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Abstract. Using the formalism and the results described in [3] and [1], we
discuss the approach to termodynamic equilibrium for discrete spin systems in a
framework that generalizes the one originally proposed by R. Glauber. We prove
a lower bound estimate for their exponetial rate of convergence to equilibrium in
the high temperature regime which is better than those previously known (the
case of d = 1 is amenable to a more detailed analysis, see [10]). We also give
application to some (not necessarily ferromagnetic) Ising-spin models. These
results provide an upper bound for the critical temperature of the d-dimensional
Ising model.
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1. Introduction

In this paper we give a first example of the application of the algebraic tech-
niques borrowed from equilibrium quantum statistical mechanics to interacting
particle systems. We refer the reader to [3] for a general discussion and reference
to other results obtained by a similar approach, and to [1] for some application
to (equilibrium) classical statistical mechanics.

The formal equivalence of stochastic Ising models and quantum spin systems
has earlier been employed by T. Matsui [5–7] who worked directly with infinite
systems. Here we are interested in getting estimates for finite volume systems
which are (eventually) uniform in its size.

We consider Ising spins on a Zd lattice undergoing a Glauber dynamics. The
aim is to derive in a straightforward way a bound for the spectral gap of the
generator in the high temperature regime. In particular short range interac-
tions satisfy the hypotesis of our theorem and the technique turns out to be
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particularly useful in these cases, where it provides sharper bounds than those
already known. Another study of the spectral properties of the Glauber gener-
ator is [9], where the construction of the invariant subspaces for the dynamics
is also given (one can also get good bounds for the gap from the representation
formulas in [9]). As a byproduct we get estimates for the critical temperature
of the models considered.

We cannot expect our bounds to be good in dimension one, actually it is
off by a factor of two for small β, as can be seen from the comparison with the
explicit expression given in [10].

This is due to the fact that in our approach dynamics is written in form of a
Markov chain whose state space is the set of the parts of Λ, PΛ. Therefore, the
dependence of the generator of the process on the lattice dimension is hidden in
the cardinality of the state space. This is also why the foregoing analysis works
better in higher dimensions.

As an introduction to the formalism, we start with the ”single site dynamics”
(as in [2]). Following the prescription given in [3] we consider the Hilbert space
of complex square summable functions on the single site configuration space

Z
(x)
2 with respect to the symmetric Bernoulli measure. Namely for all x ∈ Zd

Hx := span {|∅〉x , |x〉x} ∼= C2,

|∅〉x ≡
(

1
0

)
x

, |x〉x ≡
(

0
1

)
x

,

Ux = M(2,C) is the algebra of bounded operators on Hx.1 Let us define the
spin operator σx ∈ Ux:

σx |∅〉x = |x〉x
σx |x〉x = |∅〉x

equivalent to the Pauli matrix σ(1)

σ(1) ≡
(

0 1
1 0

)
and the spin flip operator fx ∈ Ux:

fx |∅〉x = |∅〉x
fx |x〉x = − |x〉x

equivalent to the Pauli matrix σ(3)

σ(3) ≡
(

1 0
0 −1

)
.

1Here, see [3] and [8] for more details, we think of Hx as spanned by two (orthonormal)
vectors labelled by the ”empty site” and the ”full site” configurations. Consequently any
operator acting on the configuration space is lifted to a linear operator acting on Hx and a
probability density on the configuration space becomes a convex combination of the projectors
on the subspaces spanned by the basis vectors of Hx.
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Consider also the automorphism Ux on Ux such that

Ux ∈ Ux : UxσxUx = fx, U2
x = Ix.

Setting C(s)
x , C(f)

x ⊂ Ux to be the commutative algebras generated by the identity
operator Ix and, respectively, by σx, fx, one can see easily from the above

definition that Ux maps one into another: UxC(s)
x Ux = C(f)

x . For this reason,
in the following, we will denote them both by Cx (the algebra of observables,
that is the algebra of diagonal operators on Hx).

This is the kinematical structure (Hx,Ux, Cx) for a single site system. Let
Λ be any finite subset of the Zd lattice. We define its analog on Λ by tensor

product (HΛ,UΛ, CΛ) (ZΛ
2 =

⊗
x∈Λ Z

(x)
2 ). Then we have (see [3])

|α〉Λ =
⊗
x∈α
|x〉x

⊗
x∈Λ\α

|∅〉x ,

HΛ = span {|α〉Λ : α ⊆ Λ} .

