

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Outline of Part III

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Outline of PART I

Introduction to Decomposition Methods

Free Decompositions

Applications of Tree Decompositions

Inherent Problem Complexity

- Problems decidable or undecidable.
- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

Inherent Problem Complexity

• Problems decidable or undecidable.

Time Complexity

- We concentrate on decidable problems here.
- A problem is as complex as the best possible algorithm which solves it.

Approaches for Solving Hard Problems

- NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
 - Randomized local search
 - Approximation
 - Identification of easy (=polynomial) subclasses.

Approaches for Solving Hard Problems

- ${\ensuremath{\bullet}}$ NP-complete problems often occur in practice.
- They must be solved by acceptable methods.
- Three approaches:
 - Randomized local search
 - Approximation
 - Identification of easy (=polynomial) subclasses.

Identification of Polynomial Subclasses

- High complexity often arises in "rare" worst case instances
- Worst case instances exhibit intricate structures
- In practice, many input instances have simple structures
- Therefore, our goal is to
 - Define polynomially solvable subclasses (possibly, the largest ones)
 - Prove that membership testing is tractable for these classes
 - Develop efficient algorithms for instances in these classes

Graph and Hypergraph Decompositions

- The evil in Computer science is hidden in (vicious) cycles.
- We need to get them under control!
- <u>Decompositions</u>: Tree-Decomposition, path decompositions, hypertree decompositions,...
 Exploit bounded degree of cyclicity.

Problems with a Graph Structure

• With graph-based problems, high complexity is mostly due to *cyclicity*.

Problems restricted to acyclic graphs are often trivially solvable (\rightarrow 3COL).

 Moreover, many graph problems are polynomially solvable if restricted to instances of low cyclicity.

Problems with a Graph Structure

 With graph-based problems, high complexity is mostly due to *cyclicity*.
 Problems restricted to *acyclic* graphs are often

trivially solvable (\rightarrow 3COL).

 Moreover, many graph problems are polynomially solvable if restricted to instances of *low cyclicity*.

How can we measure the degree of cyclicity?

How much "cyclicity" in this graph?

• Suggest a measure of distance from an acyclic graph

Feedback vertex set

Set of vertices whose deletion makes the graph acyclic

FVN: Properties

JCAI-13

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

- Is this really a good measure for the "degree of acyclicity" ?
- Pro: For fixed k we can check efficiently whether fwn(G) ≤ k
 - What does it mean *efficiently* when parameter k is fixed?

But...

 In many problems there exists some part of the input that are quite small in practical applications

- Natural parameters
- Many NP-hard problems become easy if we fix such parameters (or we assume they are below some fixed threshold)
- Positive examples: k-vertex cover, k-feedback vertex set, k-clique, ...
- Negative examples: k-coloring, k-CNF, …

W[1]-hard problems: k-clique

k-clique is hard w.r.t. fixed parameter complexity!

INPUT: A graph *G*=(*V*,*E*) **PARAMETER:** Natural number *k*

• Does G have a clique over k vertices?

FPT races				IJCAI-13
	Problem	f(k)	vertices in kernel	Reference/Comments
	Vertex Cover	1.2736*	2k	1
http://fpt.wikidot.com/	Connected Vertex Cover	2*	no k ^{o(t)}	26, randomized algorithm
	Multiway Cut	24	not known	21
	Directed Multiway Cut	2 ^{0(k²)}	no \$k^{0(1)}\$	34
	Almost-2-SAT (VC-PM)	4*	not known	21
	Multicut	20(1*)	not known	22
	Pathwidth One Deletion Set	4.65*	$O(k^{2})$	28
	Undirected Feedback Vertex Set	3.83*	441	2, deterministic algorithm
	Undirected Feedback Vertex Set	3,	443	23, randomized algorithm
	Subset Feedback Vertex Set	2 ^{O(k log k)}	not known	29
	Directed Feedback Vertex Set	4* M	not known	27
	Odd Cycle Transversal	3,	k ⁰⁽¹⁾	24, randomized kernel
	Edge Bipartization	2*	h ⁰⁽¹⁾	25, randomized kernel
	Planar DS	211.84√7	67k	3
	1-Sided Crossing Min	$2^{O(\sqrt{k} \log k)}$	$O(k^{2})$	4
	Max Leaf	3.72*	3.754	5
	Directed Max Leaf	3.72*	$O(k^{2})$	6
	Set Splitting	1.8213*	<i>k</i>	7
	Nonblocker	2.5154*	5k/3	8
	Edge Dominating Set	2.3147*	$2k^{1} + 2k$	10
	k-Path	44	no k ⁰⁽¹⁾	11a, deterministic algorithm
	k-Path	1.66*	no k ⁰⁽¹⁾	11b, randomized algorithm
	Convex Recolouring	44	$O(k^{2})$	12
	VC-max degree 3	1.1616*		13
	Clique Cover	214	2*	14
	Clique Partition	247	42	15
	Cluster Editing	1.624	2k	16, weighted and unweighted
	Steiner Tree	21	no k ^{o(t)}	17
	3-Hitting Set	2 (7)12	$O(k^2)$	18

FPT Tractability of Feedback Vertex Set

INPUT: A graph G=(V,E)

PARAMETER: Natural number k

- Does G has a feedback vertex set of k vertices?
- Naïve algorithm: O(n^{k+1}) Not good!
- Solvable in O((2k+1)^kn²) [Downey and Fellows '92]
- A practical randomized algorithm runs in time: $O(4^k kn)$ [Becker et al 2000]

Feedback Vertex Set: troubles

Feedback vertex number

Min. number of vertices I need to eliminate to make the graph acyclic

Peedback <u>edge</u> number → same problem.

Any idea for further techniques?

Yes! A tree of clusters (subproblems)

- Well known graph properties:
 - A biconnected component is a maximal subgraph that remains connected after deleting any single vertex
 - In any graph, its biconnected components form a tree

Maximum size of biconnected components

Pro: Actually bcw(G) can be computed in linear time

Drawbacks of BiComp

Maximum size of biconnected components

Pro: Actually bcw(G) can be computed in linear time

Con: Adding a single edge may have tremendous effects to bcw(G)

Drawbacks of BiComp

Maximum size of biconnected components

Con: Adding a single edge may have tremendous effects to bcw(G)

Can we do better?

Hint:

why should clusters of vertices be of this limited kind?

- Use arbitrary (possibly small) sets of vertices!
 - How can we arrange them in some tree-shape?
 - What is the key property of tree-like structures (in most applications)?

Can we do better?

Hint:

• why should clusters of vertices be of this limited kind?

- Use arbitrary (possibly small) sets of vertices!
 - How can we arrange them in some tree-shape?
 - What is the key property of tree-like structures, in applications?

