Erratum and Addenda to "Quantum Methods for Interacting Particle Systems II, Glauber Dynamics for Ising Spin Systems"

M. Gianfelice M. Isopi

July 31, 2003

Abstract

Here we correct an error we discovered in [1] and clarify a statement on the form of the generator.

We discovered that an estimate in Theorem 3.1 of our paper [1], to which we refer for notation and background, is incorrect.

In estimating the quadratic form $\langle \gamma | \mathcal{L}_{\Lambda}^{s}(\beta) | \alpha \rangle_{\Lambda}$ on page 419 a term was treated as positive, which it isn't. To get the correct estimate one should first produce a lower bound for $\langle \gamma | \mathcal{L}_{x}^{s}(\beta) | \alpha \rangle_{\Lambda}$. $\mathcal{L}_{x}^{s}(\beta) = \ell_{x}^{\Lambda}(-\beta) \ell_{x}^{\Lambda}(\beta)$ is a positive selfadjoint operator on \mathcal{H}_{Λ} which annihilates $\left| \overline{\Omega}_{\Lambda}^{\beta} \right\rangle$ corresponding to the square root of the Gibbs density (see page 417 of [1]). Then by a standard minimax argument we get the following bound for the spectral gap

$$\overline{g}_{\Lambda}^{(d)}(\beta) := 1 - \max_{\alpha \subseteq \Lambda} \max\left\{ \max_{x \in \alpha} \left[\left(1 + \cosh \frac{\beta}{2} \left(H_{\alpha} - H_{\alpha \setminus \{x\}} \right) \right) \frac{\tanh \frac{\beta}{4} \left| H_{\alpha} - H_{\alpha \setminus \{x\}} \right|}{1 + \tanh \frac{\beta}{4} \left| H_{\alpha} - H_{\alpha \setminus \{x\}} \right|} \right]; \\ \max_{x \notin \alpha} \left[\left(1 + \cosh \frac{\beta}{2} \left(H_{\alpha} - H_{\alpha \cup \{x\}} \right) \right) \frac{\tanh \frac{\beta}{4} \left| H_{\alpha} - H_{\alpha \cup \{x\}} \right|}{1 + \tanh \frac{\beta}{4} \left| H_{\alpha} - H_{\alpha \cup \{x\}} \right|} \right] \right\}$$

The expressions that appear in the examples also need to be changed in the following way: Nearest neighbor Ising model without external source

$$\overline{g}_{I}^{(d)}\left(\beta\right) = \frac{1 - \cosh 2\beta d \tanh \beta d}{1 + \tanh \beta d}$$

This gives an estimate of the critical value of β in dimension 2 is $\bar{\beta}_I^{(2)} \simeq 0.309$.

Ising model with second neighbors antiferromagnetic interaction in the presence of an external source

$$\overline{g}_{h,J}^{\left(d\right)}\left(\beta\right) = \frac{1 - \cosh\beta\left[2d + h\right] \tanh\beta\left|d + \frac{h}{2}\right|}{1 + \tan\beta\left|d + \frac{h}{2}\right|}$$

Dobrushin-Gertsik model

$$\overline{g}_{DG}^{(d)}(\beta, h, J_1, J_2) = \frac{1 - \cosh\beta \left[4\left(|J_1| + |J_2|\right) + h\right] \tanh\beta \left|2\left(|J_1| + |J_2|\right) + \frac{h}{2}\right|}{1 + \tanh\beta \left|2\left(|J_1| + |J_2|\right) + \frac{h}{2}\right|}$$