Moreover, UΛ = M
(
2|Λ|,C

)
and CΛ is the algebra of polynomials in σα (fα) for

all α ⊂ Λ. Then

σα =
⊗
x∈α

σx
⊗
x∈Λ\α

Ix,

fα = UΛσαUΛ =
∑
∅⊆γ⊆Λ

(−1)|α∩γ| |γ〉 〈γ|Λ ,

σ∅ = f∅ = IΛ,

where |γ〉 〈γ|Λ denotes the projector on the subspace spanned by |γ〉Λ. The
preceding construction can be extended to the configuration space of the whole
particle system [3] if we set: H = span

{
|α〉 : α ⊂ Zd

}
, U = B(H) the algebra

of bounded operators on H, and C the algebra of observables for the system.
The following analysis involves a finite size system whose kinematical envi-

ronment is
(
HΛ,UΛ, CΛ, ω0

Λ

)
, where

ω0
Λ (AΛ) := trHΛ

(AΛ) =
∑
∅⊆γ⊆Λ

〈γ|AΛ |γ〉Λ , AΛ ∈ UΛ,

or equivalently

|0〉Λ = UΛ |∅〉Λ = 2−
|Λ|
2

∑
∅⊆γ⊆Λ

|γ〉Λ ,

ĀΛ = UΛAΛUΛ,

ω0
Λ (AΛ) = 2|Λ|〈0|AΛ|0〉Λ = 2|Λ| 〈∅| ĀΛ |∅〉Λ .
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2. Free diffusion

The operator `x (discrete derivative) acting on Hx is

`x =
Ix − fx

2
,

`x

{
|∅〉x = 0

|x〉x = |x〉x .

Note that `x is selfadjoint and `x`x = `x, so `x acts as the projection operator
along the |x〉x direction in Hx. In the same fashion we define `Λx acting on HΛ,
namely

`Λx =
IΛ − fx

2
such that

`Λx |α〉Λ = δ(x ∈ α) |α〉Λ , α ⊆ Λ,

thus
`Λx =

∑
∅⊆γ⊆Λ

δ (x ∈ γ) |γ〉 〈γ|Λ .

Definition 2.1. For all Λ ⊂ Zd : |Λ| < ∞ the generator of the single spin flip
dynamics, i.e. the dynamics of a non interacting spin system (β = 0) is the
operator

LΛ :=
∑
x∈Λ

`Λx , LΛ ∈ CΛ.

Obviously LΛ is diagonal on HΛ

LΛ =
∑
x∈Λ

∑
∅⊆γ⊆Λ

δ (x ∈ γ) |γ〉 〈γ|

=
∑
∅⊆γ⊆Λ

|γ| |γ〉 〈γ|Λ .

Since each eigenvalue has multiplicity
(|Λ|
|γ|
)
, if we set Pk to be the projector

along the |γ〉 direction in HΛ such that |γ| = k ∈ N, we obtain

LΛ =

|Λ|∑
n=0

n∑
k=0

(
n

k

)
kPk.

Similar arguments are valid for the semigroup generated by LΛ

SΛ(t) =
∑
∅⊆γ⊆Λ

e−t|γ| |γ〉 〈γ|Λ

=

|Λ|∑
n=0

n∑
k=0

(
n

k

)
e−ktPk
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whose associated unique Perron – Frobenius eigenvector is |∅〉Λ.
Since the `Λx operators are defined on different lattice sites, they commute

and the dynamics of the whole system is just the product dynamics, that is

S(t) =
⊗
x∈Zd

Sx(t),

Sx(t) being generated by `Λx . Making use of the spectral representation of the
semigroup one gets immediately

〈α|S(t) |α〉 = e−|α|t for all α ⊂ Zd.

3. Interacting diffusion

We will write the generator of the Glauber dynamics of an interacting system
in our notation. This will probably seem unfamiliar since it looks quite different
from the usual one (see e.g. [4]). The reader may convince himself that they are
the same by computing the Dirichlet form for a cylinder function for both.

Definition 3.1. (See [1].) The interaction for a spin system is realized through
the Hamiltonian operator

HΛ =
∑
∅⊆α⊆Λ

Jασα,

where for all α ⊆ Λ, Jα is a real function on the set of subsets of Λ. Moreover,

HΛ = UΛHΛUΛ =
∑
∅⊆α⊆Λ

Hα |α〉 〈α|Λ ,

Hα =
∑
∅⊆γ⊆Λ

Jγ(−1)|α∩γ|.

