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Abstract

We study the correlation function of two block-spins of size § > «, with v the Kac
parameter, for 1-dimensional Kac rotators and prove, in the limit v | 0 and for values
of the temperature below the mean field critical one, the decay to be exponential with
a rate dependent of the inverse temperature .

1 Introduction and notations

We analyse the behaviour of spin-spin and two block-spins correlation functions of a system
of planar rotators in dimension one, interacting through a ferromagnetic Kac potential. We
first give an upper bound for such quantities making use of a suitably modified version of
the McBrian and Spencer approach [McBS]. Then we will provide a lower bound for the
two block-spins correlation function based in part on the study of the two point correlation
function of the Villain model, which can be obtained as a limit of our model when the size
of the block-spins is very large (see the Appendix and [Gi]), and in part on large deviation
estimates for the Gibbs measure of our model given in [BPi].

1.1 The model
Given v € (0,1], and A a bounded subset of R (A CC R), we set
A ={ne€eZ:yneA}. (1)
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To each site of the lattice Z we attach a spin variable
Z>i—s o0, €S (2)

and, denoting by v the Haar mesure on S!, we consider the probability space (S, B(S),u),
where S := (S1)” is the configuration space, 11 := &),cz vi and B (S) is the oalgebra of subsets
of S generated by the finite-dimensional cylinders. We also take, with abuse of notation, o;
to be the projection of the configuration ¢ € S on the site ¢. Therefore, for any A C R,
op, = {Ui}ie,\7 denotes the restriction of the configuration o € S to A, and S, the set of
the spin configurations on A, .

For v € (0,1], the interaction among the ¢’s in a finite region A,, A CC R, with fixed
boundary condition o5¢ € Sy, is defined by the Hamiltonian

1 .
H" (oalong) == | D 5 A=dip)+ > | 5 (i.4)oi0;, (3)
i,jEA, ieA,,
jEAS
where u - v denotes the scalar product of the vectors u, v € R? and
is the Kac interaction matrix associated to the function
R 5> 2+ J(x) € RY, (5)

which satisfies the following conditions:

e is compactly supported;
dJ )
* H%Hoo < 00;
o [pdxJ(|z])=1.
For technical convenience, in the rest of the paper we will also assume J to satisfy the

inequalities

Lot g (O1K)) < T(S[R]) < 1pg 145 ([R]), (6)

for any 0 € (0,1], 6 > ~.
The Gibbs measure at the temperature 57! in a finite region A, A CC R with boundary
condition Opc € SA% is

—BH" (7, lons )

v (doy), (7)

B,J. =
i elons) = o) &
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where Zj (5,7|0A3) =L (eﬁH(UA”UA%)). We denote by 17+ the Gibbs state specified by
yiy”" (dol-) that is
7 (d0A7|0Ag) = uf’f” (dU‘O’A%) ph —as. VA, A CCR. (8)

We remark that p”” satisfies the hypothesis of Theorem 8.39 in [Ge], hence is unique and
therefore is left invariant by lattice translation and rotations of the spins. Rotational invari-
ance of %7 can also be directly proven ([Gi] Therem 302) arguing in a similar fashion to
[Pil] and [Pf] (see also [BC] for the case of random interactions).

Let B := {v € R?: ||v|| <1} and M be the space \-measurable maps R > z —— m (z) €
B endowed with the weak topology with respect to the functions L2 (R;R?). M is easily
seen to be a convex and compact space. For any A C R, we denote by m, the restriction of
m e Mto A, and by My :={ve M :v=my; me M}

Defining, for any v € (0, 1], the continuous injective map

S30+—1y(0) =0,:= ZO’Z']_[Z"%(Z‘+1)7) eM, 9)
i€z
we denote by A, := {0 € S :0, € A} € B(S) the image of any A € B(M) via the map

Ly Land by i? the image of any probability measure i on (S, B(S)) in the set of probability

measures on (M, B(M)) through the probability kernel
B(M)xS3(A0)——1401,(0) = 1ises:0,e4} (10)

Hence VA € B(M), v € (0,1], 7 (4) := i (A,) . In particular we set p*7 := (p®%)" .
Moreover, if f : S —— R is a measurable function, we denote by f, := f o ql the image
of f in the set of measurable real functions defined on (M, B (M)).

For any A CC R, with A (A) > A (suppJ) and any fixed mpc € M, let

1
Mp > my — By (mA|mAc) = —5 (mA,JmA) — <mA,JmAc> eR (11)

be the energy functional with boundary condition my., where (-, -) denotes the scalar product

in L? (R;R?) and Jm := (J o ||-||) * m € M. We have

By (malmse) = = [ da [ ayd (ko= sl m @ym () + (12)

—/dm/cdyJ(M—me(ﬂ?)m(Q)

= UJ mA) + WJ (mA|mAc) WJ (mAL) - = ||mA||

__/dg;/cdyJ 2 —yl) [m ()2,



where
My 3 iy v U (my =/ / uJ (1 — yl) |m (z) - m ) € R, (13)

1
V=g [ de [ @I e—sDim@ -m@)Per (1)

l\Dll—

My D my — W (mA|mAC
and WJ (mAc) = WJ (O’m/\c) .