Outline of PART I

IJCAI-13

Introduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Tree decomposition of width 2 of G • Every edge realized in some bag • Connectedness condition

Connectedness condition for h

mno

Playing the Robber & Cops Game

JCAI-13

Playing the Robber & Cops Game

Properties of Treewidth

- tw(acyclic graph)=1
- tw(cycle) = 2
- $tw(G+v) \le tw(G)+1$
- $tw(G+e) \le tw(G)+1$
- tw(K_n) = n-1
- tw is fixed-parameter tractable (parameter: treewidth)

Outline of PART I

JCAI-13

ntroduction to Decomposition Methods

Tree Decompositions

Applications of Tree Decompositions

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

- a) Genuine tractability: O(nf(w))-bounds
- b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability

- a) Prove tractability for both large & small width
- b) Prove all yes-instances to have small width

Use of Tree Decompositions

1. Prove Tractability of bounded-width instances

- a) Genuine tractability: O(n^{f(w)})-bounds constraint satisfaction = conjunctive database queries
- b) Fixed-Parameter tractability: f(w)*O(n^k) multicut problem

2. Tool for proving general tractability

- a) Prove tractability for both large & small width finding even cycles in graphs – ESO over graphs
- b) Prove all yes-instances to have small width the Partner Unit Problem

Use of Tree Decompositions

- JCAI-13
- 1. Prove Tractability of bounded-width instances a) Genuine tractability: O(n^{f(w)})-bounds
 - b) Fixed-Parameter tractability: f(w)*O(nk)

2. Tool for proving general tractability

- a) Prove tractability for both large & small width
- b) Prove all yes-instances to have small width

Use of Tree Decompositions

Prove Tractability of bounded-width instances

 a) Genuine tractability: O(n^{f(w)})-bounds

b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractability

- a) Prove tractability for both large & small width
- b) Prove all yes-instances to have small width

An important Metatheorem

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

An important Metatheorem

JCAI-13

Courcelle's Theorem [1987]

Let P be a problem on graphs that can be formulated in **Monadic Second Order Logic** (MSO).

Then P can be solved in liner time on graphs of bounded treewidth

- Theorem. (Fagin): Every NP-property over graphs can be represented by an existential formula of Second Order Logic. NP=ESO
- Monadic SO (MSO): Subclass of SO, only set variables, but no relation variables of higher arity.
 3-colorability ∈ MSO.

Three Colorability in MSO

JCAI-13

 $(\exists R, G, B)$ [

 $\begin{array}{l} (\forall x \left(R(x) \lor G(x) \lor B(x) \right)) \\ \land \quad (\forall x (R(x) \Rightarrow (\neg G(x) \land \neg B(x)))) \end{array}$

- ∧ ... ∧ ...
- $\land \quad (\forall x, y(E(x,y) \Rightarrow (R(x) \Rightarrow (G(x) \lor B(y)))))$
- $\land \quad (\forall x, y(E(x, y) \Rightarrow (G(x) \Rightarrow (R(x) \lor B(y)))))$
- $\land \quad (\forall x, y(E(x, y) \Rightarrow (B(x) \Rightarrow (R(x) \lor G(y)))))]$

Master Theorems for Treewidth

JJCAI-13

Courcelle's Theorem: Problems expressible in MSO₂ are solvable in linear time on structures of bounded treewidth

...and in LOGSPACE [Elberfeld, Jacoby, Tantau]

Example – Graph Coloring

 $\exists P \ \forall x \forall y : (E(x,y) \rightarrow (P(x) \neq P(y))$

Master Theorems for Treewidth

Arnborg, Lagergren, Seese '91:

Optimization version of Courcelle's Theorem:

Finding an optimal set P such that $G \models \Phi(P)$ is FP-linear over inputs G of bounded treewidth.

Example:

Given a graph G=(V,E)

Find a *smallest* P such that $\forall x \forall y : (E(x,y) \rightarrow (P(x) \neq P(y))$

Unrestricted Vertex Multicut Problems

Results

[Guo et al. 06] UVMC FPT if |S|, |C| and tree-width fixed

[G. & Tien Lee] UVMC FPT if overall structure has bounded tw. using master theorem by Arnborg, Lagergren and Seese.

Unrestricted Vertex Multicut Problems

PROOF

Definition 8. On structures $\mathcal{A} = (V, E, H)$ as above, let *connects*(S, x, y) be defined as follows: $S(x) \land S(y) \land \forall P\Big((P(x) \land \neg P(y)) \rightarrow (\exists v \exists w (S(v) \land S(w) \land P(v) \land \neg P(w) \land E(v, w)))\Big).$

 $uvmc(X) \hspace{.1in} \equiv \hspace{.1in} \forall x \hspace{.05in} \forall y \left(\hspace{.05in} H(x,y) \rightarrow \forall S \big(\operatorname{connects}(S,x,y) \rightarrow \exists v(X(v) \wedge S(v)) \big) \right)$

Minimize X in uvmc

X intersects each set that connects \boldsymbol{x} and \boldsymbol{y}

Use of Tree Decompositions

JCAI-13

- 1. Prove Tractability of bounded-width instances
 - a) Genuine tractability: $O(n^{f(w)})\mbox{-bounds}$
 - b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractability

a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

The Generalized Even Cycle Problem

INPUT: A graph G, a constant k.

QUESTION: Decide whether G has a cycle of length 0 (mod k)

In the past century, this was an open problem for a long time.

Carsten Thomassen in 1988 proved it polynomial for *all graphs* using treewidth as a tool.

Long Term Research Programme

Determine the complexity of SO fragments over finite structures.

Finite structures: words (strings), graphs, relational databases

Known: SO=PH; ESO = NP

Which SO-fragments can be evaluated in polynomial time?

Which SO-fragments express regular languages on strings ?

More modestly: What about prefix classes?

A "simple" Facility Placement Problem

If a printer is not present in a room, then one should be available in an adjacent room.

No room with a printer should be a meeting room.

Every room is at most 5 rooms distant from a meeting room.

Simplest Form

Given an office layout as a graph, decide whether the facility placement constraints are satisfiable.

∃ P ∃ M ... ∀x ∃ y ((P(x) ∨ E(x,y) & P(y)) & ...

[...]

Observe that this is an E₁*ae formula

This leads to the questions:

Are formulas of the type E_1^* are or even E^* are polynomially verifiable over graphs?

What about other fragments of ESO or SO?

Simplest Form

This motivates the following question:

Can formulas in classes such as $E_2(ae_2)$ or even ESO(e*ae*) be evaluated in polynomial time over strings ?

More generally:

Which ESO-fragments admit polynomial-time model checking over strings ?

A similar, even more important question can be asked for graphs and general finite structures:

Which ESO-fragments admit polynomial-time model checking over graphs or arbitrary finite structures?