Here we assume taht Jα at least satisfy the stability condition for the exis-
tence of the equilibrium thermodynamic limit (see e.g. [11]).

Definition 3.2. For all Λ ⊂ Zd : |Λ| < ∞, the generator of the stochastic
dynamics of an interacting system is

LΛ(β) := eβHΛ

∑
x∈Λ

`Λx e
−βHΛ`Λx , LΛ(β) ∈ UΛ,

LΛ (β = 0) := LΛ.
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The right and left eigenvectors corresponding to the 0 eigenvalue are respec-
tively |∅〉Λ and 〈

e−βHΛ

Z
(d)
Λ (β)

∣∣∣∣∣ = 〈∅| e
−βHΛ

Z
(d)
Λ (β)

=
∑
∅⊆α⊆Λ

ΩΛ
α(β)Λ〈α|, (3.1)

where
Z

(d)
Λ (β) =

∑
∅⊆α⊆Λ

e−βHα

is the partition function [1] and

ΩΛ
α(β) =

∑
∅⊆γ⊆Λ

(
e−βHγ (−1)|α∩γ|

Z
(d)
Λ (β) 2|Λ|

)

for all α ⊆ Λ.
Our purpose is to give a lower bound for the spectral gap of the generator.

We will rewrite the process in a reversible form. This can be done considering
the isometry

e−
β
2 HΛ : HΛ → HGΛ ,

where HGΛ is the Hilbert space of square summable functions on ZΛ
2 with respect

to the Gibbs measure, associated with the invariant vector state (3.1) (see [3]).
This map is obtained applying exp{−β2 HΛ} to any vector in HΛ. Such isometry
can be lifted to an automorphism on UΛ preserving the Gibbs state, that is for
all AΛ ∈ UΛ

AΛ → e−
β
2 HΛAΛe

β
2 HΛ := AΛ(β) ∈ UΛ,

ω0
Λ(ρ

(d)
Λ (β) AΛ) = ωβΛ (AΛ) = ω0

Λ (AΛ (β))
(3.2)

with

ρ̄
(d)
Λ (β) =

∑
∅⊆α⊆Λ

e−βHα

Z
(d)
Λ (β)

|α〉 〈α|Λ

the Gibbs density operator [1].
From this follows that the action of LΛ(β) : HΛ → HΛ is equivalent to that

of LsΛ(β) : HGΛ → HGΛ , where

LsΛ(β) := e−
β
2 HΛLΛ(β)e

β
2 HΛ = e

β
2 HΛ

∑
x∈Λ

`xe
−βHΛ`xe

β
2 HΛ .

This operator is selfadjoint and has a unique eigenvector associated to the 0
eigenvalue that is

|ΩβΛ〉 =
e−

β
2 HΛ

(Z
(d)
Λ (β))1/2

|∅〉Λ =
∑
∅⊆α⊆Λ

ωΛ
α(β)|α〉Λ,
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ωΛ
α(β) =

∑
∅⊆γ⊆Λ

(
e−

β
2Hγ (−1)|α∩γ|

(Z
(d)
Λ (β))

1
2 2|Λ|

)
.

Let SβΛ(t) be the semigroup generated by LsΛ(β). Consider its action on the
element of CΛ

AΛ → SβΛ(t)AΛSβΛ(−t) := AΛ(t) ∈ UΛ (3.3)

for all AΛ ∈ CΛ.
This automorphism obviously preserves the Gibbs state.

〈ΩβΛ|AΛ|ΩβΛ〉 = 〈ΩβΛ|AΛ(t)|ΩβΛ〉.

In the following |ΩβΛ〉〈Ω
β
Λ| denotes the projector on the eigenspace with eigen-

value 0. From (3.2), (3.3) the generic time correlation function now reads

ω0
Λ

(
ρ

(d)
Λ (β)σα

[
e−tLΛ(β) − |ΩβΛ〉〈Ω

β
Λ|
]
σγ

)
= 2|Λ| 〈∅| e

−βHΛ

Z
(d)
Λ (β)

