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Abstract

Here we correct an error we discovered in [1] and clarify a statement on the form of
the generator.

We discovered that an estimate in Theorem 3.1 of our paper [1], to which we refer for
notation and background, is incorrect.

In estimating the quadratic form 〈γ| Ls
Λ (β) |α〉Λ on page 419 a term was treated as pos-

itive, which it isn’t. To get the correct estimate one should first produce a lower bound for
〈γ| Ls

x (β) |α〉Λ. Ls
x (β) = `Λ

x (−β) `Λ
x (β) is a positive selfadjoint operator on HΛ which annihi-

lates
∣∣∣Ωβ

Λ

〉
corresponding to the square root of the Gibbs density (see page 417 of [1]). Then

by a standard minimax argument we get the following bound for the spectral gap
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The expressions that appear in the examples also need to be changed in the following way:
Nearest neighbor Ising model without external source

g
(d)
I (β) =

1− cosh 2βd tanh βd
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This gives an estimate of the critical value of β in dimension 2 is β̄
(2)
I ' 0.309.

Ising model with second neighbors antiferromagnetic interaction in the presence
of an external source
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Dobrushin-Gertsik model
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We also take the chance to clarify what are the rates for the dynamics we considered.
Computing the Dirichlet form for the generator LΛ on HG
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where
[
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Λ, Φ
]

= 0, HG
Λ 3 Φ |0〉Λ =

∑
α⊆Λ φα |α〉Λ. This allows us to identify the rates of our

process with
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These may be more easily looked at as the rates of a birth and death process for a lattice
gas. Let us now compare these rates with those of the heat-bath dynamics. In our notation
their expression is
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we get
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therefore the dynamics we have previously introduced reaches equilibrium faster than the heat-
bath one.

The graphs in [1] confusingly compare different dynamics. We fix this here.

The generic matrix element of the generator of heat-bath dynamics Lhb,s
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∑
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x (β)
acting on HΛ is
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Then, proceding as before, we estimate the generic matrix element of Lhb,s
x = UΛL

hb,s

x UΛ and
get
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Thus our estimate for the spectral gap of this process is

g
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