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Abstract

We study the correlation function of two block-spins of size δ > γ, γ being the Kac
parameter, for the model of two-dimensional planar rotator with ferromagnetic Kac
potential. We prove that for sufficiently small values of the the temperature, below the
mean field critical temperature, the decay of the two block-spins correlation function is
polynomial with an exponent which is a function of β.

1 Introduction and notations

We analyse the behaviour of spin-spin and two block-spins correlation functions of a system
of planar rotators in dimension two, interacting through a ferromagnetic Kac potential. We
first give an upper bound of such quantities making use of a suitably modified version of the
McBrian and Spencer approach [McBS]. Then we will provide a lower bound for the two block-
spins correlation function based on the same renormalization procedure formerly introduced
by Fröhlich and Spencer [FrS], [FrS1] to study the decay of two spins correlations for the
planar rotator model with nearest neighbour interactions. These estimates will show that,
for sufficiently small values of the temperature, below the mean field critical temperature,

the decay of two block empirical magnetization of size δ ∈
(
γ,
(
2
(√

2 + 1
))−1

]
, γ ∈ (0, 1)

being the Kac parameter, is polynomial with an exponent which is a function of the inverse
temperature β. Since for sufficiently high values of the temperature, performing a polymer
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expansion [PS], [G] it can be proved that the decay of spin-spin and block-spin pair correlations
is instead exponential, this proves the system to undergo a Berezinskij-Kosterlitz-Thouless
phase transition [Be], [KT] and [JKKN].

1.1 The model

Given γ ∈ (0, 1] , and Λ a bounded subset of R2 (Λ ⊂⊂ R2), we set

Λγ :=
{
n ∈ Z2 : γn ∈ Λ

}
. (1)

To each site of the lattice Z2 we attach a spin variable

Z2 3 i 7−→ σi ∈ S1 (2)

and, denoting by ν the Haar mesure on S1, we consider the probability space (S,B (S) , µ) ,

where S := (S1)
Z2

is the configuration space, µ :=
⊗

i∈Z2 νi and B (S) is the σalgebra of
subsets of S generated by the finite-dimensional cylinders. We also take, with an abuse of
notation, σi to be the projection of the configuration σ ∈ S on the site i. Therefore, for any
Λ ⊂ R2, σΛγ := {σi}i∈Λγ denotes the restriction of the configuration σ ∈ S to Λγ and SΛγ the
set of the spin configurations on Λγ.

For γ ∈ (0, 1], the interaction among the σ’s in a finite region Λγ, Λ ⊂⊂ R2, with fixed
boundary condition σΛc

γ
∈ SΛc

γ
, is defined through the Hamiltonian

HJγ
(
σΛγ |σΛc

γ

)
:= −

 ∑
i,j∈Λγ

1

2
(1− δi,j) +

∑
i∈Λγ

j∈Λc
γ

 Jγ (i, j) σi · σj , (3)

where u · v denotes the scalar product of the vectors u, v ∈ R2 and

Jγ (i, j) := γ2J (γ ||i− j||) i, j ∈ Z2 (4)

is the Kac interaction matrix associated to the function

R+ 3 x 7−→ J (x) ∈ R+, (5)

which satisfies the following conditions:

• is compactly supported;

•
∣∣∣∣dJ

dx

∣∣∣∣
∞ < ∞;

•
∫

R dxJ (|x|) = 1.
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For thechnical convenience, in the rest of the paper, we will choose J to assume the
particular form

J (t; γ) :=
16

π (1 + 4γ2)

[
1[0, 1

2
−γ) (t) + f̄

(
t−
(

1

2
− γ

))
1[ 1

2
−γ, 1

2
+γ] (t)

]
, (6)

where f̄ ∈ C1 (R+; R+) with support [0, 2γ]. Setting f := f̄ ◦ ||·||, we also assume:

• f (0) = 1;

• f (x) �{x∈R2: ||x||=2γ}= 0;

• λ (f) = 1
2
λ
(
1{x∈R2: ||x||≤2γ}

)
.

Let, ∀x ∈ R2, |x| := |x1| ∨ |x2| . Hence, since J (·; γ) is a non increasing function, we have
J (||x|| ; γ) ≥ J (|x| ; γ). Furthermore, ∀δ ≥ γ,

J (||δk|| ; γ) ≥ 16

π (1 + 4γ2)

[
1

(
|δk| ≤

(
1

2
− γ

)
1√
2

)
1(0, 1

2)
(γ) + δk,01[ 1

2
,1] (γ)

]
, (7)

J (||δk|| ; γ) ≤ 16

π (1 + 4γ2)
1

(
|δk| <

(
1

2
+ γ

))
, (8)

where,
1 (|δk| ≤ r) := 1{k∈Z2:|δk|≤r} r ∈ R+. (9)

The Gibbs measure at the temperature β−1 in a finite region Λγ, Λ ⊂⊂ R with boundary
condition σΛc

