
 Structural Decomposition Methods and

Islands of Tractability for NP-hard Problems
Georg Gottlob, Gianluigi Greco, and Francesco Scarcello

23rd International Conference on Artificial Intelligence

 Monday, August 5th, morning

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

 Inherent Problem Complexity

 Inherent Problem Complexity

Number of steps it takes for input of size n

 Time Complexity

 Time Complexity

Graph Three-colorability

YES!

Graph Three-colorability

 Approaches for Solving Hard Problems

 Approaches for Solving Hard Problems

 Identification of Polynomial Subclasses

High complexity often arises in “rare” worst case

instances

Worst case instances exhibit intricate structures

In practice, many input instances have simple structures

 Therefore, our goal is to

Define polynomially solvable subclasses
(possibly, the largest ones)

Prove that membership testing is tractable for these
classes

Develop efficient algorithms for instances in these classes

Graph and Hypergraph Decompositions

The evil in Computer science is hidden in (vicious)

cycles.

We need to get them under control!

Decompositions: Tree-Decomposition, path

decompositions, hypertree decompositions,…

 Exploit bounded degree of cyclicity.

YES!

Graph Three-colorability

Problems with a Graph Structure

Problems with a Graph Structure

How much “cyclicity” in this graph?

Suggest a measure of distance from an acyclic graph

Feedback vertex set

Set of vertices whose deletion makes the graph acyclic

Three Early Approaches

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

The feedback vertex number

fwn(G)=3

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

FVN: Properties

Is this really a good measure for the “degree of

acyclicity” ?

Pro: For fixed k we can check efficiently whether

fwn(G) ≤ k

What does it mean efficiently when parameter k is fixed?

fwn(G)=3

Classical Computational Complexity

n = input size

poly(n) 2 O(n) Assuming P≠NP

In many problems there exists some part of the input that are quite small in

practical applications

Natural parameters

Many NP-hard problems become easy if we fix such parameters (or we

assume they are below some fixed threshold)

Positive examples: k-vertex cover, k-feedback vertex set, k-clique, …

Negative examples: k-coloring, k-CNF, …

Parameterized Complexity

Initiated by Downey and Fellows, late ‘80s

n = input size

poly(n) 2 O(n)

f(k) nO(1) ng(k)

Typical assumption: FPT ≠ W[1]

W[1]-hard problems: k-clique

 INPUT: A graph G=(V,E)

 PARAMETER: Natural number k

Does G have a clique over k vertices?

k-clique is hard w.r.t. fixed parameter complexity!

FPT races

http://fpt.wikidot.com/

FPT Tractability of Feedback Vertex Set

Naïve algorithm: O(nk+1) Not good!

Solvable in O((2k+1)kn2) [Downey and Fellows ‘92]

A practical randomized algorithm runs in time: O(4kkn)

[Becker et al 2000]

 INPUT: A graph G=(V,E)

 PARAMETER: Natural number k

Does G has a feedback vertex set of k vertices?

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

Feedback Vertex Set: troubles

fwn(G)=3

Is this really a good measure for the “degree of acyclicity” ?

 Pro: For fixed k we can check in quadratic time if fwn(G)=k (FPT) .

 Con: Very simple graphs can have large FVN:

Feedback edge number  same problem.

Feedback edge number

Any idea for further techniques?

Well known graph properties:

A biconnected component is a maximal subgraph that
remains connected after deleting any single vertex

In any graph, its biconnected components form a tree

Yes! A tree of clusters (subproblems)

Maximum size of biconnected components

bcw(G)=4

 Pro: Actually bcw(G) can be computed in linear time

Biconnected width

Maximum size of biconnected components

bcw(G)=4

 Pro: Actually bcw(G) can be computed in linear time

 Con: Adding a single edge may have tremendous effects to bcw(G)

Drawbacks of BiComp

Maximum size of biconnected components

bcw(G)=4

12

 Pro: Actually bcw(G) can be computed in linear time

 Con: Adding a single edge may have tremendous effects to bcw(G)

Drawbacks of BiComp

Can we do better?

Hint:

why should clusters of vertices be of this limited kind?

Use arbitrary (possibly small) sets of vertices!

How can we arrange them in some tree-shape?

What is the key property of tree-like structures (in most
applications)?

Information propagation

Information on the rightmost vertex

is no longer necessary (quite often)

Can we do better?

Hint:

why should clusters of vertices be of this limited kind?

Use arbitrary (possibly small) sets of vertices!

How can we arrange them in some tree-shape?

What is the key property of tree-like structures, in
applications?

Information propagation

Information is still necessary to take

decisions about the yellow vertex

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

g

q

a
b

f

c

d

p
h

l

n
m

o
k

e

i

j

Tree Decompositions [Robertson & Seymour ‘86]

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce

ag

ef

ij

mn

Tree Decompositions [Robertson & Seymour ‘86]

Tree Decompositions [Robertson & Seymour ‘86]

Tree Decompositions [Robertson & Seymour ‘86]

• Every edge realized in some bag

• Connectedness condition

Connectedness condition for h

ah

ahq

hij abc

hkl

hkp klo

mno

bcd cef ag

Tree Decompositions and Treewidth

g

q

a
b

f

c

d

p
h

l

n
m

o
k

e

i

j

Playing the Robber & Cops Game

g

q

a
b

f

c

d

p
h

l

n
m

o
k

e

i

j

Playing the Robber & Cops Game

g

q

a
b

f

c

d

p
h

l

n
m

o
k

e

i

j

Playing the Robber & Cops Game

g

q

a
b

f

c

d

p
h

l

n
m

o
k

e

i

j

Playing the Robber & Cops Game

tw(acyclic graph)=1

tw(cycle) = 2

tw(G+v)  tw(G)+1

tw(G+e)  tw(G)+1

tw(Kn) = n-1

 tw is fixed-parameter tractable (parameter: treewidth)

Properties of Treewidth

Outline of PART I

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds

 b) Fixed-Parameter tractability: f(w)O(nk)

2. Tool for proving general tractability

 a) Prove tractability for both large & small width

 b) Prove all yes-instances to have small width

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds
 constraint satisfaction = conjunctive database queries

 b) Fixed-Parameter tractability: f(w)O(nk)
 multicut problem

2. Tool for proving general tractability

 a) Prove tractability for both large & small width
 finding even cycles in graphs – ESO over graphs

 b) Prove all yes-instances to have small width
 the Partner Unit Problem

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds

 b) Fixed-Parameter tractability: f(w)O(nk)

2. Tool for proving general tractability

 a) Prove tractability for both large & small width

 b) Prove all yes-instances to have small width

In PART II

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds

 b) Fixed-Parameter tractability: f(w)O(nk)

2. Tool for proving general tractability

 a) Prove tractability for both large & small width

 b) Prove all yes-instances to have small width

Use of Tree Decompositions

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in

Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

An important Metatheorem

Courcelle’s Theorem [1987]

Let P be a problem on graphs that can be formulated in

Monadic Second Order Logic (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

An important Metatheorem

Three Colorability in MSO

Courcelle's Theorem: Problems expressible in MSO2

are solvable in linear time on structures of bounded

treewidth

…and in LOGSPACE [Elberfeld, Jacoby,Tantau]

P xy : (E(x,y) (P(x)  P(y))

Example – Graph Coloring

Master Theorems for Treewidth

Arnborg, Lagergren, Seese '91:

Optimization version of Courcelle's Theorem:

Finding an optimal set P such that G |= (P)

is FP-linear over inputs G of bounded treewidth.

Find a smallest P such that

 xy : (E(x,y) (P(x)  P(y))

Given a graph G=(V,E)

Example:

Master Theorems for Treewidth

Find minimum-cardinality vertex set separating

 Si from Tj for each tuple <Si,Tj> in relation H

H:

Unrestricted Vertex Multicut Problems

H:

Unrestricted Vertex Multicut Problems

[Guo et al. 06] UVMC FPT if |S|, |C| and tree-width fixed

Results

[G. & Tien Lee] UVMC FPT if overall structure has bounded tw.

using master theorem by Arnborg, Lagergren and Seese.

H:

Unrestricted Vertex Multicut Problems

PROOF

Minimize X in uvmc

 X intersects each set that connects x and y

Unrestricted Vertex Multicut Problems

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds

 b) Fixed-Parameter tractability: f(w)O(nk)

2. Tool for proving general tractability

 a) Prove tractability for both large & small width

 b) Prove all yes-instances to have small width

Use of Tree Decompositions

INPUT: A graph G, a constant k.

QUESTION: Decide whether G has a cycle

 of length 0 (mod k)

In the past century, this was an open

problem for a long time.

Carsten Thomassen in 1988 proved it polynomial

for all graphs using treewidth as a tool.

The Generalized Even Cycle Problem

Small Treewidth (c) Large Treewidth (>c)

"cycle of length 0 (mod k)"

can be expressed un MSO

k=4

example

Courcelle's Theorem

(but was not known then…)

k c: each graph G with

tw(G)>c contains a subdivision

of the f(k)-grid. [for suitable f]

n>f(k), each subdivision of

f(k)-grid contains a cycle of

length 0 (mod k).

Proof Idea

Long Term Research Programme

Determine the complexity of SO fragments over finite

structures.

Finite structures: words (strings), graphs, relational databases

 Known: SO=PH; ESO = NP

Which SO-fragments can be evaluated in polynomial time?