The Saturation Problem

Relating E_1^*ae to the Saturation Problem

 $\exists P_1, P_2 \forall x \exists y$ $[(E(x, y) \land P_1(x) \land P_2(x) \land P_1(y) \land \neg P_2(y)) \lor$ $(E(x, y) \land P_1(x) \land \neg P_2(x) \land \neg P_1(y) \land \neg P_2(y)) \lor$ $(\neg E(x, y) \land \neg P_1(x) \land \neg P_2(x) \land P_1(y) \land P_2(y))]$

Use of Tree Decompositions

JCAI-13

- 1. Prove Tractability of bounded-width instances
 - a) Genuine tractability: $O(n^{f(w)})\text{-bounds}$
 - b) Fixed-Parameter tractability: f(w)*O(n^k)

2. Tool for proving general tractability

a) Prove tractability for both large & small width

b) Prove all yes-instances to have small width

Partner Units Scenario

- Track People in Buildings
- Sensors on Doors, Rooms Grouped into Zones

Partner Units Solution

 Assigning Sensors and Zones to Control Units

 Respect Adjacency Constraints

The Partner-Unit Problem

Bipartite graph G=(V,E) V=Va∪Vb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

The Partner-Unit Problem

Replace connections by connections to units

ai 🔵 🗌 🔵 bj

The Partner-Unit Problem

Bipartite graph G=(V,E) V=Va \cup Vb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

Replace connections by connections to units ai ______ bj

OR

The Partner-Unit Problem

Bipartite graph G=(V,E) V=Va \cup Vb; Va= {a1,...,ar}, Vb={b1,...,bs}, E: edges btw. Va and Vb

The Partner-Unit Problem

•Each ai or bi is connected to exactly 1 unit. •Each unit connected to:

- at most 2 other units,

- at most 2 elements from Va,

- at most 2 elements from Vb, •If ai connected to bj in G,

then dist(ai,bi)≤3 in G*

G

A No-Instance of Partner-Unit

Assume one node a is connected to 7 nodes b1,...,b7 in G. Then instance G is unsolvable.

Thus, no vertex can have more than 6 neighbours in G.

The PU Problem(s)

- PU DECISION PROBLEM (PUDP): Given G, is there a G* satisfying the constraints? (Number of units irrelevant.)
- PU SEARCH PROBLEM (PUSP) Given G, find a suitable G* whenever possible.
- PU OPTIMIZATION PROBLEM (PUOP) Given G, find a suitable G* with minimum number of units |U| (whenever possible).

PUDP

IJCAI-13

ASSUMPTION: G is connected.

- Note: This assumption can be made wlog, because the PUDP can be otherwise decomposed into a conjunction of independent PUDPs, one for each component.
- **Lemma 1:** If G is connected and solvable, then there exists a solution G^* in which the unit-graph UG=G^{*}[U] is connected.

Topology of the Unit-Graph

Lemma 2: If G is connected and solvable, then there exists a solution G* whose unit graph is a cycle.

Note: We still don't know |U|, but we may just try all cycles of length max(|Va|,|Vb|)/2 to length |Va|+|Vb|. There are only linearly many! (Guessable in logspace)

JCAI-13

Theorem:

Assume G is solvable through solution G^* with $\,|\mathsf{U}|\!=\!\mathsf{n}$ and having

unit function f . Then:

- (1) $pw(G) \le 11$
- (2) $tw(G) \le 5$
- (3) There is a path decomposition T=(W,A) that can be locally check to witnss PUDP solution G*

Example

JJCAI-13

Note: We cannot do better, thus the bound 11 is actually tight!

Note: Other examples show, we cannot do better, thus the bound 5 is actually tight

Example for lower bound 5

... and this G is actually solvable:

Theorem : PUDP is in polynomial time and is solvable by dynamic programming techniques.

Partner Units Results

Name	Sensors	Zones	Edges	Cost	CSP	DECPUP
dbl-20	28	20	56	14	*	0.01
dbl-40	58	40	116	29	*	0.05
dbl-60	88	60	176	44	*	0.08
dblv-30	28	30	92	15	*	65.49
dblv-60	58	60	192	30	*	•
triple-30	40	30	78	20	*	0.50
triple-34	40	34	93	1	*	*
grid-90	50	68	97	34	*	0.03

Case N>2

For constant N totally open. Could well be NP-hard. In fact, Unit Graph does not need to have bounded treewidth!

If N is not-constant, then NP-complete:

For Siemens, it seems that very small values of N are relevant.

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Outline of PART II

JCAI-13

Beyond Tree Decompositions

Applications to Databases and CSPs

itructural and Consistency Properties

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

Beyond Treewidth

- Treewidth is currently the most successful measure of graph cyclicity. It subsumes most other methods.
- However, there are "simple" graphs that are heavily cyclic. For example, a clique.

There are also problems whose structure is better described by **hypergraphs** rather than by graphs...

Database queries

- Database schema (scopes):
 - Enrolled (Pers#, Course, Reg-Date)
 - Teaches (Pers#, Course, Assigned)
 - Parent (Pers1, Pers2)
- Is there any teacher having a child enrolled in her course?
 - ans ← Enrolled(S,C,R) ∧ Teaches(P,C,A) ∧ Parent(P,S)

-										
	a	ta	h	20	Δ	n	11		rı	20
	u	ιu	N	uJ	6	м	u	5		60

f	\langle	Enrolled	\supset		Teaches	>	1	Par	rent
	John Anita Sara Luisa	Algebra Logic DB DB	2003 2003 2002 2003	Nicola Georg Frank Mimmo	Algebra Logic DB DB	March May June May		Mimmo Georg Frank	Luisa Anita Sara
l							J		

QUERY: Is there any teacher having a child enrolled in her course?

ans ← Enrolled(S,C,R) ∧ Teaches(P,C,A) ∧ Parent(P,S)

Queries and Hypergraphs

JCAI-13

Ans \leftarrow Enrolled(S,C,R) \land Teaches(P,C,A) \land Parent(P,S)

Queries and Hypergraphs (2)

- Database schema (scopes):
 - Enrolled (Pers#, Course, Reg-Date)
 - Teaches (Pers#, Course, Assigned)
 - Parent (Pers1, Pers2)

C'

S

• Is there any teacher whose child attend some course?

Ans ← Enrolled(S,C',R) ∧ Teaches(P,C,A) ∧ Parent(P,S)

A more intricate query

 $ans \leftarrow a(S, X, X', C, F) \land b(S, Y, Y', C', F') \land c(C, C', Z) \land d(X, Z) \land$ $e(Y,Z) \wedge f(F,F',Z') \wedge g(X',Z') \wedge h(Y',Z') \wedge$ $j(J,X,Y,X',Y') \wedge p(B,X',F) \wedge q(B',X',F)$

Populating datawarehouses

Problems on Electric Circuits

A problem from Nasa

Part of relations for the Nasa problem

680 constraints
 530 constraints

579 variables

Configuration problems (Renault example)

- Renault Megane configuration [Amilhastre, Fargier, Marquis AIJ, 2002] Used in CSP competitions and as a benchmark problem
- Variables encode type of engine, country, options like air cooling, etc.
- 99 variables with domains ranging from 2 to 43.
- 858 constraints, which can be compressed to 113 constraints.
- The maximum arity is 10 (hyperedge cardinality/size of constraint scopes)
- Represented as extensive relations, the 113 constraints comprise about 200 000 tuples
- 2.84 × 10¹² solutions.