γ
∈ SΛc

γ
is

µβ,Jγ

Λγ

(
dσ|σΛc

γ

)
:=

e
−βHJγ

�
σΛγ |σΛc

γ

�

ZΛγ

(
β, γ|σΛγ

) ⊗
i∈Λγ

ν (dσi) , (10)

where ZΛγ

(
β, γ|σΛc

γ

)
:= µ

(
e
−βH

�
σΛγ |σΛc

γ

�)
. We denote by µβ,Jγ the Gibbs state specified by

µ
β,Jγ

Λγ
(dσ|·) that is

µβ,Jγ
(
dσΛγ |σΛc

γ

)
= µβ,Jγ

Λγ

(
dσ|σΛc

γ

)
µβ,Jγ − a.s. ∀Λγ, Λ ⊂⊂ R2. (11)

The uniqueness of the Gibbs measure for plane rotator models is a long-standing open problem
and is tightly related to the absence of continuous symmetry breaking for two-dimensional
spin systems; we refer the reader to the bibliografical notes to section 9.2. of [Ge] and to [BPi]
for a complete historical account on this problem. Anyway, we remark that uniqueness and
extremality of the translation invariant Gibbs measure has been established for ferromagnetic
translation invariant interaction in absence of an external field in [BrFL] and [MMSPf] by
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means of correlation inequalities (see also [FrPf] for nearest-neighbour classical XY model).
Rotational invariance of µβ,Jγ can also be directly proven ([G] Theorem 302) arguing in a
similar fashion to [Pi1] and [Pf] (see also [BC] for the case of random interactions).

Let B := {v ∈ R2 : ||v|| ≤ 1} and M be the space λ-measurable maps R2 3 x 7−→ m (x) ∈
B endowed with the weak topology with respect to the functions L2

loc (R2; R2). M is easily
seen to be a convex and compact space. For any Λ ⊂ R2, we denote by mΛ the restriction of
m ∈M to Λ, and by MΛ := {v ∈M : v = mΛ ; m ∈M}.

Defining, for any γ ∈ (0, 1], the continuous injective map

S 3 σ 7−→ ιγ (σ) = σγ :=
∑
i∈Z2

σi1Q(γ)(iγ) ∈M, (12)

where

Q(γ) (iγ) :=
{
x ∈ R2 : x ∈ [γii, γ (i1 + 1))× [γi2, γ (i2 + 1)) ; i = (i1, i2) ∈ Z2

}
(13)

we denote by Aγ := {σ ∈ S : σγ ∈ A} ∈ B (S) the image of any A ∈ B (M) via the map
ι−1
γ and by µ̄γ the image of any probability measure µ̄ on (S,B (S)) in the set of probability

measures on (M,B (M)) through the probability kernel

B (M)× S 3 (A, σ) 7−→ 1A ◦ ιγ (σ) = 1{σ∈S : σγ∈A}. (14)

Hence ∀A ∈ B (M) , γ ∈ (0, 1], µ̄γ (A) := µ̄ (Aγ) . In particular we set µβ,γ :=
(
µβ,Jγ

)γ
.

Moreover, if f : S 7−→ R is a measurable function, we denote by fγ := f ◦ ι−1
γ the image

of f in the set of measurable real functions defined on (M,B (M)) .
For any Λ ⊂⊂ R2, λ (Λ) ≥ λ (suppJ) and any fixed mΛc ∈MΛc , let

MΛ 3 mΛ 7−→ EJ (mΛ|mΛc) := −1

2
〈mΛ,JmΛ〉 − 〈mΛ,JmΛc〉 ∈ R (15)

be the energy functional with boundary condition mΛc , where 〈·, ·〉 denotes the scalar product
in L2 (R2; R2) and Jm := (J ◦ ||·||) ∗m ∈M. We have

EJ (mΛ|mΛc) = −1

2

∫
Λ

dx

∫
Λ

dyJ (|x− y|) m (x) m (y) + (16)

−
∫

Λ

dx

∫
Λc

dyJ (|x− y|) m (x) m (y)

= UJ (mΛ) + WJ (mΛ|mΛc)−W J (mΛc)− 1

2
||mΛ||2

− 1

2

∫
Λ

dx

∫
Λc

dyJ (|x− y|) |m (x)|2 ,
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where

MΛ 3 mΛ 7−→ UJ (mΛ) :=
1

4

∫
Λ

dx

∫
Λ

dyJ (|x− y|) |m (x)−m (y)|2 ∈ R , (17)

MΛ 3 mΛ 7−→ WJ (mΛ|mΛc) :=
1

2

∫
Λ

dx

∫
Λc

dyJ (|x− y|) |m (x)−m (y)|2 ∈ R (18)

and W J (mΛc) := WJ (0|mΛc) .

1.2 Coarse graining

For any δ ≥ γ ∈ (0, 1], let Qδ be the partition of R2, whose atoms are

Q(δ)
n :=

{
x ∈ R2 : x ∈ [δn1, δ (n1 + 1))× [δn2, δ (n2 + 1)) ; n = (n1, n2) ∈ Z2

}
. (19)

Then, considering the measurable space (R2,B (R2) , λ) , where λ denotes the Lebesgue mea-
sure, for any λ-mesurable function f : R2 7−→ Rq, q = 1, 2, we denote by f (δ) = Eδ (f) :=
E (f |Qδ) its conditional expectation with respect to the σalgebra generated by Qδ. Therefore,
δ-measurable functions are those functions f such that f (δ) = f. In particular, if this occurs
for f = 1Λ, with Λ ⊂ R2, Λ will be called δ-measurable.

