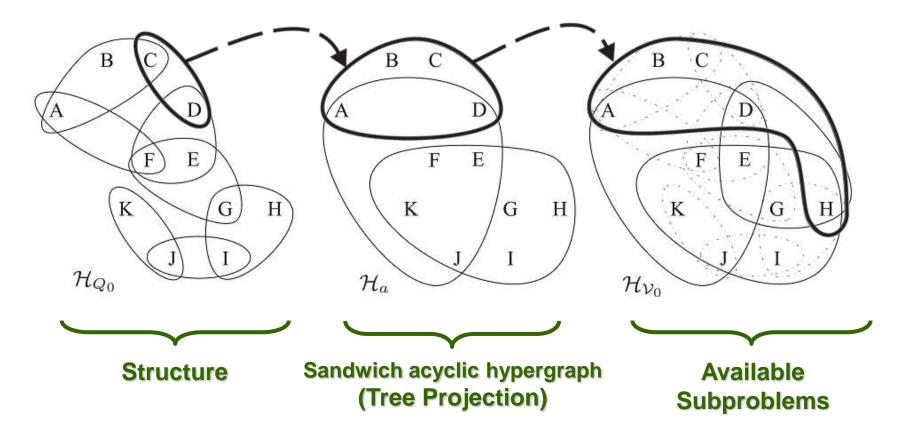
- Each cluster can be seen as a **subproblem**
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
- Get an equivalent problem (all original constraints are there...)

Solve the acyclic instance with any known technique

Tree Projection (idea)

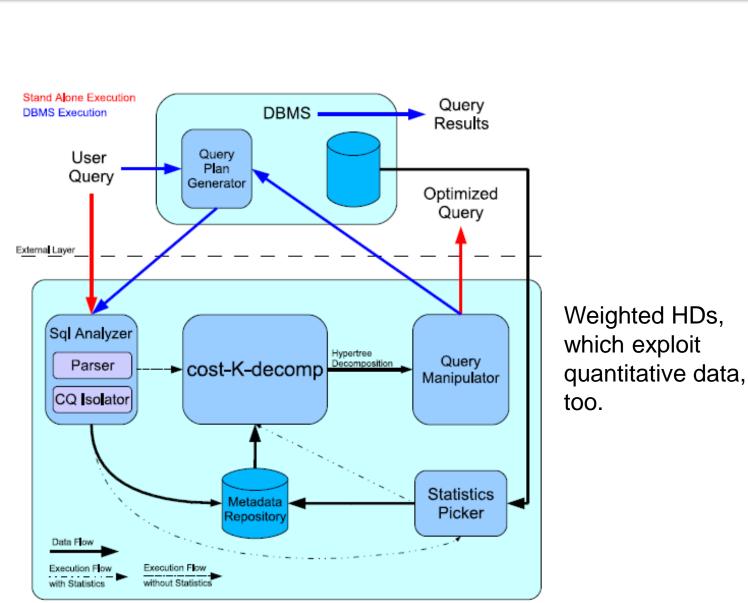
JCAI-13

 Generalization where suproblems are arbitrary (not necessarily clusters of k edges or vertices)

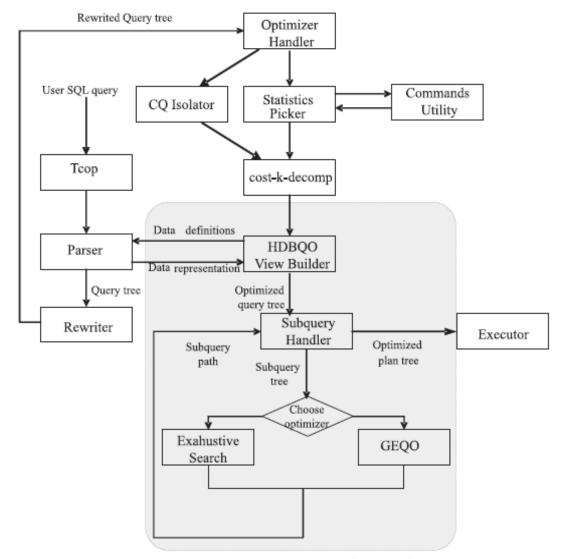


More information in the appendix

Hypertrees for Databases

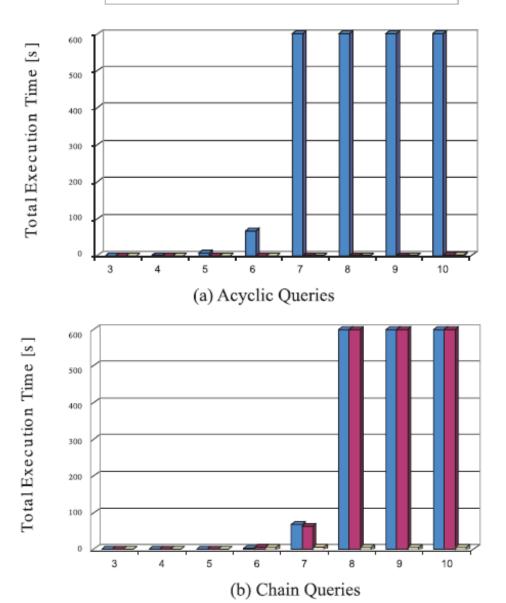


Inside PostgreSQL



Query Plan Generator

Some experiments



Part of relations for the Nasa problem

cid_260(Vid_49, Vid_366, Vid_224) cid_261(Vid_100, Vid_391, Vid_392 cid_262(Vid_273, Vid_393, Vid_246 cid 263(Vid 329, Vid 394, Vid 249) cid_264(Vid_133, Vid_360, Vid_356) cid_265(Vid_314, Vid_348, Vid_395) cid_266(Vid_67, Vid_352, Vid_396) cid_267(Vid_182, Vid_364, Vid_397 cid 268(Vid 313, Vid 349, Vid 398) cid_269(Vid_339, Vid_348, Vid_399) cid_270(Vid_98, Vid_366, Vid_400) cid_271(Vid_161, Vid_364, Vid_401 cid_272(Vid_131, Vid_353, Vid_234) cid 273(Vid 126, Vid 402, Vid 245) cid_274(Vid_146, Vid_252, Vid_228) cid 275(Vid 330, Vid 360, Vid 361),

....

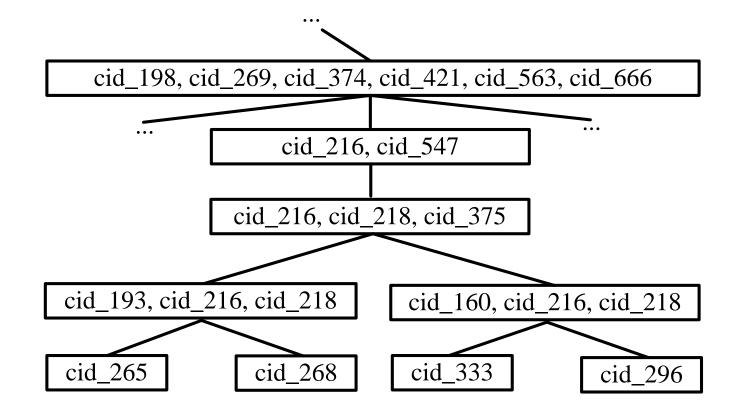
. . .

680 relations

IJCAI-13

579 variables

Nasa problem: Hypertree



IJCAI-13

Part of hypertree for the Nasa problem Best known hypertree-width for the Nasa problem is 22

Further Structural Methods

- Many proposals in the literature, besides (generalized) hypertree width (see [Gottlob, Leone, Scarcello. Art. Int.'00])
- For the binary case, the method based on tree decompositions (first proposed as heuristics in [Dechter and Pearl. Art.Int.'88 and Art.Int.'89]) is the most powerful [Grohe. J.ACM'07]
- Let us recall some recent proposals for the general (non-binary) case:
 - Fractional hypertree width [Grohe and Marx. SODA'06]
 - Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS'08]
 - Component Decompositions [Gottlob,Miklòs,and Schwentick. J.ACM'09]
 - Greedy tree projections [Greco and Scarcello, PODS'10, ArXiv'12]
- Computing a width-k decomposition is in PTIME for all of them (for any fixed k>0).
- If we relax the above requirement, we can consider fixed-parameter tractable methods. If the size of the hypergraph structure is the fixed parameter, the most powerful is the Submodular width [Marx. STOC'10]

Heuristics for large width instances (CSPs)

- 1. Computing decompositions
 - Heuristics to get variants of (hyper)tree decompositions
- 2. Evaluating instances
 - Computing all solutions of the subproblems involved at each node may be prohibitive
 - Memory explosion
- Solution: combine with other techniques. E.g., in CSPs,
 - use (hyper)tree decompositions for bounding the search space [Otten and Dechter. UAI'08]
 - use (hyper)tree decompositions for improving the performance of consistency algorithms (hence, speeding-up propagations) [Karakashian, Woodward, and Choueiry. AAAI'13]

۰. ا

Alternative constraint encodings

- Some tractability results hold only on constraint encodings where allowed tuples are listed as finite relations
- Alternative encodings make sense
- For instance,
 - constraint satisfaction with succinctly specified relations [Chen and Grohe. J.CSS'10]
 - see also [Cohen, Green, and Houghton. CP'09]

Outline of PART II

Beyond Tree Decompositions

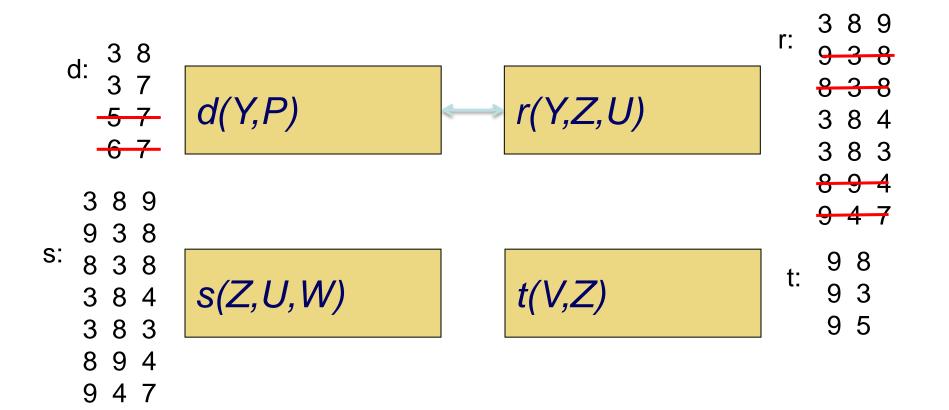
Applications to Databases and CSPs

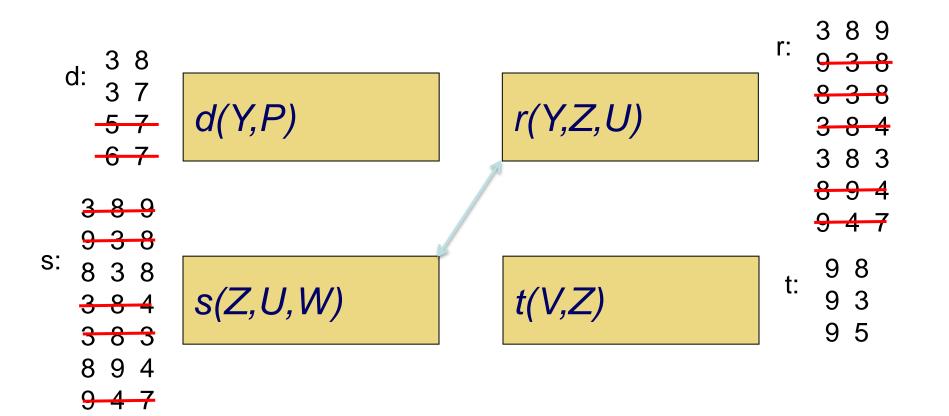
Structural and Consistency Properties

Local (pairwise) consistency

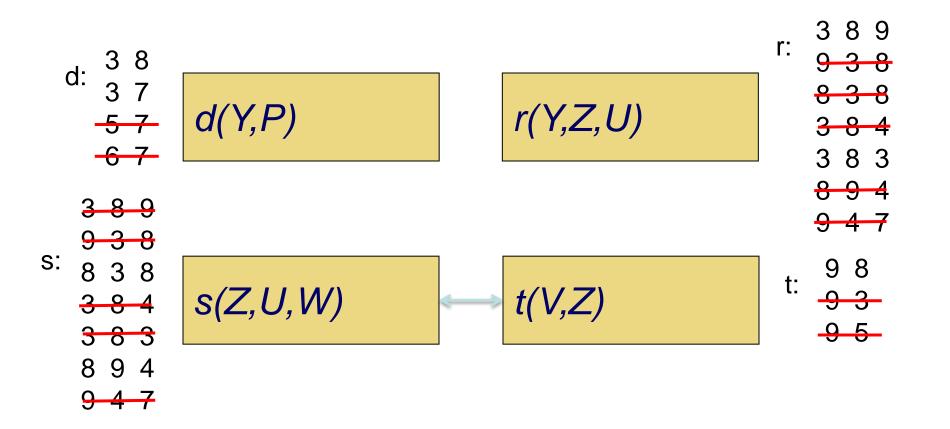
- For every relation/constraint: each tuple matches some tuple in every other relation
- Can be enforced in polynomial time: take the join of all pairs of relations/constraints until a fixpoint is reached, or some relation becomes empty

See [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] or [Janssen, Jégou, Nougier, and Vilarem. IEEE WS Tools for Al'89],



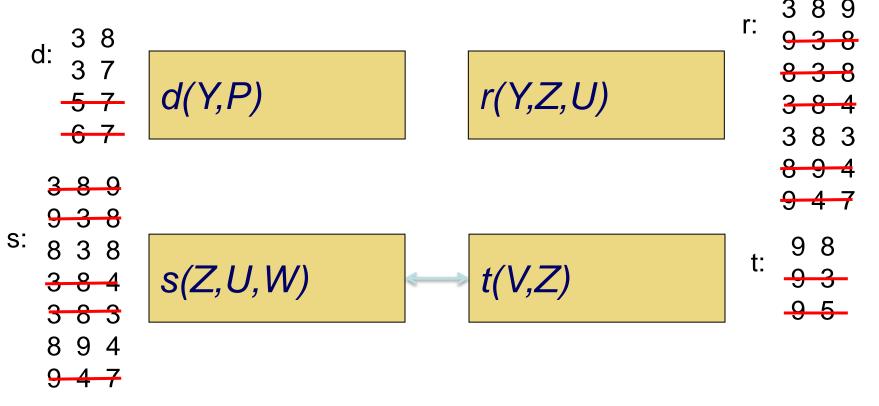


JCAI-13



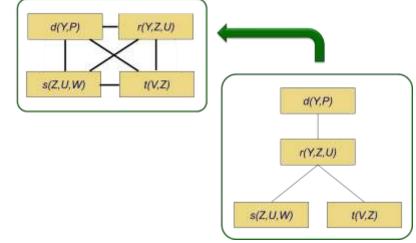
IJCAI-13

- JCAI-13
- Further steps are useless, because the instance is now locally consistent
- On acyclic instances, same result as Yannakakis' algorithm on the join tree!



Easy on Acyclic Instances

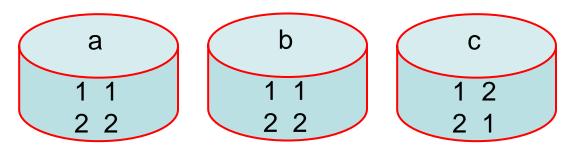
 Computing a join tree (in linear time, and logspace-complete [GLS'98+ SL=L]) may be viewed as a clever way to enforce pairwise consistency



- Cost for the computation of the locally consistent instance:
 O(m n² log n) vs O(m n log n)
- N.B. n is the (maximum) number of tuples in a relation and may be very large (esp. in database applications)

Global and pairwise Consistency

- Yannakakis' algorithm actually solves acyclic instances because of their following crucial property:
 - Local (pairwise) consistency → Global consistency [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
 - Global consistency: Every tuple in each relation can be extended to a full (global) solution
 - In particular, if all relations/constraints are pairwise consistent, then the result is not empty
- Not true in the general case: $ans:-a(X,Y) \land b(Y,Z) \land c(Z,X)$



Consistency in Databases and CSPs

Huge number of works in the database and constraint satisfaction literature about different kinds (and levels) of consistencies

(e.g., recall the seminal paper [Mackworth. Art. Int., 1977] or [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83], [Dechter. Art. Int., 1992], and [Dechter and van Beek. TCS'97])

- Most theoretical papers in the database community
- Also practical papers in the constraint satisfaction community:
 - Local consistencies are crucial for filtering domains and constraints
 - Allow tremendous speed-up in constraint solvers
 - Sometimes allow backtrack-free computations

Global consistency in Databases and CSPs

- Global consistency (GC): Every tuple in each relation can be extended to a full (global) solution [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
- For instances with *m* constraints, it is also known as
 - m-wise consistency [Gyssens. TODS'86]
 - relational (i;m)-consistency [Dechter and van Beek. TCS'97]
 - R(*,m)C [Karakashian, Woodward, Reeson, Choueiry and Bessiere. AAAI'10]
 - ۵...