Hypergraphs vs Graphs

An acyclic hypergraph

Its cyclic primal graph

JCAI-13

Deciding Hypergraph Acyclicity

Can be done in linear time by <u>GYO-Reduction</u>

[Yu and Özsoyoğlu, IEEE Compsac'79; see also Graham, Tech Rep'79]

Input: Hypergraph H

 (1) Eliminate vertices that are contained in at most one hyperedge (2) Eliminate hyperedges that are smaller at contained in attent hyperedge
--

Proof: Easy by considering leaves of join tree

1

Tree decompositions as Join trees

- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance

Acyclic instance

From graphs to acyclic hypergraphs

- The "degree of cyclicity" is the treewidth (maximum number of vertices in a cluster -1)
- In this example, the treewidth is 2
- That's ok! We started with a cyclic graph...

Equivalent acyclic instance

Not good for hypergraph-based problems

However, its treewidth is 2! (similar troubles for all graph representations)

Input: acyclic hypergraph

Primal graph

width-2 tree decomposition

A different notion of "width"

- Exploit the fact that a single hyperedge *covers* many vertices
- Degree of cyclicity: maximum number of hyperedges needed to cover every cluster

Input: acyclic instance

One hyperedge covers each cluster: width 1

Generalizing acyclicity and treewidth

- Tree decomposition as a way of clustering vertices to obtain a join tree (acyclic hypergraph)
- Implicitly defines an equivalent acyclic instance
- Width of a decomposition: maximum number of hyperedges needed to cover each bag of the tree decomposition
- Generalized Hypertree Width (ghw): minimum width over all possible decompositions [Gottlob, Leone, Scarcello, JCSS'03]
 also known as (acyclic) cover width
- Generalizes both acyclicity and treewidth:
 - Acyclic hypergraphs are precisely those having ghw = 1
 - The "covering power" of a hyperedge is always greater than the covering power of a vertex (used in the treewidth)

Tree Decomposition of a Hypergraph

Tree decomp of G(H)

1,11,17,19	
1,2,3,4,5,6	11,12,17,18,19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,17,19	
1,2,3,4,5,6	11,12,17,18,19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,17,19	
$ \frown $	\geq
1,2,3,4,5,6	11,12,17,18,19
245670	10.15.17.10.10
3,4,5,6,7,8	12,16,17,18,19
56789	12 15 16 18 19
5,0,7,0,7	12,15,10,10,17
7,9,10	12,13,14,15,18,19
·	

2 hyperedges suffice for each bag

1,11,17,19	
1,2,3,4,5,6	11,12,17,18,19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,17,19		
1,2,3,4,5,6	11,12,17,18,19	
3,4,5,6,7,8	12,16,17,18,19	
5,6,7,8,9	12,15,16,18,19	
7,9,10	12,13,14,15,18,19	

2 hyperedges suffice for each bag

1,11,17,19	
1,2,3,4,5,6	11,12,17,18,19
3.4.5.6.7.8	12.16.17.18.19
56789	12 15 16 18 19
5,0,7,0,5	12,13,16,13,17
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,1	17,19
1,2,3,4,5,6	11,12,17,18,19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,17,19	
123456	11.12.17.18.19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

2 hyperedges suffice for each bag

1,11,17,19	
1,2,3,4,5,6	11,12,17,18,19
3,4,5,6,7,8	12,16,17,18,19
5,6,7,8,9	12,15,16,18,19
7,9,10	12,13,14,15,18,19

Generalized Hypertree Decomposition

- Notation: label decomposition vertices by hyperedges omit hyperedge elements not used for bag covering (hidden elements are replaced by "_")

h8(1,11), h15(1,17,19)	
h1(123) h2(1456)	h9(11 12 18) h15(17 19)
h2(_,4,5,6), h3(3,4,7,8)	h10(12,_,19), h14(16,17,18)
h4(5,7), h5(6,8,9)	h9(_,12,18), h13(15,16,19)
h6(7,9,10)	h10(12,13,19), h12(14,15,18)

Generalized hypetree decomposition of width 2

Computational Question

 Can we determine in polynomial time whether ghw(H) < k for constant k ?

Computational Question

• Can we determine in polynomial time whether ghw(H) < k for constant k ?

Bad news: <u>ghw(H) < 4?</u> NP-complete

[Gottlob, Miklós, and Schwentick, J.ACM'09]

Hypertree Decomposition (HTD)

HTD = Generalized HTD +Special Condition [Gottlob, Leone, Scarcello, PODS'99; JCSS'02] Each variable not used $\mathbf{j}(\mathbf{J},\mathbf{X},\mathbf{Y},\mathbf{X}^{\prime},\mathbf{Y}^{\prime})$ at some vertex v a(S,X,X',C,F), b(S,Y,Y',C',F')**j**(_,X,Y,_,_), **c**(C,C',Z) j(XY, X', Y'), f(F,F',Z')d(X,Z)e(Y,Z) $g(X^{\prime},\!Z^{\prime}),\,f\!(F\!,_,\!Z^{\prime})$ h(Y',Z')Does not appear in $\mathbf{p}(\mathbf{B},\mathbf{X}',\mathbf{F})$ q(B',X',F) the subtrees rooted at v

Special Condition

Positive Results on Hypertree Decompositions

- For fixed k, deciding whether hw(Q) ≤ k is in polynomial time (LOGCFL)
- Computing hypertree decompositions is feasible in polynomial time (for fixed k).

But: FP-intractable wrt k: W[2]-hard.

Marshals block hyperedges

Game Characterization: Robber and Marshals

- A robber and *k* marshals play the game on a hypergraph
- The marshals have to capture the robber
- The robber tries to elude her capture, by running arbitrarily fast on the vertices of the hypergraph

Robbers and Marshals: The Rules

IJCAI-1

- Each marshal stays on an edge of the hypergraph and controls all of its vertices at once
- The robber can go from a vertex to another vertex running along the edges, but she cannot pass through vertices controlled by some marshal
- The marshals win the game if they are able to monotonically shrink the moving space of the robber, and thus eventually capture her
- Consequently, the robber wins if she can go back to some vertex previously controlled by marshals

R&M Game and Hypertree Width

JCAI-13

Let *H* be a hypergraph.

- **Theorem**: *H* has hypertree width $\leq k$ if and only if *k* marshals have a winning strategy on *H*.
- **Corollary**: *H* is acyclic if and only if one marshal has a winning strategy on *H*.
- Winning strategies on H correspond to hypertree decompositions of H and vice versa.

[Gottlob, Leone, Scarcello, PODS'01, JCSS'03]

A Useful Tool: Alternating Turing Machines

- Generalization of non-deterministic Turing machines
- There are two special states: \$ and "
- Acceptation: Computation tree
- ALOGSPACE = PTIME

Co

ATMs and LOGCFL

- LOGCFL: class of problems/languages that are logspace-reducible to a CFL
- Admit efficient parallel algorithms

 $AC_0 \subseteq NL \subseteq {\color{black}{\mathsf{LOGCFL}}} = SAC_1 \subseteq AC_1 \subseteq NC_2 \subseteq \cdots \subseteq NC = AC \subseteq P \subseteq NP$

Characterization of LOGCFL [Ruzzo '80]: LOGCFL = Class of all problems solvable with a logspace ATM with polynomial tree-size

Coming back to Marshals...

A polynomial algorithm: ALOGSPACE

Outline of PART II

IJCAI-13

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Some hypergraph based problems

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Important problems in different areas. All these problems are hypergraph based.