For any δ ≥ γ ∈ (0, 1], the map

M3 m 7−→ Eδ (m) := m(δ) ∈M , (20)

is called coarse graining at the scale δ and σ
(δ)
γ is called block spin of size δ. We also set

M(δ) := EδM.
In the following, to simplify the computations, we will choose the Kac parameter γ and

any coarse graining parameter δ ≥ γ ∈ (0, 1] to be diadic numbers, since, as it will clear from
the sequel, this assumption will not affect the results.

Given δ ≥ γ and any δ-measurable Λ ⊂⊂ R2, for any fixed ξ′ ∈ M(δ)
Λc we define the block

Hamiltonian of size δ to be the functional

M(δ)
Λ 3 ξΛ 7−→ Hδ (ξΛ|ξ′Λc) :=

∑
n∈Λδ
k∈Λδ

1

2
Jδ (n, k) ξ (nδ) · ξ (kδ) +

∑
n∈Λδ
k∈Λc

δ

Jδ (n, k) ξ (nδ) · ξ′ (kδ)

 ∈ R

(21)
with Jδ (n, k) := δ2J (δ |n− k|) . Notice that by (3) for any fixed σ̄Λc

γ
∈ SΛc

γ

Hγ

(
(σγ)Λ | (σ̄γ)Λ

)
= HJγ

(
σΛγ |σ̄Λc

γ

)
− 1

2
γ2 |Λγ| . (22)
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Moreover, there exist two positive constans b1 (J) , b2 (J) such that∣∣∣∣∣HJγ
(
σΛγ |σ̄Λc

γ

)
−
(

δ

γ

)2

Hγ

((
σ(δ)

γ

)
Λ
|
(
σ̄(δ)

γ

)
Λ

)∣∣∣∣∣ ≤ b1 (J)

(
δ

γ

)2

λ (Λ) , (23)∣∣∣EJ

((
σ(δ)

γ

)
Λ
|
(
σ̄(δ)

γ

)
Λ

)
− δ2Hγ

((
σ(δ)

γ

)
Λ
|
(
σ̄(δ)

γ

)
Λ

)∣∣∣ ≤ b2 (J) λ (Λ) . (24)

Therefore, a Kac model can be interpreted as a discretized version of a model, whose

configuration space is M, described by the Hamiltonian γ−2EJ

((
σ

(δ)
γ

)
Λ
|
(
σ̄

(δ)
γ

)
Λ

)
.

The Lebowitz-Penrose theorem [LP] (see [BPi] Theorem 2.1 and [G] Theorem 4.2.1 for this
particular model and [TS] for its Grand-Canonical version) states that, in the thermodynamic
limit, for any value of the temperature and of the lattice dimesion d, the thermodynamic
potentials of the block spin model derived by a Kac one are very well approximated by the
convex envelope of their mean field equivalents with an error proportional to the size of the
block δ (γ) > γ tending to zero as γ ↓ 0.

Furthermore, for d = 1 and for any value of the inverse temperature β, the sequence of
probability masures {µβ,γ}γ∈(0,1] satisfies a large deviation principle with rate function βFJ

[BPi], FJ being the excess of free energy functional

M3 m 7−→ FJ (m) := UJ (m) + F (m) ∈ R+
, (25)

where

M3 m 7−→ UJ (m) :=
1

4

∫
dx

∫
dyJ (||x− y||) |m (x)−m (y)|2 ∈ R+

, (26)

M3 m 7−→ F (m) :=

∫
dx
[
f̄β (m (x))− f̄β (mβ)

]
∈ R+

, (27)

with B 3 u 7−→ f̄β (|u|) = fβ (u) ∈ R the mean field free energy density and mβ ≥ 0 the
solution of the mean field equation d

dx
f̄β (x) = 0.

We recall that

f̄β (|u|) = fβ (u) := −|u|
2

2
+ β−1Ī (|u|) ∈ R , (28)

where Ī (|w|) := supt≥0 {t |w| − ln ϕ̄ (t)} = I (w) ,

R2 3 w 7−→ I (w) := sup
h∈R2

{h · w − ln ϕ (h)} ∈ R+
, (29)

is the entropy of the mesure ν, that is the Legendre transform of the generating function of
the cumulants of ν, log ϕ (h) , with

ϕ̄ (|h|) = ϕ (h) :=

∫
S1

v (ds) eh·s h ∈ R2. (30)
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For β larger than the mean field critical value βmf = 1, mβ is strictly larger than 0 and for
the one-dimensional case, as a consequence of the large deviation principle for the family of
Gibbs field {µβ,γ}γ∈(0,1], µβ,γ weakly converges to the product measure νβ on B (S) , which is

a.c. with respect to ν with density dνβ

dν
(s) = e

hβ ·s

ϕ(hβ)
, such that νβ (σi) = mβs ([BPi] Theorem

2.3). For lattice dimension larger than or equal to 2 a large deviation principle for {µβ,γ}γ∈(0,1]

is still lacking.
While for the two-dimensional ferromagnetic Kac-Ising model, for γ small but finite and