Which SO-fragments express regular languages on strings ?

More modestly: What about prefix classes?

Every room should be equipped

with a computer.

If a printer is not present in a

room, then one should be

available in an adjacent room.

No room with a printer should be

a meeting room.

Every room is at most 5 rooms

distant from a meeting room.

[…]

A “simple” Facility Placement Problem

Given an office layout as a graph, decide whether

the facility placement constraints are satisfiable.

 P  M … x  y ((P(x)  E(x,y) & P(y)) & …

This leads to the questions:

Are formulas of the type E1
*ae or even E*ae

polynomially verifiable over graphs?

What about other fragments of ESO or SO?

Observe that this is an E1
*ae formula

Simplest Form

http://images.google.at/imgres?imgurl=http://www.ads.tuwien.ac.at/AGD/images/ortho_thumbnailgif.gif&imgrefurl=http://www.ads.tuwien.ac.at/AGD/&h=115&w=119&sz=2&tbnid=KymP7IpN2HQJ:&tbnh=80&tbnw=82&start=128&prev=/images?q=planar+graph+&start=120&hl=de&lr=&ie=UTF-8&sa=N

This motivates the following question:

Can formulas in classes such as E2(ae2) or even ESO(e*ae*) be

evaluated in polynomial time over strings ?

More generally:

Which ESO-fragments admit polynomial-time model

checking over strings ?

A similar, even more important question can be asked for graphs

and general finite structures:

Which ESO-fragments admit polynomial-time model

checking over graphs or arbitrary finite structures?

Simplest Form

[G.,Kolaitis, Schwentick 2000]

Complexity of ESO Prefix Classes

In PTIME!

The Saturation Problem

The Saturation Problem

The Saturation Problem

The Saturation Problem

1. Prove Tractability of bounded-width instances

 a) Genuine tractability: O(nf(w))-bounds

 b) Fixed-Parameter tractability: f(w)O(nk)

2. Tool for proving general tractability

 a) Prove tractability for both large & small width

 b) Prove all yes-instances to have small width

Use of Tree Decompositions

Partner Units Scenario

Track People in Buildings

Sensors on Doors, Rooms Grouped into Zones

Partner Units Solution

Assigning Sensors and

Zones to Control Units

Respect Adjacency

Constraints

The Partner-Unit Problem

Bipartite graph G=(V,E) V=VaVb;
Va= {a1,...,ar},
Vb={b1,...,bs},
E: edges btw. Va and Vb

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

The Partner-Unit Problem

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

Replace connections by connections to units

ai bj

sensors zones

The Partner-Unit Problem

Bipartite graph G=(V,E) V=VaVb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

Replace connections by connections to units

ai bj u

OR

The Partner-Unit Problem

Bipartite graph G=(V,E) V=VaVb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

b7

Replace connections by connections to units

ai bj u OR

v

a1

a2

a3

a4

a5

a6

b2

b3

b4

b5

b6

b7

b1

a1

a2

a3

a4

a5

a6

b2

b3

b4

b5

b6

b7

b1

u1

u2

u3

u4

CONSTRAINTS:

•Each ai or bi is connected to exactly 1 unit.
•Each unit connected to:
 - at most 2 other units,
 - at most 2 elements from Va,
 - at most 2 elements from Vb,
•If ai connected to bj in G,
 then dist(ai,bi)≤3 in G*

G*

G

U={u1,u2,u3,u4}

The Partner-Unit Problem

Assume one node a is connected to 7 nodes

b1,...,b7 in G. Then instance G is unsolvable.

a

b2

b3

b4

b5

b6

b7

b1

Thus, no vertex can have more than 6 neighbours in G.

A No-Instance of Partner-Unit

The PU Problem(s)

PU DECISION PROBLEM (PUDP):

 Given G, is there a G* satisfying the constraints?

 (Number of units irrelevant.)

 PU SEARCH PROBLEM (PUSP)

 Given G, find a suitable G* whenever possible.

 PU OPTIMIZATION PROBLEM (PUOP)

 Given G, find a suitable G* with minimum

 number of units |U| (whenever possible).

PUDP

ASSUMPTION: G is connected.

Note: This assumption can be made wlog,

because the PUDP can be otherwise

decomposed into a conjunction of independent

PUDPs, one for each component.

Lemma 1: If G is connected and solvable, then there exists

a solution G* in which the unit-graph UG=G*[U] is

connected.

Topology of the Unit-Graph

Lemma 2: If G is connected and solvable, then there exists

a solution G* whose unit graph is a cycle.

u1

u2

u3

u4

u1

u2

u3

u4

Note: We still don’t know |U|, but we may just try all cycles
 of length max(|Va|,|Vb|)/2 to length |Va|+|Vb|.
 There are only linearly many! (Guessable in logspace)

Theorem:

 Assume G is solvable through solution G* with |U|=n and
having
 unit function f . Then:

 (1) pw(G) ≤ 11

 (2) tw(G) ≤ 5

 (3) There is a path decomposition T=(W,A)
 that can be locally check to witnss PUDP solution G*

Result

a1

a2

a3

a4

a5

a6

b2

b3

b4

b5

b6

b7

b1

u1

u2

u3

u4

G*

U={u1,u2,u3,u4}

a1, a2, a3, a4, b1, b2, b3,

b4

a1, a2, a3, a4, a5, b1, b2, b3, b4, b5,

b6

a1, a2, a5, a6, b1, b2, b3, b5, b6

,b7

T

t1

t2

t3

Example

a1

a2

a3

a4

a5

a6

b2

b3

b4

b5

b6

b7

b1

u1

u2

u3

u4

G*

U={u1,u2,u3,u4}

a1, a2, a3, a4, b1, b2, b3,

b4

a1, a2, a3, a4, a5, b1, b2, b3, b4, b5,

b6

a1, a2, a5, a6, b1, b2, b3, b5, b6

,b7

T

t1

t2

t3

Note: We cannot do better, thus the bound 11 is actually tight!

Example

a1

a2

a3

a4

a5

a6

b2

b3

b4

b5

b6

b7

b1

u1

u2

u3

u4

U={u1,u2,u3,u4}

a1, a2, a3, a4

a1, a2, a3, a4, a5

a1, a2, a5, a6,

T

t1

t2

t3

a1,

b1

a1,

b2
a2, b1 ……

…… ……

…… ……

We now show (2)
Strip off the Vb-elements and put them into separate bags.

Note: Other examples show, we cannot do better, thus the bound 5 is actually tight

Example

Example for lower bound 5

a1

a2 b2

b3 a3

b1

b5

b4 a4

a5

b6 a6

all edges …… ……

tw=5

G

Example

a1

a2 b2

b3 a3

b1

b5

b4 a4

a5

b6 a6

u1

u2

u3

… and this G is actually solvable:

Example for lower bound 5

Result

Theorem : PUDP is in polynomial time and is solvable by

dynamic programming techniques.

QED

Name Sensors Zones Edges Cost CSP DECPUP

dbl-20 28 20 56 14 * 0.01

dbl-40 58 40 116 29 * 0.05

dbl-60 88 60 176 44 * 0.08

dblv-30 28 30 92 15 * 65.49

dblv-60 58 60 192 30 * *

triple-30 40 30 78 20 * 0.50

triple-34 40 34 93 / * *

grid-90 50 68 97 34 * 0.03

Partner Units Results

Case N>2

For constant N totally open. Could well be NP-hard.
In fact, Unit Graph does not need to have bounded treewidth!

If N is not-constant, then NP-complete:

For Siemens, it seems that very small values of N are
relevant.

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Beyond Treewidth

Treewidth is currently the most successful measure of

graph cyclicity. It subsumes most other methods.

However, there are “simple” graphs that are heavily

cyclic. For example, a clique.

Beyond Treewidth

Treewidth is currently the most successful measure of

graph cyclicity. It subsumes most other methods.

However, there are “simple” graphs that are heavily

cyclic. For example, a clique.

There are also problems whose structure

 is better described by hypergraphs

rather than by graphs…

Y

Z

U

P

V

W

Database queries

Database schema (scopes):
Enrolled (Pers#, Course, Reg-Date)

Teaches (Pers#, Course, Assigned)

Parent (Pers1, Pers2)

Is there any teacher having a child enrolled in
her course?

 ans  Enrolled(S,C,R)  Teaches(P,C,A) 
 Parent(P,S)

Database queries

QUERY: Is there any teacher having a child enrolled in her
course?

 ans  Enrolled(S,C,R)  Teaches(P,C,A) 
 Parent(P,S)

John Algebra 2003

Anita Logic 2003

Sara DB 2002

Luisa DB 2003

……… ….. …….

Nicola Algebra March

Georg Logic May

Frank DB June

Mimmo DB May

……… ….. …….

Mimmo Luisa

Georg Anita

Frank Sara

……… …..