1.2 Coarse graining

For any § > v € (0,1], let Qs be the partition of R, whose atoms are
D:={recR:x€[nd(n+1);necZl. (15)

Then, considering the measurable space (R, B (R), A), where A denotes the Lebesgue measure,
for any A-mesurable function f : R —— R?, ¢ = 1,2, we denote by f© = Es(f) := E(f|Qs)
its conditional expectation with respect to the calgebra generated by Os. Therefore, -
measurable functions are those functions f such that f(©) = f. In particular, if this occurs
for f =1, with A C R, A will be called d-measurable.

For any 6 > v € (0, 1], the map

M>3m+—Es(m) :=m® e M, (16)
is called coarse graining at the scale § and agf) is called block spin of size §. We also set

M((S) = E5M.

In the following, to simplify the computations, we will choose the Kac parameter v and
any coarse graining parameter § > v € (0, 1] to be diadic numbers, since, as it will clear from
the sequel, this assumption will not affect the results.

Given 6 > v and any d-measurable A CC R, for any fixed £’ € M(A‘i) we define the block
Hamiltonian of size ¢ to be the functional

MO 3 60— Hy (E4]6L) = Z J(; (n, k)€ (nd) - € (k) + > J5 (n,k) € (nd) - €' (ko) | € R

nEA,; nehg
k€As kEAS
(17)
with Js (n, k) := 6J (0 [n — k[) . Notice that by (3) for any fixed xc € She
_ _ 1
H,y ((‘77)/\ | (O-’Y>A) =H" (UAJUA%) - 57 AL ] (18)



Moreover, there exist two positive constans by (J), by (J) such that

‘HJW (0A7|5A%) — %H7 ((g§5)>A| (755))/\)
By ((0), 1)) = ot ((o47) 1 (o47), )| < b2 (DA (). (20)

Therefore, a Kac model can be interpreted as a discretized version of a model, whose
configuration space is M, described by the Hamiltonian v~ 1E; ((0@)[\ | (6@)/\) )

The Lebowitz-Penrose theorem [LP] (see [BPi] Theorem 2.1 and [Gi] Theorem 4.2.1 for
this particular model and [TS] for its the Grand-Canonical version) states that, in the ther-
modynamic limit, for any value of the temperature and of the lattice dimesion d, the thermo-
dynamic potentials of the block-spin model derived by a Kac one are very well approximated
by the convex envelope of their mean field equivalents with an error proportional to the size
of the block ¢ () > 7 tending to zero as y | 0. Furthermore, for d = 1 and for any value of
the inverse temperature (3, the sequence of probability masures { ,LL/BW}WE(OJ] satisfies the large
deviation principle with rate function 3F7 ( [BPi] Theorem 2.7), F7 being the excess of free
energy functional

<0 () AW (19)

M3m— F (m):=U’ (m)+ F(m) eR", (21)

where
M3 mr— U (m)i= § [ do [ dga o=yl () - m@P B 22
M>oSm+—— F(m):= /daz [fﬁ (m(z)) — f3 (mﬁ)} € EJF, (23)

with B 3 u — fz(|Ju|) = fs(u) € R the mean field free energy density and mg > 0 the
solution of the mean field equation - fz (z) = 0.
We also recall that

2
[ul

Fo(lul) = £ (u) i= =5+ 671 (|ul) € R, (24)
where 7 (Ju]) := supo {t [w| = g (1)} = 1 (w),
R? > w+—— I (w) := sup {h-w—lnap(h)}eﬁJr, (25)

heR2

is the entropy of the measure v, that is the Legendre transform of the generating function of
the cumulants of v, log ¢ (h), with

o (|h]) =p(h) = /Slv(ds) e heR% (26)
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For (3 larger than the mean field critical value 3,y = 1, mg is strictly larger than 0 and for
d =1, P weakly converges to the product measure v on B(S), which is a.c. with respect

to v with density % (s) = %, such that v (0;) = mgs ([BPi] Theorem 2.3). In the
s

following, unless differently specified, we will restrict ourselves to this range of temperatures.

2 Correlation functions

We will study the behaviour of the correlation function of two block-spins of size 6 > v when
the distance between the variables is very large compared to the size of the blocks. To do this,
we will first give upper bounds for correlation functions of two spins and of two block spins
and then provide a lower bound of such quantities when the distance between the variables
diverges in the limit v | 0.

2.1 Upper bound

First we give an estimate from above of the correlation function of two spins. To this aim we
make use of a modified version of the strategy proposed originally by McBrian and Spencer
[McBS]| and successively developed by Messager et al. [MMSR] and Picco [Pi2]. For further
details we address the reader to [Gi] Chapter 6.

In the sequel we will assume v € (0, %} . In fact, if v € (%, 1] , the interaction among the
spins involves at most those whose mutual distance is smaller than or equal to v/2. Hence, by
the second Griffiths’ inequality [Si], the spin-spin correlation function relative to Kac potential
is dominated by the one relative to the standard nearest-neighbor potential. In this case, we
adress the reader to [McBS] and to the Appendix.