σα

[
e−tLΛ(β) − |ΩβΛ〉〈Ω

β
Λ|
]
σγ |∅〉Λ

= 2|Λ|〈ΩβΛ|σα
[
SβΛ(t)− |ΩβΛ〉〈Ω

β
Λ|
]
σγ |ΩβΛ〉

= 2|Λ|〈ΩβΛ|fα
[
e−tL

s

Λ(β) − |ΩβΛ〉〈Ω
β
Λ|
]

fγ |Ω
β

Λ〉

= 2|Λ|〈0| e−
β
2 HΛ(

Z
(d)
Λ (β)

) 1
2

fα

[
e−tL

s

Λ(β) − |ΩβΛ〉〈Ω
β
Λ|
]

fγ
e−

β
2 HΛ(

Z
(d)
Λ (β)

) 1
2

|0〉Λ

=

∑
∅⊆α0,γ0⊆Λ

e−
β
2 (Hα0

+Hγ0) (−1)
|α0∩α|+|γ0∩γ|

∑
∅⊆α⊆Λ

e−βHα

× 〈α0|
[
e−tL

s

Λ(β) − |ΩβΛ〉〈Ω
β
Λ|
]
|γ0〉Λ ,

where
|ΩβΛ〉 = UΛ|ΩβΛ〉 = 2−

|Λ|
2

∑
∅⊆α⊆Λ

e−βHα |α〉Λ .

Now rewrite LsΛ(β) in the following form

LsΛ(β) =
∑
x∈Λ

¯̀Λ
x (−β)¯̀Λ

x (β) ,

where from (3.2)

`Λx (β) = e−
β
2 HΛ`xe

β
2 HΛ = `Λx +

∞∑
n=1

1

n!

(
β

2

)n
[. . . [`Λx ,HΛ]1 . . .] . . .]]n.
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Given any x ∈ Λ,

¯̀Λ
x (−β)¯̀Λ

x (β) =
1

4

{[
IΛ − e−

β
2 H̄Λσxe

β
2 H̄Λ − e

β
2 H̄Λσxe

− β2 H̄Λ

+ e
β
2 H̄Λσxe

−βH̄Λσxe
β
2 H̄Λ

]}
.

Since

σx |α〉Λ = δ (x ∈ α) |α\{x}〉Λ + δ(x /∈ α) |α ∪ {x}〉Λ
= δ(x ∈ α)σx |α〉Λ + δ(x /∈ α)σx |α〉Λ ,

we have, considering any basis vector |α〉Λ ∈ HΛ,

¯̀Λ
x (−β)¯̀Λ

x (β) |α〉Λ =
1

4

{
δ(x ∈ α)

[
IΛ − σx

(
e
β
2 (Hα−Hα\{x})

+ e−
β
2 (Hα−Hα\{x})

)
+ IΛe

β(Hα−Hα\{x})
]

+ δ(x /∈ α)
[
IΛ − σx

(
e
β
2 (Hα−Hα∪{x})

+ e−
β
2 (Hα−Hα∪{x})

)
+ IΛe

β(Hα−Hα∪{x})
]}
|α〉Λ .

Thus

¯̀Λ
x (−β)¯̀Λ

x (β)|α〉Λ =
1

4

{
δ(x ∈ α)

[
IΛ

(
1 + eβ(Hα−Hα\{x})

)
− 2σx cosh

β

2

(
Hα −Hα\{x}

)]
+ δ(x /∈ α)

[
IΛ

(
1 + eβ(Hα−Hα∪{x})

)
− 2σx cosh

β

2

(
Hα −Hα∪{x}

) ]}
|α〉Λ ,

from which follows

LsΛ(β)|α〉Λ =
∑
x∈Λ

1

4

{
δ(x ∈ α)

[
IΛ

(
1 + sinhβ

(
Hα −Hα\{x}

)
+ coshβ

(
Hα −Hα\{x}

) )
− σx2 cosh

β

2

(
Hα −Hα\{x}

) ]
+ δ(x /∈ α)

[
IΛ

(
1 + sinhβ

(
Hα −Hα∪{x}

)
+ coshβ

(
Hα −Hα∪{x}

) )
− σx2 cosh

β

2

(
Hα −Hα∪{x}

) ]}
|α〉Λ.
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Since

1 + coshβ
(
Hα −Hα

{
\{x}
∪{x}

)
= 2 cosh2 β

2

(
Hα −Hα

{
\{x}
∪{x}

)
,

sinhβ
(
Hα −Hα

{
\{x}
∪{x}

)
= 2 cosh

β

2

(
Hα −Hα

{
\{x}
∪{x}

)
× sinh

β

2

(
Hα −Hα

{
\{x}
∪{x}

)
,

we have

LsΛ(β)|α〉Λ =
∑
x∈Λ

1

2

{
δ(x ∈ α)