Enrolled Teaches Parent

Queries and Hypergraphs

Ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S)

S

C

A R

P

Queries and Hypergraphs (2)

Database schema (scopes):
Enrolled (Pers#, Course, Reg-Date)

Teaches (Pers#, Course, Assigned)

Parent (Pers1, Pers2)

Is there any teacher whose child attend some
course?
Ans  Enrolled(S,C’,R)  Teaches(P,C,A) 

 Parent(P,S)

S

C’

A R

P

C

A more intricate query

),','(),',()',',,,(

)','()','()',',(),(

),(),',()',',',,(),,',,(

FXBqFXBpYXYXJj

ZYhZXgZFFfZYe

ZXdZCCcFCYYSbFCXXSaans







S

X X’ C F

Y Y’ C’ F’

Z Z’ J

B B’

Populating datawarehouses

Constraint Satisfaction Problems

P A R I S

P A N D A

L A U R A

A N I T A

1h: L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

1v:

and so on

Crossword puzzle

Constraint Satisfaction Problems

 Set of variables {X1,…,X26}

 Set of constraint scopes

r1h(X1, X2, X3, X4, X5)

r1v(X1, X7, X11, X16, X20)

P A R I S

P A N D A

L A U R A

A N I T A

r1h:

 Set of constraint relations

L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

r1v:

Problems on Electric Circuits

A problem from Nasa

680 constraints

579 variables

 ...

 cid_260(Vid_49, Vid_366, Vid_224),
cid_261(Vid_100, Vid_391, Vid_392),
cid_262(Vid_273, Vid_393, Vid_246),
cid_263(Vid_329, Vid_394, Vid_249),
cid_264(Vid_133, Vid_360, Vid_356),
cid_265(Vid_314, Vid_348, Vid_395),
cid_266(Vid_67, Vid_352, Vid_396),
cid_267(Vid_182, Vid_364, Vid_397),
cid_268(Vid_313, Vid_349, Vid_398),
cid_269(Vid_339, Vid_348, Vid_399),
cid_270(Vid_98, Vid_366, Vid_400),
cid_271(Vid_161, Vid_364, Vid_401),
cid_272(Vid_131, Vid_353, Vid_234),
cid_273(Vid_126, Vid_402, Vid_245),
cid_274(Vid_146, Vid_252, Vid_228),
cid_275(Vid_330, Vid_360, Vid_361),

...

Part of relations for the Nasa problem

Configuration problems (Renault example)

Renault Megane configuration
[Amilhastre, Fargier, Marquis AIJ, 2002]

Used in CSP competitions and as a

benchmark problem

Variables encode type of engine, country,

options like air cooling, etc.

99 variables with domains ranging from 2

to 43.

858 constraints, which can be

compressed to 113 constraints.

The maximum arity is 10 (hyperedge

cardinality/size of constraint scopes)

Represented as extensive relations, the

113 constraints comprise about 200 000

tuples

2.84 × 1012 solutions.

Further examples…

In the third part

Representing Hypergraphs via Graphs

S

C

A R

P

C

A R

S
P

Hypergraph H(Q) Primal graph G(Q)

Hypergraphs vs Graphs

S

C’

A R

P

C C

A

R

S
P

C’

An acyclic hypergraph Its cyclic primal graph

Hypergraphs vs Graphs

S

C’

A R

P

C C

A

R

S
P

C’

There are two cliques.

We cannot know where they come from

Further Graph Representations

X1

S1

S2

S3

X2

X3

X4

X5
S4

S1

S2

S3

S4

X1

X2

X2

X2 Dual Graph

Decther, 92

Incidence Graph

(Hidden variable encoding)

Seidel, 81

S1

S2

S3

S4

X1

X2

X3

X4

X5

g

q

a
b

f

c
d

p h
l

n
m

o
k

e

i

j

α-acyclic Hypergraphs

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce

ag

ef

ij

mn

Note the connectedness

condition for a

Acyclic hypergraphs may

contain cycles

Teaches(P,C,A)

Parent(P,S)

Again on the simplest query

Ans  Enrolled(S,C’,R)  Teaches(P,C,A)  Parent(P,S)

S

C’

A R

P

C

Enrolled(S,C’,R)

Join Tree α-acyclic hypergraph

Input: Hypergraph H

Method: Apply the following two rules as long as possible:

 (1) Eliminate vertices that are contained in at most one hyperedge

 (2) Eliminate hyperedges that are empty or contained in other hyperedges

H is (α-)acyclic iff the resulting hypergraph empty

Proof: Easy by considering leaves of join tree

Deciding Hypergraph Acyclicity

Can be done in linear time

by GYO-Reduction

[Yu and Özsoyoğlu, IEEE Compsac’79; see also Graham, Tech Rep’79]

Y

Z

U

P

V

W

Y

Z

U

Y

Z

U

H*= (ø,ø)

GYO reduct

H

rule 1 rule 2

rule 1

rule 2

Example of GYO-Reduction

 1

 2 3 4

 5

 6 7

 8

 9

 0
 6

 9

 0

Example of GYO-irreducible Hypergraph

Tree decompositions as Join trees

Tree decomposition as a way of clustering vertices to

obtain a join tree (acyclic hypergraph)

Implicitly defines an equivalent acyclic instance

g

q
a b

f
c

d

p h
l

n m o
k

e

i
j

g

q
a

b

f
c

d

p h
l

n m o
k

e

i
j

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce
ag

ef

ij

mn

Graph width 2 tree decomposition Acyclic instance

From graphs to acyclic hypergraphs

The “degree of cyclicity” is the treewidth
(maximum number of vertices in a cluster -1)

In this example, the treewidth is 2

That’s ok! We started with a cyclic graph…

g

q
a b

f
c

d

p h
l

n m o
k

e

i
j

g

q
a

b

f
c

d

p h
l

n m o
k

e

i
j

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce
ag

ef

ij

mn

Input Graph width 2 tree decomposition
Equivalent acyclic

instance

Not good for hypergraph-based problems

Here the input instance is acyclic (hence, easy)

However, its treewidth is 2!

(similar troubles for all graph representations)

g

q
a b

f
c

d

p h
l

n m o
k

e

i
j

g

q
a

b

f
c

d

p h
l

n m o
k

e

i
j

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce
ag

ef

ij

mn

Input: acyclic hypergraph Primal graph width-2 tree decomposition

A different notion of “width”

Exploit the fact that a single hyperedge covers many

vertices

Degree of cyclicity: maximum number of hyperedges

needed to cover every cluster

g

q
a

b

f
c

d

p h
l

n m o
k

e

i
j

ah

aq

hi

abc

hkl

hkp lo mo

bcd

ce
ag

ef

ij

mn

Input: acyclic instance One hyperedge covers each cluster: width 1

Generalizing acyclicity and treewidth

Tree decomposition as a way of clustering vertices to obtain a join

tree (acyclic hypergraph)

Implicitly defines an equivalent acyclic instance

Width of a decomposition: maximum number of hyperedges needed

to cover each bag of the tree decomposition

Generalized Hypertree Width (ghw): minimum width over all

possible decompositions

also known as (acyclic) cover width

Generalizes both acyclicity and treewidth:

Acyclic hypergraphs are precisely those having ghw = 1

The “covering power” of a hyperedge is always greater than the
covering power of a vertex (used in the treewidth)

[Gottlob, Leone, Scarcello, JCSS’03]

Tree Decomposition of a Hypergraph

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

H Tree decomp of G(H)

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

2 hyperedges suffice for each bag

Generalized Hypertree Decomposition

4

31 2

5

12

10

6

7

8 9

11

h11

h10

h12

h8

h5

h4

h7

h2 h3

h1

h6h9

18

h13

h15

19

15

16

14

13

h14

17

h8(1,11), h15(1,17,19)

h4(5,7), h5(6,8,9)

h2(_,4,5,6), h3(3,4,7,8) h10(12,_,19), h14(16,17,18)

h9(11,12,18), h15(_,17,19)h1(1,2,3), h2(1,4,5,6)

h9(_,12,18), h13(15,16,19)

h10(12,13,19), h12(14,15,18)h6(7,9,10)

Generalized hypetree decomposition of width 2

Notation:

• label decomposition vertices by hyperedges

• omit hyperedge elements not used for bag covering

(hidden elements are replaced by “_”)

),','(),',()',',,,(

)','()','()',',(),(

),(),',()',',',,(),,',,(

FXBqFXBpYXYXJj

ZYhZXgZFFfZYe

ZXdZCCcFCYYSbFCXXSaans







a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Generalized Hypertree Decompositions

Basic Conditions(1/3)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

 We group edges

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

Original (direct) definition

Basic Conditions(2/3)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

 Edges can partially
 be used

j(_,_,_,X’,Y’), f(F,F’,Z’)

Connectedness Condition(3/3)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Computational Question

Can we determine in polynomial time whether

ghw(H) < k for constant k ?

Computational Question

Can we determine in polynomial time whether

ghw(H) < k for constant k ?

Bad news: ghw(H) < 4? NP-complete

 [Gottlob, Miklós, and Schwentick, J.ACM‘09]

Hypertree Decomposition (HTD)

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Does not appear in

the subtrees rooted at v

J X Y

HTD = Generalized HTD +Special Condition

Each variable not used

at some vertex v

[Gottlob, Leone, Scarcello, PODS’99; JCSS’02]

Special Condition

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Each variable not used

at some vertex v

Does not appear in

the subtrees rooted at v

J X Y

Special Condition

a(S,X,X’,C,F), b(S,Y,Y’,C’,F’)

j(J,X,Y,X’,Y’)

j(_,X,Y,_,_), c(C,C’,Z) j(_,_,_,X’,Y’), f(F,F’,Z’)

d(X,Z) e(Y,Z) h(Y’,Z’) g(X’,Z’), f(F,_,Z’)

p(B,X’,F) q(B’,X’,F)

Thus, e.g., all available variables in the

root must be used

Positive Results on Hypertree Decompositions

For fixed k, deciding whether
hw(Q)  k is in polynomial time (LOGCFL)

Computing hypertree decompositions is
feasible in polynomial time (for fixed k).