in the limit γ ↓ 0, the structure of the set of Gibbs states and of the typical configurations
has been a subject of deep study, [CP], [BMP], [BZ] and [2], [BBP], [1], an analogous analysis
for the ferromagnetic classical Kac SO (q) spin models has not yet been carried on. In par-
ticular, for the two-dimensional rotor case (d = q = 2) , it would be interesting to understand
if the equilibrium states of the model share the same features with those of the classical XY
model with nearest-neighbour interaction [FrPf] and if the typical Gibbs configurations can
be described in terms of spin-waves and vortices as suggested by the analysis of the decay of
the two block-spins correlation function given in the next section. In other words, if taking
the limit γ ↓ 0 after the thermodynamic limit, the minimizers of the large deviation rate
functional for the family of measures {µβ,γ}γ∈(0,1] are of the kind of those appearing in the
theory of Ginzburg-Landau vortices [BBH].

2 Correlation functions

We will study the behaviour of the correlation function of two block-spins of size δ ≥ γ when
the distance between the variables is very large compared to the size of the blocks. To do this,
we will first give upper bounds for correlation functions of two spins and of two block spins
and then provide a lower bound for these quantities when the distance between the variables
diverges in the limit γ ↓ 0.

2.1 Upper bound

First we give an estimate from above of the correlation function of two spins. To do this we
make use of a modified version of the strategy proposed originally by McBrian and Spencer
[McBS] and successively developed by Messager et al. [MMSPf], [MMSR] and Picco [Pi2]. In
the sequel we will assume γ ∈

(
0, 1

2

]
. In fact, if γ ∈

(
1
2
, 1
]

the interaction among the spins

involves at most those whose mutual distance is smaller than or equal to
√

2, hence, by the
second Griffiths’ inequality [S], the spin-spin correlation function relative to Kac potential is
dominated by the one relative to the standard nearest-neighbor potential. In this case, we
adress the reader to [McBS].

Theorem 1 For any γ ∈
(
0, 1

2

]
, let L (γ) ≥ 2. Then, there exist three constants α1, α2, τ > 1
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such that, ∀p > 0 and β > π
16

γ1+p

1+τ
,

µβ,Jγ
[
cos
(
θ0 − θL(γ)

)]
≤ exp

{
− γ1+p

2α2β
ln

(
L (γ) + 2

2

)[
1− γp

(
1 +

ln 3

ln 2

)]
+

γ1+2p

4α1β

}
. (31)

Corollary 2 For any γ ∈
(
0, 1

2

]
and p > 0, let L ≥ 2 and L (γ) = 2

[
eγ−1−p log L

]
. Then,

there exist three constants α1, α2, τ > 1 such that, for any β > π
16

γ1+p

1+τ
,

µβ,Jγ
[
cos
(
θ0 − θL(γ)

)]
≤ exp

{
ln L

2α2β

[
1− γp

(
1 +

ln 3

ln 2

)]
+

γ1+2p

4α1β

}
. (32)

The proof of these results are identical to the one-dimensional case and so we omit it. For
further details we address the reader to [G1] and to [G] Chapter 6.

Since the scalar product of two block-spins is a linear combination of scalar products of
the single spins, it is possible to apply the estimates given in the preceding theorems to each
term of this linear combination and obtain an upper bound of the correlation function of two
empirical magnetizations. Moreover, making use of Griffiths’ inequalities, these results can
be reproduced even in the case in which we consider, instead of single spins, their empirical
mean on lattice blocks of size δ > γ with δ, γ ∈ (0, 1) .

Let δ, γ ∈ (0, 1) such that δ > γ and Λ ⊂⊂ R2, δ-measurable, assuming free b.c. let us de-
note by

(
J+

γ (i, j)
)

i,j∈Z2 the interaction matrix J+
γ (i, j) :=

(
c2 (γ)1

(
γ |i− j| ≤

(
1
2

+ γ
)))

i,j∈Z2 .

If

Q+,γ (iγ) :=

{
x ∈ R2 : |x− iγ| ≤

(
1

2
+ γ

)}
(33)

and

Q+,γ
γ (iγ) =

{
j ∈ Z2 : γ |i− j| ≤

(
1

2
+ γ

)}
, (34)

then,

−HJ+
γ
(
σΛγ

)
+

1

2
γ2c2 (γ) |Λγ| :=

γ2

2
c2 (γ)

∑
iγ∈Λ

jγ∈Q+,γ(iγ)∩Λ

σi · σj (35)

=
γ2

2
c2 (γ)

∑
kδ∈Λ

∑
i∈Q

(δ)
γ (kδ)

∑
nδ∈Q+,γ(iγ)∩Λ

∑
j∈Q

(δ)
γ (nδ)

σi · σj .

with c2 (γ) := 16
π(1+4γ2)

. But for i ∈ Q
(δ)
γ (kδ)

1Q+,γ(iγ) (nδ) ≤ 1Q+,δ(kδ) (nδ) , (36)

and the positivity of the interaction matrix allow us to make use of the second Griffiths’ in-
equality, that is to bound from above the correlation function of two empirical magnetizations
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of size δ for the Gibbs measure associated to HJ+
γ
(
σΛγ

)
, with the one relative to the Gibbs

measure associated to

−HJ+,δ
γ
(
σΛγ

)
+

1

2
γ2c2 (γ) |Λγ| (37)