Remark:

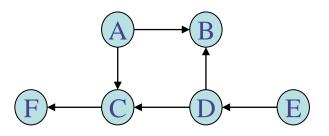
In the CSP literature, "global consistent network" sometimes means "strongly n-consistent network", which is a different notion (see, e.g., [Constraint Processing, Dechter, 2003]).

On the desirability of Global Consistency

- If an instance is globally consistent, we can immediately read partial solutions from the constraint/database relations
- full solutions are often computed efficiently
- can be exploited in heuristics by constraint solvers.
 For a very recent example, see
 - [Karakashian, Woodward, and Choueiry. AAAI'13]: enforce global consistency on groups of subproblems (tree-like arranged) for bolstering propagations

When pairwise consistency entails GC

- We have seen that it happens in acyclic instances...
- Is it the case that this condition is also necessary?
- What is the real power of local (pairwise) consistency?
 i.e., relational arc-consistency (more precisely, arc-consistency on the dual graph)
 - Also known as
 - 2-wise consistency [Gyssens. TODS'86],
 - R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and Bessiere. AAAI'10]
 - . . .



When pairwise consistency entails GC

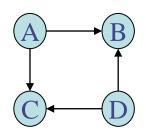
- We have seen that it happens in acyclic instances...
- The classical result that this is also necessary [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] actually holds only if relations cannot be used in more than one constraint/query atoms
- In fact, it works even on some cyclic instances
- We now have a precise structural characterization of the instances where local consistency entails global consistency
 - it applies to the binary case, too
 - it applies to the more general case where pairwise consistency is enforced between each pair of arbitrary defined subproblems (see appendix)!

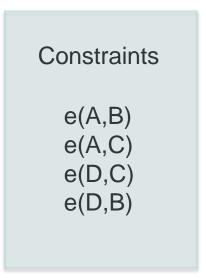
[Greco and Scarcello. PODS'10]

- Let us describe when local (pairwise) consistency (LC) entails global consistency (GC), on the basis of the constraint structure
- That is, we describe the condition such that:
 - whenever it holds, LC entails GC for every possible CSP instance (i.e., no matter on the constraint relations)
 - if it does not hold, there exists an instance where LC fails

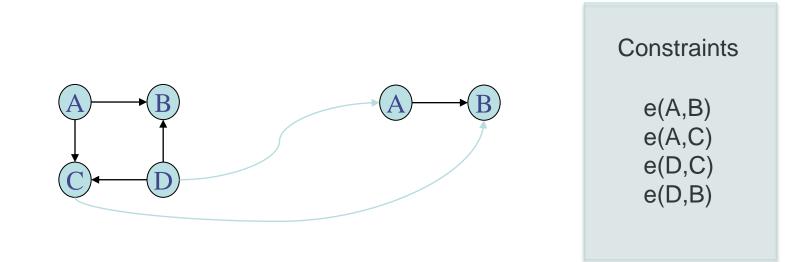
For binary (or fixed arity) instances: if we are interested only in the decision problem (is the CSP satisfiable?) than this condition is the existence of an acyclic core [Atserias, Bulatov, and Dalmau. ICALP'07]

Does pairwise consistency entail global consistency in this case?

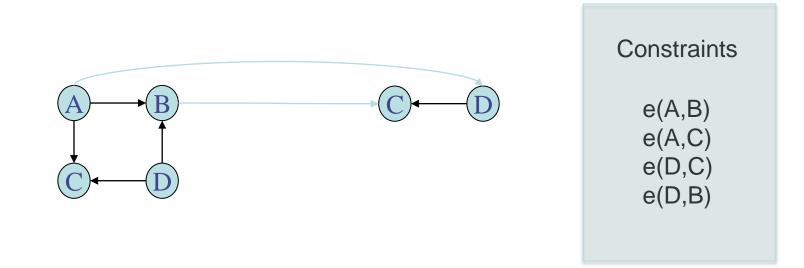




- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation e
- Every constraint is a core of the instance



- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation e
- Every constraint is a core of the instance



tp-covering (acyclic version)

- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph
- Intuitively the "coloring" of e(X, Y) forces the core of the new structure to deal with the ordered pair (X,Y)

Indeed, every core must contain e'(X,Y)

- Instead, the usual notion of the core does not preserve the meaning of variables
 - this is crucial for computing solutions, but not for the decision problem

- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

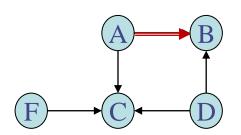
Local (pairwise) consistency entails Global consistency if and only if every constraint is tp-covered in an acyclic hypergraph

tp-covering by Example

JCAI-13

- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

e(A,B) is tp-covered

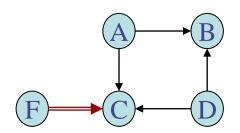


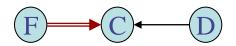
Note that e(F,C) does not occur in any core

tp-covering by Example

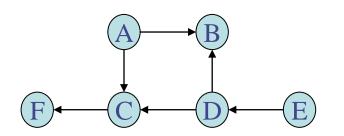
- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

e(F,C) is tp-covered



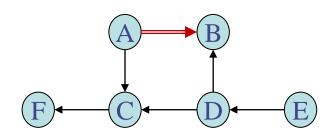


- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph



The power of Pairwise Consistency

- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph
- However, it does not entail global consistency
- There is an instance that is pairwise consistent but e(A,B) contains wrong tuples



e(A,B) is not tp-covered: the core of the new structure is cyclic

- Consider subproblems of k constraints
- Local k-consistency: pairwise consistency over such (kconstraints) subproblems
 Equivalent to relational k-consistency [Dechter and van Beek. TCS'97]

Local k-consistency entails Global consistency if and only if every constraint is tp-covered in a hypergraph having Generalized Hypertree width k

[Greco and Scarcello. PODS'10]

See the appendix for a further generalization to arbitrary subproblems in the general framework of tree projections

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

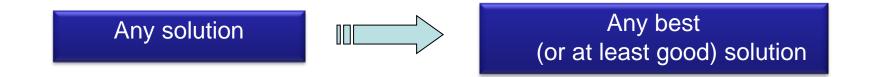
Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Constraint Optimization Problems

JCAI-13

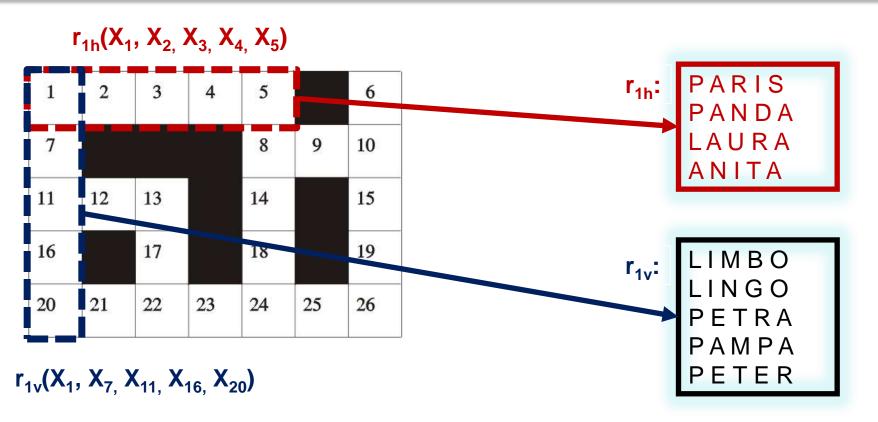
- Classically, CSP: Constraint <u>Satisfaction</u> Problem
- However, sometimes a solution is enough to "satisfy" (constraints), but not enough to make (users) "happy"



Hence, several variants of the basic CSP framework:

 E.g., fuzzy, probabilistic, weighted, lexicographic, penalty, valued, semiring-based, ...

Classical CSPs



- Set of variables $\{X_1, \dots, X_{26}\}$
- Set of constraint scopes

Set of constraint relations

Puzzles for Experts...

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17	-	18		19
20	21	22	23	24	25	26

The puzzle in general admits more than one solution...

E.g., find the solution that minimizes the total number of vowels occurring in the words

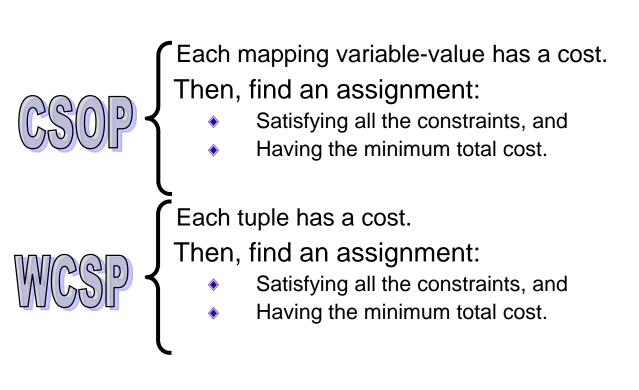
A Classification for Optimization Problems

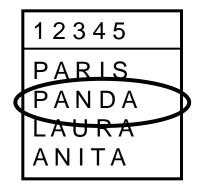
Each mapping variable-value has a cost. Then, find an assignment:

- Satisfying all the constraints, and Having the minimum total cost.

1 3 4 5
PARIS
LAURA ANITA

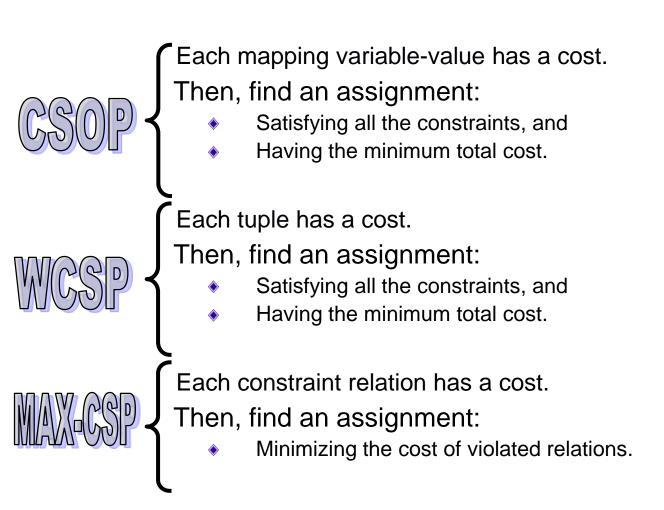
A Classification for Optimization Problems





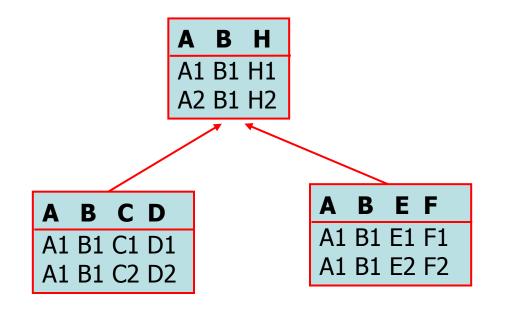
IJCAI-13

A Classification for Optimization Problems



IJCAI-13

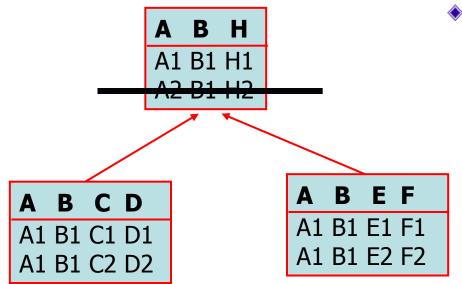
Adapt the dynamic programming approach in (Yannakakis'81)



[Gottlob & Greco, EC'07]

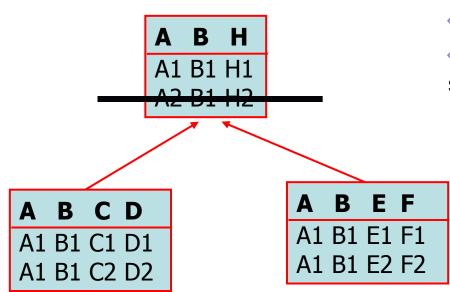
Adapt the dynamic programming approach in (Yannakakis'81)

With a bottom-up computation:



Filter the tuples that do not match

Adapt the dynamic programming approach in (Yannakakis'81)



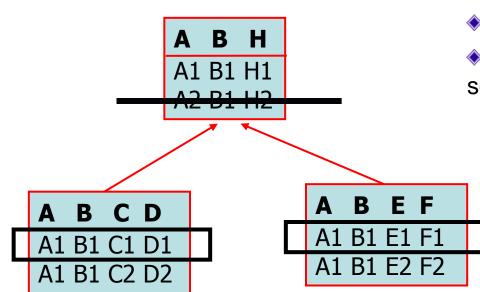
With a bottom-up computation:

Filter the tuples that do not match

 Compute the cost of the best partial solution, by looking at the children

> cost(C/C1)=cost(D/D1)=0 cost(C/C2)=cost(D/D2)=1 cost(E/E1)=cost(F/F1)=0 cost(E/E2)=cost(F/F2)=1

Adapt the dynamic programming approach in (Yannakakis'81)



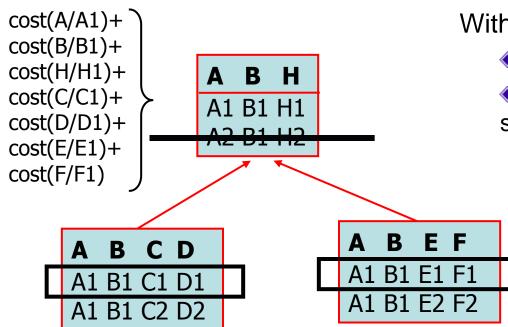
With a bottom-up computation:

Filter the tuples that do not match

 Compute the cost of the best partial solution, by looking at the children

```
cost(C/C1)=cost(D/D1)=0
cost(C/C2)=cost(D/D2)=1
cost(E/E1)=cost(F/F1)=0
cost(E/E2)=cost(F/F2)=1
```


Adapt the dynamic programming approach in (Yannakakis'81)



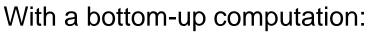
With a bottom-up computation:

Filter the tuples that do not match

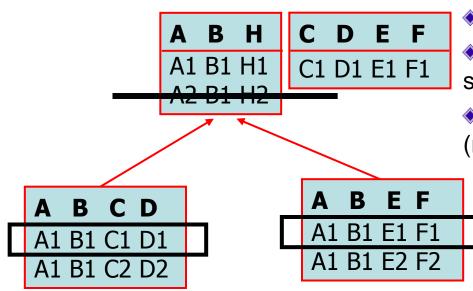
 Compute the cost of the best partial solution, by looking at the children

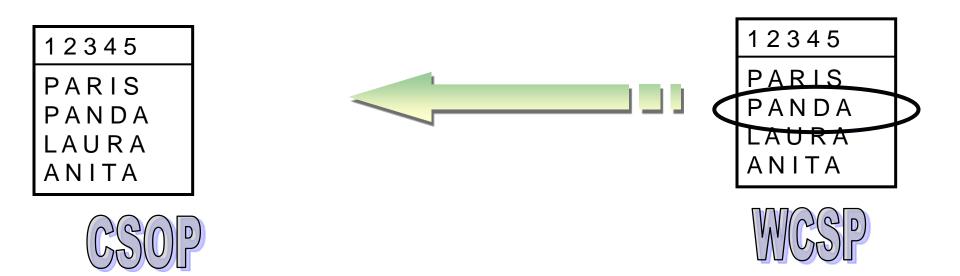
```
cost(C/C1)=cost(D/D1)=0
cost(C/C2)=cost(D/D2)=1
cost(E/E1)=cost(F/F1)=0
cost(E/E2)=cost(F/F2)=1
```


Adapt the dynamic programming approach in (Yannakakis'81)



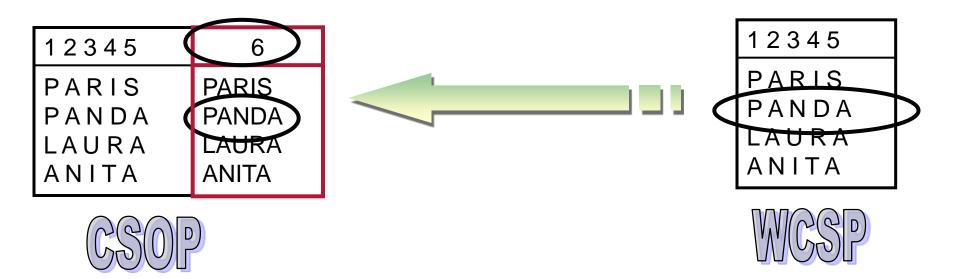
- Filter the tuples that do not match
- Compute the cost of the best partial solution, by looking at the children
- Propagate the best partial solution (resolving ties arbitrarily)





[Gottlob, Greco, and Scarcello, ICALP'09]

IJCAI-13



IJCAI-13

The mapping:

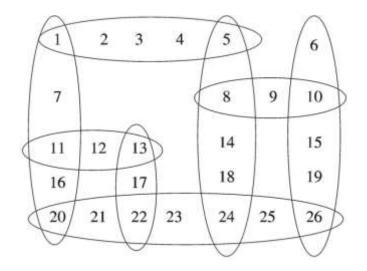
- Is feasible in linear time
- Preserves the solutions
- Preserves acyclicity

In-Tractability of MAX-CSP Instances

	A
IJC	AI-13

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

 Maximize the number of words placed in the puzzle



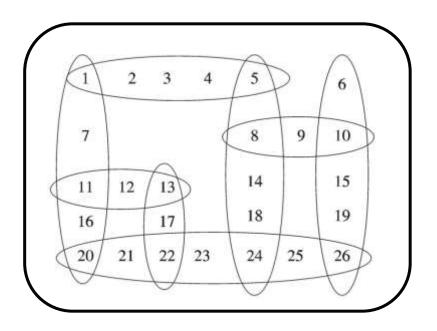
[Gottlob, Greco, and Scarcello, ICALP'09]

In-Tractability of MAX-CSP Instances

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

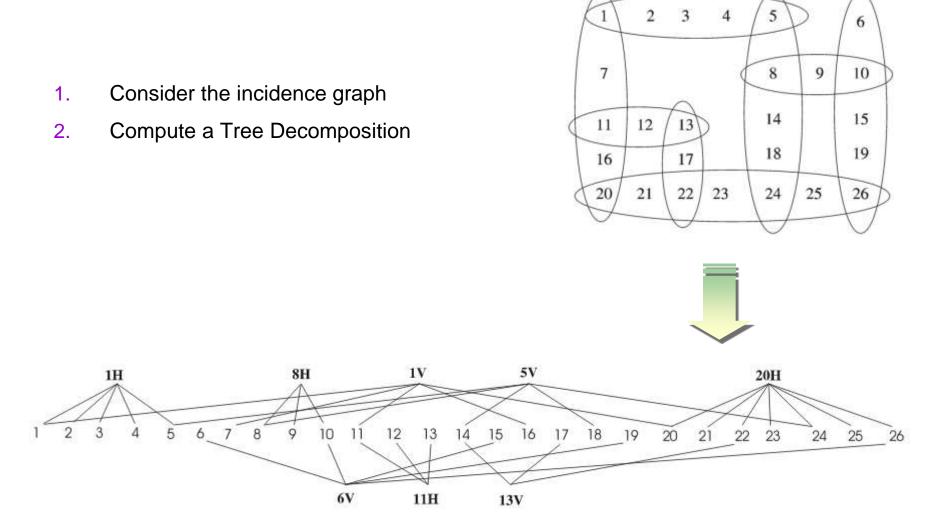
• Add a "big" constraint with no tuple

 Maximize the number of words placed in the puzzle

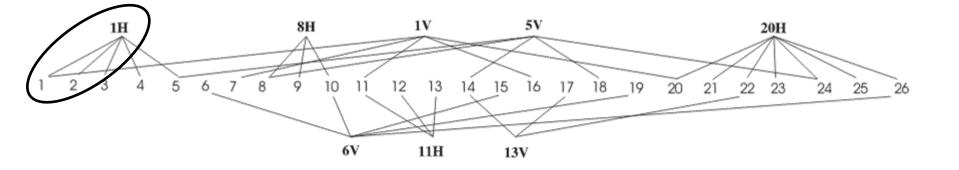


The puzzle is satisfiable \leftrightarrow exactly one constraint is violated in the **acyclic** MAX-CSP

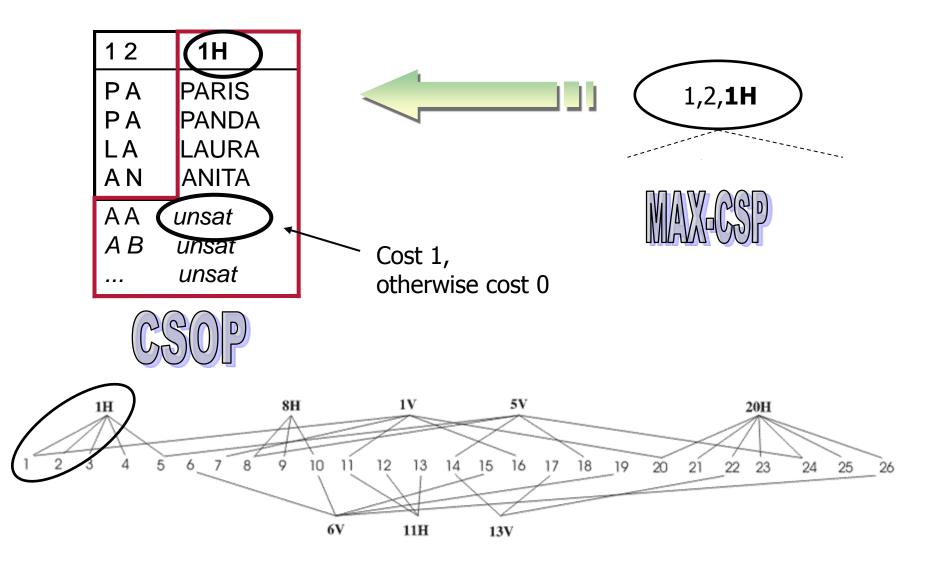
Tractability of MAX-CSP Instances



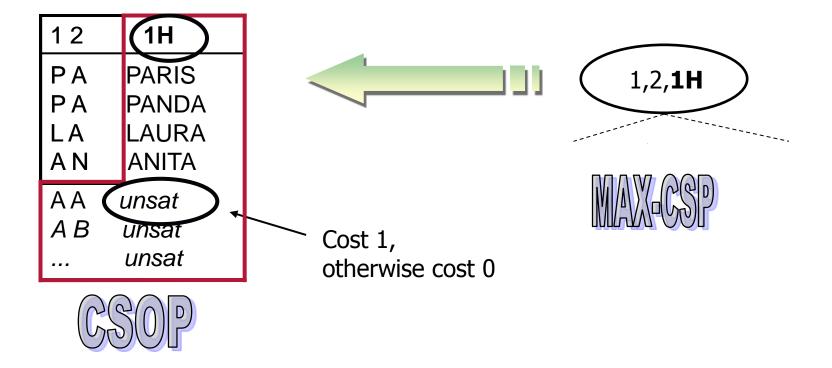
Tractability of MAX-CSP Instances



Tractability of MAX-CSP Instances



In-Tractability of MAX-CSP Instances



- Is feasible in time exponential in the width
 The mapping: Preserves the solutions
 - Leads to an Acyclic CSOP Instance

Applications to Optimization Problems

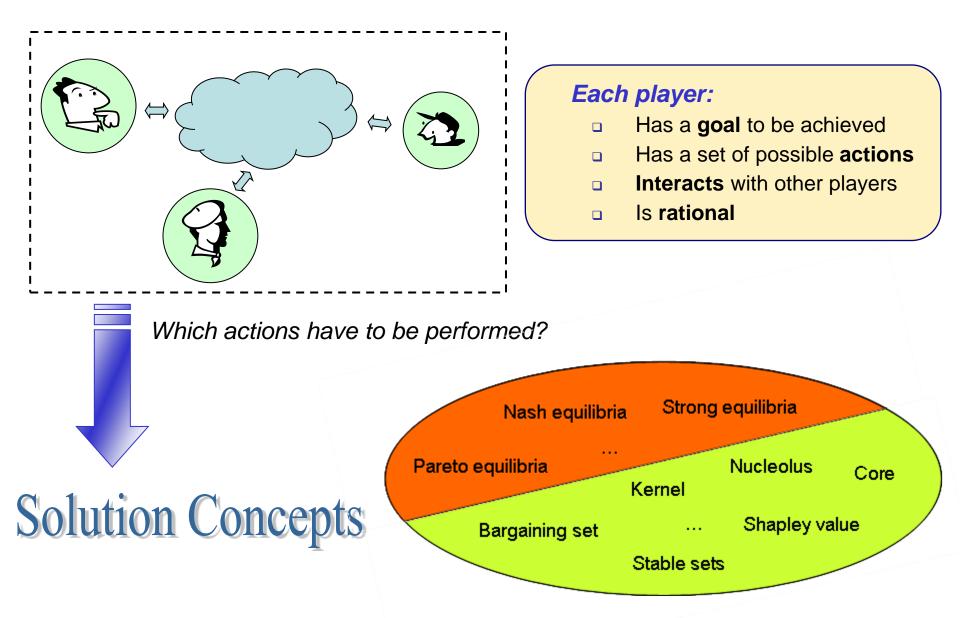
Application: Nash Equilibria

Application: Coalitional Games

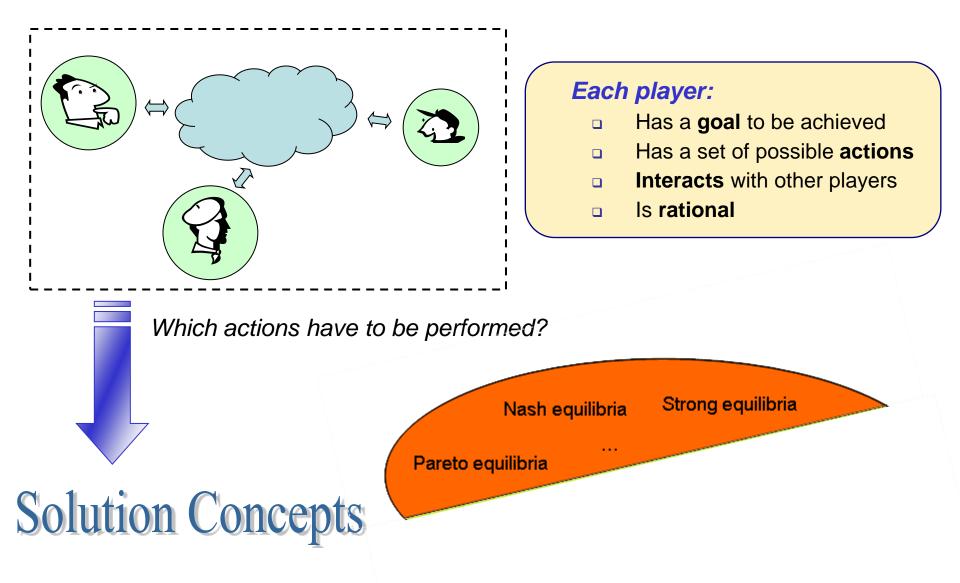
Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

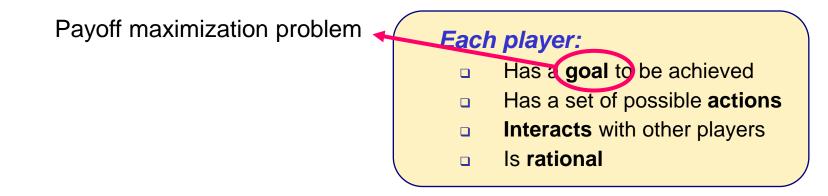
Game Theory (in a Nutshell)



Game Theory (in a Nutshell)

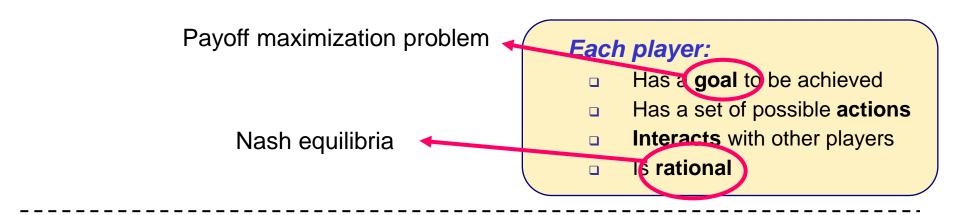


Non-Cooperative Games(1/3)



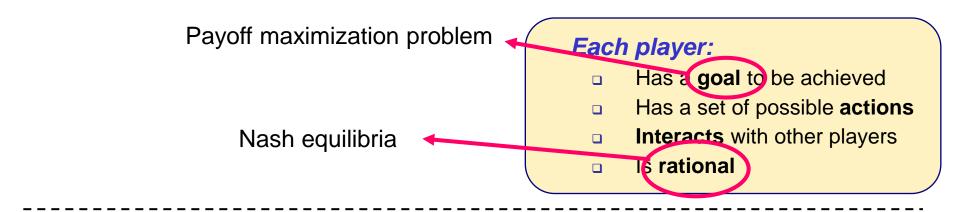
В	Bob	John goes out	John stays at home
	out	2	0
ho	ome	0	1

J	lohn	Bob goes out	Bob stays at home
	out	1	1
h	ome	0	0

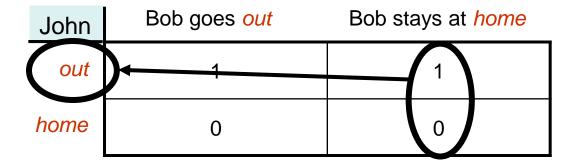


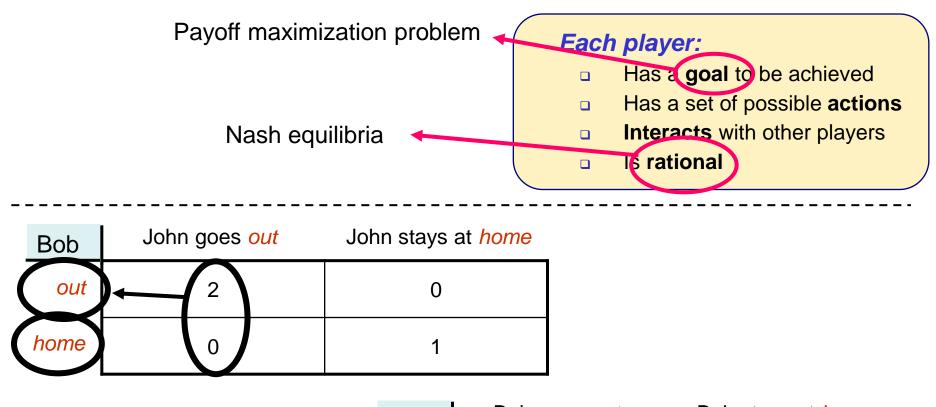
Bob	John goes <mark>out</mark>	John stays at home
out	2	0
home	0	1

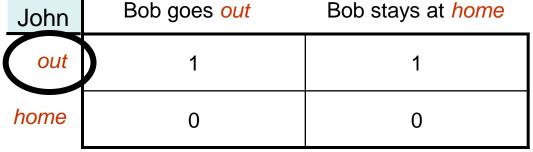
John	Bob goes out	Bob stays at home
out	1	1
home	0	0

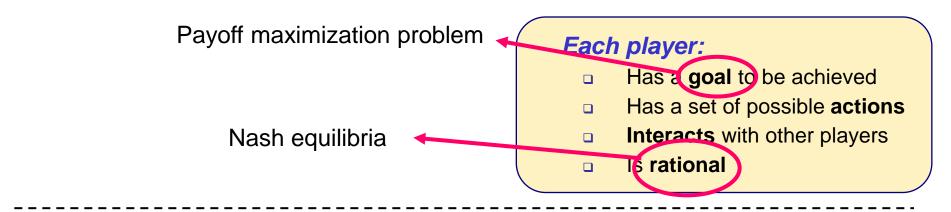


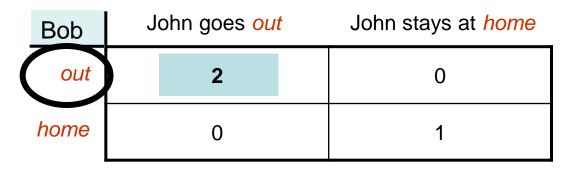
	Bob	John goes <mark>out</mark>	John stays at home
	out	2	0
(home	0	1



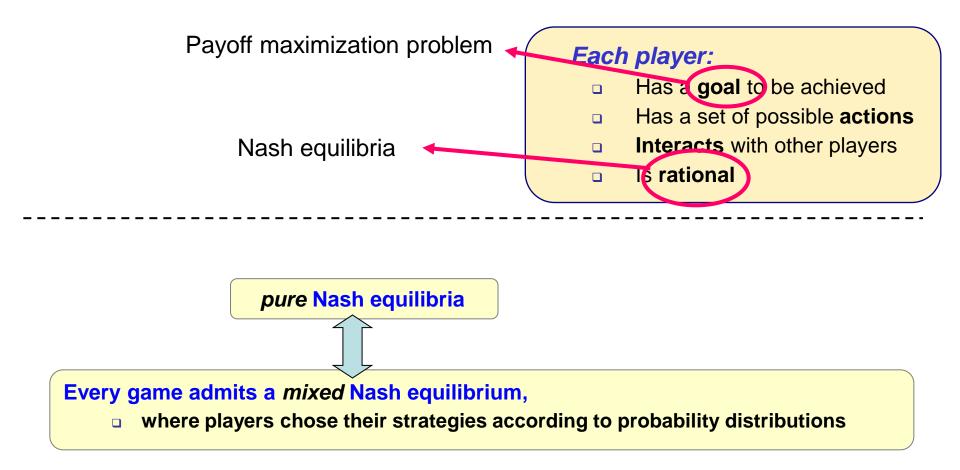








Non-Cooperative Games(3/3)



- Players:
 - Maria, Francesco
- Choices:
 - movie, opera

If 2 players, then size = 2^2

Maria	Francesco, <i>movie</i>	Francesco, opera
movie	2	0
opera	0	1

- Players:
 - Maria, Francesco, Paola
- Choices:
 - movie, opera

If 2 players, then size = 2^2

IJCAI-13

If 3 players, then size = 2^3

Maria	F _{movie} and P _{movie}	F _{movie} and P _{opera}	F _{opera} and P _{movie}	F _{opera} and P _{opera}
movie	2	0	2	1
opera	0	1	2	2

- Players:
 - Maria, Francesco, Paola, Roberto, and Giorgio
- Choices:
 - movie, opera

If 2 players, then size = 2^2

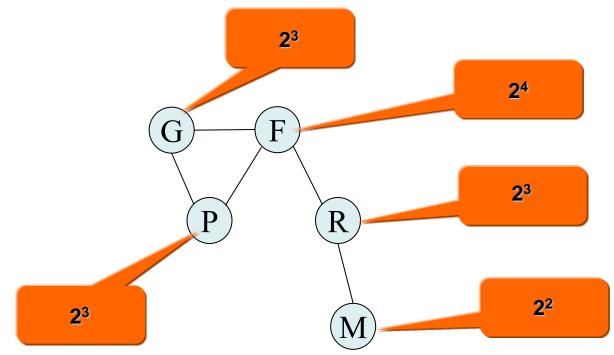
If 3 players, then size = 2^3

If N players, then size = 2^{N}

. . .