[
IΛ

(
cosh2 β

2
(Hα −Hα\{x})

+ cosh
β

2
(Hα −Hα\{x}) sinh

β

2
(Hα −Hα\{x})

)
− σx cosh

β

2
(Hα −Hα\{x})

]
+ δ(x /∈ α)

[
IΛ

(
cosh2 β

2
(Hα −Hα∪{x})

+ cosh
β

2
(Hα −Hα∪{x}) sinh

β

2
(Hα −Hα∪{x})

)
−σx cosh

β

2

(
Hα −Hα∪{x}

) ]}
|α〉Λ .

Remembering the definition of ¯̀Λ
x the last expression reduces to

LsΛ(β)|α〉Λ =
∑
x∈Λ

1

2

{
δ(x ∈ α) cosh

β

2

(
Hα −Hα\{x}

)
×
[
IΛ

(
e
β
2 (Hα−Hα\{x}) − 1

)
+ 2¯̀Λ

x

]
+ δ(x /∈ α) cosh

β

2

(
Hα −Hα∪{x}

)
×
[
IΛ

(
e
β
2 (Hα−Hα∪{x}) − 1

)
+ 2¯̀Λ

x

]}
|α〉Λ

=
∑
x∈Λ

{
δ(x ∈ α) cosh

β

2

(
Hα −Hα\{x}

)
×
[ tanh β

4

(
Hα −Hα\{x}

)
1− tanh β

4

(
Hα −Hα\{x}

)IΛ + ¯̀Λ
x

]
+ δ(x /∈ α) cosh

β

2

(
Hα −Hα∪{x}

)
×
[ tanh β

4

(
Hα −Hα∪{x}

)
1− tanh β

4

(
Hα −Hα∪{x}

)IΛ + ¯̀Λ
x

]}
|α〉Λ ,
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where we have used the identity

exp
β

2

(
Hα −Hα

{
\{x}
∪{x}

)
− 1 =

2 tanh β
4

(
Hα −Hα

{
\{x}
∪{x}

)
1− tanh β

4

(
Hα −Hα

{
\{x}
∪{x}

) .
Let us consider now the generic matrix element of LsΛ (β) acting on HΛ. By
definition for all γ, α ⊆ Λ

〈γ| LsΛ(β) |α〉Λ =
∑

∅⊆γ1,η⊆Λ

〈γ|UΛ |γ1〉 〈γ1|Λ L
s

Λ(β) |η〉 〈η|Λ UΛ |α〉Λ

= 〈γ|
∑
∅⊆η⊆Λ

∑
x∈Λ

{
δ(x ∈ η) cosh

β

2

(
Hη −Hη\{x}

)
×
[ tanh β

4

(
Hη −Hη\{x}

)
1− tanh β

4

(
Hη −Hη\{x}

)IΛ + `Λx

]
+ δ (x /∈ η) cosh

β

2

(
Hη −Hη∪{x}

)
×
[ tanh β

4

(
Hη −Hη∪{x}

)
1− tanh β

4

(
Hη −Hη∪{x}

)IΛ + `Λx

]}
×UΛ |η〉 〈η|Λ UΛ |α〉Λ .

This implies, since IΛ ≥ `Λx ,

〈γ| LsΛ(β) |α〉Λ ≥ 〈γ|
∑
∅⊆η⊆Λ

∑
x∈Λ

{
δ (x ∈ η) cosh

β

2

(
Hη −Hη\{x}

)
×
[ tanh β

4

(
Hη −Hη\{x}

)
1− tanh β

4

(
Hη −Hη\{x}

) + 1
]
`Λx

+ δ (x /∈ η) cosh
β

2

(
Hη −Hη∪{x}

)
×
[ tanh β

4

(
Hη −Hη∪{x}

)
1− tanh β

4

(
Hη −Hη∪{x}

) + 1
]
`Λx

}

×UΛ |η〉 〈η|Λ UΛ |α〉Λ

≥ 〈γ|
∑
∅⊆η⊆Λ

∑
x∈Λ

{
δ (x ∈ η) cosh

β

2

(
Hη −Hη\{x}

)
×
[
1−

tanh β
4

∣∣Hη −Hη\{x}
∣∣

1 + tanh β
4

∣∣Hη −Hη\{x}
∣∣]`Λx
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+ δ (x /∈ η) cosh
β