Theorem 1 For any vy € (0, %] let L(y) > 1. Then there exist two constants ¢,7 > 1 such

14p
that, Vp > 0 and 8 > I—,
2+pL( ) 1+2p
8.7y _ < R e T S A
7 [cos (6g — Or4)) ] < exp{ 3 (1 —797)+ Sa+3)" (27)

Corollary 2 Assuming the hypotesys of the preceding theorem, Vp > 0, L () = [Ly*7?] and

N 3> L > 0, we have that there exist two constants ¢, 7 > 1 such that Vv € (O, %] and 3 > 711::

L—1 » 2P
(1=7 )+8(1+7)ﬁ}'

pB I [cos (00 — 9L(7))] < exp {— (28)

The proofs of the above results lie on the following lemma which will also provide the
proofs of analogous results for the two-dimensional case [Gil].



Lemma 3 Letd = 1,2. For anyy € (0,1), Let Ly (y) > 1 and A CC R? such that A, contains
the segment of lenght 2Lq () + 1 centred in the origin. Assuming free b.c., V3 > 0, we have
that there exists a convex functional f (-;vLq (7y),7, 3) on the space of non negative real valued
v-measurable summable functions on [1,400), L}/* ([1,400)), such that, uniformly in A,

s [eos (B0 — O1,9)] < eXp{ Jnf o f(bivLa(v) ,%6)} : (29)
beLb ([1,400))
Proof. We have
7‘]’7 'y
a0 o)) =t [eos (0 — Or,)] (30)

= (Zny (B,7))" ! [ia, [e i(60=01,404))

X exp ﬁ’ydz - ”J(VHZ—JH)COS(H—M

1,JEAS

Integrating over the the variables 0;, j € A,, along the positively oriented closed contour

I'i={zeC:Rze[-nm7n];82=0U{zeC: Rz =m; 3z € 0,q4]} (31)
U{zeC: Rz e [—7,7];32 € [-aj,q;]} U{z € C: Rz = —7; 3z € [—a;,0]},
with
A, 3 jr—a;=a;(B,7) ER" (32)
we get
-1
17 [cos (0o — Oru)] = <Zf{? (8, ,y)) o (mar,0)) o (33)

x iy exp mdz — ”J(vuz—ym

1,JEN
X [cos (0; — 0;) cosh (a; — a;) +
+isin (6; — ;) sinh (a; — a;)]} ei(Go—Gde))]

< eloomma) (280 (5,9) ' x

1—9;

——2J (v]li = ) %

SO P S

Z‘7jeA"/

x cosh (a; — a;) cos (0; — 0;)}] .



By the Jensen inequality

ZY (8,7) = [exp By Z — ”J (v li = 411 ;7. d) cos (6; — ;) (34)

1,J€EA,

Hence

ui " [cos (6o — Oru0)) ] (35)

< ey espd o3 30 00 (y i — 1)) feosh (a; — a) — 1] x
1,jENY

x cos (0; — 0;)}]

<@MWWW%WZ WWUJMWMM%-

i,JEA

Let usset Vi€ A, Cp:={ie€ A, :|i| =k}, Vk€[0,L(y)]NN. Then

D=3 11— Gkn) + Gkn (1= 64)] (36)

1,J€EN, k>0 h>0 i€Cy, jeCh

(EX ) T3 [0 pn-a).

k>0 h>k  h>0 k>h/ i€Cy jeCy,
We also set

a; = apliien,:iccyy L {keN:0<k<La(v)} (37)

ay = Zbll{leN:k+1§l§Ld(7)+l} (38)

1>0

b= by (8,7) (39)

Therefore,
i [eos 00~ 0] 1)

La(v)—1 La(v)—
<exp{ Zbﬂrﬁvd Z > Z > T(yli—4l) x

r=1 i€Cy j€Ckir
k+r
X [COSh(Z bl> —1]}.
l=k+1



We now consider the case d = 1. For the two-dimensional case we refer the reader to
[Gi]. Since by definition of the Kac potential J (v |i — j|) < 1(y|i —j| <1 +7), setting
t=k+1,s=t+r—1,r=s—t+ 1, we obtain

il [eos (6o — 00y (41)

L(v) L(y) LOINt+35 s
=exp{ — Z by + 806~ Z Z [cosh (Z bl> — 1]
=1 t=1 =t =t

Let
b(w;8,7) ==Y bk (B:7) Lk (2) (42)
keZ
then
YL+ g, 8 1 1
,ui’f” [cos (6 — Ory))] < exp —/ —b(28,7) + i [(’YL () —5— ’Y) (— + ’7) +
B gl gl 2 2
(43)