Maria	F _{movie} and P _{movie}	and R _{movie} and G _{movi}	e	
movie	2			
opera	0			

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera



	Choi	rance			a, Roł	oerto	, Gic	orgio, ar	nd Mai	G ria P	F	R
F	$P_m R_r$	$n P_{r}$	$_{m}R_{o}$	$P_o R_m$	$P_o R$	0	G	$P_m F_m$	$P_m F_o$	$P_o F_m$	$P_o F_o$	(<u>M</u>)
m	2		2	1	0		m	2	0	0	1	_
0	0		2	1	2		0	2	0	0	1	_
		R 		$ F_o 1 0 $	Р т о		<i>F</i> _o 0 1	M 	R_m 1 0	R_o 0 2		_

Pure Equilibria

Players:

- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	$P_m R_m$	$_{n}$ P	$_m R_o$	$P_o R_m$	$P_o R_o$	0	G	P_n	${}_{n}F_{m}$	$P_m F_o$	$P_o F_n$	$_{n}$ $P_{o}F_{o}$
m	2		2	1	0		m		2	0	0	1
0	0		2	1	2		0		2	0	0	1
	•				1							
		R	F_m	F_o	P	F_m	F_o		M	R_m	R_o	
		m	0	1	m	2	0		m	1	0	
		0	2	0	0	0	1		0	0	2	

Pure Equilibria

Players:

- Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	$P_m R_m$	$P_m R_o$	$P_o R_m$	$P_o R_o$	G	$P_m F_m$	$P_m F_o$	$P_o F_m$	P_oF_o
m	2	2	1	0	m	2	0	0	1
0	0	2	1	2	0	2	0	0	1
	-	$\begin{array}{c c} R & F_m \\ \hline m & 0 \\ o & 2 \end{array}$	F_o 1 0	$\begin{array}{c c} P & F_{i} \\ \hline m & 2 \\ o & 0 \end{array}$	<i>F</i> _o 0 1	M 	R_m . 1 0	$\frac{R_o}{0}$	

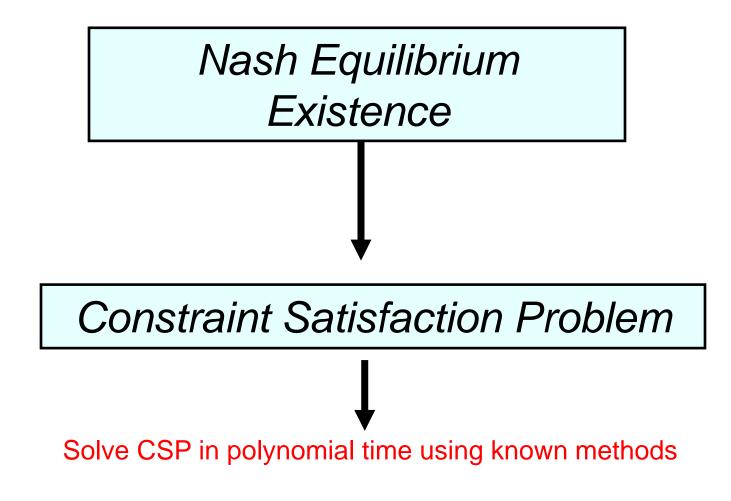
Pure Equilibria

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	$P_m R_m$	$P_m R_o$	$P_o R_m$	$P_o R_o$		G	$P_m F_m$	$P_m F_o$	$P_o F_m$	P_oF_o
m	2	2	1	0		m	2	0	0	1
0	0	2	1	2		0	2	0	0	1
		$\begin{array}{c c} R & F_m \\ \hline m & 0 \\ o & 2 \end{array}$	F_o 1 0	P F m 2 o 0	7m 2	<i>F</i> _o 0 1	M 	R_m 1 0	$\frac{R_o}{0}$	

NP-hard !

Pure Nash Equilibria and Easy Games



[Gottlob, Greco, and Scarcello, JAIR'05]

Encoding Games in CSPs

F	P_m	R_m	$P_m R_o$	$P_o R_m$	P_o	R_o	G	ř	$P_m F_m$	$P_m F_o$	$P_o F_m$	$P_o F_o$	
m		2	2	1	()	n	ı	2	0	0	1	
0	(C	2	1	1	2	0		2	0	0	1	
		η	$\begin{array}{c c} R & F_m \\ \hline n & 0 \\ o & 2 \end{array}$	$ F_o \\ 1 \\ 0 $	P 	2	0)	М т о	R_m 1 0	$\frac{R_o}{0}$		
F H H	P m m	R m o		G H o H	P m m	F H H o	1	R:	R o m	Fr H o	tp :	P H o	F m o
0 H 0 0	H O O O	o fi fi o	₹G :	о Я о Я о Я о Я о Я	f o o o o	онноо	303			r M :	M R m m o o		

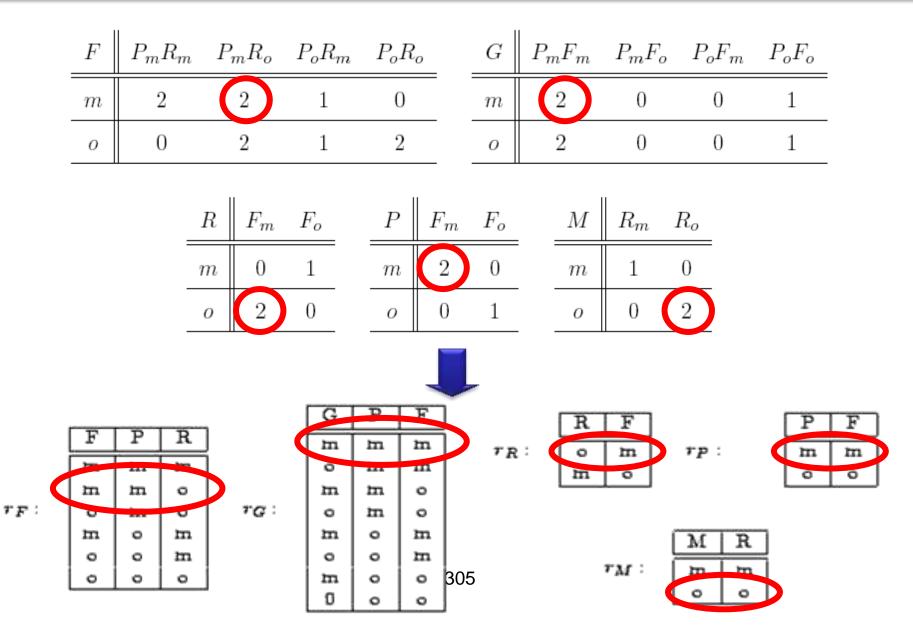
TF:

Encoding Games in CSPs

TF:

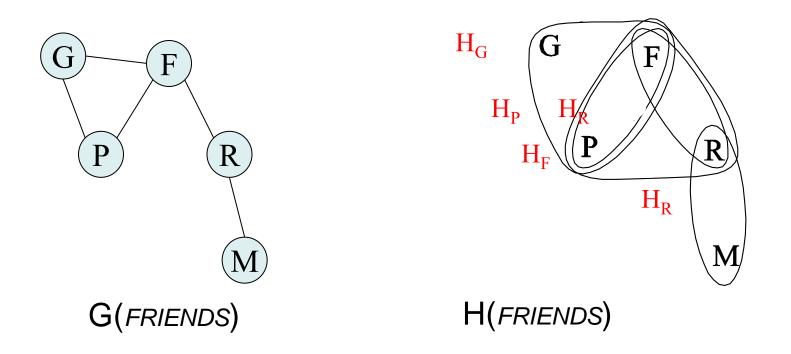
F	P_m	R_m	$P_m R_o$	$P_o R_m$	P_o	R_o	-	G	$P_m F$	\overline{m}	$P_m F_o$	$P_o F_m$	$P_o F_o$	
m		2	2	1	()	-	m	2		0	0	1	
0		0	2	1	4	2	-	0	2		0	0	1	
		η	$\begin{array}{c c} R & F_m \\ \hline n & 0 \\ \hline o & 2 \end{array}$	$ F_o \\ 1 \\ 0 $	P 		5 m 2 0	<i>F</i> _o 0 1		М т о	R_m 1 0	$\frac{R_o}{0}$		
FILOE	P H H H O	R m o m	rg:	GHOHOH	P H H H H O	FHHOOH		₹R	· [R o m	F H o	<i>rp</i> :	P m o	F m o
0	0	m o		o H U	0 0 0	H o o	304			ŗ	м :	m m o o		

Encoding Games in CSPs



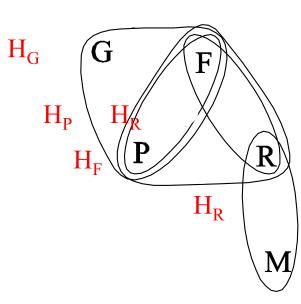
Interaction Among Players: Friends

- JCAI-13
- The interaction structure of a game G can be represented by:
 - the dependency graph G(G) according to Neigh(G)
 - a hypergraph H(G) with edges: $H(p)=Neigh(p) \cup \{p\}$

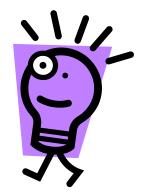


Interaction Among Players: Friends

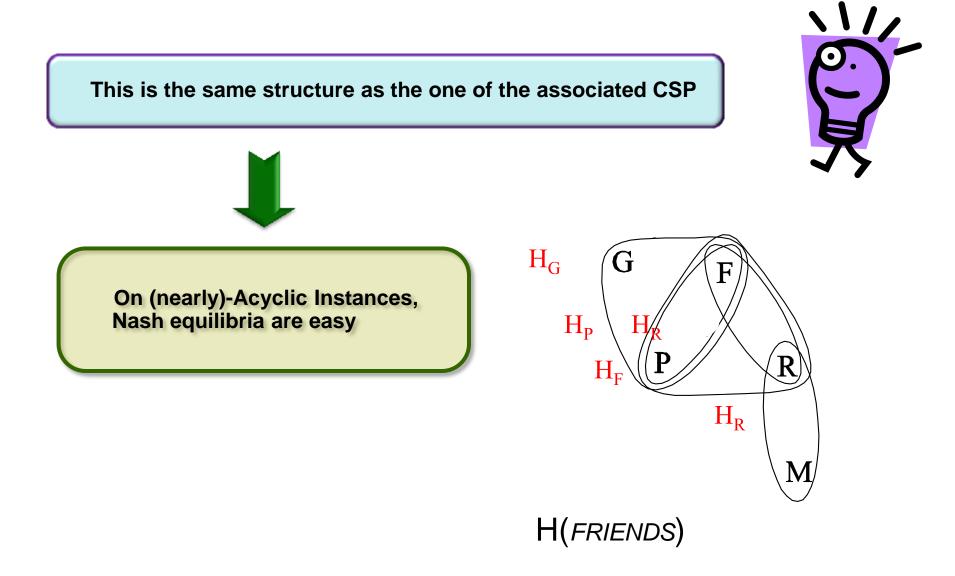
This is the same structure as the one of the associated CSP



H(FRIENDS)



Interaction Among Players: Friends



Applications to Optimization Problems

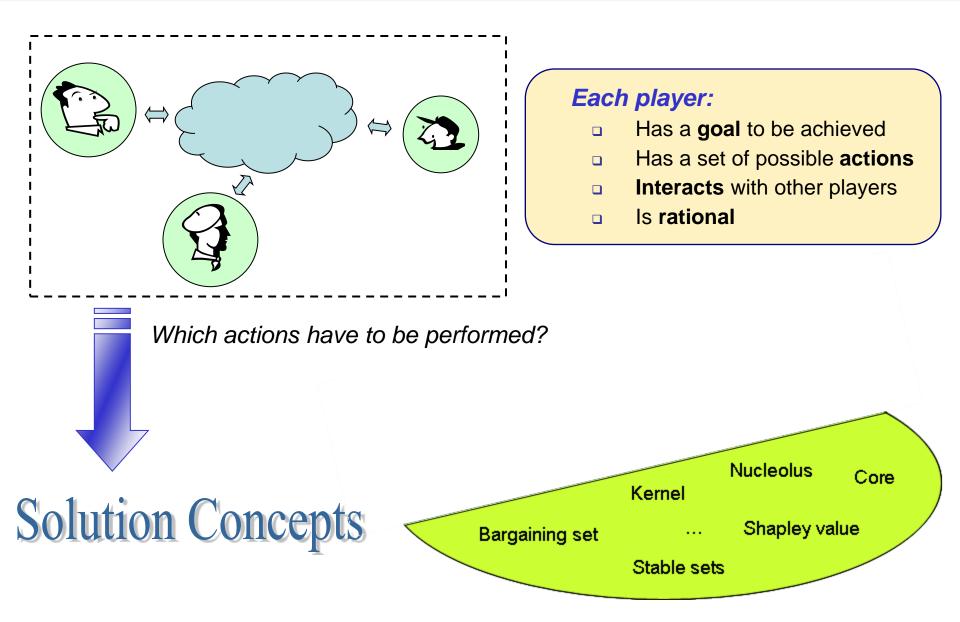
Application: Nash Equilibria

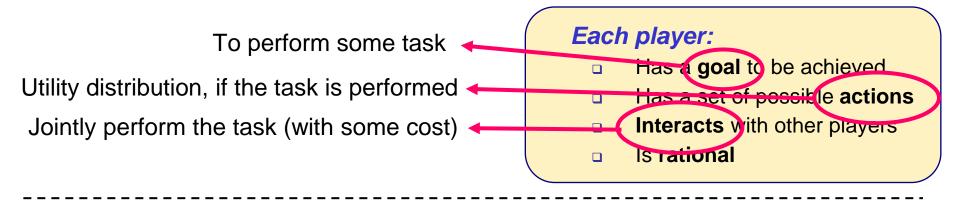
Application: Coalitional Games

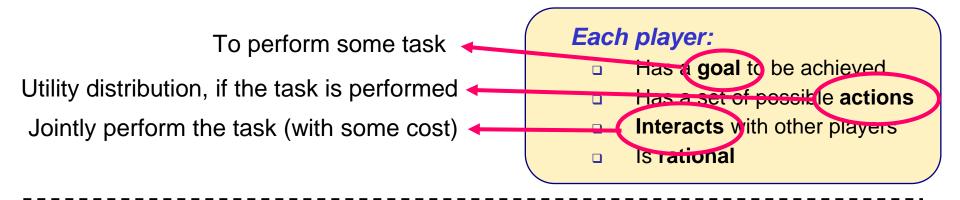
Application: Combinatorial Auctions

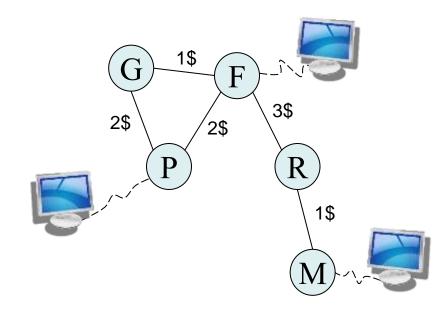
Appendix: Beyond Hypertree Width

Game Theory (in a Nutshell)

