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Abstract. Fuzzy propositional languages are introduced as sets L of for-
mulas closed with respect to two binary operations, the connectives"andﬁ
and "or", and two unary operations, the "diametrical" negation and the
"intuitionistic" negation. A classical semantical structure is given by
a»set of states or worlds S and a logical value function f: L x S —--
[O,l].‘In this way, to each well formed formula from'L we can associate
an ordered pair of subsets of S, the certainly-true and the certainly-
false domains. The language is so represented into the propositional 1o

gic based on the preclusivity space (S,#).

1 Introduction

In this work we are dealing with infinite—valued logics based on a propo
sitional language consisting of a set L of well formed formulas closed
with regpect to two binary connectives, the conjunction "and" and the di
sjunction "or", and tzo unary ‘connectives;hthe diametrical negation
("not") and the intuitionistic negation (to be "false"). (By means of
these two denials we can further on construct a third kind of denial:
"not true", according to the remark that "the history of logic provides

ample precedent for distinguishing "false" from "not true"." [1])

The approach to infinite-valued logics considered here is essentially
semantic in the sense that it is introduced a family of semantical sta-
tes (or worlds) various formulas are applicable to and a truth value fun

ction, whose behaviour is of fuzzy kind, i.e. it assigns to any formula
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in any semantical state a truth value which is a real number between

0 and 1. In infinite-valued logics the more questioned assumption is ﬁhe
claim to assign a degree ofvindeterminacy or fuzZiness to the statements
which are neither trué (truth value 1) nor false (truth value 0); this
degreé of indeterminacy being quantified by a well defined real number
between 0 and .1 chevér, in this work we shall consider the study

of infinite-valued logics as a point of departure to obtain informations
Qn>more general situations in which one deals with statements which, be-
sides to the possibility of_being true or false, requiré to take into ac
count the possibility, what is more, that'there could be some semantical
situations in which we can state neither that the statement is true nor
“that it is false. In a certain sense, it is as if all truth values diffe
- rent from 1 or O are conceived as being collapsed into a unique truth
vélue, "indetérminacy", and so the study of infinite-valued logic is led

back to the study of a three-valued one.

For this reason, we shall represent any formula a, in a more correct way,
by an ordered pair of subsets: the family of all semantical states (wor-
1lds) ST(aj in which the formula o is a.true sentence, e.g. the certainly-
true domain of g, and the family SF(a) of all semantical states in which
the formula a is a false ‘sentence, e.g. the certainly-false domain. Such
an ordered pair of subsets of semantical states is a classical fuzzy pro-
position. Of course, all other semantical states constitute the indetermi-
‘nacy—domain of the formula a.

This representation has been made in such a way that the main features of
the original infinite-valued fuzzy logic are reproduced by a three-valued
"fuzzy" logic, remd%ing in this way the criticisms on the possibility

of determining the exact truth values which must be assigned to statements

which are neither true nor false.

The aim of this work is not to prove some astonishing logical theorem
neither to state the basic thoerems of formal logic such as completeness,
soundness and so on, but, rather, to explore the fundamental semantical
structure of classical fuzzy logics in such a way to furnish the elements
for a natural generalization to other non classical semantical situations

such as preclusivity propositional logics;these lasts including as parti-
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cular cases quantum logics. In a certain sense, it is as if we would
seize the opportunity of studying the structure of classical fuzzy lo-

gics to mimic analogous structures of quantum logics.

2 Semantical structures for classical fuzzy logics.

In semantical logic we shall consider a set L = {0,B,y,...} of
"formulas" and a set S = {x,y,z, ...} of "semantical situations" or
"states" or "worlds" the formulas are applicable to, according to the

following

Definition 1. A semantical structure for classical fuzzy logic is a tri-
plet (S,L,f), where S is a non-empty set of semantical states or worlds,
L the non-empty set of all formulas of a suitable propositional language
and f: L x S -4-+b,ﬂ is the fuzzy logical value function, or truth-va-
lue function, which associates to any ordered pair formed by a formula

o and a semantical state x the logical value f(a,x) e[0,1].