Y(L(v)+1) Y(L(v)+1) Y+ 1
+/ dx/ dy [Cosh (/ —b(z; 5, 7)) — 1} )
YL(v)-3 x x v

Since b is non-negative, ‘fxyﬂ %b (z;8,7)

m=(z+3+7), v(L(7)+1) we get

/ "y {h { / . %%g;g,ﬂ - 1} (44)
< (m—xz) {Cosh [/xmﬂ %b (230, 7)} - 1}

= (m — x) {/wm” m_;mdzcosh [m%mb(z;ﬁa 7)] — 1}
_ m—o) /;+7 dz {cosh [—m _;C (2, 7)1 - 1}

m—x—+y

< /mer dz {cosh [m_#mb(z;ﬁ, 7)] — 1} .

is an increasing function of y. Therefore, setting



Thus defining
YEM+D) g,

f ;AL ()7, B) = —/ 76(2;6,7)+

~

+i—§ [(WL(W)—%—V) (%-FV) x

X {cosh Mb(z;ﬁ,v)] — 1}—1—

Y(L(7)+1) Y(L(v)+1)
—|—/ dx/ dz X
0% x

L(v)—3

y {Cosh {V(L(V);‘ 1) _Ib(z;ﬁ,’y)l B 1}} |

which is convex on L1 ([1, +00)), we get

#" [cos (0 = 01,0)] < exp{f (bai7La ()7, B, d)}

[
Proof of the Theorem. Let us set b(z;3,7) :== B(3,7) in f we obtain

s eos (B0 — O1())] < exp { inf — f(6vL(v) ’7’5)}

be LYt ([1,400))

< exp{—B Lo+ 2 {vm) - (gﬂ)] 9
(o) (on) 2
o) el ) 252 )

Since Vv € (0, 1] there exists 7 () > 0 such that, if y7'B (8,7) < 1,

1+7(7)

1 2
5 (—+27) Y2B*(3.7),

cosh K% + 7) v 'B (5,7)} —-1< :

10

(45)

(48)



setting 7 () == (3 +7) € [3,1] we have

e {50+ 2 o) - (547)] » (49)
{23

() el )22
gexp{—B(ﬁﬁ)L(’ﬂ{l 857(_33)26( 3

7)
XHL(V)—H(?](HT }+

+260" (v) (L+7 (v )) 332(5 7)}

—exp{ B(B,v) L {1—457 B (B,7) %
n(7)

X (1—%(7)) I+7() () +7) }+

+200" (v) A+ 7 ()7 B> (8,7)} -

—_

Choosing, Vp > 0,

B(B7) = (1+7 (v)z (;p(v) +7)°8 o

with 3 > 3— and o 2%2]7(7) | (51)
we obtain o

iz ey ) h

=P {_4 1+ Zj;)p(f?((?) +7)° 8 {1 - <1 - 772(27)))} '

261 (1) (1 +;<7))7316(1 +T(7;)/:Z:(7) +7)452}

= {_4(1+T<7 ))(L((vj)ﬂ)zﬁ e

Hmps (1+7(y ))<Z) () + )" 5}
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uniformly in A,. Setting

o= e (147 (7)) (1 +47)° (53)

and passing to the thermodynamic limit, we get the result. m
Proof of the Corollary. From (52), setting Vp > 0, L(y) = [Ly?7P] with L > 1, we
obtain
YLy 1)
cf

(1—7”)+ﬂ}- (54)

inf f(b;vL(v),%ﬁ)<€XP{— 8(1+7)73

be LYt ([1,400))
|

Since the scalar product of two block-spins is a linear combination of scalar products of
the single spins, it is possible to apply the estimates given in the preceding theorems to each
term of this linear combination and obtain an upper bound of the correlation function of two
empirical magnetizations. Anyway, making use of Griffiths” inequalities, these results can also
be reproduced in the case in which we consider, instead of single spins, their empirical mean
on lattice blocks of size ¢ > v with 4,y € (0,1).

Let 6,7 € (0,1) such that 6 > v and A CC R, é-measurable. Assuming free b.c. let us

denote by (J;" <i’j))ijeZ the interaction matrix J.* (i, 7) :== (1 (v]i — j| < (3 +7)))M€Z. If

+ . . 1
Q7 (i) =<cxeR: |z —iy| < §+'y (55)

and .
@ ={iezvli-i< (3+7)} (50

then
+ 1 ¥
—H" (04,) + §V\Av\ =3 Z 0i-0j (57)
yeEA

FYEQT (im)NA

SEPND MDD SIS

koeA ingé)(ké) ”5€Q+’V(i7)mAjeQ£f)(n§)
But for ¢ € Q@ (ko)
Lo+(iy) (n0) < 1g+sqrs) (n9) (58)

and the positivity of the interaction matrix allow us to make use of the second Griffiths’ in-
equality, that is to bound from above the correlation function of two empirical magnetizations
of size § for the Gibbs measure associated to H”¥ (O'Av) , with the one relative to the Gibbs

12



measure associated to
, 1
—H" (o0,) + 5710, (59)

SEP VD VD VD DR

ROEN 1eQY (ks) n3€QT* (RONA QY (no)

2 (%) 9 (k8) - 0 (no)

kSEA nseQ+9(

:%(_)52 Z (|n5—k5|§%+5)x

k€A ndeA
X 0(6) (ko) - o 5) (nd).