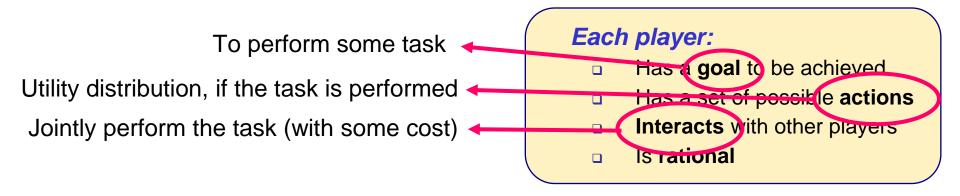


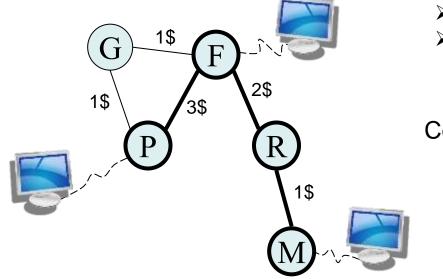




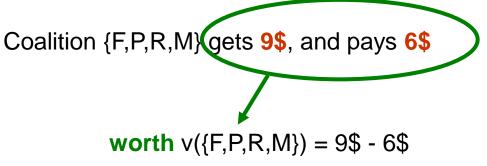


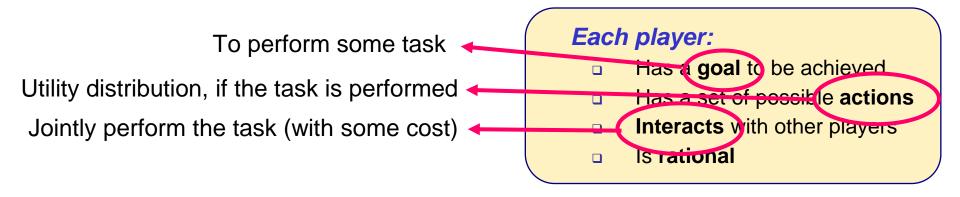
- Players get 9\$, if they enforce connectivity
- Enforcing connectivity over an edge as a cost

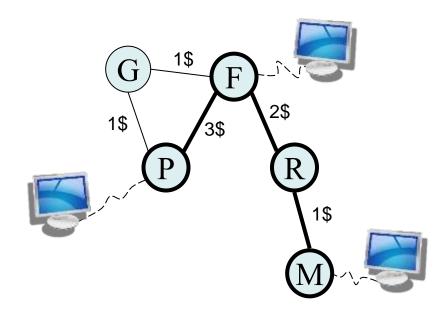




- Players get 9\$, if they enforce connectivity
- Enforcing connectivity over an edge as a cost

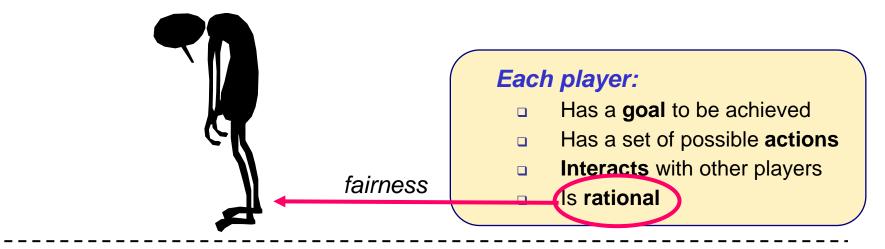


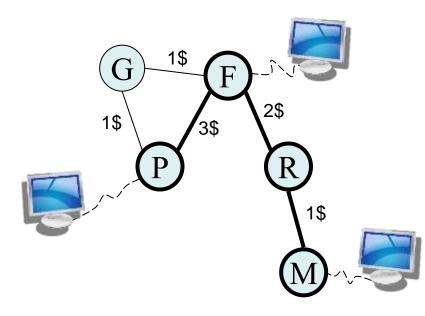




coalition	worth
{F}	0
	0
$\{G,P,R,M\}$	0
{F,P,R,M}	3
$\{G,F,P,R,M\}$	4

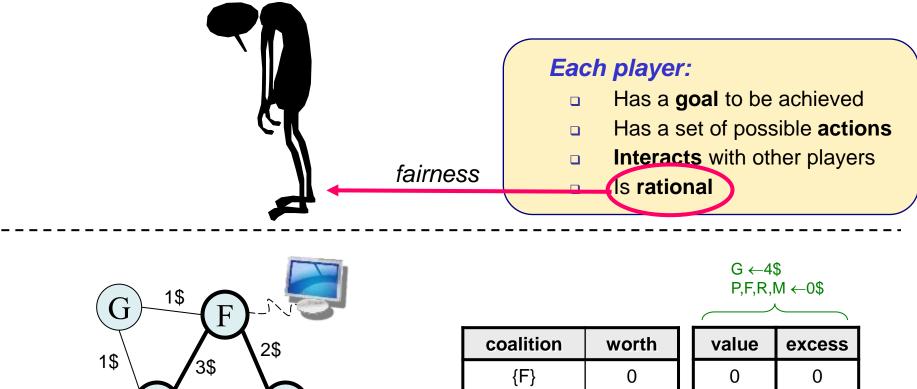
How to distribute 4\$, based on such worths?





coalition	worth
{F}	0
	0
{G,P,R,M}	0
{F,P,R,M}	3
${G,F,P,R,M}$	4

How to distribute 4\$, based on such worths?



1\$ 1\$ P 2\$ R 1\$ 1\$ 1\$ 1\$ 1\$ 1\$ 1\$ 1\$

 coalition
 worth
 value
 excess

 {F}
 0
 0
 0

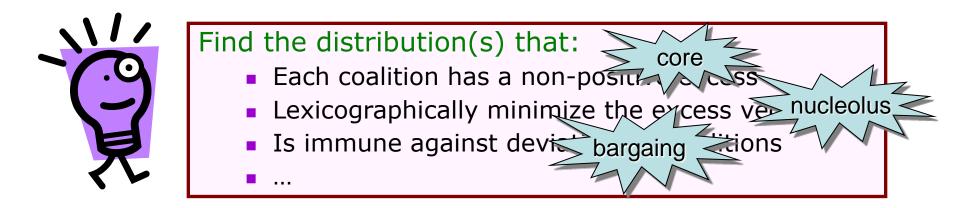
 ...
 0
 ...
 ...

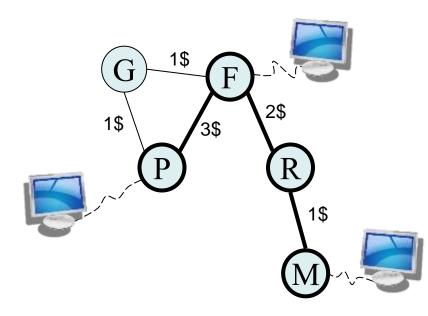
 {G,P,R,M}
 0
 4
 -4

 {F,P,R,M}
 3
 0
 3

 {G,F,P,R,M}
 4
 0
 0

How to distribute 4\$, based on such worths?





 IJCAI-13

		 /	<u>۱</u>
coalition	worth	value	excess
{F}	0	0	0
	0		
{G,P,R,M}	0	4	-4
{F,P,R,M}	3	0	3
{G,F,P,R,M}	4	4	0

How to distribute 4\$, based on such worths?

The Model

JCAI-13

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \textit{\textit{N}}, \textit{\textit{v}}
angle, \textit{\textit{v}}: 2^{\textit{\textit{N}}} \mapsto \mathbb{R}$$

• Outcomes belong to the imputation set $X(\mathcal{G})$

• Efficiency x(N) = v(N)• Individual Rationality $x_i \ge v(\{i\}), \quad \forall i \in N$

$$x\in X(\mathcal{G})$$
 -

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \pmb{N}, \pmb{v}
angle, \, \pmb{v}: \pmb{2^N} \mapsto \mathbb{R}$$

Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \pmb{N}, \pmb{v}
angle, \, \pmb{v}: \pmb{2^N} \mapsto \mathbb{R}$$

Solution Concepts characterize outcomes in terms of

- Fairness
- Stability

$$0 \ge e(S, x) = v(S) - \sum_{i \in S} x_i$$

$$\uparrow$$
The Core: $\forall S \subseteq N, x(S) \ge v(S);$

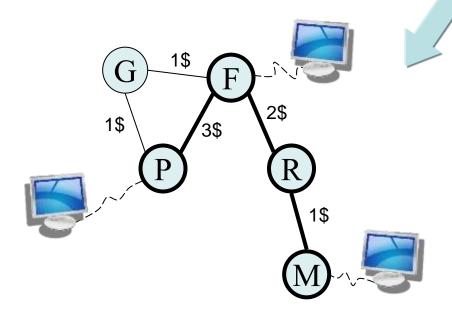
$$x(N) = v(N)$$

Complexity of Solution Concepts

- Nucleolus
- Kernel
- Bargaining Set
- Stable Sets

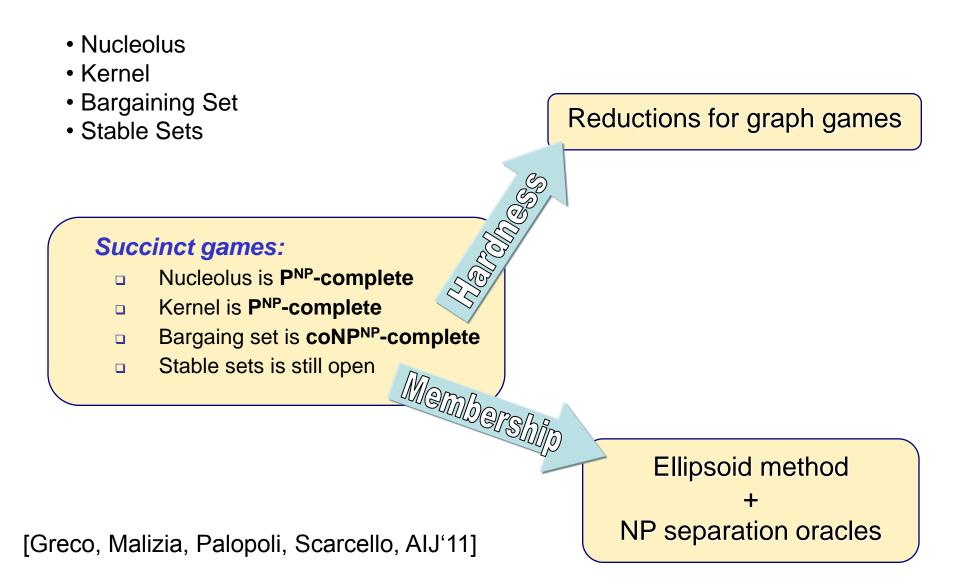
Graph games:

- Succinct specification
- Core existence is coNP-complete



coalition	worth
{F}	0
	0
$\{G,P,R,M\}$	0
{F,P,R,M}	3
$\{G,F,P,R,M\}$	4

Complexity of Solution Concepts



The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$

Consider the sentence,

over the graph where N is the set of nodes and E the set of edges :

$$proj(X,Y) \equiv X \subseteq N \land \forall c, c' (Y(c,c') \to X(c) \land X(c')) \land \forall c, c' (X(c) \land X(c') \land E(c,c') \to Y(c,c'))$$

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$

Consider the sentence,

over the graph where N is the set of nodes and E the set of edges :

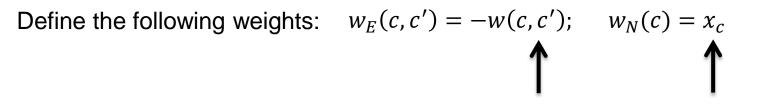
$$proj(X,Y) \equiv X \subseteq N \land \\ \forall c,c' (Y(c,c') \to X(c) \land X(c')) \land \\ \forall c,c' (X(c) \land X(c') \land E(c,c') \to Y(c,c'))$$

...it tells that Y is the set of edges covered by the nodes in X

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$

Let proj(X, Y) be the formula stating that Y is the set of edges covered by the nodes in X

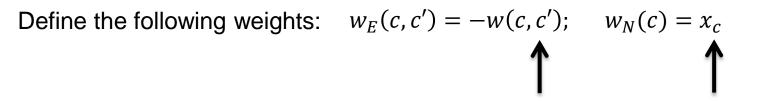


Value of the edge (negated) Value at the imputation

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$

Let proj(X, Y) be the formula stating that Y is the set of edges covered by the nodes in X



Value of the edge (negated) Value at the imputation

Find the "minimum-weight" X and Y such that proj(X, Y) holds

Membership in the Core on Graph Games

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$
 $0 \ge e(S, x) = v(S) - \sum_{i \in S} x_i$

Let proj(X, Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:
$$w_E(c,c') = -w(c,c'); \quad w_N(c) = x_c$$

Value of the edge (negated) Value at the imputation

Find the "minimum-weight" X and Y such that proj(X, Y) holds

Max (value of edges – value of the imputation), i.e., $max_{S \subseteq N}e(S, x)$

Applications to Optimization Problems

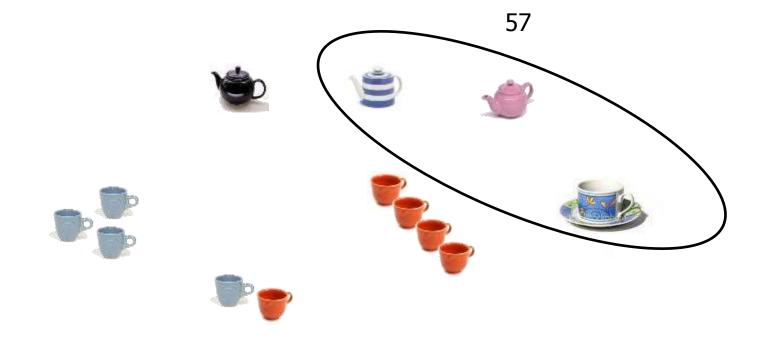
Application: Nash Equilibria

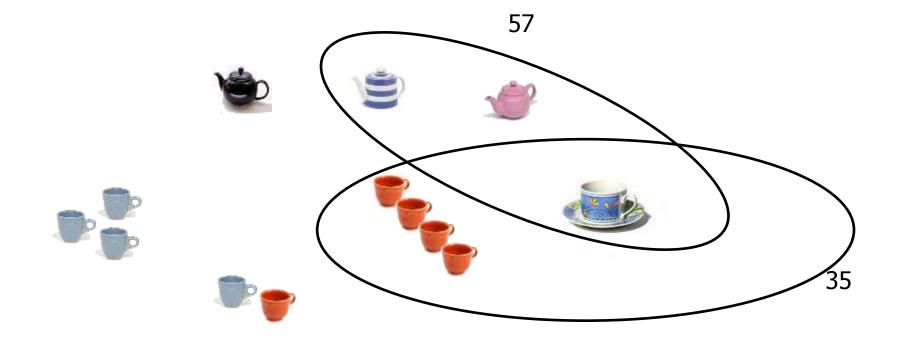
Application: Coalitional Games

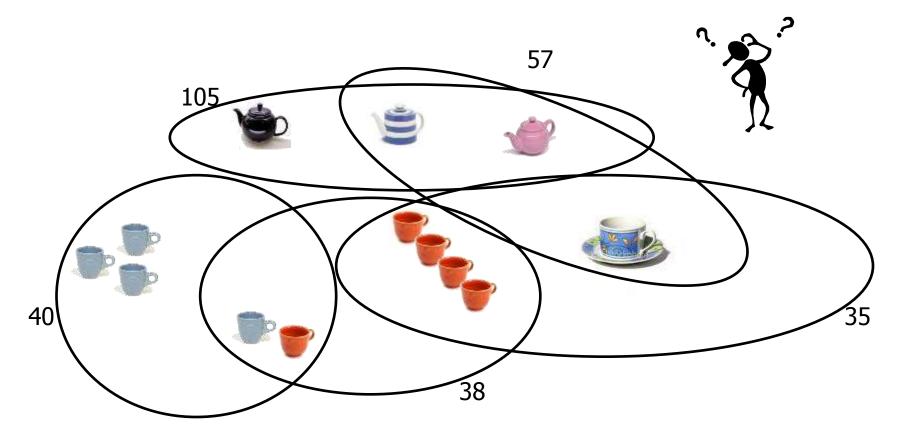
Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Example: Combinatorial Auctions