 But: FP-intractable wrt k: W[2]-hard.

Relationship GHW vs HW

Observation:

ghw(H) = hw(H*)

where H* = H  {E´| E in edges(H): E´  E}

 ghw(H) <= 3hw(H)+1

Exponential!

 Approximation Theorem [Adler,Gottlob,Grohe ‚05] :

GHW and HW identify the same

set of classes having bounded width

Game Characterization: Robber and Marshals

V P R

S

X Y

Z T U

W

V

Marshals block hyperedges

V P R

S

X Y

Z T U

W

Game Characterization: Robber and Marshals

A robber and k marshals play the game on a

hypergraph

The marshals have to capture the robber

The robber tries to elude her capture, by running

arbitrarily fast on the vertices of the hypergraph

Robbers and Marshals: The Rules

Each marshal stays on an edge of the hypergraph
and controls all of its vertices at once

The robber can go from a vertex to another vertex
running along the edges, but she cannot pass
through vertices controlled by some marshal

The marshals win the game if they are able to
monotonically shrink the moving space of the robber,
and thus eventually capture her

Consequently, the robber wins if she can go back to
some vertex previously controlled by marshals

Step 0: the empty hypergraph

V P R

S

X Y

Z T U

W

Step 1: first move of the marshals

V P R

S

X Y

Z T U

W

Step 2a: shrinking the space

V P R

S

X Y

Z T U

W

Step 2a: shrinking the space

V P R

S

X Y

Z T U

W

Step 2a: shrinking the space

V P R

S

X Y

Z T U

W

The capture

V P R

S

X Y

Z T U

W

V

A different robber’s choice

V P R

S

X Y

Z T U

W

V

Step 2b: the capture

V P R

S

X Y

Z T U

W

V

V P R

S

X Y

Z T U
W

Strategies and Decompositions

),,(),,(),(

),(),,(),,,(),,,(

ZXWdVPRfYXg

ZYeZUTcPUYSbRTXSaans





V V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

First choice of the two marshals

V V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

A possible choice for the robber

V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

f(R,P,V)

V

The capture

V V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

f(R,P,V)

The second choice for the robber

V V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

f(R,P,V) g(X,Y), c(T,Z,U)

The marshals corner the robber

V V P R

S

X Y

Z T U
W

a(S,X,T,R), b(S,Y,U,P)

f(R,P,V) g(X,Y), c(T,Z,U)

g(X,Y), d(W,X,Z)

The capture

Let H be a hypergraph.

Theorem: H has hypertree width  k if and only
if k marshals have a winning strategy on H.

Corollary: H is acyclic if and only if one marshal
has a winning strategy on H.

Winning strategies on H correspond to hypertree
decompositions of H and vice versa.

R&M Game and Hypertree Width

[Gottlob, Leone, Scarcello, PODS’01, JCSS’03]

A Useful Tool: Alternating Turing Machines

Generalization of non-deterministic Turing machines

There are two special states: and

Acceptation: Computation tree

ALOGSPACE = PTIME

$ "

ATMs and LOGCFL

LOGCFL: class of problems/languages that are

logspace-reducible to a CFL

Admit efficient parallel algorithms

NPPACNCNCACSACLOGCFLNLAC 2110  

Characterization of LOGCFL [Ruzzo ‘80]:

LOGCFL = Class of all problems solvable with a logspace ATM

 with polynomial tree-size

LOGCFL

Coming back to Marshals…

S

R

C1 Ci

CR

...

A polynomial algorithm: ALOGSPACE

S

R

C1 Ci

CR

...

Marshals

Robber

S

R

C1 Ci

CR

...

Marshals

Robber

Monotonicity:  E edges(CR): (EUR)  US

Strict shrinking: (US)  CR 

• LOGSPACE checkable

• Polynomial proof-tree

 Once I have guessed R, how to guess the next marshal position S ?

Actually, LOGCFL

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Some hypergraph based problems

HOM: The homomorphism problem

CSP: Constraint satisfaction problem

BCQ: Boolean conjunctive query evaluation

Important problems in different areas.
All these problems are hypergraph based.

[e.g., Kolaitis & Vardi, JCSS’98]

The Homomorphism Problem

),...,,,(

),...,,,(

21

21

k

k

SSSV

RRRU





Given two relational structures

Decide whether there exists a homomorphism h from to

ii ShR

i

VUh







)(

,thatsuch

:

xx

x

Example: graph colorability

3

2 1

4

5

6

1 2

1

3 2

3

3 4

2 5

4 5

3 6

red green

red

red

red

 green

green

 green

blue

blue

blue

blue

Example: graph colorability

3

2 1

4

5

6

1 2

1

3 2

3

3 4

2 5

4 5

3 6

h

h

red green

red

red

red

 green

green

 green

blue

blue

blue

blue

homomorphism

Complexity: HOM is NP-complete

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

(well-known, independently proved in various contexts)

3

2 1

4

5

6

1 2

1

3 2

3

3 4

2 5

4 5

3 6

h

h

Graph 3-colourable iff HOM(A,B) yes-instance.

red green

red

red

red

 green

green

 green

blue

blue

blue

blue

homomorphism

Conjunctive Database Queries

DATABASE:

QUERY:

 Is there any teacher having a child enrolled in her course?

 ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S)

John Algebra 2003

Robert Logic 2003

Mary DB 2002

Lisa DB 2003

…… ….. …….

McLane Algebra March

Verdi Logic May

Lausen DB June

Rahm DB May

……… ….. …….

McLane Lisa

Verdi Robert

Rahm Mary

……… …..

Enrolled Teaches Parent

Conjunctive Database Queries

DATABASE:

QUERY:

 Is there any teacher having a child enrolled in her course?

 ans  Enrolled(S,C,R)  Teaches(P,C,A)  Parent(P,S)

John Algebra 2003

Robert Logic 2003

Mary DB 2002

Lisa DB 2003

…… ….. …….

McLane Algebra March

Verdi Logic May

Lausen DB June

Rahm DB May

……… ….. …….

McLane Lisa

Verdi Robert

Rahm Mary

……… …..

Enrolled Teaches Parent

homomorphism

CSPs as Homomorphism Problems

 Set of variables {X1,…,X26}

 Set of constraint scopes

r1h(X1, X2, X3, X4, X5)

r1v(X1, X7, X11, X16, X20)

P A R I S

P A N D A

L A U R A

A N I T A

r1h:

 Set of (finite)

constraint relations

L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

r1v:

CSPs as Homomorphism Problems

r1h(X1, X2, X3, X4, X5)

r1v(X1, X7, X11, X16, X20)

P A R I S

P A N D A

L A U R A

A N I T A

r1h:

L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

r1v:

CSPs as Homomorphism Problems

r1h(X1, X2, X3, X4, X5)

r1v(X1, X7, X11, X16, X20)

P A R I S

P A N D A

L A U R A

A N I T A

r1h:

L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

r1v:

homomorphism

Endomorphisms and cores

Sometimes the two structures coincide

Core: minimal substructure to which there is an

endomorphism

Cores are isomorphic to each other

Endomorphisms and cores

Sometimes the two structures coincide

Core: minimal substructure to which there is an

endomorphism

Cores are isomorphic to each other

Endomorphisms and cores

Sometimes the two structures coincide

Core: minimal substructure to which there is an

endomorphism

Cores are isomorphic to each other

Two isomorphic

cores

Cores and equivalent instances

Can be used to simplify problems

There is a homomorphism from A to B if and only if

there is a homomorphism from a/any core of A to B

Sometimes terrific simplifications:

This undirected grid is equivalent to a single edge.

That is, it is equivalent to an acyclic instance!

Structurally Restricted CSPs

Structurally Restricted CSPs

The hypergraph is

acyclic

Structurally Restricted CSPs

We have seen that Acyclicity is efficiently recognizable

We shall see that Acyclic CSPs can be efficiently solved

The hypergraph is

acyclic

Basic Question

Is there a homomorphism from to ?

 INPUT:

Basic Question (on Acyclic Instances)

Is there a homomorphism from to ?

 INPUT:

Feasible in polynomial time O(|| || || || log|| ||)

LOGCFL-complete

Basic Question (on Acyclic Instances)

Is there a homomorphism from to ?

 INPUT:

Feasible in polynomial time O(|| || || || log|| ||)

LOGCFL-complete

[Yannakakis, VLDB’81]

Basic Question (on Acyclic Instances)

Is there a homomorphism from to ?

 INPUT:

Feasible in polynomial time O(|| || || || log|| ||)

LOGCFL-complete

[Gottlob, Leone, Scarcello, J.ACM’00]

A Polynomial-time Algorithm

HOM: The homomorphism problem

CSP: Constraint satisfaction problem

BCQ: Boolean conjunctive query evaluation

Yannakakis’s Algorithm (Acyclic structures):

• Dynamic Programming over a Join Tree,

where each vertex contains the relation associated

with the corresponding hyperedge

• Therefore, if there are more constraints over the

same relation, it may occur (as a copy) at different

vertices

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

…

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

«Answering» Acyclic Instances

HOM: The homomorphism problem

CSP: Constraint satisfaction problem

BCQ: Boolean conjunctive query evaluation

Solutions can be computed by adding a top-down
phase to Yannakakis’ algorithm for acyclic instances

Yannakakis’s Algorithm (Acyclic structures):

Dynamic Programming over a Join Tree

d(Y,P)

r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

A solution: Y=3, P=7, Z=8, U=9, W=4, V=9

Computing the result (Acyclic)

The result size can be exponential (even in the acyclic case).