We now consider, V3 > 0 and any fixed value § > v € (0, 1), the Gibbs measure pu*"’
associated to the interaction matrix

J0(1,5) = v1lgreus (7)1 (QY (k) 2 i) 4,j€Z (60)

s
V\'/here 1(QW (ko) 2 iy) = 1o (ks) (77) - Defining VS”) (dmy) == {% Zjng5>(n5) gj € dmn} ,
since

o (6n) = { M 080 g (61)

my, sin g,
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for L4 (9,7) € A, we have
Ve [ 9)(50) - 0! (5L (6,7))] < 1’ [0 (50) - o\ (L (6,7))] (62)
/L momL((S 7) COS (90 —0165) )}

(%)
vy (dmn) 0,
| | dm,, || —
/01|A5| " dmy, /[_M]m e, 2m .

neElhs

(£)
Un (dmn)/ o,
| | dm, | | _ —
/[071]|A5 dmy, [—m,m]lNsl 2

g 60d nkeA5 (6|n k|<s +6)mnmkcost9 —0r) }
n€As nels EAs

Q(%)écd('y) YnkeAs 1(5|n—k|§%+5)mnmk cos(0n—0k)

X €2 X

XMOML5,5) COS (90 - QL(M))]

{/W [T, JT e ) / e,

A
nEls [—71',7@‘ 6| nels
1

><€2( )6Zn keAg 1(6|n k< +5)mnmkcos(0 ka)} «
[ / I[ s [ el o2 / oy
[0, 1]|Aa| s [—,m) [l nehs 2m

( )‘SznkeA 1(5|n kl<s +6>mnmkcos(9n Ok)

X e2? X

XM L(s,~) COS (90 - eL(M))} )

with E(mn; (%)) such that, Vr € (0,1) and m, < r, there exist ¢(r) > 0 such that

’5 (mn; (%))‘ < c(r)%log% ([BPi] Theorem 2.2). Since Vn € Ay, m,, € [0, 1], we can still
make use of the second Griffiths” inequality because the interaction among the block-spins
angular variables is given by a ferromagnetic random potential induced by the moduli of the
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block-spin. Hence,

Hiﬁ [0(6) (60) - 0(5) (6L (9, '7))] (63)
df
dm,, T e(3)[-me(mn (M/ 2
{/[0 sl o H nle_/{s A nle_/{s .

a2 )6aneA 1(5|n k<1 +6) cos(0n —9k)} ! o

nels [_7.(771']

do,
11 5~
|A(5\n€A5 n
X€2 )éznkel\ 1(8ln—k|< 540 cos(0n—0k) coS (Qo—eL(M))}

HAs |:H cA 65(%)5Zn kEAg 1(5|7’L k|< +5) cos(0n,—0%) oS (90 B eL(é 7))]
n S ’
HAs [Hne% e%(%)fsijn,ke% 1(8|n—k|<3+9) cos(@nfek)]

Then, proceding as in the case of spin-spin correlation, we obtain:

Theorem 4 For v > 0 sufficiently small and 6 € (’y, %] , given L (6,7) > 1, there exist two

sl+p
constants ¢, > 1 such that, Vp > 0 and 3 > o

6Py L (6,7)
cf

(1—0") + ﬂ} (64)

177 [0l (50) - o' (5L (6,7))] < exp {— 8(1+7)3

Proof. Changing (3 for B% and ¢ for v in the proof of the preceding theorem, we derive
an expression analogous to (49). Then, substituting into (50)
K 52+p
3(57577)23(5_75): i 9 )
Y 4(147(8)(n(0)+96)" B

(65)

we get the result. m

Corollary 5 Assuming the hypotesis of the preceding theorem and setting ¥Vp > 0, L (6,7v) =

[ﬁ} , where L is a positive integer, there exist two positive constants ¢, T > 1 such that,

for 8> 522,
L—1 5P
1P [g@ (60) - gg) (6Lq (6,7))] < exp {— e (1—67) + m} (66)
L—-1 §2rtt
= exp{_ g -+ 8(1+7)ﬁ}'



Proof. Follows directly from (64). m

Furthermore, it is possible to prove, by means of a polymer expansion, that, if the tem-
perature of the system is high enough, the decay of the truncated correlation function of two
block-spins, when their mutual distance diverges, is at most exponential.

Theorem 6 For any v € (0,1) and Vd,q > 1, if B > 0 is small enough, Yo > ~ there exists
a constant C' > 0 such that

W0 [0 (50) - 0 (5La (6)] = 17 [0 (50)] - w7 [0 (5L (9))]] (67)
— |M’6’7 [056) (60) ; Jgé) (6Lg (5))]| < Ce¢(0:9)3La(5)

where 0 < £(0,5) =0 (6|Inj]).

For the proof of this result we address the reader to [PS] and for this specific model to
|Gi] Theorem 6.2.3.

2.2 Lower bound

To have a more precise characterization of the asymptotic behaviour of the correlation function
of two block-spins, it is not enough to give an estimate from above, since this would imply
only that the decay in space of such function is not faster than the decay of its upper bound.