We also take the chance to clarify what are the rates for the dynamics we considered. Computing the Dirichlet form for the generator $\overline{\mathcal{L}}_{\Lambda}$ on $\mathcal{H}_{\Lambda}^{G}$ we get

$$\begin{split} \left\langle \bar{\rho}_{\Lambda}^{\beta} \middle| \Phi \overline{\mathcal{L}}_{\Lambda} \left(\beta \right) \Phi \middle| 0 \right\rangle_{\Lambda} &= \left\langle 0 \middle| \bar{\rho}_{\Lambda}^{\beta} \Phi \overline{\mathcal{L}}_{\Lambda} \left(\beta \right) \Phi \middle| 0 \right\rangle_{\Lambda} \\ &= \frac{1}{2} \left(Z_{\Lambda}^{(d)} \left(\beta \right) \right)^{-1} \sum_{\alpha \subseteq \Lambda} \sum_{x \in \Lambda} \left\{ \delta \left(x \in \alpha \right) \left(\frac{e^{-\beta H_{\alpha}} + e^{-\beta H_{\alpha \setminus \{x\}}}}{4} \right) \left(\phi_{\alpha} - \phi_{\alpha \setminus \{x\}} \right)^{2} + \right. \\ &\left. + \delta \left(x \notin \alpha \right) \left(\frac{e^{-\beta H_{\alpha}} + e^{-\beta H_{\alpha \cup \{x\}}}}{4} \right) \left(\phi_{\alpha} - \phi_{\alpha \cup \{x\}} \right)^{2} \right\} \end{split}$$

where $\left[\bar{\rho}_{\Lambda}^{\beta}, \Phi\right] = 0$, $\mathcal{H}_{\Lambda}^{G} \ni \Phi |0\rangle_{\Lambda} = \sum_{\alpha \subseteq \Lambda} \phi_{\alpha} |\alpha\rangle_{\Lambda}$. This allows us to identify the rates of our process with

$$w_x(\alpha) = \delta(x \in \alpha) \frac{1 + \exp\beta(H_\alpha - H_{\alpha \setminus \{x\}})}{4} + \delta(x \notin \alpha) \frac{1 + \exp\beta(H_\alpha - H_{\alpha \cup \{x\}})}{4} \quad x \in \Lambda, \ \alpha \subseteq \Lambda$$

These may be more easily looked at as the rates of a birth and death process for a lattice gas. Let us now compare these rates with those of the heat-bath dynamics. In our notation their expression is

$$w_x^{hb}(\alpha) := \delta(x \in \alpha) \frac{1}{1 + e^{-\beta \left(H_\alpha - H_{\alpha \setminus \{x\}}\right)}} + \delta(x \notin \alpha) \frac{1}{1 + e^{-\beta \left(H_\alpha - H_{\alpha \cup \{x\}}\right)}} \quad x \in \Lambda, \ \alpha \subseteq \Lambda$$

we get

$$\frac{w_x^{hb}(\alpha)}{w_x(\alpha)} = \delta(x \in \alpha) \left(\cosh \frac{\beta}{2} \left(H_\alpha - H_{\alpha \setminus \{x\}} \right) \right)^{-2} + \delta(x \notin \alpha) \left(\cosh \frac{\beta}{2} \left(H_\alpha - H_{\alpha \cup \{x\}} \right) \right)^{-2} < 1$$

therefore the dynamics we have previously introduced reaches equilibrium faster than the heatbath one.

The graphs in [1] confusingly compare different dynamics. We fix this here.

The generic matrix element of the generator of heat-bath dynamics $\overline{\mathcal{L}}_{\Lambda}^{hb,s}(\beta) = \sum_{x \in \Lambda} \overline{\mathcal{L}}_{x}^{hb,s}(\beta)$ acting on \mathcal{H}_{Λ} is