Even when the result is of polynomial size, it is in general hard
to compute.

In case of acyclic instances, the result can be computed in time
polynomial in the result size
(and with polynomial delay: first solution, if any, in
polynomial time, and each subsequent solution within
polynomial time from the previous one).

This will remain true for the subsequent generalizations of
acyclicity.

Add a top-down phase to Yannakakis’ algorithm for acyclic
instances, thus obtaining a full reducer, and join the partial
results (or perform a backtrack free visit)

Decomposition Methods

Decomposition Methods

Transform the hypergraph into an acyclic one:

 Organize its edges (or nodes) in clusters

Arrange the clusters as a tree,

by satisfying the connectedness condition

(Generalized) Hypertree Decompositions

Transform the hypergraph into an acyclic one:

 Organize its edges (or nodes) in clusters

Arrange the clusters as a tree,

by satisfying the connectedness condition

(Generalized) Hypertree Decompositions

Transform the hypergraph into an acyclic one:

 Organize its edges (or nodes) in clusters

Arrange the clusters as a tree,

by satisfying the connectedness condition

Each cluster can be seen as a subproblem

(Generalized) Hypertree Decompositions

Each cluster can be seen as a subproblem

Relations:

1V 20H 1H {1V,20H}= 1V 20H

Relations:

Toward an equivalent acyclic instance

• Each cluster can be seen as a subproblem

• Associate each subproblem with a fresh constraint

Toward an equivalent acyclic instance

• Each cluster can be seen as a subproblem

• Compute solutions for subproblems (exponential dependency on the width)

• Associate each subproblem with a fresh constraint

• Get an equivalent problem (all original constraints are there…)

The structure of the equivalent instance

A join tree of the

new instance

• Each cluster can be seen as a subproblem

• Compute solutions for subproblems (exponential dependency on the width)

• Associate each subproblem with a fresh constraint

• Get an equivalent problem (all original constraints are there…)

An acyclic equivalent instance

Solve the acyclic instance with any known technique

• Each cluster can be seen as a subproblem

• Compute solutions for subproblems (exponential dependency on the width)

• Associate each subproblem with a fresh constraint

• Get an equivalent problem (all original constraints are there…)

Tree Projection (idea)

Generalization where suproblems are arbitrary

(not necessarily clusters of k edges or vertices)

More information in the appendix

Structure Sandwich acyclic hypergraph

(Tree Projection)
Available

Subproblems

Hypertrees for Databases

Weighted HDs,

which exploit

quantitative data,

too.

Inside PostgreSQL

Some experiments

Large width example: Nasa problem

680 relations

579 variables

 ...

 cid_260(Vid_49, Vid_366, Vid_224),
cid_261(Vid_100, Vid_391, Vid_392),
cid_262(Vid_273, Vid_393, Vid_246),
cid_263(Vid_329, Vid_394, Vid_249),
cid_264(Vid_133, Vid_360, Vid_356),
cid_265(Vid_314, Vid_348, Vid_395),
cid_266(Vid_67, Vid_352, Vid_396),
cid_267(Vid_182, Vid_364, Vid_397),
cid_268(Vid_313, Vid_349, Vid_398),
cid_269(Vid_339, Vid_348, Vid_399),
cid_270(Vid_98, Vid_366, Vid_400),
cid_271(Vid_161, Vid_364, Vid_401),
cid_272(Vid_131, Vid_353, Vid_234),
cid_273(Vid_126, Vid_402, Vid_245),
cid_274(Vid_146, Vid_252, Vid_228),
cid_275(Vid_330, Vid_360, Vid_361),

...

Part of relations for the Nasa problem

Nasa problem: Hypertree

cid_198, cid_269, cid_374, cid_421, cid_563, cid_666

cid_216, cid_547

...

... ...

cid_216, cid_218, cid_375

cid_193, cid_216, cid_218

cid_265 cid_268

cid_160, cid_216, cid_218

cid_333 cid_296

Part of hypertree for the Nasa problem

Best known hypertree-width for the Nasa problem is 22

Further Structural Methods

Many proposals in the literature, besides (generalized) hypertree

width (see [Gottlob, Leone, Scarcello. Art. Int.’00])

For the binary case, the method based on tree decompositions (first

proposed as heuristics in [Dechter and Pearl. Art.Int.’88 and Art.Int.‘89])

is the most powerful [Grohe. J.ACM’07]

Let us recall some recent proposals for the general (non-binary)

case:

Fractional hypertree width [Grohe and Marx. SODA’06]

Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS’08]

Component Decompositions [Gottlob,Miklòs,and Schwentick. J.ACM’09]

Greedy tree projections [Greco and Scarcello, PODS’10, ArXiv’12]

Computing a width-k decomposition is in PTIME for all of them

(for any fixed k>0).

If we relax the above requirement, we can consider fixed-parameter

tractable methods. If the size of the hypergraph structure is the fixed

parameter, the most powerful is the Submodular width [Marx. STOC’10]

Heuristics for large width instances (CSPs)

1. Computing decompositions

• Heuristics to get variants of (hyper)tree decompositions

2. Evaluating instances

• Computing all solutions of the subproblems involved at
each node may be prohibitive

• Memory explosion

Solution: combine with other techniques. E.g., in CSPs,

use (hyper)tree decompositions for bounding the search
space [Otten and Dechter. UAI‘08]

use (hyper)tree decompositions for improving the performance of
consistency algorithms (hence, speeding-up propagations)
[Karakashian, Woodward, and Choueiry. AAAI’13]

…

Alternative constraint encodings

Some tractability results hold only on constraint

encodings where allowed tuples are listed as finite

relations

Alternative encodings make sense

For instance,

constraint satisfaction with succinctly specified relations
[Chen and Grohe. J.CSS’10]

see also [Cohen, Green, and Houghton. CP’09]

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Local (pairwise) consistency

For every relation/constraint:

each tuple matches some tuple in every other relation

Can be enforced in polynomial time:

take the join of all pairs of relations/constraints until a

fixpoint is reached, or some relation becomes empty

See [Beeri, Fagin, Maier, and Yannakakis. J.ACM’83] or
[Janssen, Jégou, Nougier, and Vilarem. IEEE WS Tools for AI’89],

d(Y,P) r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

Enforcing pairwise consistency

d(Y,P) r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

Enforcing pairwise consistency

d(Y,P) r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

Enforcing pairwise consistency

d(Y,P) r(Y,Z,U)

s(Z,U,W) t(V,Z)

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

s:

3 8

3 7

5 7

6 7

d:

9 8

9 3

9 5

t:

3 8 9

9 3 8

8 3 8

3 8 4

3 8 3

8 9 4

9 4 7

r:

Enforcing pairwise consistency

Further steps are useless, because the instance is now

locally consistent

On acyclic instances,

same result as Yannakakis’ algorithm on the join tree!

Easy on Acyclic Instances

Computing a join tree
(in linear time, and logspace-complete [GLS’98+ SL=L])
may be viewed as a clever way to enforce pairwise
consistency

Cost for the computation of the locally consistent
instance:

N.B. n is the (maximum) number of tuples in a relation
and may be very large (esp. in database applications)

O(m n2 log n) vs O(m n log n)

Global and pairwise Consistency

Yannakakis’ algorithm actually solves acyclic instances
because of their following crucial property:

Local (pairwise) consistency  Global consistency
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83]

Global consistency: Every tuple in each relation can be
extended to a full (global) solution

In particular, if all relations/constraints are pairwise
consistent, then the result is not empty

Not true in the general case:
ans:- a(X,Y)  b(Y,Z)  c(Z,X)

1 1

2 2

a

1 1

2 2

b

1 2

2 1

c

X

Y Z

Consistency in Databases and CSPs

Huge number of works in the database and constraint

satisfaction literature about different kinds (and levels) of

consistencies

(e.g., recall the seminal paper [Mackworth. Art. Int., 1977]

or [Beeri, Fagin, Maier, and Yannakakis. J.ACM’83],

[Dechter. Art. Int., 1992], and [Dechter and van Beek. TCS’97])

Most theoretical papers in the database community

Also practical papers in the constraint satisfaction

community:

Local consistencies are crucial for filtering domains and
constraints

Allow tremendous speed-up in constraint solvers

Sometimes allow backtrack-free computations

Global consistency in Databases and CSPs

Global consistency (GC): Every tuple in each relation can be
extended to a full (global) solution
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83]

For instances with m constraints, it is also known as

m-wise consistency [Gyssens. TODS’86]

relational (i;m)-consistency [Dechter and van Beek. TCS’97]

R(*,m)C [Karakashian, Woodward, Reeson, Choueiry and
Bessiere. AAAI’10]

…

Remark:

In the CSP literature, “global consistent network” sometimes
means “strongly n-consistent network”, which is a different
notion (see, e.g., [Constraint Processing, Dechter, 2003]).