To get a lower bound estimate of block-spin correlation functions we will follow a strategy
which is in general valid for d-dimensional Kac rotators models with d > 1. In particular, for
d = 2 and for temperature sufficiently lower than the mean field critical one, this argument will
allow us to show the decay of two block-spin correlations to be polinomial with an exponent
proportional to a function of 3, implying the system to undergo a Berezinskij-Kosterlitz-
Thouless phase transition [Gi], [FrS], [KT] and [Be].

For any 8 > f3,,; = 1 we will procede along these lines:

1) First we will confine the system to a subset A CC R¢ sufficiently large to which we will
eventually impose free b.c.. Since the angular part of the interaction among the a@’s
is subject to a random ferromagnetic potential induced by their moduli, we will restrict
ourseves to the event in B(S) such that all the moduli of the empirical magnetization

defined inside A are larger than a given strictly positive value;

2) second, we will consider a given subset A of A. Inside A we will replace the original
Kac potential with a weaker one and we will replace the values assumed by the moduli
of the empirical magnetization with the values given in the preceding point;

3) third, we will set to zero some of the elements of the interaction matrix, reducing our
system to a system where the block-spins interact only with their nearest neighbours.
The intensity of the new interaction in A will be set proportional to the minimum
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value assumed by the moduli of the empirical magnetizations given in 1) and will be
eventually set to zero outside A (which means assuming outside A free b.c.). A this
point the estimate from below of the correlation function of two block-spins is reduced
to the estimate from below of the same quantity for a nearest neighbour model;

4) last, we will estimate the Gibbs measure of the event in B (S) considered at point 1).

We remark that a similar argument has been used in [Pel] to obtain an analogous lower
bound estimate on the correlation function of this model and in [Pe2] to show that the finite
dimensional marginals of the angular part of the empirical magnetizations of size v~! weakly
converge to a Brownian motion on the circle.

2.2.1 The 1-dimensional case

In this case, due to large deviations estimates for the Gibbs measure of the model and the
possibility to approximate the block-spin model with a Villain one [Vi], it is possible to deviate
slightly from the stategy previously described towards a finer analysis of block-spin correlation
functions. More precisely:

e for any 5 > 1, it is possible to make use of the large deviation results given in [BPi] to
obtain sharp estimates on the probability that, below the mean field critical temperature,
the moduli of the empirical magnetizations of any size 6 >+ > 0 in the limit v | 0 are
arbitrary close to mg for any choice of the b.c..

e We can restrict ourseves to study the model of a rotator with nearest neighbour potential
whose coupling constant is proportional to g which diverges when v | 0. Under these
hypotesis the model can be approximated by a Gaussian one, the Villain’s model (see
Appendix) proving the decay of correlations to be exponential.

Theorem 7 Let d =1, B > By = 1, and mg the solution of the mean field equation. Then,
for any v,0 € (0, ﬂ with 6 > v and ¢ € (0,mg), there exits a function Ry (ﬂé (mg — C)Q)
Y

such that the limit lim, o exists and is finite and

Ry (85 (my = ¢)%)
p* [0 (30) - o (81 (5,7))] (68)
> (mjy =) (1 +(3) Ry (95 s - <>2)) x

" 2652 (m ¢ 2 2
y <1_25l(5,7)6_ «;o)e_ (mp=¢)

vL(3,7v) X
v

Y1(8,7)

e 22(mac)”
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Proof. Let > 1,y € (0,1), 0 >~ and ¢ € (0,mg). Let also Vp > 0

Vs, (mg; Q) := {m € M : Jxtaleche |x] < 7P, ‘m(‘s) (x){ <mg—(} (69)
and AP CcC R? a sufficiently large d-measurable set. By [BPi] Theorem 2.3, there exists
e(8.0)

a positive constant ¢ (d,¢) such that p*7 (VJ (mg;()) < e 0 . Let Q= QP (00) :=
{z € R : |z| < 7P} which is é-measurable, then

(6 1(0
(Vap (mg; ) = V39 (mgs; €) = Vs (mg; €) (70)
nGQP
V;{E:,zl (mg; ¢) := {m(é) c MO . ‘m(5) né) | =m, <mg — C} (71)
(6) (6 c d),
(V) ma:0)) = Vi (i €) = () Vi (msi¢ (72)
nEQP
Var (mg: ) = (Vi) (mﬁ;C)) - (73)

Let A CC R such that Ay :={j € Z: jy € [-L, + 0, L, — d]}, where széwithLan

integer strictly larger than 1 and 61 (6,7) € A C U7 o 7 Qr (§k) with QP (5k) = QP + 6k and
p > 0 sufficiently large such that the system confined in A do not interact with O(ar): € S(Ap)g.
Then, setting