[e.g., Kolaitis & Vardi, JCSS'98]

The Homomorphism Problem

- Given two relational structures
 - $\mathbb{A} = (U, R_1, R_2, \dots, R_k)$ $\mathbb{B} = (V, S_1, S_2, \dots, S_k)$
- ullet Decide whether there exists a *homomorphism* **h** from \mathbb{A} to \mathbb{B}

$$h: U \longrightarrow V$$

such that $\forall \mathbf{x}, \forall i$
 $\mathbf{x} \in R_i \implies h(\mathbf{x}) \in S_i$

Example: graph colorability

Complexity: HOM is NP-complete

(well-known, independently proved in various contexts)

Membership: Obvious, guess h.

Hardness: Transformation from 3COL.

Graph 3-colourable iff HOM(A,B) yes-instance.

Conjunctive Database Queries

DATABASE:

QUERY:

Is there any teacher having a child enrolled in her course?

ans \leftarrow Enrolled(S,C,R) \land Teaches(P,C,A) \land Parent(P,S)

Conjunctive Database Queries

DATABASE:

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Endomorphisms and cores

- Sometimes the two structures coincide
- Core: minimal substructure to which there is an endomorphism
- Cores are isomorphic to each other

Cores and equivalent instances

- Can be used to simplify problems
- There is a homomorphism from **A** to **B** if and only if there is a homomorphism from a/any core of **A** to **B**
- Sometimes terrific simplifications:

• This undirected grid is equivalent to a single edge. That is, it is equivalent to an acyclic instance!

Structurally Restricted CSPs

Basic Question	
INPUT: CSP instance (\mathbb{A}, \mathbb{B})	
${\ensuremath{ \bullet }}$ Is there a homomorphism from $\mathbb A$ to $\mathbb B$?	
Basic Question (on Acyclic Instances)	
INPUT: CSP instance (\mathbb{A}, \mathbb{B})	
${\ensuremath{ \bullet }}$ Is there a homomorphism from ${\mathbb A}$ to ${\mathbb B}$?	
● Feasible in polynomial time O(A _B log B)	
LOGCFL-complete	
Basic Question (on Acyclic Instances)	
INPUT: CSP instance (\mathbb{A}, \mathbb{B})	
${\ensuremath{ \bullet }}$ Is there a homomorphism from ${\mathbb A}$ to ${\mathbb B}$?	
Feasible in polynomial time O(A B log B) LOGCFL-complete	

[Yannakakis, VLDB'81]

[Gottlob, Leone, Scarcello, J.ACM'00]

A Polynomial-time Algorithm

HOM: The homomorphism problem

BCQ: Boolean conjunctive query evaluation

CSP: Constraint satisfaction problem

Yannakakis's Algorithm (Acyclic structures):

 Dynamic Programming over a Join Tree, where each vertex contains the relation associated with the corresponding hyperedge

 Therefore, if there are more constraints over the same relation, it may occur (as a copy) at different vertices

«Answering» Acyclic Instances

- HOM: The homomorphism problem
- BCQ: Boolean conjunctive query evaluation
- CSP: Constraint satisfaction problem

Yannakakis's Algorithm (Acyclic structures): Dynamic Programming over a Join Tree

Solutions can be computed by adding a top-down phase to Yannakakis' algorithm for acyclic instances

Computing the result (Acyclic)

- The result size can be exponential (even in the acyclic case).
- Even when the result is of polynomial size, it is in general hard to compute.
- In case of acyclic instances, the result can be computed in time polynomial in the result size (and with polynomial delay: first solution, if any, in polynomial time, and each subsequent solution within polynomial time from the previous one).
- This will remain true for the subsequent generalizations of acyclicity.
- Add a top-down phase to Yannakakis' algorithm for acyclic instances, thus obtaining a full reducer, and join the partial results (or perform a backtrack free visit)

Decomposition Methods

Decomposition Methods

2

12

7

11

16

Transform the hypergraph into an acyclic one: • Organize its edges (or nodes) in clusters

 Arrange the clusters as a tree, by satisfying the connectedness condition

73

(Generalized) Hypertree Decompositions			
(1.2.3.4.5.20.21.22.23.24.25.26) (IH.3HH) (1.7.11.16.20.22) [IV.20H] (1.1.21.3.17.22) (IH.IJV) (8.9.10.6.15.19.26) (ML6V) Each cluster can be seen as a subj	1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 20 21 22 23 24 25 problem $\mathcal{H}_{\mathbb{A}}$	6 10 15 19 26	
Relations:	Relations: {1V,20H}= 1V 🖂 20H		

The structure of the equivalent instance

{1,2,3,4,5,20,21,22,	23,24,25,26}	A join tree of the new instance
{1,7,11,16,20,22}	{5,8,14,18,24,26}	

- Each cluster can be seen as a **subproblem** Compute solutions for subproblems (exponential dependency on the width)
 Associate each subproblem with a fresh constraint
 Get an equivalent problem (all original constraints are there...)

- · Each cluster can be seen as a subproblem
- Compute solutions for subproblems (exponential dependency on the width)
- Associate each subproblem with a fresh constraint
 Get an equivalent problem (all original constraints are there...)

Tree Projection (idea)

Generalization where suproblems are arbitrary (not necessarily clusters of k edges or vertices)

More information in the appendix

Hypertrees for Databases

JCAI-13

Inside PostgreSQL

Large width example: Nasa problem

Part of relations for the Nasa problem

680 relations579 variables

Nasa problem: Hypertree

Further Structural Methods

- Many proposals in the literature, besides (generalized) hypertree width (see [Gottlob, Leone, Scarcello. Art. Int.'00])
- For the binary case, the method based on tree decompositions (first proposed as heuristics in [Dechter and Pearl. Art.Int.'88 and Art.Int.'89]) is the most powerful [Grohe. J.ACM'07]
- Let us recall some recent proposals for the general (non-binary) case:
 - Fractional hypertree width [Grohe and Marx. SODA'06]
 - Spread-cut decompositions [Cohen, Jeavons, and Gyssens. J.CSS'08]
 - Component Decompositions [Gottlob,Miklòs,and Schwentick. J.ACM'09]
 - Greedy tree projections [Greco and Scarcello, PODS'10, ArXiv'12]
- Computing a width-k decomposition is in PTIME for all of them (for any fixed k>0).
- If we relax the above requirement, we can consider fixed-parameter tractable methods. If the size of the hypergraph structure is the fixed parameter, the most powerful is the Submodular width [Marx. STOC'10]

Heuristics for large width instances (CSPs)

1. Computing decompositions

Heuristics to get variants of (hyper)tree decompositions

- 2. Evaluating instances
 - Computing all solutions of the subproblems involved at each node may be prohibitive
 - Memory explosion
- Solution: combine with other techniques. E.g., in CSPs,
 - use (hyper)tree decompositions for bounding the search space [Otten and Dechter. UAI'08]
 - use (hyper)tree decompositions for improving the performance of consistency algorithms (hence, speeding-up propagations) [Karakashian, Woodward, and Choueiry. AAAI'13]
 - ...