2

(
Hη −Hη∪{x}

)
×
[
1−

tanh β
4

∣∣Hη −Hη∪{x}
∣∣

1 + tanh β
4

∣∣Hη −Hη∪{x}
∣∣]`Λx

}

×UΛ |η〉 〈η|Λ UΛ |α〉Λ

≥ 〈γ|
∑
x∈Λ

`Λx

{
1−max

η⊆Λ
max

[
max
x∈η

cosh
β

2

(
Hη −Hη\{x}

)
×

tanh β
4

∣∣Hη −Hη\{x}
∣∣

1 + tanh β
4

∣∣Hη −Hη\{x}
∣∣ ;

max
x/∈η

cosh
β

2

(
Hη −Hη∪{x}

)
×

tanh β
4

∣∣Hη −Hη∪{x}
∣∣

1 + tanh β
4

∣∣Hη −Hη∪{x}
∣∣]
}
|α〉Λ .

Hence we have the following

Theorem 3.1. For all Λ ⊂ Zd, for all β ∈ [0, β̄Λ(d)], inf[spec(LsΛ(β))\{0}] is
bounded from below by

g
(d)
Λ (β) := 1−max

α⊆Λ
max

[
max
x∈α

cosh
β

2

(
Hα −Hα\{x}

)
×

tanh β
4

∣∣Hα −Hα\{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα\{x}
∣∣ ;

max
x/∈α

cosh
β

2

(
Hα −Hα∪{x}

) tanh β
4

∣∣Hα −Hα∪{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα∪{x}
∣∣].

Proof. From the last inequality it follows that

〈α| IΛ + εLsΛ(β) |γ〉Λ ≥ 〈α | IΛ + εDΛ (β) | γ〉Λ , (3.4)

where by definition

DΛ(β) :=
∑
∅⊆α⊆Λ

|α|

{
1−max

α⊆Λ
max

[
max
x∈α

cosh
β

2

(
Hα −Hα\{x}

)
×

tanh β
4

∣∣Hα −Hα\{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα\{x}
∣∣ ;

max
x/∈α

cosh
β

2

(
Hα −Hα∪{x}

)
×

tanh β
4

∣∣Hα −Hα∪{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα∪{x}
∣∣]
}
|α〉 〈α|Λ .
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Let us set g
(d)
Λ (β) to be inf [spec (DΛ(β)) \{0}],

g
(d)
Λ (β) = 1−max

α⊆Λ
max

[
max
x∈α

cosh
β

2

(
Hα −Hα\{x}

)
×

tanh β
4

∣∣Hα −Hα\{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα\{x}
∣∣ ;

max
x/∈α

cosh
β

2

(
Hα −Hα∪{x}

) tanh β
4

∣∣Hα −Hα∪{x}
∣∣

1 + tanh β
4

∣∣Hα −Hα∪{x}
∣∣].

Of course, DΛ(β) is selfadjoint and will stay positive for β ranging from 0 to a

certain value β̄
(d)
Λ such that g

(d)
Λ (β̄

(d)
Λ ) = 0. Inequality (3.4) implies

〈α| (IΛ + εLsΛ (β))
−1 |γ〉Λ ≤ 〈α| (IΛ + εDΛ (β))

−1 |γ〉Λ .

Iterating n times the last inequality, we get

〈α| (IΛ + εLsΛ (β))
−n |γ〉Λ ≤ 〈α| (IΛ + εDΛ (β))

−n |γ〉Λ .

Setting ε = t/n, the last expression will be valid at least for all t ≤ nα, α < 1.
By the Hille – Yosida theorem, we obtain

〈α|
(
e−tL

s
Λ(β) − |ΩβΛ〉〈Ω

β
Λ|
)
|γ〉Λ ≤ 〈α|

(
e−tDΛ(β) − |ΩβΛ〉〈Ω

β
Λ|
)
|γ〉Λ ≤ e

−tg(d)
Λ

(β)

which proves the theorem. 2

Since ḡ
(d)
Λ (β) involves the difference of two cylindric functions whose supports

differ by just one lattice site, it is clear that if for all α ⊆ Λ, Hα ∝ |Λ| and
also maxα⊆Λ maxx∈α