On the desirability of Global Consistency

If an instance is globally consistent, we can immediately

read partial solutions from the constraint/database

relations

full solutions are often computed efficiently

can be exploited in heuristics by constraint solvers.

For a very recent example, see

[Karakashian, Woodward, and Choueiry. AAAI’13]: enforce
global consistency on groups of subproblems (tree-like
arranged) for bolstering propagations

When pairwise consistency entails GC

We have seen that it happens in acyclic instances…

Is it the case that this condition is also necessary?

What is the real power of local (pairwise) consistency?

i.e., relational arc-consistency (more precisely,

arc-consistency on the dual graph)

Also known as
- 2-wise consistency [Gyssens. TODS’86],
- R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and

Bessiere. AAAI’10]
- …

A

D

B

C F E

When pairwise consistency entails GC

We have seen that it happens in acyclic instances…

The classical result that this is also necessary
[Beeri, Fagin, Maier, and Yannakakis. J.ACM’83]

actually holds only if relations cannot be used in more than one
constraint/query atoms

In fact, it works even on some cyclic instances

We now have a precise structural characterization of the

instances where local consistency entails global

consistency

it applies to the binary case, too

it applies to the more general case where pairwise
consistency is enforced between each pair of arbitrary
defined subproblems (see appendix)!

[Greco and Scarcello. PODS’10]

The Power of Pairwise Consistency

Let us describe when local (pairwise) consistency (LC)

entails global consistency (GC), on the basis of the

constraint structure

That is, we describe the condition such that:

whenever it holds, LC entails GC for every possible CSP
instance (i.e., no matter on the constraint relations)

if it does not hold, there exists an instance where LC fails

For binary (or fixed arity) instances: if we are interested

only in the decision problem (is the CSP satisfiable?)

than this condition is the existence of an acyclic core
[Atserias, Bulatov, and Dalmau. ICALP’07]

The Power of Pairwise Consistency

Does pairwise consistency entail global consistency in

this case?

A

D

B

C

e(A,B)

e(A,C)

e(D,C)

e(D,B)

Constraints

The Power of Pairwise Consistency

A B

C D

A B

Does pairwise consistency entail global consistency in

this case?

Yes! No matter of the tuples in the constraint relation e

Every constraint is a core of the instance

e(A,B)

e(A,C)

e(D,C)

e(D,B)

Constraints

The Power of Pairwise Consistency

A B

C D

C D

Does pairwise consistency entail global consistency in

this case?

Yes! No matter of the tuples in the constraint relation e

Every constraint is a core of the instance

e(A,B)

e(A,C)

e(D,C)

e(D,B)

Constraints

tp-covering (acyclic version)

The constraint e(X,Y) is tp-covered in an acyclic

hypergraph if,

add a fresh constraint e’(X,Y) (where e’ is a fresh relational
symbol),

a core of the new instance has an acyclic hypergraph

Intuitively the “coloring” of e(X,Y) forces the core of the

new structure to deal with the ordered pair (X,Y)

Indeed, every core must contain e’(X,Y)

Instead, the usual notion of the core does not preserve

the meaning of variables

this is crucial for computing solutions, but not for the
decision problem

The Power of Pairwise Consistency

The constraint e(X,Y) is tp-covered in an acyclic

hypergraph if,

add a fresh constraint e’(X,Y) (where e’ is a fresh relational
symbol),

a core of the new instance has an acyclic hypergraph

Local (pairwise) consistency entails Global

consistency if and only if every constraint is

tp-covered in an acyclic hypergraph

tp-covering by Example

The constraint e(X,Y) is tp-covered in an acyclic

hypergraph if,

add a fresh constraint e’(X,Y) (where e’ is a fresh relational
symbol),

a core of the new instance has an acyclic hypergraph

A

D

B

C F A B

e(A,B) is tp-covered

Note that e(F,C) does

not occur in any core

tp-covering by Example

A

D

B

C F D C F

e(F,C) is tp-covered

The constraint e(X,Y) is tp-covered in an acyclic

hypergraph if,

add a fresh constraint e’(X,Y) (where e’ is a fresh relational
symbol),

a core of the new instance has an acyclic hypergraph

tp-covering by Example

Here pairwise consistency solves the satisfaction

problem

The structure of any core is an undirected acyclic graph

A

D

B

C F E D C F E

The power of Pairwise Consistency

A

D

B

C F E

Here pairwise consistency solves the satisfaction

problem

The structure of any core is an undirected acyclic graph

However, it does not entail global consistency

There is an instance that is pairwise consistent but

e(A,B) contains wrong tuples

e(A,B) is not tp-covered:

the core of the new structure

is cyclic

A generalization: Local k-consistency

Consider subproblems of k constraints

Local k-consistency: pairwise consistency over such (k-

constraints) subproblems

Equivalent to relational k-consistency [Dechter and van Beek.

TCS’97]

See the appendix for a further generalization to arbitrary

subproblems in the general framework of

tree projections

Local k-consistency entails Global consistency if

and only if every constraint is tp-covered in a

hypergraph having Generalized Hypertree width k

[Greco and Scarcello. PODS’10]

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Constraint Optimization Problems

Classically, CSP: Constraint Satisfaction Problem

However, sometimes a solution is

enough to “satisfy” (constraints),

but not enough to make (users) “happy”

Hence, several variants of the basic CSP framework:

E.g., fuzzy, probabilistic, weighted, lexicographic, penalty,
valued, semiring-based, …

Any solution Any best

(or at least good) solution

Classical CSPs

 Set of variables {X1,…,X26}

 Set of constraint scopes

r1h(X1, X2, X3, X4, X5)

r1v(X1, X7, X11, X16, X20)

P A R I S

P A N D A

L A U R A

A N I T A

r1h:

 Set of constraint relations

L I M B O

L I N G O

P E T R A

P A M P A

P E T E R

r1v:

Puzzles for Experts…

E.g., find the solution that minimizes the total number of vowels

occurring in the words

 The puzzle in general admits
more than one solution...

A Classification for Optimization Problems

 Each mapping variable-value has a cost.

 Then, find an assignment:
Satisfying all the constraints, and

Having the minimum total cost.

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

A Classification for Optimization Problems

 Each mapping variable-value has a cost.

 Then, find an assignment:
Satisfying all the constraints, and

Having the minimum total cost.

 Each tuple has a cost.

 Then, find an assignment:
Satisfying all the constraints, and

Having the minimum total cost.

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

A Classification for Optimization Problems

 Each mapping variable-value has a cost.

 Then, find an assignment:
Satisfying all the constraints, and

Having the minimum total cost.

 Each tuple has a cost.

 Then, find an assignment:
Satisfying all the constraints, and

Having the minimum total cost.

 Each constraint relation has a cost.

 Then, find an assignment:
Minimizing the cost of violated relations.

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

[Gottlob & Greco, EC‘07]

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

 With a bottom-up computation:

 Filter the tuples that do not match

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

 With a bottom-up computation:

 Filter the tuples that do not match

 Compute the cost of the best partial

solution, by looking at the children

cost(C/C1)=cost(D/D1)=0
cost(C/C2)=cost(D/D2)=1
cost(E/E1)=cost(F/F1)=0
cost(E/E2)=cost(F/F2)=1

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

 With a bottom-up computation:

 Filter the tuples that do not match

 Compute the cost of the best partial

solution, by looking at the children

cost(C/C1)=cost(D/D1)=0
cost(C/C2)=cost(D/D2)=1
cost(E/E1)=cost(F/F1)=0
cost(E/E2)=cost(F/F2)=1

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

 With a bottom-up computation:

 Filter the tuples that do not match

 Compute the cost of the best partial

solution, by looking at the children

cost(C/C1)=cost(D/D1)=0
cost(C/C2)=cost(D/D2)=1
cost(E/E1)=cost(F/F1)=0
cost(E/E2)=cost(F/F2)=1

cost(A/A1)+
cost(B/B1)+
cost(H/H1)+
cost(C/C1)+
cost(D/D1)+
cost(E/E1)+
cost(F/F1)

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis’81)

A B E F

A1 B1 E1 F1
A1 B1 E2 F2

A B C D

A1 B1 C1 D1
A1 B1 C2 D2

A B H

A1 B1 H1
A2 B1 H2

 With a bottom-up computation:

 Filter the tuples that do not match

 Compute the cost of the best partial

solution, by looking at the children

 Propagate the best partial solution

(resolving ties arbitrarily)

C D E F

C1 D1 E1 F1

CSOP: Tractability of Acyclic Instances

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

WCSP: Tractability of Acyclic Instances

[Gottlob, Greco, and Scarcello, ICALP‘09]

 The mapping:

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

1 2 3 4 5

P A R I S

P A N D A

L A U R A

A N I T A

6

PARIS

PANDA

LAURA

ANITA

 Is feasible in linear time

 Preserves the solutions

 Preserves acyclicity

WCSP: Tractability of Acyclic Instances

Maximize the number of words placed

in the puzzle

In-Tractability of MAX-CSP Instances

[Gottlob, Greco, and Scarcello, ICALP‘09]

Maximize the number of words placed

in the puzzle

Add a “big” constraint with no tuple

The puzzle is satisfiable  exactly one constraint is violated in the acyclic MAX-CSP

In-Tractability of MAX-CSP Instances

1. Consider the incidence graph

2. Compute a Tree Decomposition

Tractability of MAX-CSP Instances

ah

1,2,1H

Tractability of MAX-CSP Instances

ah

1 2 1H

P A PARIS

P A PANDA

L A LAURA

A N ANITA

A A unsat

A B unsat

... unsat

1,2,1H

1 2

P A

P A

L A

A N

Cost 1,
otherwise cost 0

Tractability of MAX-CSP Instances

ah

1,2,1H

Cost 1,
otherwise cost 0

 The mapping:

 Is feasible in time exponential in the width

 Preserves the solutions

 Leads to an Acyclic CSOP Instance

1 2 1H

P A PARIS

P A PANDA

L A LAURA

A N ANITA

A A unsat

A B unsat

... unsat

1 2

P A

P A

L A

A N

In-Tractability of MAX-CSP Instances

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Game Theory (in a Nutshell)

Which actions have to be performed?