$$\langle \gamma | \, \overline{\mathcal{L}}_{\Lambda}^{hb,s} (\beta) \, | \alpha \rangle_{\Lambda} = \langle \gamma | \sum_{x \in \Lambda} \left\{ \delta \left(x \in \alpha \right) \frac{\left[\overline{\ell}_{x}^{\Lambda} + \overline{\ell}_{x}^{\Lambda,\perp} \tanh \frac{\beta}{4} \left(H_{\alpha} - H_{\alpha \setminus \{x\}} \right) \right]}{\left(1 - \tanh \frac{\beta}{4} \left(H_{\alpha} - H_{\alpha \setminus \{x\}} \right) \right) \cosh \frac{\beta}{2} \left(H_{\alpha} - H_{\alpha \setminus \{x\}} \right)} + \delta \left(x \notin \alpha \right) \frac{\left[\overline{\ell}_{x}^{\Lambda} + \overline{\ell}_{x}^{\Lambda,\perp} \tanh \frac{\beta}{4} \left(H_{\alpha} - H_{\alpha \cup \{x\}} \right) \right]}{\left(1 - \tanh \frac{\beta}{4} \left(H_{\alpha} - H_{\alpha \cup \{x\}} \right) \right) \cosh \frac{\beta}{2} \left(H_{\alpha} - H_{\alpha \cup \{x\}} \right)} \right\} | \alpha \rangle_{\Lambda} .$$

Then, proceeding as before, we estimate the generic matrix element of $\mathcal{L}_x^{hb,s} = \mathbf{U}_{\Lambda} \overline{\mathcal{L}}_x^{hb,s} \mathbf{U}_{\Lambda}$ and get

$$\begin{aligned} \left\langle \gamma \right| \mathcal{L}_{x}^{hb,s}\left(\beta\right) \left|\alpha\right\rangle_{\Lambda} &\geq \left\langle \gamma \right| \ell_{x}^{\Lambda} \left(\max_{\eta \subseteq \Lambda} \max \left[\left(1 + \tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \setminus \{x\}} \right| \right) \cosh \frac{\beta}{2} \left(H_{\eta} - H_{\eta \setminus \{x\}} \right) \right] \right)^{-1} + \\ &\left(1 + \tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \cup \{x\}} \right| \right) \cosh \frac{\beta}{2} \left(H_{\eta} - H_{\eta \cup \{x\}} \right) \right] \right)^{-1} + \\ &- \max_{\eta \subseteq \Lambda} \max \left[\frac{\tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \setminus \{x\}} \right|}{1 + \tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \setminus \{x\}} \right|}; \frac{\tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \cup \{x\}} \right|}{1 + \tanh \frac{\beta}{4} \left| H_{\eta} - H_{\eta \cup \{x\}} \right|} \right] \mathbf{I}_{\Lambda} \left| \alpha \right\rangle_{\Lambda} \end{aligned}$$

Thus our estimate for the spectral gap of this process is

$$\overline{g}_{\Lambda}^{hb,(d)}\left(\beta\right) := \frac{\frac{1}{\cosh\frac{\beta}{2}\Delta} - \tanh\frac{\beta}{4}\Delta}{\left(1 + \tanh\frac{\beta}{4}\Delta\right)} = \frac{\overline{g}_{\Lambda}^{(d)}\left(\beta\right)}{\cosh\frac{\beta}{2}\Delta}$$

where $\Delta = \max_{\alpha \subseteq \Lambda} \max \left[\max_{x \in \alpha} \left| H_{\alpha} - H_{\alpha \setminus \{x\}} \right| ; \max_{x \notin \alpha} \left| H_{\alpha} - H_{\alpha \cup \{x\}} \right| \right].$

Acknoledgements

The referee to [1] tried to tell us that something was wrong, but we were too blockheaded to understand there was a problem.

References

 M. Gianfelice, M. Isopi: Quantum Methods for Interacting Particle Systems II, Glauber Dynamics for Ising Spin Systems. Markov Processes and Related Fields 4, 411–428 (1998)

Dipartimento di Matematica — Università di Bologna P.zza di Porta S. Donato 5 — 40125 Bologna — Italia <gianfeli@dm.unibo.it>

Dipartimento Interuniversitario di Matematica — Università di Bari Via E. Orabona 4 — 70125 Bari — Italia <isopi@dm.uniba.it>