:=
γ2

2
c2 (γ)

∑
kδ∈Λ

∑
i∈Q

(δ)
γ (kδ)

∑
nδ∈Q+,δ(kδ)∩Λ

∑
j∈Q

(δ)
γ (nδ)

σi · σj

=
γ2

2
c2 (γ)

∑
kδ∈Λ

∑
nδ∈Q+,δ(kδ)∩Λ

(
δ

γ

)2

σ(δ)
γ (kδ) · σ(δ)

γ (nδ)

=
c2 (γ)

2

(
δ

γ

)2

δ2
∑
kδ∈Λ

∑
nδ∈Λ

1

(
|nδ − kδ| ≤ 1

2
+ δ

)
×

× σ(δ)
γ (kδ) · σ(δ)

γ (nδ) .

We now consider, ∀β > 0 and any fixed value δ > γ ∈ (0, 1) , the Gibbs measure µ+,β

associated to the interaction matrix

J+,δ
γ (i, j) := γ2c2 (γ)1Q+,δ(kδ) (jγ)1

(
Q(δ) (kδ) 3 iγ

)
i, j ∈ Z2 (38)

with 1
(
Q(δ) (kδ) 3 iγ

)
= 1Q(δ)(kδ) (γi) . Defining ν

( δ
γ )

2

n (dmn) := µ
{(

γ
δ

)2∑
j∈Q

(δ)
γ (nδ)

σj ∈ dmn

}
,

since

σ(δ)
γ (δn) =

{
mn cos θn

mn sin θn
n ∈ Z , (39)
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for δL (δ, γ) ∈ Λ, we have

µβ,γ
Λ

[
σ(δ)

γ (δ0) · σ(δ)
γ (δL (δ, γ))

]
≤ µ+,β

Λ

[
σ(δ)

γ (δ0) · σ(δ)
γ (δL (δ, γ))

]
(40)

= µ+,β
Λ

[
m0mL(δ,γ) cos

(
θ0 − θL(δ,γ)

)]
=


∫

[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

ν
( δ

γ )
2

n (dmn)

dmn

∫
[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ)mnmk cos(θn−θk)

}−1

∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

ν
( δ

γ )
2

n (dmn)

dmn

∫
[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

× e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ)mnmk cos(θn−θk)×

×m0mL(δ,γ) cos
(
θ0 − θL(δ,γ)

)]
=

{∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

e(
δ
γ )

2
h
−Ī(mn)+ε̄

�
mn;( δ

γ )
2
�i ∫

[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ)mnmk cos(θn−θk)

}−1

×[∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

e(
δ
γ )

2
h
−Ī(mn)+ε̄

�
mn;( δ

γ )
2
�i ∫

[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

× e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ)mnmk cos(θn−θk)×

×m0mL(δ,γ) cos
(
θ0 − θL(δ,γ)

)]
Since ∀n ∈ Λδ, mn ∈ [0, 1] , we can still make use of the second Griffiths’ inequality since the
part of the interactions among the block-spins relative to the angles is given by a ferromagnetic
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random potential induced by the moduli of the block-spin. Hence

µβ,γ
Λ

[
σ(δ)

γ (δ0) · σ(δ)
γ (δL (δ, γ))

]
(41)

≤

{∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

e(
δ
γ )

2
h
−Ī(mn)+ε̄

�
mn;( δ

γ )
2
�i ∫

[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ) cos(θn−θk)

}−1

×[∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

e(
δ
γ )

2
h
−Ī(mn)+ε̄

�
mn;( δ

γ )
2
�i ∫

[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ) cos(θn−θk) cos

(
θ0 − θL(δ,γ)

)]

=

µΛδ

[∏
n∈Λδ

e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ) cos(θn−θk) cos

(
θ0 − θL(δ,γ)

)]
µΛδ

[∏
n∈Λδ

e
β
2 (

δ
γ )

2
δ2c2(γ)

P
n,k∈Λδ

1(δ|n−k|≤ 1
2
+δ) cos(θn−θk)

]
.

Then, proceding as in the case of spin-spin correlation, we obtain the following results, for the
proofs of which we refer to [G1] and to [G] Chapter 6 being identical to the one-dimesional
case.

Theorem 3 For γ > 0 sufficiently small and δ ∈
(
γ, 1

2

]
, given L (δ, γ) ≥ 2, there exist three

constants α1, α2, τ > 1 such that, ∀p > 0 and β > π
16

δ1+p

1+τ
,

µβ,γ
[
σ(δ)

γ (δ0) · σ(δ)
γ (δL (δ, γ))

]
≤ exp

{
− γ1+p

2α2β
ln

(
L (δ, γ) + 2

2

)
× (42)

×
[
1− γp

(
1 +

ln 3

ln 2

)]
+

γ1+2p

4α1β

}
.