Alternative constraint encodings

- Some tractability results hold only on constraint encodings where allowed tuples are listed as finite relations
- Alternative encodings make sense
- For instance,
 - constraint satisfaction with succinctly specified relations [Chen and Grohe. J.CSS'10]
 - see also [Cohen, Green, and Houghton. CP'09]

Outline of PART II

Beyond Tree Decompositions

Applications to Databases and CSPs

Structural and Consistency Properties

Local (pairwise) consistency

- For every relation/constraint: each tuple matches some tuple in every other relation
- Can be enforced in polynomial time: take the join of all pairs of relations/constraints until a fixpoint is reached, or some relation becomes empty
 - See [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] or [Janssen, Jégou, Nougier, and Vilarem. IEEE WS Tools for Al'89],

Enforcing pairwise consistency

Enforcing pairwise consistency

Enforcing pairwise consistency

- Further steps are useless, because the instance is now locally consistent
- On acyclic instances, same result as Yannakakis' algorithm on the join tree!

Easy on Acyclic Instances

• Computing a join tree (in linear time, and logspace-complete [GLS'98+ SL=L]) may be viewed as a clever way to enforce pairwise consistency

- Cost for the computation of the locally consistent instance: $O(m n^2 \log n)$ vs $O(m n \log n)$
- N.B. n is the (maximum) number of tuples in a relation and may be very large (esp. in database applications)

Global and pairwise Consistency

- Yannakakis' algorithm actually solves acyclic instances because of their following crucial property:
 - Local (pairwise) consistency → Global consistency [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
 - Global consistency: Every tuple in each relation can be extended to a full (global) solution
 - In particular, if all relations/constraints are pairwise consistent, then the result is not empty
- Not true in the general case: $ans:-a(X,Y) \land b(Y,Z) \land c(Z,X)$

Consistency in Databases and CSPs

 Huge number of works in the database and constraint satisfaction literature about different kinds (and levels) of consistencies
 (e.g., recall the seminal paper [Mackworth. Art. Int., 1977]

or [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83], [Dechter. Art. Int., 1992], and [Dechter and van Beek. TCS'97])

- Most theoretical papers in the database community
- Also practical papers in the constraint satisfaction community:
 - Local consistencies are crucial for filtering domains and constraints
 - Allow tremendous speed-up in constraint solvers
 - Sometimes allow backtrack-free computations

Global consistency in Databases and CSPs

- Global consistency (GC): Every tuple in each relation can be extended to a full (global) solution [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83]
- For instances with m constraints, it is also known as
 - m-wise consistency [Gyssens. TODS'86]
 - relational (i;m)-consistency [Dechter and van Beek. TCS'97]
 - R(*,m)C [Karakashian, Woodward, Reeson, Choueiry and
 - Bessiere. AAAI'10]
 - ...
- Remark:
 - In the CSP literature, "global consistent network" sometimes means "strongly n-consistent network", which is a different notion (see, e.g., [Constraint Processing, Dechter, 2003]).

On the desirability of Global Consistency

- If an instance is globally consistent, we can immediately read partial solutions from the constraint/database relations
- full solutions are often computed efficiently
- can be exploited in heuristics by constraint solvers. For a very recent example, see
 - [Karakashian, Woodward, and Choueiry. AAAI'13]: enforce global consistency on groups of subproblems (tree-like arranged) for bolstering propagations

When pairwise consistency entails GC

- We have seen that it happens in acyclic instances...
- Is it the case that this condition is also necessary?
- What is the real power of local (pairwise) consistency? i.e., relational arc-consistency (more precisely, arc-consistency on the dual graph) Also known as
 - 2-wise consistency [Gyssens. TODS'86],
 - R(*,2)C [Karakashian, Woodward, Reeson, Choueiry and Bessiere. AAAI'10]

When pairwise consistency entails GC

- The classical result that this is also necessary [Beeri, Fagin, Maier, and Yannakakis. J.ACM'83] actually holds only if relations cannot be used in more than one constraint/query atoms
- In fact, it works even on some cyclic instances
- We now have a precise structural characterization of the instances where local consistency entails global consistency
 - it applies to the binary case, too
 - it applies to the more general case where pairwise consistency is enforced between each pair of arbitrary defined subproblems (see appendix)!

[Greco and Scarcello. PODS'10]

The Power of Pairwise Consistency

- Let us describe when local (pairwise) consistency (LC) entails global consistency (GC), on the basis of the constraint structure
- That is, we describe the condition such that:
 whenever it holds, LC entails GC for every possible CSP instance (i.e., no matter on the constraint relations)
 - ${\ensuremath{\, \bullet }}$ if it does not hold, there exists an instance where LC fails
- For binary (or fixed arity) instances: if we are interested only in the decision problem (is the CSP satisfiable?) than this condition is the existence of an acyclic core [Atserias, Bulatov, and Dalmau. ICALP'07]

The Power of Pairwise Consistency

 Does pairwise consistency entail global consistency in this case?

The Power of Pairwise Consistency

- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation e
- Every constraint is a core of the instance

The Power of Pairwise Consistency

- Does pairwise consistency entail global consistency in this case?
- Yes! No matter of the tuples in the constraint relation e
- Every constraint is a core of the instance

tp-covering (acyclic version)

- The constraint e(X,Y) is **tp-covered** in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph
- Intuitively the "coloring" of e(X, Y) forces the core of the new structure to deal with the ordered pair (X, Y)
 Indeed, every core must contain e'(X, Y)
- Instead, the usual notion of the core does not preserve the meaning of variables
 - this is crucial for computing solutions, but not for the decision problem

The Power of Pairwise Consistency

- The constraint e(X,Y) is **tp-covered** in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

Local (pairwise) consistency entails Global consistency if and only if every constraint is tp-covered in an acyclic hypergraph

tp-covering by Example

- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

tp-covering by Example

- The constraint e(X,Y) is tp-covered in an acyclic hypergraph if,
 - add a fresh constraint e'(X,Y) (where e' is a fresh relational symbol),
 - a core of the new instance has an acyclic hypergraph

tp-covering by Example

- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph

The power of Pairwise Consistency

- Here pairwise consistency solves the satisfaction problem
- The structure of any core is an undirected acyclic graph
- However, it does not entail global consistency
- There is an instance that is pairwise consistent but e(A,B) contains wrong tuples

A generalization: Local k-consistency

- Consider subproblems of k constraints
- Local k-consistency: pairwise consistency over such (kconstraints) subproblems
 Equivalent to relational k-consistency [Dechter and van Beek. TCS'97]

Local k-consistency entails Global consistency if and only if every constraint is tp-covered in a hypergraph having Generalized Hypertree width k

[Greco and Scarcello. PODS'10]

 See the appendix for a further generalization to arbitrary subproblems in the general framework of tree projections

Outline of Part III

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Outline of Part III

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Game

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Constraint Optimization Problems

- Classically, CSP: Constraint <u>Satisfaction</u> Problem
- However, sometimes a solution is enough to "satisfy" (constraints), but not enough to make (users) "happy"

Hence, several variants of the basic CSP framework:
 E.g., fuzzy, probabilistic, weighted, lexicographic, penalty, valued, semiring-based, ...