R d),c
VD (mgi Q) == () Voot (mpgi ¢ ﬂ ﬂ Vi (mgi()  (74)
nels k=0 5(51(3)
YP81(d,7) c
(9)
- N () <mﬁ;o)
k=0
(8) .
((Va’:é“) <mﬂ<) = ) Vim0, (75)
neQs (k)

by the second Griffiths’ inequality,
0< ™ |09 (80) - 0@ (61 (0.7)) Ly ()] (76)

ot (80) | o (31(6,)) -
Vi p(mas¢
7 @0)| ot (@1 @]

< 1 | |of® (00) 049 (1.6,

2 g | 00 (00) o8 (8L(6,) |
V’p mg;C
A7 @0)| ol (a1 0. )

2 _ (6.0 0l (0,7y) _e6.0)
< (mg —¢)* 7pﬂ”ypél(é,’y)e T =2(mg —¢)? (9.7) .
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Therefore we get

{a@ (80) - 047 (81 (6,9)) Ly, Q} (77)

:UJ\ [efﬁHv('KU“/)AC)O"(y&) (50) ) O"S/(S) (5l (67 ’7)) 1V5/,(;§)’C<mﬁ§C> ((>A (UV)AC)}
0 [e—ﬁHA,(w(ow)Ac)]

1 [e7 )8 (30) 40 0100, 1 )

By
I (d (U’Y)AC) - e )
,UX |:6 BH«,( I( W)Ac)lvgygt\s),c<mﬂ;c)i|

» | _ Ov) Ae
/~L7\ [efﬁHw(“(aw)Ac)} Vé,AP\A<mB’C) (( 7>A )

1A {eﬁm(-(ovm) 080 | ) (3169)) ¢

60)] " [T i) Véf)’c(mﬂ;c)]

X
0 ()

/1/7\ |:€—5H7('|(U’Y)AC) 1

y - : : 1V/(5),c (mg;C) ((U'Y)AC) :

§,AP\A

We now consider

g —ﬁH’Y<'|(U'y)AC) Ug‘s)(50) . o-gé)((ild((;,’y)) 1 ).
KA [e 0| ol etatem)| Vi (maic)

] [efﬂm(-um)

Ac)lvgfg””(ma;c)}
y a9 (50) ' o\ (814 (8,7))

’fy
A (mac) o4 (50)]
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Again by the second Griffiths’ inequality we have

. otV (60) o (81
H ®) TG
o (00)| |0 (a1

)
AR (meiC) ‘ (@) (79)

’uA V’<5) “(mpiC)

y(3) dmn db,
) {/[011'%' H e 115, <q S )> /[—ml'%ngaﬁx

nels
-1

> 65(%)5[271 keAg 2+Zn€A5 ZkeAC] (6\11 kKl*&)m"mk cos(6n—0y) } X
[ am IT =5 (M 2 o) [ TS0
n m C 1 n
[/[0 I]IA(S‘ nelg nels n€As . [_ﬂ"ﬂ—]lAts‘ neAs 2
PN Snnens 3+5nen, zkeAc] (Bin—H<h=8) o cox@n=00) oo (g0 _ g )}
v(5) (dmy,) ( ) do
> / dm, n 1 ma—.1] (my,) / —x
{ [0, 1]\A5| 1;{5 ngé nle_/{; p C [—7r,7r]|A5| nEAs 2m

-1
ﬁ(%)d(mﬁ_c) [Zn,kE/\é %—’—znel\(g ZkeAg] 1<§|n_k|S%_6) cos(Gn—Hk) } X

y(3) d
X[/ HdmnH (dmy,) (Hlmﬁ ] mn)>/ H
[0,1)146] nehs nEhs nEhs [—m,mlAsl - ehs

do,,
2T
A0 [rsen, 55, w (n<-a)emttr-0) o (0 }

— M—\’ﬁ’(mﬁ_c) [cos (90 - 91(5,«,)) | {en}neAg} :

Applying the third part of the scheme given before we reduce ourselves to estimate the
two spins correlation function of a model described by a nearest neighbour potential. Hence,
setting Ag := {l € Z: 6l € [~L, + 6, L, — 8]} with £ = L; (7), we have

7 do,, B(2)s(mg—¢ P ES DT cos(On—0n
ZA5 (ﬁ,’y,é! {Gn}n€A§> ::/ | H %e (7) ( B ) Zn__L(S(A,) ( +1) (80)
[—7T,7T] s neNs
b b 5
= Tk - 20
B /_ [A1] H 2w H Z% (65 (ms — () 7|9k—579k) 5
[—m,7] k=—Ly+2 k=—L,+2
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where Ay = [—— +2,2— —} NZ and Zs (ﬁé (mg —¢)° %|9k_g, 9k> is the Gibbs factor of the
Villain model (see the Appendlx) Thus

77ﬂ7 m 7C
)’ cos (eo—elw |{9 bucas | (81)
d 0
/ 1 ama 11 - L (mg—c1] 115
o]l X, neA5 nEA T

<) T st

dmn
dmn L
/[01 2] H ( (mp—¢1]