Corollary 4 Assuming the hypotesys of the preceding theorem and setting ∀p > 0, L (δ, γ) =

2
[
eδγ−2−p ln L

]
, where L ≥ 2, there exist three constants α1, α2, τ > 1 such that, ∀β > π

16
δ1+p

1+τ
,

µβ,γ
[
σ(δ)

γ (δ0) · σ(δ)
γ (δL (δ, γ))

]
≤ exp

{
− ln L

2α2β

[
1− γp

(
1 +

ln 3

ln 2

)]
+

γ1+2p

4α1β

}
. (43)

We also mention that it is possible to prove by means of a polymer expansion that, if the
temperature of the system is high enough, the decay of the truncated correlation function of
two block-spins, when their mutual distance diverges, is at most exponential. For the proof
of this result we refer the reader to [PS], [G1] and [G] Theorem 6.2.3.
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2.2 Lower bound

To have a more precise characterization of the asymptotic behaviour of the correlation function
of two block-spins, it is not enough to give an estimate from above, since this would imply
only that the decay in space of such function is not faster than the decay of its upper bound.

To get a lower bound estimate of block-spin correlation functions we will follow a strategy
which is in general valid for d-dimensional Kac rotators models with d ≥ 1.

For any β > βmf = 1 we will procede along these lines:

1) First we will confine the system to a subset ∆ ⊂⊂ Rd sufficiently large to which we will

eventually impose free b.c.. Since the angular part of the interaction among the σ
(δ)
γ ’s

is subject to a random ferromagnetic potential induced by their moduli, we will restrict
ourseves to the event in B (S) such that all the moduli of the empirical magnetization
defined inside ∆ are larger than a given strictly positive value;

2) second, we will consider a given subset Λ of ∆. Inside Λ we will repalce the original Kac
potential with a weaker one and we will replace the values assumed by the moduli of
the empirical magnetization with the values given in the preceding point;

3) third, we will set to zero some of the elements of the interaction matrix, reducing our
system to a system where the block-spins interact only with their nearest neighbours.
The intensity of the new interaction in Λ will be set proportional to the minimum
value assumed by the moduli of the empirical magnetizations given in 1) and will be
eventually set to zero outside Λ (which means assuming outside Λ free b.c.). A this
point the estimate from below of the correlation function of two block-spins is reduced
to the estimate from below of the same quantity for a nearest neighbour model;

4) last, we will estimate the Gibbs measure of the event in B (S) considered at point 1).

2.3 The 2-dimesional case

Before entering in the details of the computations, we make some more remarks.

• In this case, large deviation estimates on the size of the modulus of the empirical mag-
netization, analogous to the ones valid for the one-dimensional case, are not available.
Thus we will restrict ourselves to assume free b.c. outside ∆.

• As in the one-dimesional case, even in the two-dimensional one we can prove the corre-
lation function of two empirical magnetizations for our model to be bounded from below
by the two-point correlation function of a particular Villain model [Vi]. Therefore, the
proof of our result is reduced to an application of the Fröhlich-Spencer argument for
this latter model [FrS], [FrS1].
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More precisely:

1. We will consider the system to be restricted to a large set ∆, such that λ (∆) ≤
Kl2 (δ, γ) , with K > 1, and we will assume outside ∆ free b.c.. Since the Gibbs
measure of

V
(δ)′
∆ (mβ; ζ) :=

⋃
δn∈∆

V (δ)′
n (mβ; ζ) , (44)

V (δ)′
n (mβ; ζ) := {m(δ) ∈M :

∣∣m(δ) (δn)
∣∣ ≤ mβ − ζ} , (45)

is positive and exponentially small when γ ↓ 0, it suffices to restrict our attention to the
complementary event and so to give an estimate of

µβ,γ
∆

[
σ(δ)

γ (δ0) · σ(δ)
γ (δl (δ, γ))1�

V
(δ)′
∆ (mβ ;ζ)

�c

]
. (46)

2. At this point, we can replace the original interaction inside a given subset Λ of ∆ with
a weaker one and set the values of the moduli of the block-spins equal to (mβ − ζ) .

3. Last, we will reduce the range of the interaction obtaining a nearest neighbour potential.
Then, cutting out the interaction with the boundary of Λ, we will restrict ourselves to
the case of free b.c.. Inside Λ, the resulting Hamiltonian will be

Hnn
β,δ,γ (θΛδ

) := −δ2 (mβ − ζ)2

(
δ

γ

)2

c2 (γ)× (47)

× 1

2

∑
Λδ3n,k : |n−k|≤1

cos (θn − θk) ,

depending on β through mβ−ζ. The lower bound estimate of the correlation function of
two block-spins is now reduced to an estimate of the same quantity for the classical XY
model defined by Hnn

β,δ,γ (θΛδ
) . At this point we are free to use the argument of Fröhlich

and Spencer [FrS], [FrS1], but we have to take care of the factor δ2 (mβ − ζ)2
(

δ
γ

)2

c2 (γ)

giving the intensity of the interaction for fixed values of β.

Theorem 5 Let β > βmf = 1, mβ be the solution of the mean field equation and ζ ∈ (0, mβ) .

∀δ ∈
(

γ, 1

2(
√

2+1)

]
with γ > 0, there exists a constant β0 such that, for any β > β0, there

exists a function β1 (β) ≥ 1
2π

for which limβ↑∞
β1(β)

β
= 1 and

µβ,γ
[
σ(δ)

γ (δ0) · σ(δ)
γ (δl (δ, γ))

]
(48)

≥ K ′ (mβ − ζ)2

(
1−K (l (δ, γ))2 η (γ) e

− β

γ2
δ2ζ2

c(β,J)

)
×

× e
− ln l(δ,γ)

2πβ1(β)δ2(mβ−ζ)
2
( δ

γ )
2

c2(γ) ,
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where K ′ > 0 and K, η (γ) > 1, while c (β, J) is a suitable positive constant.