A Classification for Optimization Problems

Each mapping variable-value has a cost. Then, find an assignment: Satisfying all the constraints, and Having the minimum total cost.

A Classification for Optimization Problems

12345	
PARLS	
PANDA	b
LAURA	
ANITA	

CSOP: Tractability of Acyclic Instances

• Adapt the dynamic programming approach in (Yannakakis'81)

[Gottlob & Greco, EC'07]

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

• Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

• Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

Adapt the dynamic programming approach in (Yannakakis'81)

CSOP: Tractability of Acyclic Instances

• Adapt the dynamic programming approach in (Yannakakis'81)

[Gottlob, Greco, and Scarcello, ICALP'09]

In-Tractability of MAX-CSP Instances

[Gottlob, Greco, and Scarcello, ICALP'09]

The puzzle is satisfiable \leftrightarrow exactly one constraint is violated in the **acyclic** MAX-CSP

Leads to an Acyclic CSOP Instance

Non-Cooperative Games _(1/3)					
	Payoff maxim	ization proble	em 🗸	Each play Has Has Inter Is rat	er: goal to be achieved a set of possible actions acts with other players ional
Bob	John goes out	John stays	at <i>home</i>	_	
out	2	0			
home	0	1			
		John	Bob g	joes out	Bob stays at home
		out		1	1
		home		0	0

Non-Cooperative Games_(2/3)

Non-Cooperative Games_(2/3)

Non-Cooperative Games(2/3)

Non-Cooperative Games_(3/3)

Succint Game Representations

ふ
IJCAI-13

9 F 9 (Players: Maria, Francesco Choices: movie, opera		If 2 players, then size = 2^2
Maria	Francesco, movie	Francesco, opera	
movie	2	0	

1

Succint Game Representations

opera

Players:
Maria, Francesco, Paola

0

Choices: movie, opera

If 2 players, then size = 22 If 3 players, then size = 23

Maria	F _{movie} and P _{movie}	F _{movie} and P _{opera}	F _{opera} and P _{movie}	F _{opera} and P _{opera}
movie	2	0	2	1
opera	0	1	2	2

Succint Game Representations

Players:
 Maria, Francesco, Paola, Roberto, and Giorgio

Choices: movie, opera

If 2 players, then size = 2² If 3 players, then size = 23

If N players, then size = 2^N

Maria F_{movie} and P_{movie} and R_{movie} and G_{movie}

movie	2	 	
opera	0	 	

Succint Game Representations

- Players:
 Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:

Pure Equilibria

Players:

• Francesco, Paola, Roberto, Giorgio, and Maria

- Choices:
 - movie, opera

-	$P_m R_m$. P	$_mR_o$	$P_o R_m$	P_oR	0	G	P_n	$_{n}F_{m}$	$P_m F_a$	P_oF_m	P_oF_o
m	2	2		1	0		m		2	0	0	1
0	0	2		1	2		0		2	0	0	1
						_						
		R	F_m	F_o	P	F_m	F_o		M	R_m	R_o	
		m	0	1	m	2	0		m	1	0	
		0	2	0	0	0	1		0	0	2	

Pure Equilibria

- Players:
 - Francesco, Paola, Roberto, Giorgio, and Maria
- Choices:
 - movie, opera

F	P_mR_m	$P_m R_o$	$P_o R_m$	$P_o R_o$	G	$P_m F_m$	$P_m F_o$	P_oF_m	P_oF_o
m	2	2	1	0	m	(2)	0	0	1
0	0	2	1	2	0	2	0	0	1
	-	$R \parallel F_m$	F_o	$P \parallel F_n$	_n F _o	М	R _m	R_o	
		<i>m</i> 0	1	m 2	0	m	1	0	
		0 2	0	<i>o</i> 0	1	0	0	2	

Pure Equilibria

m

F	$P_m R_m$	$P_m R_o$	$P_o R_m$	$P_o R_o$	G	$P_m F_m$	$P_m F_o$	P_oF_m	P_oF_o
m	2	2	1	0	m	(2)	0	0	1
0	0	2	1	2	0	2	0	0	1
			F		F	M	P	D	

[Gottlob, Greco, and Scarcello, JAIR'05]

Interaction Among Players: Friends

- The interaction structure of a game G can be represented by:
 the dependency graph G(G) according to Neigh(G)
 - \bullet a hypergraph H(G) with edges: H(p)=Neigh(p) \cup {p}

JCAI-13 Cooperative Game Theory(2/2) 1. Find the distribution(s) that: Each coalition has a non-positive core Lexicographically minimize the ercess vonucleol. Is immune against devise bargaing stions ---------- $\substack{ \mathsf{G} \leftarrow 4\$ \\ \mathsf{P},\mathsf{F},\mathsf{R},\mathsf{M} \leftarrow 0\$ }$ value excess coalition worth {F} 0 0 0 0 $\{G,P,R,M\}$ 4 -4 0 {F,P,R,M} 3 0 3

 $\{G,F,P,R,M\}$

How to distribute 4\$, based on such worths?

4 0

4

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \mathbf{N}, \mathbf{v} \rangle, \, \mathbf{v} : \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$$

• Outcomes belong to the imputation set X(G)

$$x \in X(\mathcal{G}) \quad \begin{cases} \bullet \text{ Efficiency} \\ x(N) = v(N) \\ \bullet \text{ Individual Rationality} \\ x_i \ge v(\{i\}), \quad \forall i \in N \end{cases}$$

The Model

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

$$\mathcal{G} = \langle \mathbf{N}, \mathbf{v}
angle, \, \mathbf{v} : \mathbf{2}^{\mathbf{N}} \mapsto \mathbb{R}$$

- Solution Concepts characterize outcomes in terms of
 - Fairness
 - Stability

The Model

Stability

- Players form coalitions
- Each coalition is associated with a worth
- A total worth has to be distributed

 $\mathcal{G} = \langle N, v \rangle, v : \mathbf{2}^N \mapsto \mathbb{R}$

- Solution Concepts characterize outcomes in terms of
 Fairness
 - $0 \ge e(S, x) = v(S) \sum_{i \in S} x_i$ \uparrow The Core: $\forall S \subseteq N, x(S) \ge v(S);$ x(N) = v(N)

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \ge v(S);$ x(N) = v(N)

Consider the sentence, over the graph where N is the set of nodes and E the set of edges :

 $\begin{array}{l} proj(X,Y) \equiv X \subseteq N \land \\ \forall c,c' \big(\, Y(c,c') \to X(c) \land x(c') \big) \land \\ \forall c,c' \big(\, X(c) \land X(c') \land E(c,c') \to Y(c,c') \big) \end{array}$

Membership in the Core on Graph Games

The Core: $\forall S \subseteq N, x(S) \ge v(S);$ x(N) = v(N)

Consider the sentence,

over the graph where N is the set of nodes and E the set of edges :

 $proj(X, Y) \equiv X \subseteq N \land$ $\forall c, c' (Y(c, c') \to X(c) \land X(c')) \land$ $\cdots = f(Y(c) \land X(c') \land E$ $\forall c, c' (X(c) \land X(c') \land E(c, c') \to Y(c, c'))$