We shall say that in the semantical state x the formula ¢ is a "true"
sentence iff f(a,x) = 1 and is a "false" one iff f(a,x)=0 3 in all other
cases the formula is neither true nor false, with a grade of "indetermi-

nateness" or "fuzziness" expressed by f(o,x).

In a semantical structure for classical fuzzy logic (S,L,f), the set of

formulas L is an 6rdered system <L,0,I,A ,V., =,~ > of formulas of some

propositional language where:

(a) L is an infinite set in which there exist two particular distingui-
shed elements 0 and L, the absurd or contradictory and the certain or

tautologous formula respectively, for which.the following relations hold:

f(0,x) =0 ,¥xe S f(I,x) =1,¥Y x e 8
(b)A: L x L---+L and V:LxL » L are two binary operations which associa-
te to any ordered pair of formulas a-and B anew formula, "a and B " and

"a or B" respectively,

(¢) ~: L---L and ~ : L---+1 are two unary operations which associate to
any formula o a new formula -® and ~® the diametrical negation of o, i.e.
"non a", and the intuitionistic negation of @, i.e. "o ig false", respec-

tively,
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in such a way that the following axiom is satisfied

Axiom 1.The logical value function for the basic connectives 4, V, =,
~ is givenlby the following rules

(1) £(a A B,x):= gil.b. {f(a,x),f(B ,x) }

(2) £(o V B,x):=1l.u.b. {f(a,x), £f(B ,x) }

(3) £(-0,x%):=1~F(a,x)

1 iff f(a.x) =0
(4) £(ra,x): = {
. 0 iff £(a,x) #.0

Using these two hegation connectives, one can construct the formula
#0:= -~ - a which give rise to a new unary operation associating with
any formula o the "exclusion negation" #a. By means of the previous
axiom l,bwe obtain that the logical value function relative to the ex-

clusion negation is given by
0 iff fla,x)=1
f#He,x): =
1 ifrr f(e,x)#1

Owing to this behaviour, the formula #o should be read "o is not

true".

With the help of the two denials, the diametrical and the intuitionistic
ones, it is possible to introduce the modal operators of possibility and

necessity respectively as
S0 = =~ gaoa: =~=q

which, according to axiom 1, are subject to the truth values

[1 iff f{a,x) # 0 1 iff f£(a,x)=1

£(0a,x) =i f(0o,x)= (

0 iff f(a,x) = 0 0 iff f(a,x)#1

Notice that these modal unary operators of possiblity and necessity have
just the truth values functions of the ones introduced by Lukasiewicz (see

for instance [2]) in his infinite-valued system.

Definition 2. The semantical equivalence of two formulas from I is defined
as. follows: '

if f(oa,x) = f(B ,x) for all x €.S then we shall say that the formulas @ and
B are S-equivalent, simply equivalent, denoted by o ;SB or, if no confu-

sion is likely, by o = B .
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Remark 1. It is now easy to see that the following formulas are semanti-
cally equivalent: » »

(1) @ v 8 )=~ (-aA=-B)y (2) (aAB)=- (-aV- B)
and so a fuzzy logic can be, moré economically, introduced either as a
system <L,0,1, A,‘,~>'inLWhiCh the disjunction is defined by the (1)
or as a system <L,0,1,V,-,”> in which the conjunction is defined by the
(2). o
Remark 2. Other formulas which are mutually semantically equivalent are

the following two groups:

f0%-0o 2 ~ D a 2 #0 o (non-necessity)

ne

~aZ-cq = 9 a (impossibility)

"
H
<&

Q

For these reasons, 4o is also read as "o is not necessary" and ~a as
"o is impossible".
Finally, as regards to the modal operators we have also

oo - -o and Oa=-0 -a
2.1 The claésical Chrysippian part.

Once given a semantical structure for classical fuzzylogic (S,L,f) we

introduce the following

Definition 1. A formula a is said to be a classical Chrysippian formula
iff it can assume only the two truth values, either O or 1, otherwise is

a very "fuzzy formula".

The set of all classical Chrysippian formulas from L will be denoted by
Lc. The restriction.of the fuzzy logical value function f to Sch becomes

a mapping fc:Lc x S----+ {0,1} , which is called the classical two-valued
function. Therefore, we can take into account the "classical Chrisyppian"
substructure (S,Lc,fc) where S is the original set of semantical states,
L the set of all classical Chrysippian formulas and fc is‘the restric-
tion to ch S of the original fuzzy logical value function, whose range
contains the two values O and 1 only, false and true.