Proof. Let β > 1and δ ∈
(

γ, 1

2(
√

2+1)

]
with γ > 0. We follow the strategy described

above. We first consider our system to be confined in a large δ-measurable set ∆ ⊂⊂ R2such
that λ (∆) ≤ Kl2 (δ, γ) , with K > 1, and assume outside ∆ free b.c.. From correlation
inequalities it follows that

µβ,γ
[
σ(δ)

γ (δ0) · σ(δ)
γ (δld (δ, γ))

]
≥ µβ,γ

∆

[
σ(δ)

γ (δ0) · σ(δ)
γ (δld (δ, γ))

]
. (49)

As in the one-dimensional case (see [G1] Theorem 7) we get

0 ≤ µβ,γ
∆

[
σ(δ)

γ (δ0) · σ(δ)
γ (δl (δ, γ))1

V
(δ)′
∆ (mβ ;ζ)

]
≤ (mβ − ζ)2 Kl2 (δ, γ) η (γ) e

− β

γ2
δ2ζ2

c(β,J) . (50)

Hence,

µβ,γ
[
σ(δ)

γ (δ0) · σ(δ)
γ (δld (δ, γ))

]
≥ µβ,γ

∆

[
σ(δ)

γ (δ0) · σ(δ)
γ (δl (δ, γ))1�

V
(δ)′
∆ (mβ ;ζ)

�c

]
(51)

and

µβ,γ
∆

[
σ(δ)

γ (δ0) · σ(δ)
γ (δl (δ, γ))1�

V
(δ)′
∆ (mβ ;ζ)

�c

]
(52)

≥ (mβ − ζ)2 µβ,γ
∆

 σ
(δ)
γ (δ0)∣∣∣σ(δ)
γ (δ0)

∣∣∣ · σ
(δ)
γ (δl (δ, γ))∣∣∣σ(δ)
γ (δl (δ, γ))

∣∣∣1�V
(δ)′
∆ (mβ ;ζ)

�c

 .

Let now Λ be a δ-measurable subset of ∆ containing δl (δ, γ) . By the consideration given
at the second point of our scheme we have

µβ,γ
∆

 σ
(δ)
γ (δ0)∣∣∣σ(δ)
γ (δ0)

∣∣∣ · σ
(δ)
γ (δl (δ, γ))∣∣∣σ(δ)
γ (δl (δ, γ))

∣∣∣1�V
(δ)′
∆ (mβ ;ζ)

�c

 (53)

=

∫
µγ
(
d (σγ)∆\Λ

)µγ
Λ

[
e−βHγ(·|(σγ)Λc) σ

(δ)
γ (δ0)���σ(δ)
γ (δ0)

���
· σ

(δ)
γ (δl(δ,γ))���σ(δ)
γ (δl(δ,γ))

���
1�

V
(δ)′
Λ (mβ ;ζ)

�c

]
µγ

Λ

[
e−βHγ(·|(σγ)Λc)1�

V
(δ)′
Λ (mβ ;ζ)

�c

] ×

×µγ
Λ

[
e−βHγ(·|(σγ)Λc)1

V
′(δ),c
δ,Λ (mβ ;ζ)

]
1�

V
(δ)′
∆\Λ(mβ ;ζ)

�c

(
(σγ)∆\Λ

) e−βHγ((σγ)∆\Λ)

µγ
∆

[
e−βHγ((σγ)∆)

]
 .
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Then, it is enough to estimate

µγ
Λ

[
e−βHγ(·|(σγ)Λc) σ

(δ)
γ (δ0)���σ(δ)
γ (δ0)

���
· σ

(δ)
γ (δl(δ,γ))���σ(δ)
γ (δl(δ,γ))

���
1�

V
(δ)′
Λ (mβ ;ζ)

�c

]
µγ

Λ

[
e−βHγ(·|(σγ)Λc)1�

V
(δ)′
Λ (mβ ;ζ)

�c

] (54)

:= µβ,γ

Λ,
�
V

(δ)′
Λ (mβ ;ζ)

�c

 σ
(δ)
γ (δ0)∣∣∣σ(δ)
γ (δ0)

∣∣∣ · σ
(δ)
γ (δl (δ, γ))∣∣∣σ(δ)
γ (δl (δ, γ))

∣∣∣ |
(
σ(δ)

γ

)
Λc

 .