... it tells that Y is the set of edges covered by the nodes in X

The Core: $\forall S \subseteq N, x(S) \ge v(S);$ x(N) = v(N)

Let proj(X, Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights: $w_E(c,c') = -w(c,c'); \quad w_N(c) = x_c$ 1 1 Value of the edge (negated) Value at the imputation

Membership in the Core on Graph Games

The Core:
$$\forall S \subseteq N, x(S) \ge v(S);$$

 $x(N) = v(N)$

Let proj(X, Y) be the formula stating that Y is the set of edges covered by the nodes in X

Define the following weights:
$$w_{\mathcal{E}}(c,c') = -w(c,c'); \quad w_N(c) = x_c$$

 \bigwedge
Value of the edge (negated) Value at the imputation

Find the "minimum-weight" X and Y such that proj(X, Y) holds

Outline of Part III

Applications to Optimization Problems

Application: Nash Equilibria

Application: Coalitional Games

Application: Combinatorial Auctions

Appendix: Beyond Hypertree Width

<u>Winner Determination Problem</u> • Determine the outcome that maximizes the sum of accepted bid prices

Structural Properties

Dual Hypergraph

JCAI-13

Outline of Part III

Applications to Optimization ProblemsApplication: Nash EquilibriaApplication: Coalitional GamesApplication: Combinatorial Auctions

Appendix: Beyond Hypertree Width

Going Beyond...

- Treewidth and Hypertree width are based on tree-like aggregations of subproblems that are efficiently solvable
- Image: k variables (resp. k atoms) → ||I||^k solutions (per subproblem)
- Is there some more general property that makes the number of solutions in any bag polynomial?
- YES! [Grohe & Marx '06]

Fractional Hypertree Decompositions

In a fractional hypertree decomposition of width $w,\, {\rm bags}$ of vertices are arranged in a tree structure such that

- 1. For every edge $e, \, {\rm there} \, {\rm is} \, {\rm a} \, {\rm bag} \, {\rm containing} \, {\rm the} \, {\rm vertices} \, {\rm of} \, e.$
- 2. For every vertex v, the bags containing v form a connected subtree.
- 3. A fractional edge cover of weight \boldsymbol{w} is given for each bag.

Fractional hypertree width: width of the best decomposition.

Note: fractional hypertree width \leq generalized hypertree width

[Grohe & Marx '06]

- A query may be solved efficiently, if a fractional hypertree decomposition is given
- FHDs are approximable: If the the width is ≤ w, a decomposition of width O(w³) may be computed in polynomial time [Marx '09]

More Beyond?

- A new notion: the submodular width
- Bounded submodular width is a necessary and sufficient condition for fixed-parameter tractability (under a technical complexity assumption)

[Marx '10]

on Methods	ecompositior	evisiting Dec
2000) 1 2 3 4 5 6 7 6 9 10 11 12 (3) 14 15 14 15	(5,6,14,18,24,26) [5V,20H]	{1.2.3.4.5.20.21.22.23.24 {1.7.11.16.20.22} [IV,200]
$\begin{array}{c} \text{IS} & 1 \\ \hline \begin{array}{c} 1 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array} \\ \hline \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	(8,9,10,6,15,19,26) (884,6V) ster can be seen as a sul	(11.12,13,17,22) (IIIR,13V)
subproblem $\mathcal{H}_{\mathbb{A}}$	ster can be seen as a su	Each cluste

{1V,20H}= 1V 🖂 20H

--- 🛌

1V 20H 1H

Revisiting Decomposition Methods

{1,7,11,16,20,22} { 1V,20H }	{5.8.14,18.24,26} {5,8.14,18,24,26}
{11,12,13,17,22} [IIH,I3V]	(8.9.10.6.15.19.26) (8H,67
Relations:	

{1.2.3.4.5.20.21.22.23.24.	25.26} (1H,20H)
{1.7.11.16.20.22} {IV,20H}	{5.8.14.18.24.26} {5V,20H}
(11,12,13,17,22) (11H,13V)	(8,9,10,6,15,19,26) (8H,6V)
Relations:	
{1V,20H}= 1V	1 20H

Tree Projections (by Example) \mathbb{A} : $r_1(A,B,C)$ $r_2(A,F)$ $r_3(C,D)$ $r_4(D,E,F)$ $r_5(E,F,G)$ $r_6(G,H,I)$ $r_7(I,J)$ $r_8(J,K)$

Structure of the CSP

Available Views

Tree Projections (by Example)

- variables Generalized hypertree width: take all views that can be computed by joining at most k atoms (k query views)
- ٩
- Fractional hypertree width: take all views that can be computed through subproblems having fractional cover at most k (or use Marx's $O(k^3)$ approximation to have polynomially many views)

Tree Decomposition

A General Framework, but

Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM'09]

A General Framework, but

• Decide the existence of a tree projection is NP-hard

[Gottlob, Miklos, and Schwentick, JACM'09]

A Source of Complexity: The Core

The core of a query Q is a query Q' s.t.:

- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$
- There is no query Q" satisfying 1 and 2 and such that atoms(Q") ⊂ atoms(Q')

A Source of Complexity: The Core

The core of a query Q is a query Q' s.t.:

- 1. $atoms(Q') \subseteq atoms(Q)$
- 2. There is a mapping $h: var(Q) \rightarrow var(Q')$ s.t., $\forall r(X) \in atoms(Q), r(h(X)) \in atoms(Q')$
- 3. There is no query Q" satisfying 1 and 2 and such that $atoms(Q^{\prime\prime}) \subset atoms(Q^{\prime})$

Q Q' Example: -2 (6)

Example

 $\begin{array}{rl} Q &: & r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ & r(D,B) \wedge r(A,E) \wedge r(F,E), \end{array}$

Example

CORE is NP-hard

- Deciding whether Q' is the core of Q is NP-hard
- For instance, let 3COL be the class of all 3colourable graphs containing a triangle
- Iclearly, deciding whether G∈3COL is NP-hard
- It is easy to see that $G \!\in\! \! 3COL \Leftrightarrow K_3$ is the core of G

Enforcing Local Consistency (Acyclic)

- The followings are equivalent:
 - Local consistency solves the decision problemThere is *a core* of the query having a tree projection

[Greco & Scarcello, PODS'10]

The Precise Power of Local Consistency

• The followings are equivalent

- Local consistency solves the decision problem
- There is a core of the query having a tree projection

 $\begin{array}{ll} Q &: & r(A,B) \wedge r(B,C) \wedge r(A,C) \wedge r(D,C) \wedge \\ & r(D,B) \wedge r(A,E) \wedge r(F,E), \end{array}$

The Precise Power of Local Consistency

The followings are equivalent
 Local consistency solves the decision problem

• There is a core of the query having a tree projection

[Greco & Scarcello, CP'11]

Back on the Result

The followings are equivalent

Local consistency solves the decision problem
There is a core of the query having a tree projection

«Promise» tractability

- There is no polynomial time algorithm that
 - either solves the decision problemor disproves the promise

The followings are equivalent
 Local consistency entails «views containing variables O are correct»
 The set of variables O is tp-covered in a tree projection

Thank you!