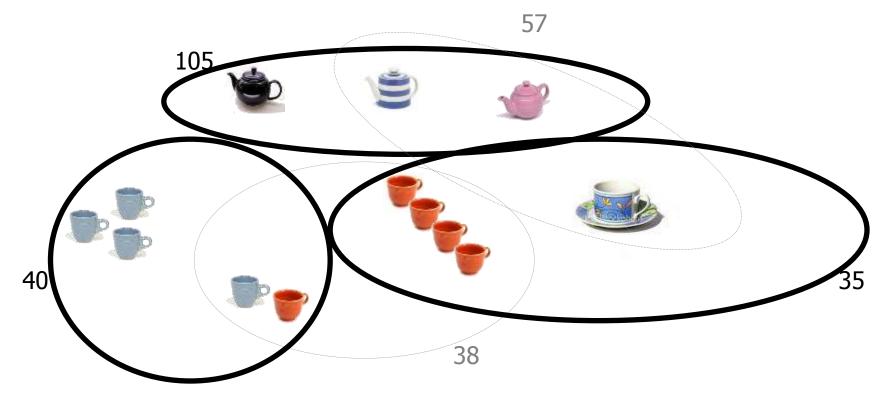


Winner Determination Problem

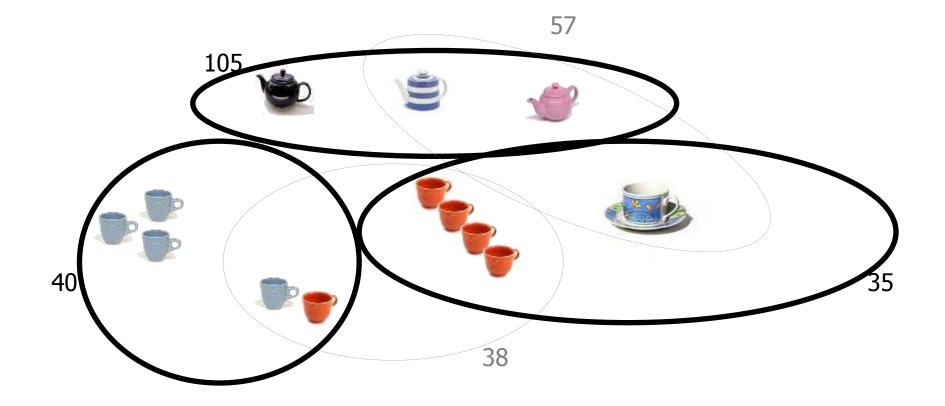
 Determine the outcome that maximizes the sum of accepted bid prices

Winner Determination Problem

 Determine the outcome that maximizes the sum of accepted bid prices

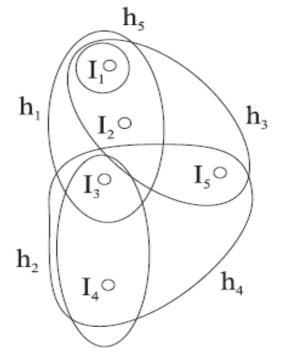


- Other applications [Cramton, Shoham, and Steinberg, '06]
 - airport runway access
 - trucking
 - bus routes
 - industrial procurement



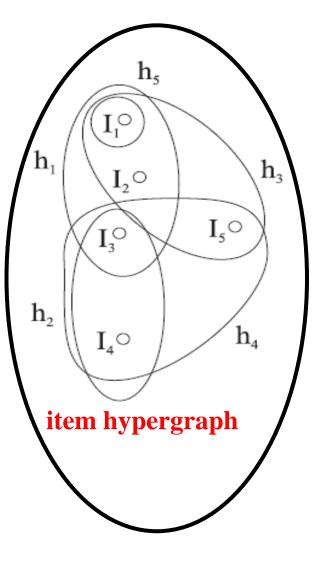
Winner Determination is NP-hard

Structural Properties



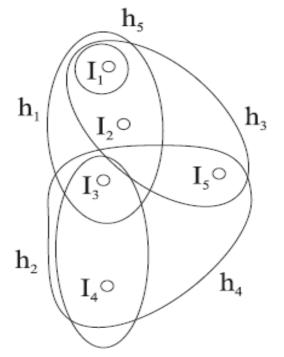
item hypergraph

Structural Properties



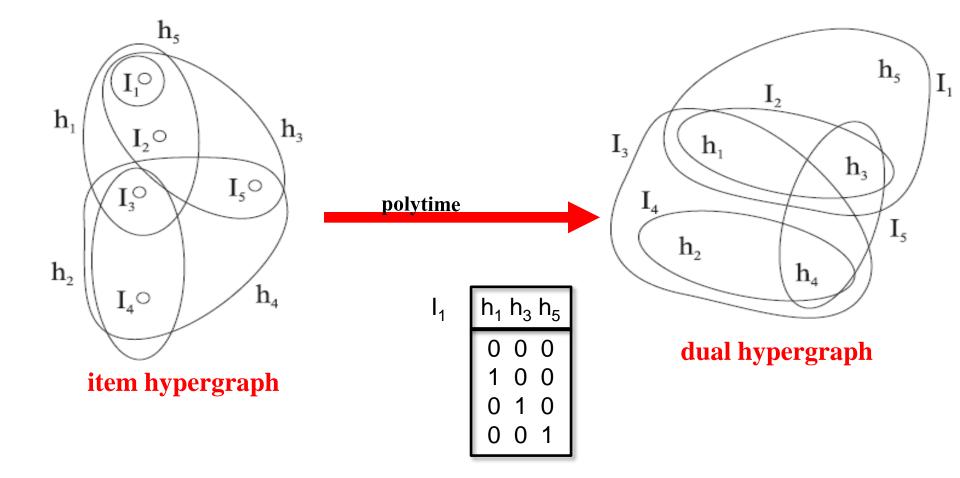
The Winner Determination Problem remains NP-hard even in case of acyclic hypergraphs

Dual Hypergraph

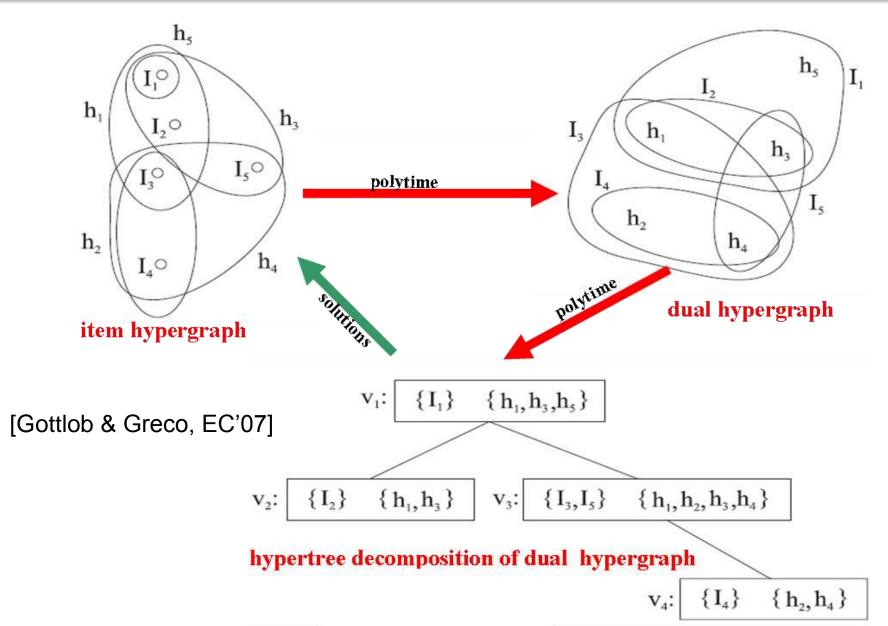


item hypergraph

Dual Hypergraph



The Approach



Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

- Treewidth and Hypertree width are based on tree-like aggregations of subproblems that are efficiently solvable
- k variables (resp. k atoms) → ||I||^k solutions (per subproblem)
- Is there some more general property that makes the number of solutions in any bag polynomial?

In a fractional hypertree decomposition of width w, bags of vertices are arranged in a tree structure such that

- 1. For every edge e, there is a bag containing the vertices of e.
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. A fractional edge cover of weight w is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width \leq generalized hypertree width

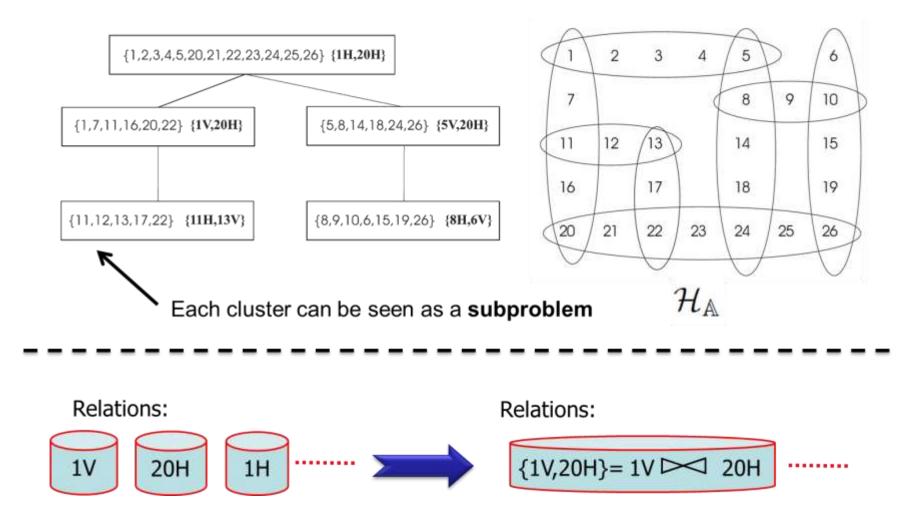
[Grohe & Marx '06]

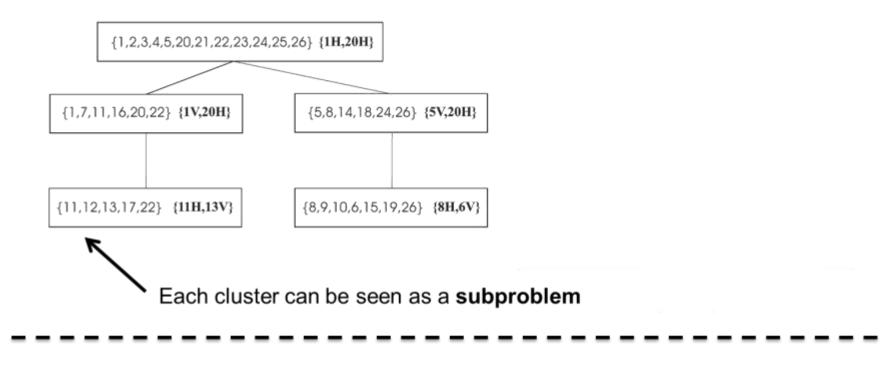
- A query may be solved efficiently, if a fractional hypertree decomposition is given
- FHDs are approximable: If the the width is ≤ w, a decomposition of width O(w³) may be computed in polynomial time [Marx '09]

More Beyond?

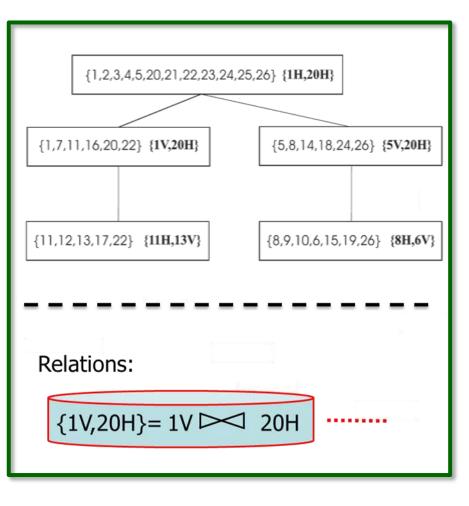
- A new notion: the submodular width
- Bounded submodular width is a necessary and sufficient condition for fixed-parameter tractability (under a technical complexity assumption)

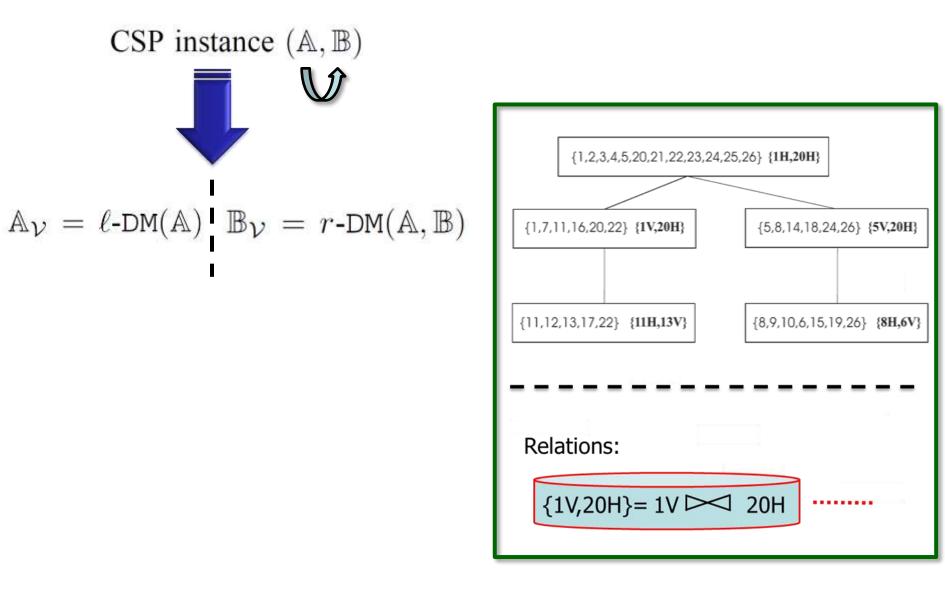
[Marx '10]

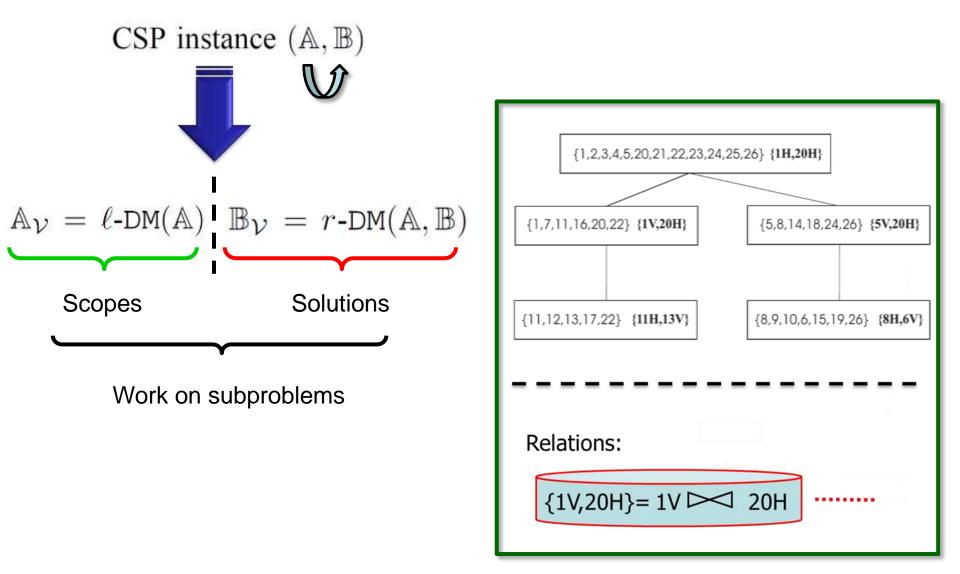


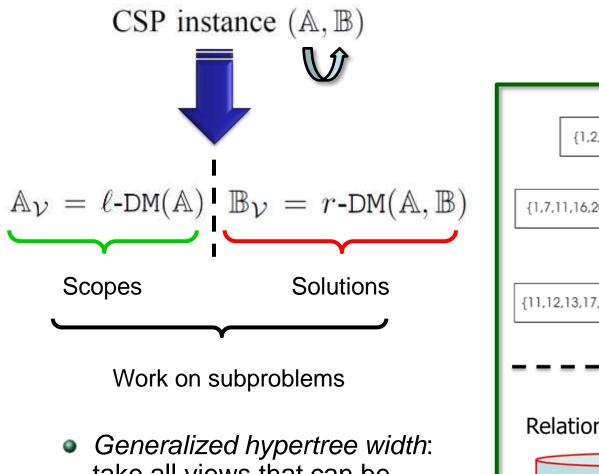


Relations:

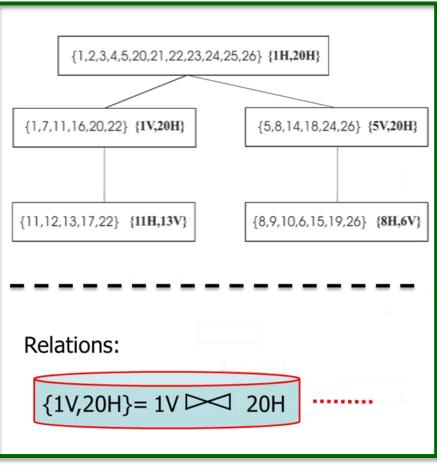


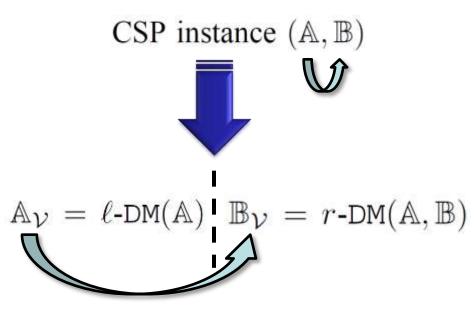




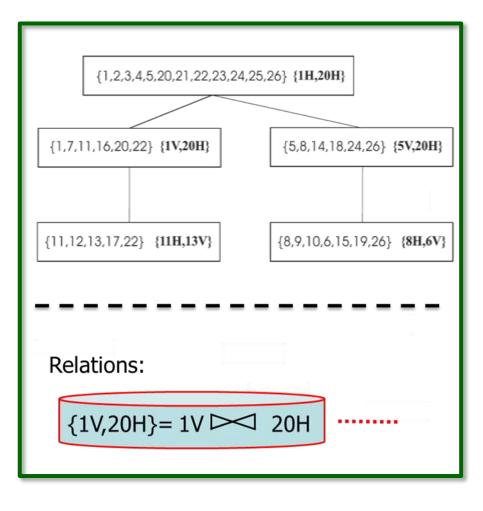


take all views that can be computed by joining at most k atoms (k query views)