Therefore, since the moduli of the
(
σ

(δ)
γ

)
Λc

’s are bound to assume values larger than (mβ − ζ) ,

we get

µβ,γ

Λ,
�
V

(δ)′
Λ (mβ ;ζ)

�c

 σ
(δ)
γ (δ0)∣∣∣σ(δ)
γ (δ0)

∣∣∣ · σ
(δ)
γ (δl (δ, γ))∣∣∣σ(δ)
γ (δl (δ, γ))

∣∣∣ |
(
σ(δ)

γ

)
Λc

 (55)

≥ µ−,β

Λ,
�
V

(δ)′
Λ (mβ ;ζ)

�c

 σ
(δ)
γ (δ0)∣∣∣σ(δ)
γ (δ0)

∣∣∣ · σ
(δ)
γ (δl (δ, γ))∣∣∣σ(δ)
γ (δl (δ, γ))

∣∣∣ |
(
σ(δ)

γ

)
Λc


≥


∫

[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

ν( δ
γ )

2

(dmn)

dmn

(∏
n∈Λδ

1(mβ−ζ,1] (mn)

)∫
[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β( δ

γ )
2
δ2(mβ−ζ)

2
hP

n,k∈Λδ

1
2
+
P

n∈Λδ

P
k∈Λc

δ

i
1(δ|n−k|≤ 1

2
−δ) cos(θn−θk)

}−1

×

×

∫
[0,1]|Λδ |

∏
n∈Λδ

dmn

∏
n∈Λδ

ν( δ
γ )

2

(dmn)

dmn

(∏
n∈Λδ

1(mβ−ζ,1] (mn)

)∫
[−π,π]|Λδ |

∏
n∈Λδ

dθn

2π
×

×e
β( δ

γ )
2
δ2(mβ−ζ)

2
hP

n,k∈Λδ

1
2
+
P

n∈Λδ

P
k∈Λc

δ

i
1(δ|n−k|≤ 1

2
−δ) cos(θn−θk)

cos
(
θ0 − θl(δ,γ)

)]
:= µ

−,β,(mβ−ζ)
2

Λ

[
cos
(
θ0 − θl(δ,γ)

)
| {θn}n∈Λc

δ

]
.

We now proceed applying what stated in the third point of our scheme and reduce the inter-
action to the one given in (47). Let us denote the Gibbs measure associated to this potential
by µβ,δ,γ,nn. Cutting out the boundary interactions, we obtain

µ
−,β,(mβ−ζ)

2

Λ

[
cos
(
θ0 − θl(δ,γ)

)
| {θn}n∈Λc

δ

]
≥ µβ,δ,γ,nn

Λδ

[
cos
(
θ0 − θl(δ,γ)

)]
. (56)
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Now, since ∫
µγ
(
d (σγ)∆\Λ

) [
µγ

Λ

[
e−βHγ(·|(σγ)Λc)1

V
′(δ),c
δ,Λ (mβ ;ζ)

]
× (57)

×
e−βHγ((σγ)∆\Λ)1�

V
(δ)′
∆\Λ(mβ ;ζ)

�c

(
(σγ)∆\Λ

)
µγ

∆

[
e−βHγ((σγ)∆)

]


= µβ,γ
∆

[(
V

(δ)′
∆ (mβ; ζ)

)c]
≥ 1−Kl2 (δ, γ) η (γ) e

− β

γ2
δ2ζ2

c(β,J) ,

the problem is reduced to an anologous one for a nearest neighbour model described by (47).
We can now use, with minor modifications due to the intensity of the coupling constant among
the (block) spins, the technique Fröhlich and Spencer set up in the case of the planar rotator
model with nearest neigbour interactions [FrS]. We remark that the last case rely on the
analogous estimate for the Villain model which can be viewed as an approximation of the
planar rotator model at very low temperatures (see for example [G] Appendix B). In our case
this approximation turn out to be valid at any fixed temperature below the mean field critical
one provided the intensity of the interaction (47) becomes sufficiently large when γ is chosen
very small. More precisely the model with interaction (47) can be approximated at order(

δ
γ

)−2

by the Villain model with Gibbs factor

Vβ
2
δ2(mβ−ζ)

2
( δ

γ )
2 ((θ − θ′)) :=

∑
k∈Z

e−
βδ2(mβ−ζ)

2
( δ

γ )
2

c2(γ)

4
[(θ−θ′)+2πk]2 (58)

=
1√

πβδ2 (mβ − ζ)2
(

δ
γ

)2

c2 (γ)

∑
k∈Z

e
− k2

βδ2(mβ−ζ)
2
( δ

γ )
2

c2(γ)
−ik(θ−θ′)

,

which reduce the problem to a lower bound estimate for the two spins correlation function
for this model at low temperatures, which follows the Fröhlich-Spencer bound.

To make the paper more readable we omit the details and refer the reader to [G] Appendix
B and C for the computations.
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[BBP] O. Benois, T. Bodineau, E. Presutti Large deviations in the van der Waals limit
Stochastic Processes Appl. 75, No. 1, 89-104 (1998).

[BC] C. A. Bonato, M. Campanino Absence of symmetry breaking for systems of rotors
with random interactions J. Stat. Phys. 54, 81-88 (1989).

[BrFL] J. Bricmont, J. R. Fontaine, L. J. Landau On the Uniqueness of the Equilibrium
State for Plane Rotators Comm. Math. Phys. 56, 281-296 (1977).

[BMP] P. Buttà, I. Merola, E. Presutti On the validity of the van der Waals theory
in Ising systems with long range interactions Markov Proc. Related Fields 1, 63-88
(1997).
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[MMSR] A. Messager, S. Miracle Solé, J. Ruiz Upper bounds on the decay of correla-
tions in SO (n)-symmetric spin sysytems with long range interactions Ann. Inst. H.
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