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Game Theory (in a Nutshell)

Which actions have to be performed?

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Non-Cooperative Games(1/3)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

 John goes out Bob

 home

 John stays at home

1 1

0 0

out

 Bob goes out John

 home

 Bob stays at home

Payoff maximization problem

Non-Cooperative Games(2/3)

Nash equilibria

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

 John goes out Bob

 home

 John stays at home

1 1

0 0

out

 Bob goes out John

 home

 Bob stays at home

Payoff maximization problem

Non-Cooperative Games(2/3)

Nash equilibria

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

 John goes out Bob

 home

 John stays at home

1 1

0 0

out

 Bob goes out John

 home

 Bob stays at home

Payoff maximization problem

Non-Cooperative Games(2/3)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

 John goes out Bob

 home

 John stays at home

1 1

0 0

out

 Bob goes out John

 home

 Bob stays at home

Payoff maximization problem

Nash equilibria

Non-Cooperative Games(2/3)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2 0

0 1

out

 John goes out Bob

 home

 John stays at home

1 1

0 0

out

 Bob goes out John

 home

 Bob stays at home

Payoff maximization problem

Nash equilibria

Non-Cooperative Games(3/3)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Every game admits a mixed Nash equilibrium,

 where players chose their strategies according to probability distributions

 pure Nash equilibria

Payoff maximization problem

Nash equilibria

Succint Game Representations

Players:

Maria, Francesco

Choices:

movie, opera If 2 players, then size = 22

2 0

0 1

movie

 Francesco, movie Maria

 opera

 Francesco, opera

Succint Game Representations

Players:

Maria, Francesco, Paola

Choices:

movie, opera If 2 players, then size = 22

If 3 players, then size = 23

2 0 2 1

0 1 2 2

movie

 Fmovie and Pmovie Fmovie and Popera Fopera and Pmovie Fopera and Popera Maria

 opera

Succint Game Representations

Players:

Maria, Francesco, Paola, Roberto, and Giorgio

Choices:

movie, opera If 2 players, then size = 22

If 3 players, then size = 23

If N players, then size = 2N

…

2 …….. …….. ……..

0 …….. …….. ……..

movie

 Fmovie and Pmovie and Rmovie and Gmovie ……………………….. Maria

 opera

Succint Game Representations

Players:

Francesco, Paola, Roberto, Giorgio, and Maria

Choices:

movie, opera

24

23

23

23

22

Succinct Game Representations

Players:

Francesco, Paola, Roberto, Giorgio, and Maria

Choices:

movie, opera

Pure Equilibria

Players:

Francesco, Paola, Roberto, Giorgio, and Maria

Choices:

movie, opera

Pure Equilibria

Players:

Francesco, Paola, Roberto, Giorgio, and Maria

Choices:

movie, opera

Pure Equilibria

Players:

Francesco, Paola, Roberto, Giorgio, and Maria

Choices:

movie, opera

Nash Equilibrium

Existence

Constraint Satisfaction Problem

Solve CSP in polynomial time using known methods

Pure Nash Equilibria and Easy Games

[Gottlob, Greco, and Scarcello, JAIR’05]

303

Encoding Games in CSPs

304

Encoding Games in CSPs

305

Encoding Games in CSPs

G(FRIENDS)

Interaction Among Players: Friends

The interaction structure of a game G can be represented by:

the dependency graph G(G) according to Neigh(G)

a hypergraph H(G) with edges: H(p)=Neigh(p)  {p}

H(FRIENDS)

Interaction Among Players: Friends

H(FRIENDS)

This is the same structure as the one of the associated CSP

Interaction Among Players: Friends

This is the same structure as the one of the associated CSP

On (nearly)-Acyclic Instances,
Nash equilibria are easy

H(FRIENDS)

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Game Theory (in a Nutshell)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Which actions have to be performed?

Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

 Players get 9$, if they enforce connectivity

 Enforcing connectivity over an edge as a cost

3$

1$

2$ 2$

1$

Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

 Players get 9$, if they enforce connectivity

 Enforcing connectivity over an edge as a cost

2$

1$

1$ 3$

1$

Coalition {F,P,R,M} gets 9$, and pays 6$

worth v({F,P,R,M}) = 9$ - 6$

Cooperative Game Theory(1/2)

To perform some task Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

Utility distribution, if the task is performed

Jointly perform the task (with some cost)

2$

1$

1$ 3$

1$

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 4$, based on such worths?

Cooperative Game Theory(2/2)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2$

1$

1$ 3$

1$

fairness

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 4$, based on such worths?

Cooperative Game Theory(2/2)

 Each player:

 Has a goal to be achieved

 Has a set of possible actions

 Interacts with other players

 Is rational

2$

1$

1$ 3$

1$

value excess

0 0

… …

4 -4

0 3

4 0

G 4$

P,F,R,M 0$

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 4$, based on such worths?

fairness

Cooperative Game Theory(2/2)

2$

1$

1$ 3$

1$

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

How to distribute 4$, based on such worths?

Find the distribution(s) that:

 Each coalition has a non-positive excess

 Lexicographically minimize the excess vector

 Is immune against deviations of coalitions

 …

value excess

0 0

… …

4 -4

0 3

4 0

G 4$

P,F,R,M 0$

core

nucleolus

bargaing

The Model

 Players form coalitions

 Each coalition is associated with a worth

 A total worth has to be distributed

Outcomes belong to the imputation set

 Efficiency

 Individual Rationality

The Model

 Players form coalitions

 Each coalition is associated with a worth

 A total worth has to be distributed

Solution Concepts characterize outcomes in terms of
Fairness

Stability

The Model

 Players form coalitions

 Each coalition is associated with a worth

 A total worth has to be distributed

Solution Concepts characterize outcomes in terms of
Fairness

Stability

 ∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

0 ≥ 𝑒 𝑆, 𝑥 = 𝑣 𝑆 − ∑𝑖∈𝑆𝑥𝑖

Complexity of Solution Concepts

2$

1$

1$ 3$

1$

coalition worth

{F} 0

… 0

{G,P,R,M} 0

{F,P,R,M} 3

{G,F,P,R,M} 4

 Graph games:

 Succinct specification

 Core existence is coNP-complete

• Nucleolus

• Kernel

• Bargaining Set

• Stable Sets

Reductions for graph games

Ellipsoid method

+

NP separation oracles

Complexity of Solution Concepts

• Nucleolus

• Kernel

• Bargaining Set

• Stable Sets

 Succinct games:

 Nucleolus is PNP-complete

 Kernel is PNP-complete

 Bargaing set is coNPNP-complete

 Stable sets is still open

[Greco, Malizia, Palopoli, Scarcello, AIJ‘11]

Membership in the Core on Graph Games

Consider the sentence,

 over the graph where N is the set of nodes and E the set of edges :

𝑝𝑟𝑜𝑗 𝑋, 𝑌 ≡ 𝑋 ⊆ 𝑁 ∧

 ∀𝑐, 𝑐′ 𝑌 𝑐, 𝑐′ → 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧

 ∀𝑐, 𝑐′ 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 𝐸 𝑐, 𝑐′ → 𝑌 𝑐, 𝑐′

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

Membership in the Core on Graph Games

Consider the sentence,

 over the graph where N is the set of nodes and E the set of edges :

…it tells that Y is the set of edges covered by the nodes in X

𝑝𝑟𝑜𝑗 𝑋, 𝑌 ≡ 𝑋 ⊆ 𝑁 ∧

 ∀𝑐, 𝑐′ 𝑌 𝑐, 𝑐′ → 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧

 ∀𝑐, 𝑐′ 𝑋 𝑐 ∧ 𝑋 𝑐′ ∧ 𝐸 𝑐, 𝑐′ → 𝑌 𝑐, 𝑐′

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

Membership in the Core on Graph Games

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌 be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: 𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ; 𝑤𝑁(𝑐) = 𝑥𝑐

Value at the imputation Value of the edge (negated)

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

Membership in the Core on Graph Games

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌 be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: 𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ; 𝑤𝑁(𝑐) = 𝑥𝑐

Value at the imputation Value of the edge (negated)

Find the “minimum-weight” X and Y such that holds 𝑝𝑟𝑜𝑗 𝑋, 𝑌

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

Membership in the Core on Graph Games

Let 𝑝𝑟𝑜𝑗 𝑋, 𝑌 be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:

Value at the imputation Value of the edge (negated)

Find the “minimum-weight” X and Y such that holds 𝑝𝑟𝑜𝑗 𝑋, 𝑌

Max (value of edges – value of the imputation), i.e., 𝑚𝑎𝑥𝑆⊆𝑁𝑒(𝑆, 𝑥)