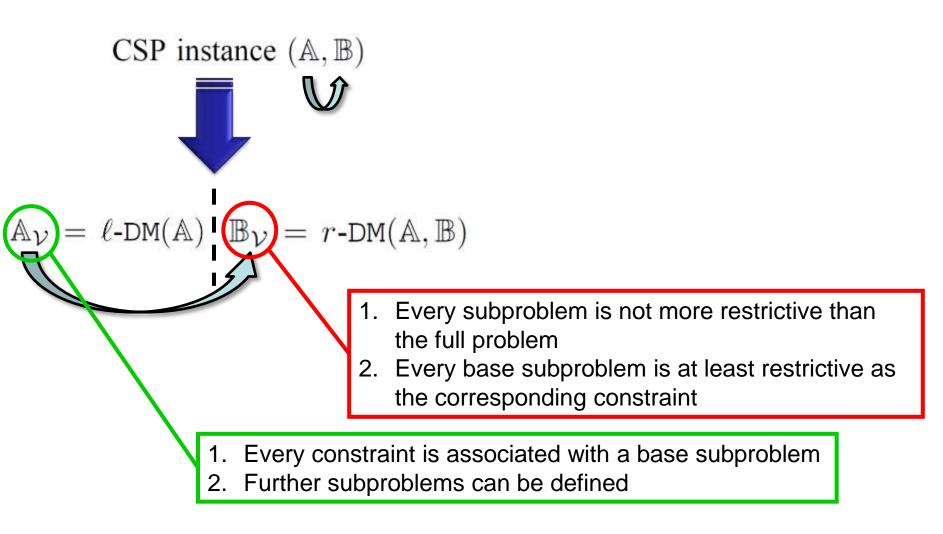




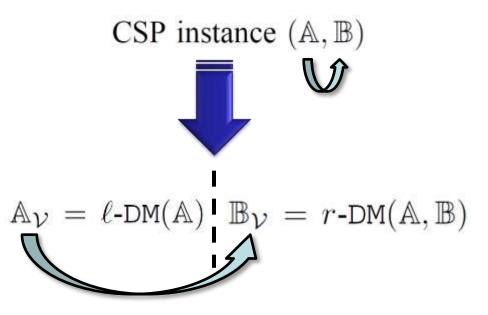
 Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)



Requirements on Subproblem Definition

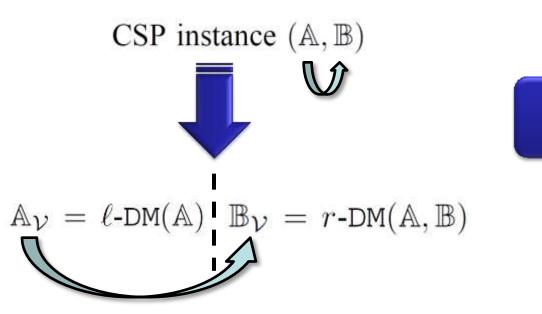


Acyclicity in Decomposition Methods



Working on subproblems is not necessarily beneficial...

Acyclicity in Decomposition Methods

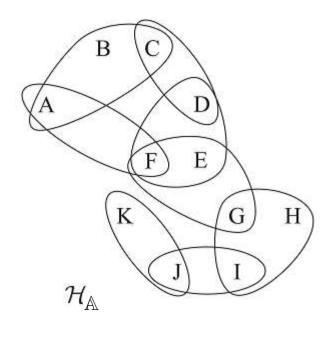


Working on subproblems is not necessarily beneficial...

Can some and/or portions of them be selected such that:

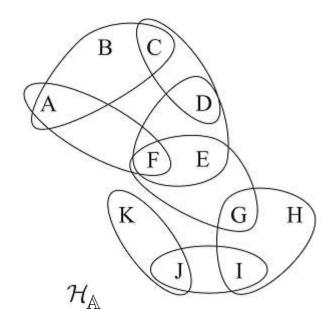
- They still cover \mathbb{A} , and
- They can be arranged as a tree

 $\mathbb{A}: \begin{array}{ccc} r_1(A,B,C) & r_2(A,F) & r_3(C,D) & r_4(D,E,F) \\ r_5(E,F,G) & r_6(G,H,I) & r_7(I,J) & r_8(J,K) \end{array}$

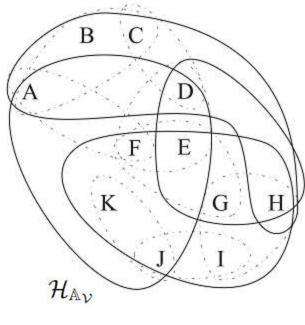


Structure of the CSP

 $\mathbb{A}: \begin{array}{ccc} r_1(A,B,C) & r_2(A,F) & r_3(C,D) & r_4(D,E,F) \\ r_5(E,F,G) & r_6(G,H,I) & r_7(I,J) & r_8(J,K) \end{array}$

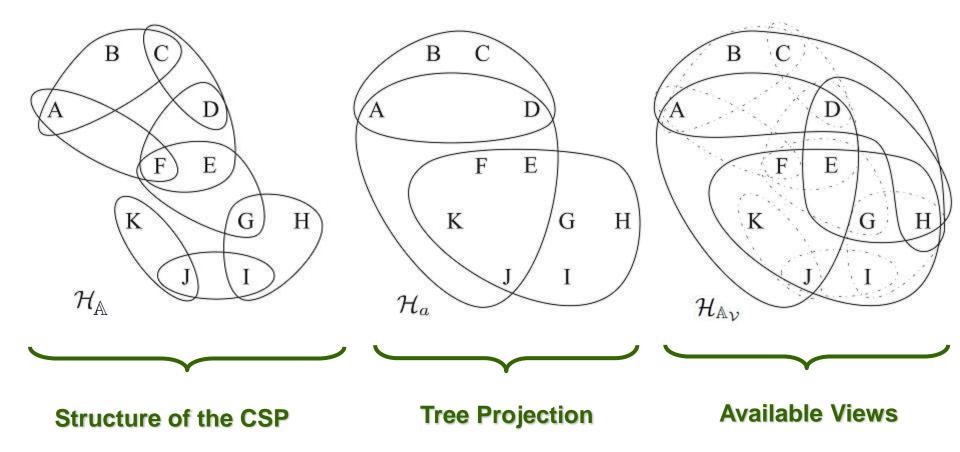


Structure of the CSP

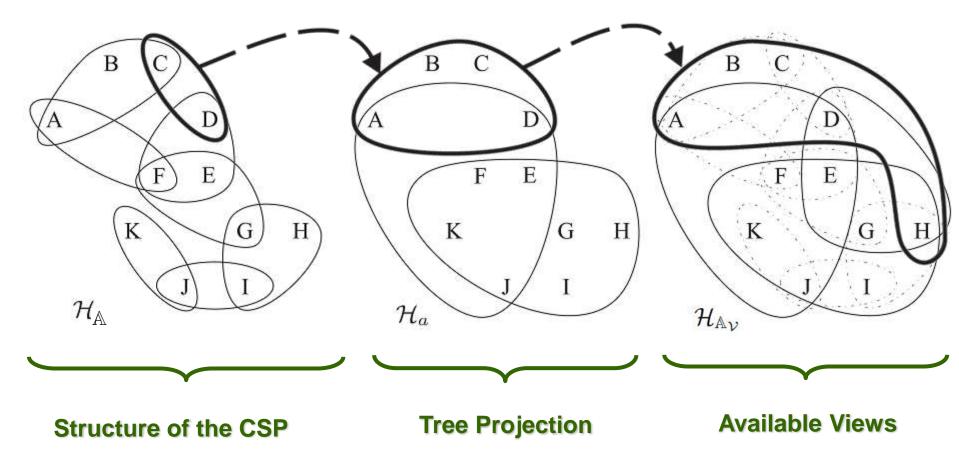


Available Views

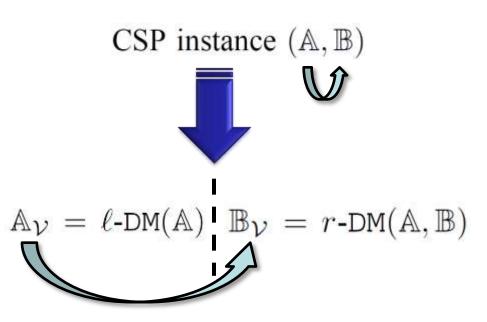
 $\mathbb{A}: \begin{array}{ccc} r_1(A,B,C) & r_2(A,F) & r_3(C,D) & r_4(D,E,F) \\ r_5(E,F,G) & r_6(G,H,I) & r_7(I,J) & r_8(J,K) \end{array}$



 $\mathbb{A}: \begin{array}{ccc} r_1(A,B,C) & r_2(A,F) & r_3(C,D) & r_4(D,E,F) \\ r_5(E,F,G) & r_6(G,H,I) & r_7(I,J) & r_8(J,K) \end{array}$



(Noticeable) Examples

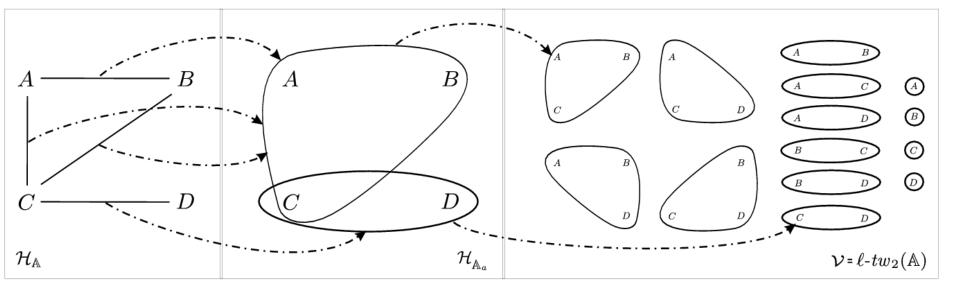


- Treewidth: take all views that can be computed with at most k variables
- Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)

IJCAI-13

 Fractional hypertree width: take all views that can be computed through subproblems having fractional cover at most k (or use Marx's O(k³) approximation to have polynomially many views)

Tree Decomposition



Decide the existence of a tree projection is NP-hard



[Gottlob, Miklos, and Schwentick, JACM'09]

Decide the existence of a tree projection is NP-hard

Hold on generalized hypertree width too.

[Gottlob, Miklos, and Schwentick, JACM'09]

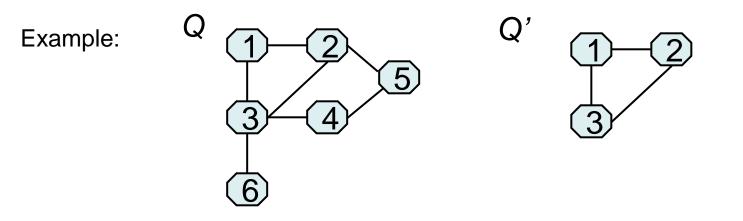
The core of a query Q is a query Q's.t.:

- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$
- There is no query Q" satisfying 1 and 2 and such that atoms(Q") ⊂ atoms(Q')

JCAI-13

The core of a query Q is a query Q's.t.:

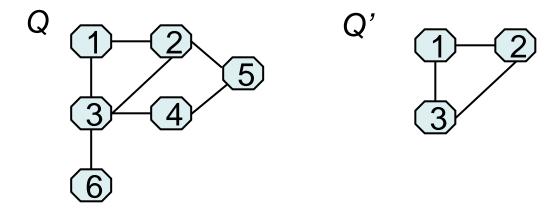
- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$
- There is no query Q" satisfying 1 and 2 and such that atoms(Q") ⊂ atoms(Q')



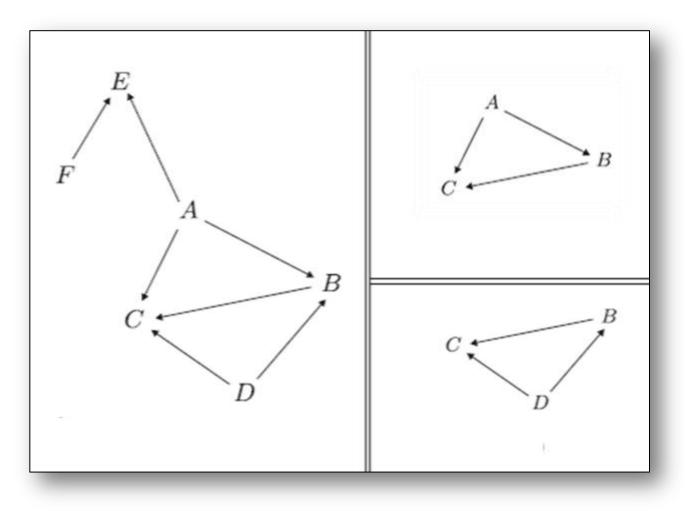
A Source of Complexity: The Core

IJCAI

Cores are equivalent to the query

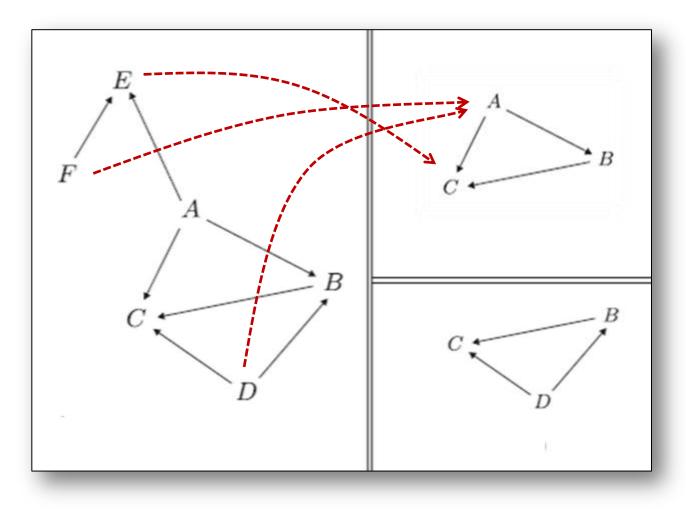


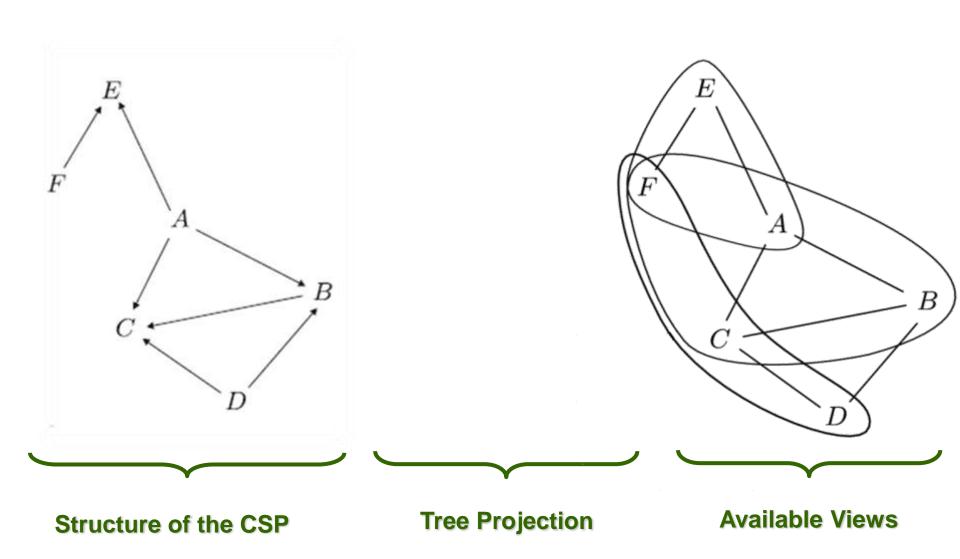
 $\begin{array}{rcl} Q_{-}:& r(A,B)\wedge r(B,C)\wedge r(A,C)\wedge r(D,C)\wedge \\ && r(D,B)\wedge r(A,E)\wedge r(F,E), \end{array}$