/ d@n
—X
]l 5\ 27T

nEA TLGA5 neA

5 Ls(v)-1
X€ﬁ<;>5(mﬁ_<> Zn* L (’Y)Cos(an 9n+1 COS 90 el(;,y

I . I ) (dm,)
v\ (dmy,
/01|A5| A dm,, H 1 (mp—¢.1] (my,
nelg nEAP

ﬁ7776| {0 }nEAC> X

) (dm,,
/{01%' IT dm. I % d;m) TT e ) | Zas (82781 {60 e ) ¥

) -1
neAs nelg n ?’LEAP )

d@ e ( )5(7715 C) Zii(ji;% )cob(ﬁn On+1)
X
/[_mr]l/\al H 27

nehs Z s (5,%5| {en}nEAf;)

From (9), setting [ (0,7) = %lW with N = 1, > 1, it follows

cos (6o — bis))

Ls(v)—-1
d@ e ( )6(mﬂ C) anfLé(,y) cos(0n—0ny1)
| | cos (6o — 0 82

A (8.7 01 {00} en; )
f mm]l Al H L +6 d2€7;€ Hk:——L % (65 (m _ C)z %|9k_%, 0k> €ii(00_617)
Ly-% )
f ]l Al - s Ve d297f ka Ly+2 % (65 (mg — (>2%|9k_g7@k)
TR T YR s { (0-1,-01) }2
L 2 %

2@62(7716 () e T

v

(&
( ' r ﬁé(mﬁ—o?;e%,em)
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with {z} = 2 — [z], Vo € R, and by (9)

(6)
R (86 (mg = ¢)*;0-1,,01,) = Ri (ﬁé (ms — )% ( “Zé)) ) . (83)
v Y O-'Y
OAC

Hence, since L, > [,

(6) (6)
. oy’ (60) oy (81(9,7)) 5 84
MA,Vgl,(;\s)’c(mB?C) [)0(5) (50)‘ o\ (81 (5, 7))“( ! )A] i
> ) Teos ()~ B | (00 o]
(

S (7% ) - 5 [35 mﬂ C) ( L'Y_9L7> ’
> 2B§2<m6 C) e 2m X

(14 () e (5= 0

and from (77) we obtain

el [a,(f) (60) - 055) (61 (0,7)) 1V6/(;>’C(m5;C)] (85)
Y *BHW('KUW)AC)
HA [6 1v’(‘”’c(m C)}
2 5,A B
= (mﬁ B g) /Nlﬁ,’y (d (O—’Y)AC) 7 [ 75H’Y(-|(0"‘/)AC):| 1V5/(2)1;<A(m5;<> ((UV)AC) 8
P |€ ’
-—0) —Zﬁé(mﬁc)%g{l( (Lot @(La(wﬂ)}Q
< e 2852 (m ) . Iy 27 |U<7) |07>| %

2 0(5)
x (1+<%> : (ﬁd(mgC)2; ( 0'(2) ) ))]

2ﬁ5(mB—C)27r2

> (my — )? <1 + (%)2 Ry (95 (mj g)z)) e %

YU(8,7) v *ﬁHW("(Uv)AC)
_ ; T3 [e 106y, ]
2662 (m—) B (d s (maiC) 1 s
e /M (7)) KA [e—ﬂHw(-l(ow)Ac)] Vyarta (meic) ((2)ae)
with
R; (86 (mg —¢)*) == min R (86 (mg —¢)*50-1,,01,) - (86)
Bl {9 Loys QL,Y}E[—TK' !
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But

7 o BHy(1(01)re) 1 }
e Ly mec)

i [e P (o)

1V/(5),c (mg;g) ((UV)AC) (87)

5,AP\A

5 YPL(6,) . (5) c
1(8),c /s
= [ 0] = | () o))
k=0
51 90l0,y) o
gl

|
3 Appendix
Let

1 ™

I(k;BN) = > / dfe™P <0 cos ko (88)
1 [T :
=5 dfelNPeosleitt 7 N eN.
™ —T

We set I (k=0;8N):=1I,(6N).

3.1 The Villain model limit

The proofs of the following results follow from direct computations and therefore have been
omitted. For further details we address the reader to Appendix A and B of [Gi].

Proposition 8 Let A := {1, .., N}NZ. For any fized opc € Spe, that is any Oy, On1 € [—7,7),
in the limit N T oo the partition function of a nearest neighbour rotator model with coupling
constant N writes

2 (BN; 1one) = Zn (BN 6o, Ox+1) (89)
= I{"" (BN) [\/ 2mBVs (6o — Ons1) +

1
(%))
((6—0")—2mk)>

where Vg (0 = 0")) :== > ez e P 3
[ViJ.

is the Gibbs factor relative to the Villain model
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3.2 2-spins correlation function of the Villain model
Proposition 9 Let 3, R > 0,
AN ={leZ:~yle|-L+~,L—7]}CHZ (90)

with L a positive integer and Ay = [—L+1,L — 1] NZ. Then, for any 1 < T < L —1 and
ope € She, there exists a function R} (ﬁR; O’Ai) = O () such that
Y

_M{(G—L—BL)}2 BR1

¢ BRe o (1 +~*R% (ﬁR;aaA§)> <y’ (o7 -or|oas) < 1. (91)
vy
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