𝑤𝐸 𝑐, 𝑐′ = −𝑤 𝑐, 𝑐′ ; 𝑤𝑁(𝑐) = 𝑥𝑐

∀𝑆 ⊆ 𝑁, 𝑥 𝑆 ≥ 𝑣 𝑆 ;
 𝑥 𝑁 = 𝑣(𝑁)

The Core:

0 ≥ 𝑒 𝑆, 𝑥 = 𝑣 𝑆 − ∑𝑖∈𝑆𝑥𝑖

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

57

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

57

35

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

105

40

38

57

35

Winner Determination Problem
Determine the outcome that maximizes the sum of
accepted bid prices

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

105

40

38

57

35

180 Winner Determination Problem
Determine the outcome that maximizes the sum of
accepted bid prices

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

105

40

38

57

35

Other applications [Cramton, Shoham, and Steinberg, ‘06]
airport runway access
trucking
bus routes
industrial procurement

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

105

40

38

57

35

Example: Combinatorial Auctions

http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/574244/2/istockphoto_574244_tea_cup_01.jpg&imgrefurl=http://istockphoto.com/file_closeup/dining_room_items/cups/coffee_cups/574244_tea_cup_01.php?id=574244&h=380&w=380&sz=22&hl=en&start=8&um=1&tbnid=1VXrHQlkmjiuFM:&tbnh=123&tbnw=123&prev=/images?q=tea+cup&svnum=10&um=1&hl=en&sa=N
http://images.google.com/imgres?imgurl=http://www.amgmedia.com/freephotos/teapot.jpg&imgrefurl=http://www.amgmedia.com/freephotos/tabletop.html&h=1236&w=1500&sz=590&hl=de&start=1&tbnid=TRhjO1UX5OSc0M:&tbnh=123&tbnw=150&prev=/images?q=teapot&svnum=10&hl=de&lr=&sa=G
http://www.robertopiecollection.com/Application/images/cornish-blue-kitchen-ware/teapot-lg.jpg
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=
http://images.google.co.uk/imgres?imgurl=http://www.jollygoodtea.com/ProdImages/2-cup-rose.jpg&imgrefurl=http://www.jollygoodtea.com/DetailsTeaware/Det2cupHampton.htm&h=314&w=400&sz=10&hl=en&start=54&tbnid=difm7pyd85_8yM:&tbnh=94&tbnw=120&prev=/images?q=cup&start=40&ndsp=20&svnum=10&hl=en&lr=&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.hlchina.com/images/empire/PERSIMMON CUP.jpg&imgrefurl=http://www.hlchina.com/fiestaitems.htm&h=300&w=300&sz=11&hl=en&start=2&tbnid=RGwOnHJnatBRRM:&tbnh=111&tbnw=111&prev=/images?q=cup&svnum=10&hl=en&lr=

item hypergraph

Structural Properties

item hypergraph

Structural Properties

The Winner Determination Problem
remains NP-hard even in case of
acyclic hypergraphs

item hypergraph

Dual Hypergraph

item hypergraph

dual hypergraph

h1 h3 h5

0 0 0

1 0 0

0 1 0

0 0 1

I1

Dual Hypergraph

The Approach

[Gottlob & Greco, EC’07]

Outline of Part III

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Going Beyond…

Treewidth and Hypertree width are based on tree-like

aggregations of subproblems that are efficiently solvable

k variables (resp. k atoms)  ||I||k solutions (per subproblem)

Is there some more general property that makes the

number of solutions in any bag polynomial?

YES!
[Grohe & Marx ’06]

Fractional Hypertree Decompositions

[Grohe & Marx ‘06]

A query may be solved efficiently, if a fractional hypertree

decomposition is given

FHDs are approximable: If the the width is ≤ w, a decomposition of

width O(w3) may be computed in polynomial time [Marx ‘09]

More Beyond?

A new notion: the submodular width

Bounded submodular width is a necessary and sufficient

condition for fixed-parameter tractability

(under a technical complexity assumption)

[Marx ‘10]

Revisiting Decomposition Methods

Revisiting Decomposition Methods

Revisiting Decomposition Methods

Revisiting Decomposition Methods

Revisiting Decomposition Methods

Scopes Solutions

Work on subproblems

Revisiting Decomposition Methods

Generalized hypertree width:
take all views that can be
computed by joining at most k
atoms (k query views)

Scopes Solutions

Work on subproblems

Revisiting Decomposition Methods

Generalized hypertree width:
take all views that can be
computed by joining at most k
atoms (k query views)

Requirements on Subproblem Definition

1. Every constraint is associated with a base subproblem

2. Further subproblems can be defined

1. Every subproblem is not more restrictive than

the full problem

2. Every base subproblem is at least restrictive as

the corresponding constraint

Acyclicity in Decomposition Methods

 Working on subproblems is not
necessarily beneficial…

Acyclicity in Decomposition Methods

Can some and/or portions of them be selected such that:

• They still cover , and

• They can be arranged as a tree

 Working on subproblems is not
necessarily beneficial…

Tree Projections (by Example)

Structure of the CSP

Tree Projections (by Example)

Structure of the CSP Available Views

Tree Projections (by Example)

Structure of the CSP Tree Projection Available Views

Tree Projections (by Example)

Structure of the CSP Tree Projection Available Views

(Noticeable) Examples

Treewidth: take all views that can be computed with at most k
variables

Generalized hypertree width: take all views that can be computed by
joining at most k atoms (k query views)

Fractional hypertree width: take all views that can be computed
through subproblems having fractional cover at most k (or use Marx’s
O(k3) approximation to have polynomially many views)

Tree Decomposition

A General Framework, but

Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM‘09]

A General Framework, but

Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM‘09]

Hold on generalized hypertree width too.

A Source of Complexity: The Core

The core of a query Q is a query Q’ s.t.:

1. atoms(Q’)  atoms(Q)

2. There is a mapping h: var(Q)  var(Q’)

s.t., r(X)atoms(Q), r(h(X))atoms(Q’)

3. There is no query Q’’ satisfying 1 and 2 and such

that atoms(Q’’)  atoms(Q’)

A Source of Complexity: The Core

The core of a query Q is a query Q’ s.t.:

1. atoms(Q’)  atoms(Q)

2. There is a mapping h: var(Q)  var(Q’)

s.t., r(X)atoms(Q), r(h(X))atoms(Q’)

3. There is no query Q’’ satisfying 1 and 2 and such

that atoms(Q’’)  atoms(Q’)

3

2 1

4

5

6

Q

3

2 1
Q’ Example:

A Source of Complexity: The Core

3

2 1

4

5

6

Q

3

2 1
Q’ Example:

Cores are isomorphic The “Core”

Cores are equivalent to the query

Example

Example

Cores and Tree Projections

Structure of the CSP Tree Projection Available Views

Cores and Tree Projections

Structure of the CSP Tree Projection Available Views

Cores and Tree Projections

Structure of the CSP Tree Projection Available Views

core

Cores and Tree Projections

Structure of the CSP Tree Projection Available Views

core

CORE is NP-hard

Deciding whether Q’ is the core of Q is NP-hard

For instance, let 3COL be the class of all 3-

colourable graphs containing a triangle

Clearly, deciding whether G3COL is NP-hard

It is easy to see that G3COL K3 is the core of G

3

2 1

4

5

6

Q

3

2 1
Q’ Example:

Enforcing Local Consistency (Acyclic)

Enforcing Local Consistency (Acyclic)

Enforcing Local Consistency (Decomposition)

Enforcing Local Consistency

If there is a tree projection, then
enforcing local consistency over the views solves the decision problem

[Sagiv & Smueli, ‘93]

Enforcing Local Consistency

If there is a tree projection, then
enforcing local consistency over the views solves the decision problem

[Sagiv & Smueli, ‘93]

Does not need to be computed

Even Better

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,

- or solves the decision problem

Even Better

There is a polynomial-time algorithm that:

- either returns that there is no tree projection,

- or solves the decision problem

just check the

given solution

The Precise Power of Local Consistency

The followings are equivalent:

Local consistency solves the decision problem

There is a core of the query having a tree projection

[Greco & Scarcello, PODS‘10]

The Precise Power of Local Consistency

The followings are equivalent

Local consistency solves the decision problem

There is a core of the query having a tree projection

The Precise Power of Local Consistency

The followings are equivalent

Local consistency solves the decision problem

There is a core of the query having a tree projection

a core with TP

a core without TP

A Relevant Specialization (not immediate)

The followings are equivalent

Local consistency solves the decision problem

There is a core of the query having a tree projection

 Over all union of k atoms

 The CSP has generalized hypertreewidth k at most

[Greco & Scarcello, CP‘11]

Back on the Result

The followings are equivalent

Local consistency solves the decision problem

There is a core of the query having a tree projection

There is no polynomial time algorithm that

either solves the decision problem

or disproves the promise

Local consistency for computing solutions

The followings are equivalent

Local consistency entails «views containing variables O
are correct»

The set of variables O is tp-covered in a tree projection

Local consistency for computing solutions

The followings are equivalent

Local consistency entails «views containing variables O
are correct»

The set of variables O is tp-covered in a tree projection

Local and global consistency

The followings are equivalent

Local consistency entails global consistency

Every query atom/constraint is tp-covered in a tree projection