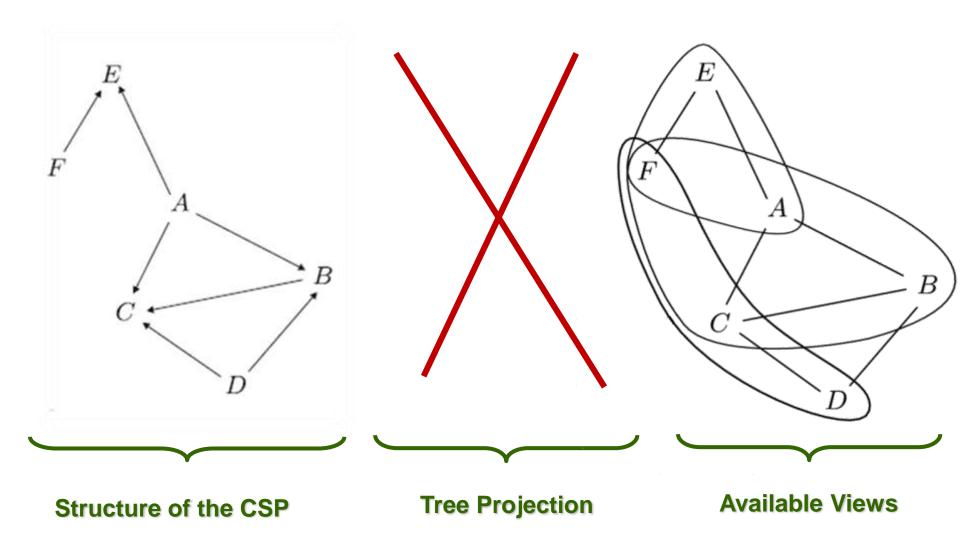
Example

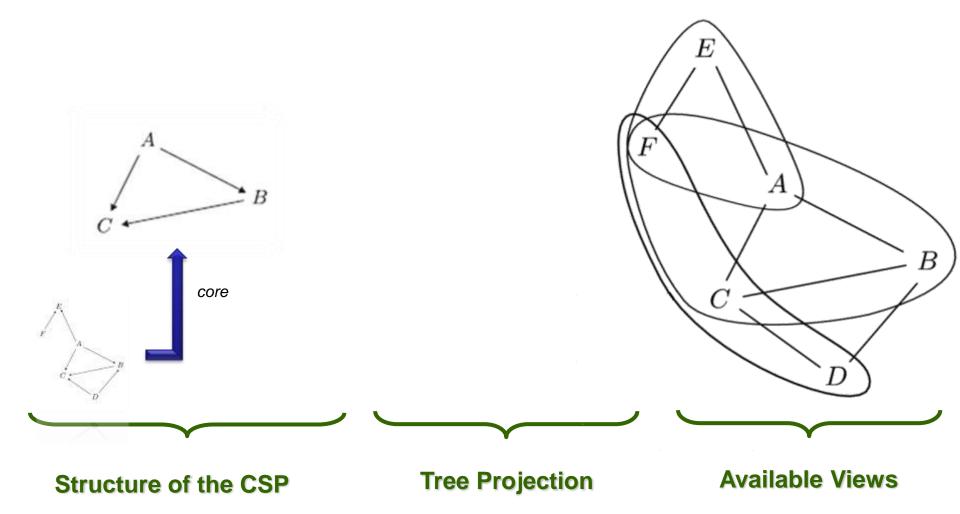
 $\begin{array}{rcl} Q &:& r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ && r(D,B) \wedge r(A,E) \wedge r(F,E), \end{array}$

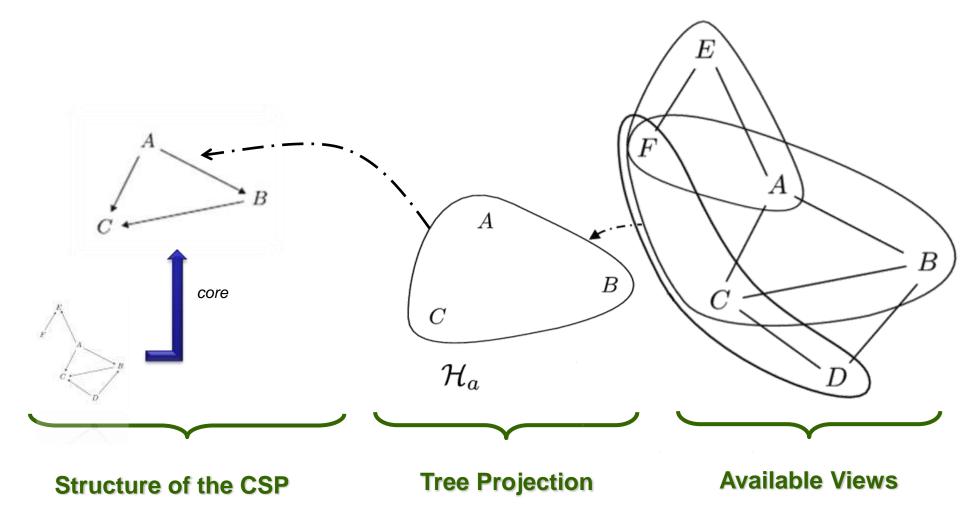




IJCAI-13



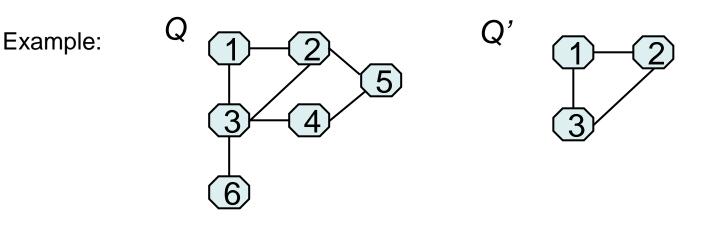




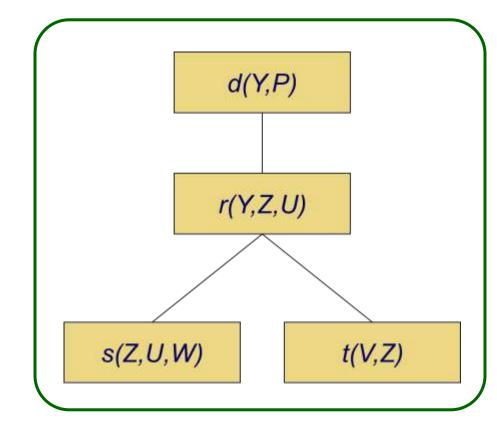
IJCAI-13

CORE is NP-hard

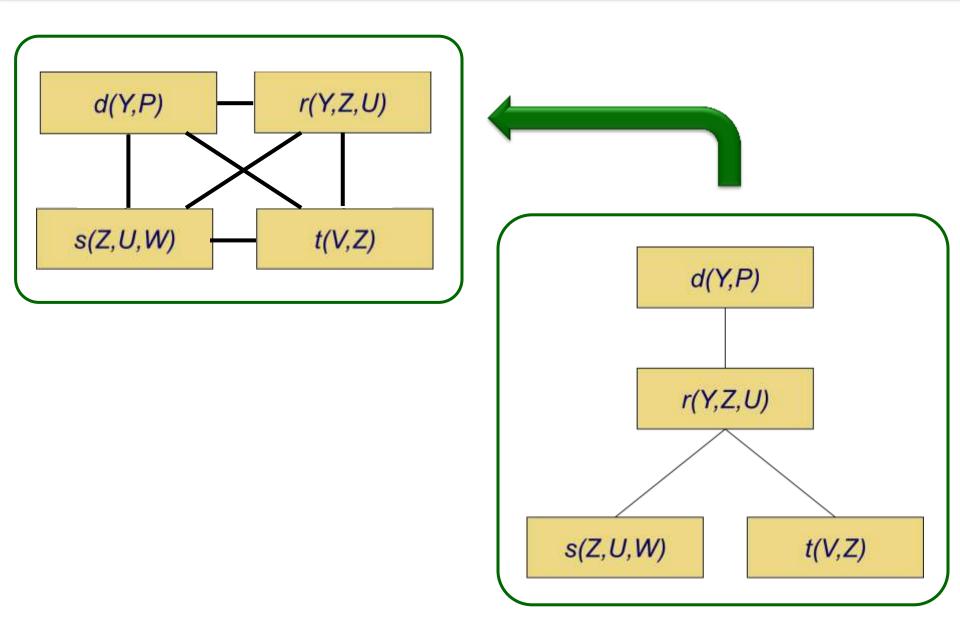
- Deciding whether Q' is the core of Q is NP-hard
- For instance, let 3COL be the class of all 3colourable graphs containing a triangle
- Clearly, deciding whether $G \in 3COL$ is NP-hard
- It is easy to see that $G \in 3COL \Leftrightarrow K_3$ is the core of G



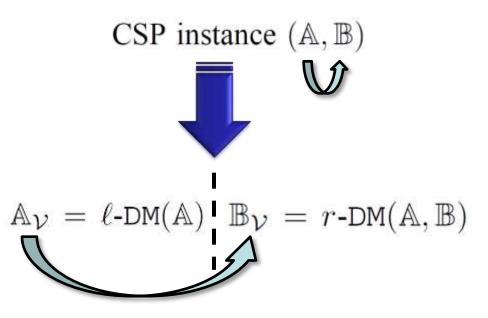
Enforcing Local Consistency (Acyclic)



Enforcing Local Consistency (Acyclic)



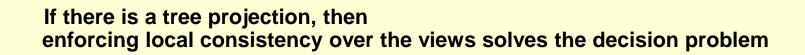
Enforcing Local Consistency (Decomposition



Enforcing Local Consistency

CSP instance (\mathbb{A}, \mathbb{B})

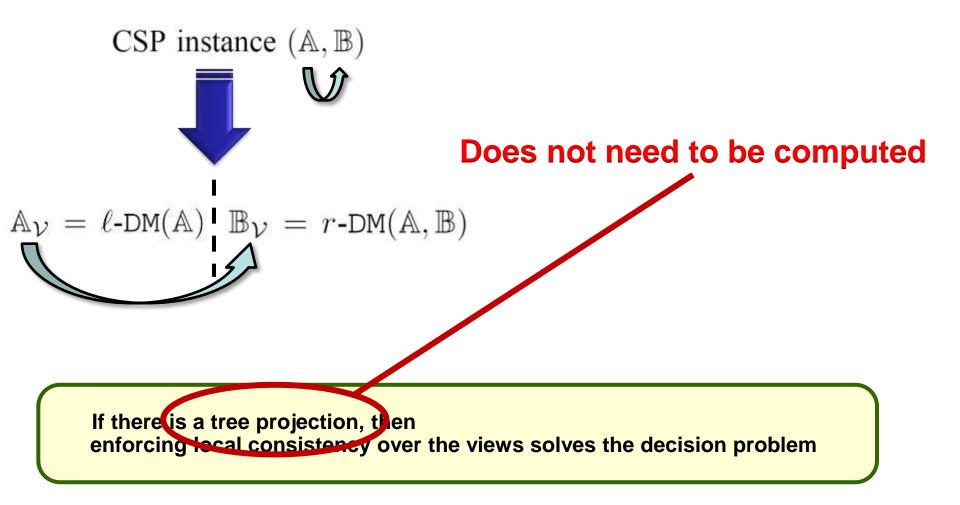
 $\mathbb{A}_{\mathcal{V}} = \ell \text{-DM}(\mathbb{A}) \quad \mathbb{B}_{\mathcal{V}} = r \text{-DM}(\mathbb{A}, \mathbb{B})$



[Sagiv & Smueli, '93]

IJCAI-13

Enforcing Local Consistency



[Sagiv & Smueli, '93]

IJCAI-13

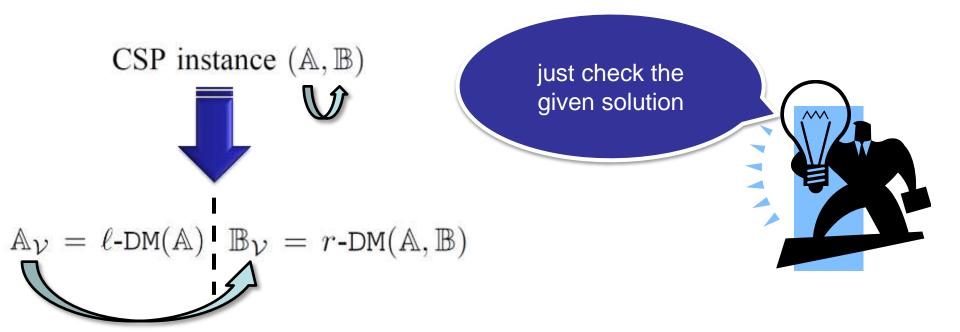
Even Better

CSP instance (\mathbb{A}, \mathbb{B}) $\mathbb{A}_{\mathcal{V}} = \ell \text{-DM}(\mathbb{A}) \mathbb{B}_{\mathcal{V}} = r \text{-DM}(\mathbb{A}, \mathbb{B})$

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,
- or solves the decision problem

Even Better



There is a polynomial-time algorithm that:

- either returns that there is no tree projection,
- or solves the decision problem

The Precise Power of Local Consistency

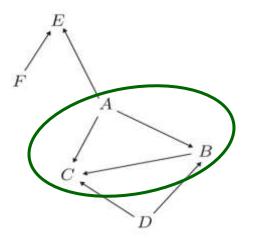
- The followings are equivalent:
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

[Greco & Scarcello, PODS'10]

The Precise Power of Local Consistency

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

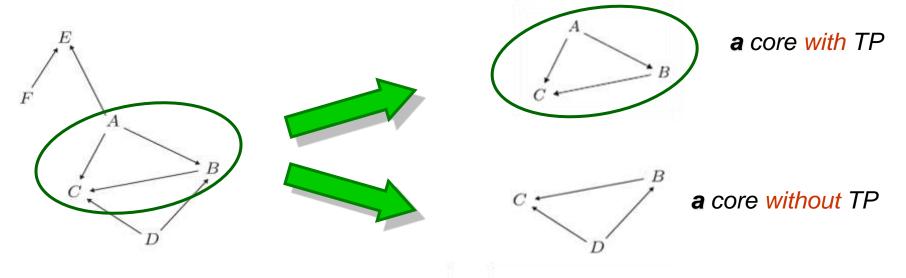
$\begin{array}{lll} Q &: & r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ & & r(D,B) \wedge r(A,E) \wedge r(F,E), \end{array}$



The Precise Power of Local Consistency

- The followings are equivalent
 - Local consistency solves the decision problem
 - There is a core of the query having a tree projection

$\begin{array}{lll} Q &: & r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ & & r(D,B) \wedge r(A,E) \wedge r(F,E), \end{array}$



A Relevant Specialization (not immediate)

The followings are equivalent
 Local consistency solves the decision problem
 There is *a core* of the query having a tree projection

The CSP has generalized hypertreewidth k at most

Over all union of k atoms

[Greco & Scarcello, CP'11]

Back on the Result

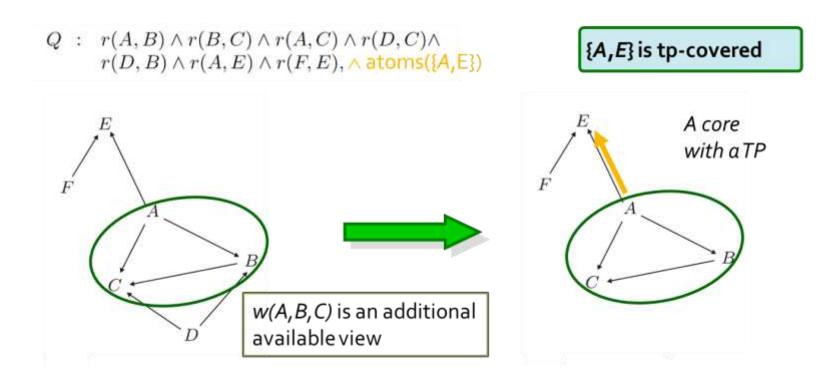
The followings are equivalent

- Local consistency solves the decision problem
- There is a core of the query having a tree projection

«Promise» tractability

- There is no polynomial time algorithm that
 - either solves the decision problem
 - or disproves the promise

- The followings are equivalent
 - Local consistency entails «views containing variables O are correct»
 - The set of variables O is tp-covered in a tree projection

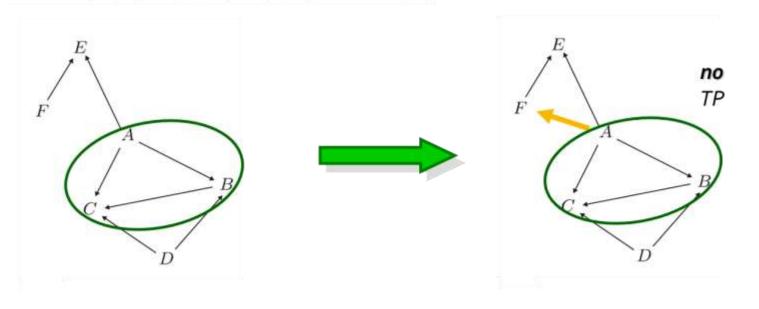


Local consistency for computing solutions

- The followings are equivalent
 - Local consistency entails «views containing variables O are correct»
 - The set of variables O is tp-covered in a tree projection

 $\begin{array}{rl} Q & : & r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ & r(D,B) \wedge r(A,E) \wedge r(F,E), \wedge \operatorname{atoms}(\{A,F\}) \end{array}$

{A,F} is not tp-covered



Local and global consistency

- The followings are equivalent
 - Local consistency entails global consistency
 - Every query atom/constraint is tp-covered in a tree projection

{D,B} is not tp-covered