(
Hα −Hα\{x}

)
(maxα⊆Λ maxx/∈α

(
Hα −Hα∪{x}

)
) do not

depend on α, we would obtain a volume independent expression for the spectral

gap of DΛ(β); that is g
(d)
Λ (β)→ g(d)(β). A sufficient condition for this argument

to be valid is to assume HΛ(β) to be traslation invariant. This proves the
following

Proposition 3.1. The spectral gap for the Glauber dynamics of an interacting
spin system of the type described above is bounded from below by g(d)(β) for
all β ∈

[
0, β̄(d)

]
, where β̄(d) := inf

{
β ≥ 0 : g(d)

(
β̄(d)

)
= 0
}
.

Now we will apply these results to some selected models. For the description
of the models in our framework see [1] and reference therein. We will always
assume periodic boundary conditions, but it is clear that in the thermodynamic
limit, for small β, the estimate for the gap will not be sensitive to the boundary
conditions.
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Figure 1.

Gd : g
(d)
G (β) = 1− de2dβ(1− e−2β);

sd : g
(d)
I (β) = 1− tanh dβ

1 + tanh dβ
cosh 2dβ;

d = 2, 3, 4.

Example 3.1. Nearest neighbour Ising model without external source.
The eigenvalues of the Hamiltonian operator

HI
Λ := −

∑
∅⊆α⊆Λ

δ (d (α) = 1)σα

are
HI
α = −d |Λ|+ 2 |∂α| for all α ⊆ Λ,

where |∂α| is the area of the surface bounding α (the length of the contour
surrounding α if d = 2). Then

HI
α −HI

α\{x} = 2 (|∂α| − |∂ (α\ {x})|) ,

HI
α −HI

α∪{x} = 2 (|∂α| − |∂ (α ∪ {x})|) ,
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Figure 2.

hbd : g
(d)
hb (β) = 1− d tanh 2β;

sd : g
(d)
I (β) = 1− tanh dβ

1 + tanh dβ
cosh 2dβ;

d = 2, 3, 4.

with the right-hand sides of the above expressions ranging from −4d to 4d. Thus

g
(d)
I (β) = 1− cosh 2βd

tanhβd

1 + tanhβd
.

Figures 1 and 2 show a sketch of g
(d)
I (β) as a function of β (d = 2, 3, 4),

in comparison to equivalent estimates for Glauber (g
(d)
G (β) ) and heat bath

(g
(d)
hb (β)) dynamics [4]. In dimension 2 the critical value of β is

ln(1+
√

2)
2 ' 0.440.

Our estimate is β̄
(2)
I ' 0.394.
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Example 3.2. Ising model with second neighbours antiferromagnetic
interaction in the presence of an external source.

HΛ(h, J) := −
∑
∅⊆α⊆Λ

[δ (d (α) = 1) + Jα + hδ (d (α) = 0)]σα,

Jα := −Jδ (α = α1 ∪ α2 : d (α1) = d (α2) = 0 ; dist (α1, α2) = 2) ,

Hγ(h, J) = (−d |Λ|+ 2 |∂γ|) (1− J)− h |Λ|+ 2h |γ| − 2JYγ ,

Yγ :=
∑
∅⊆α⊆Λ

δ (α = α1 ∪ α2 : d (α1) = d (α2) = 0 ; dist (α1, α2) = 2)

×
[
δ(α1 ⊂⊂ γ)δ(α2 ∩ γ = ∅) + δ(α2 ⊂⊂ γ)δ(α1 ∩ γ = ∅)

]
with h ∈ R, J ≥ 0 and δ (αi ⊂⊂ γ) = δ (αi ⊂ γ) δ (αi ∩ ∂γ = ∅), i = 1, 2. Then

Hα(h, J)−Hα\{x} (h, J)

= 2 (|∂α| − |∂ (α\{x})|) (1− J) + 2J
(
Yα\{x} − Yα

)
+ 2h, (3.5)

Hα(h, J)−Hα∪{x} (h, J)

= 2 (|∂α| − |∂ (α ∪ {x})|) (1− J) + 2J
(
Yα∪{x} − Yα

)
− 2h, (3.6)

where it easily follows from the definition of Yγ that∣∣∣∣Y{α\{x}
α∪{x}

− Yα
∣∣∣∣ ≤ 2d.

The maximum value of the right-hand side of the above expressions is realized,
for example, considering the sets sketched below (d = 2). If J > 1, we set
α = γ1, α\{x} = γ2 and α = γ2, α∪{x} = γ1, respectively in (3.5) and in (3.6).
If J < 1, we set α = γ3, α\{x} = γ4 in (3.5) and α = γ4, α ∪ {x} = γ3 in (3.6)

γ1 =

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

γ2 =

� � � � �
� � � � �
� � � �
� � � � �
� � � � �
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γ3 =

�
� �

� � �
� �

�

γ4 =

�
� �

� �
� �

�

So we get

g
(d)
h,J(β) = 1− coshβ[2d(|J − 1|+ J) + h]

tanhβ
∣∣d(|J − 1|+ J) + h

2

∣∣
1 + tanhβ

∣∣d(|J − 1|+ J) + h
2

∣∣ .
Finally, if J = 1, we have

g
(d)
h,J(β) = 1− coshβ[2d+ h]

tanhβ
∣∣d+ h

2

∣∣
1 + tanhβ

∣∣d+ h
2

∣∣ .
Example 3.3. Dobrushin – Gertsik model. The lattice dimension is d = 2
and the Hamiltonian operator involves a nearest-neighbour interaction term
with coupling J1, a next-nearest neighbour interaction term with coupling J2

and an external field h.

HDG
Λ (h, J1, J2) := −

∑
∅⊆α⊆Λ

[J1δ (d (α) = 1) + Jα + hδ (d (α) = 0)]σα,

Jα := J2δ
(
α = α1 ∪ α2 : d (α1) = d (α2) = 0 ; dist (α1, α2) =

√
2
)
,

HDG
γ (h, J1, J2) = (−2 |Λ|+ 2 |∂γ|) J1 + (−2 |Λ|+ 2 |6 ∂γ|) J2

+ (− |Λ|+ 2 |γ|)h,

|6 ∂γ| :=
∑
∅⊆α⊆Λ

δ
(
α = α1 ∪ α2 : d (α1) = d (α2) = 0 ; dist (α1, α2) =

√
2
)

× δ (|α ∩ γ| = 1) ,

h, Ji ∈ R, i = 1, 2 and

HDG
α (h, J1, J2)−HDG

α\{x}(h, J1, J2)

= 2J1(|∂α| − |∂(α\{x})|) + 2J2(| 6 ∂α| − | 6 ∂(α\{x})|) + 2h, (3.7)

HDG
α (h, J1, J2)−HDG

α∪{x}(h, J1, J2)

= 2J1 (|∂α| − |∂ (α ∪ {x})|) + 2J2 (|6 ∂α| − |6 ∂ (α ∪ {x})|)− 2h, (3.8)

with
−4 ≤ (|6 ∂α| − |6 ∂ (α\{x})|) , (|6 ∂α| − |6 ∂ (α ∪ {x})|) ≤ 4.
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The maximum value of the previous expressions is obtained considering, for
example, the sets of the following type. If J1 > 0, J2 < 0, we set α = γ1,
α\{x} = γ2 in (3.7) and α = γ2, α ∪ {x} = γ1 in (3.8)

γ1 =

� �
�

� �
γ2 =

� �

� �

If J1 < 0, J2 > 0, we set α = γ3, α\ {x} = γ4 in (3.7) and α = γ4, α ∪ {x} = γ3

in (3.8)

γ3 =

�
� � �

�
γ4 =

�
� �

�

If J1, J2 < 0, we set α = γ5, α\ {x} = γ6 in (3.7) and α = γ6, α ∪ {x} = γ5 in
(3.8)

γ5 =

� � �
� � �
� � �

γ6 =

� � �
� �
� � �

while if J1, J2 > 0, we take α and α∪{x} as a singleton in both (3.7) and (3.8).
Finally, we obtain

g
(d)
DG (β, h, J1, J2) = 1− coshβ(4(|J1|+ |J2|) + h)

tanhβ
∣∣∣2 (|J1|+ |J2|) + h

2

∣∣∣
1 + tanhβ

∣∣∣2 (|J1|+ |J2|) + h
2

∣∣∣ .
4. Conclusions

Even if we stated our results in terms of bounds for the gap, what we really
get is bounds for the matrix elements of the generator. Applying the general
result to specific models may require some combinatorial manipulation as in
Examples 3.1–3.3. Models which are not traslation invariant (in particular we
plan to investigate models with random interacions) require some additional
work.
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