This_claésical Chrysippian substructure just coincides with the Watana-

be approach to classical two-valued logic as expressed in [3] ana [4] and
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so semantical structures for fuzzy logics can be considered as generali-
zations of- the Watanabe approach to classical two-valued .logic.

Notice that for any formula o of L

(1) there exists at least the classical Chry sippian formula Oa of Lc such
that f(o,x)=1 iff f£(o ,X)=1; moreover, if UELC is another classical Chry

sippian formula which satisfies the previous condition then as o

(2) there exists at least the classical Chrysippian formulado of Lc such that
f(o,x) = 0 iff f(o,x) = O;,mmreover,if'thc_is another classical Chrysippian

formula which satisfies the previous condition then b2 o.

A truth-functional t‘reatment of the modalities was not possible in two-va-

lued logic since aZ¢a= [Ja so that modal distinctions collapse.

3 Fuzzy interpretations of formalized languages of zero order.
In this section we shall consider the structure (see [5])
B:=<[O,l] » 0,1,n,U=,7 >

which is called the real unit interval Brouwer-Zadeh algebra

where
r A r,i= g.l.b. {rl,r2} , (1)
r,u ryi= l.u.b. {rl,r2} (2)
-r:=1-r ‘ (3)
1 r=0
) “r: = (%)
® 0 r#0

A'partigular‘substructure of the real unit interyval Brouwer-Zadeh alge-
bra B is Bc :=<{0,1} ,0,1,N,U, => which consistsof the two elements
0,1 only and is equipped with the restriction to the set of these two
elements of the operations defined on B, once noticed thaf the two una-
ry operations - and ~ coincide on 10,1}, Of course, Bc is the boolean
algebra consisting of two elements only,i.e. the. "two elements boolean

-algebra.

4
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Definition 1. A B-interpretation or fuzZy interpretation (or valuation
or realization) mapping for the propositional language L is a mapping
v:L —---»[O;l}which'assigns to every formula an element of [0,1}in

such a way that the'following statements hold:

(1)v (o A B) =v (a) N v(B)

"

(2Yv (@ V B) =v (a) U v(B)
(3)v (-a) = =V (a)

v (o)

L)y v (~a)
(5)v (0) =0 p (I) = 1.

A fuzzy interpretation or fuzzy realization of the propositional langua-
ge L is any pair <B, v> where B is the real unit interval Brouwer-Zadeh

albegra and is any fuzzy intepretation mapping.

In a semantical .structure for fuzzy logic (S,L,f) for any fixed state x

the mapping

£, 1 L= [0,1]

defined by fx(a): = f(a,x) is a B-interpretation mapping generated by
the state x and so for every fixed semantical state x € S the pair
<B,fX> is called the S fuzzy interpretation or the S fuzzy realization

of the propositional language L generated by the state x € S.

Definition 2. A formula o of the propositional language L is a true
sentence in a S-realization <B,fx>, written F % iff fx(u)=l. In this

case we shall say that the formula a is true in the world x.

A formula o is a tautology, to be more precise a S-tautology, written
S % or, simply, Ea, with respect to the universe of the discurse S iff
a is a true sentence for every S-interpretation fx of L, that is in any

possible world xeS the language L is applicable to

The semantical equivalence relation between sentences from L is now ex-
pressed by the set'{fX : xeS}tof all fuzzy interpretation mappings genera-

ted by states, as follows:
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oFg iff £ (a) = £ (B),V xeS. ' (eq)

That is two formulas of the language L are two equivalent sentences iff

they show the same truth values whatever be.the world x in S.

I Propositional representation of fuzzy logics

We shall define as classical fuzzy proposition based on the reference
space S any ordered pair.(Al,AO) of subsets of S such that Aln AO=¢ . In
particular we have the twotrivial propositions 0=(p¢ ,S), the absurd one,
and I=(S,¢ ), the certain one. If xeAl then the classical fuzzy proposi-
tion (Al,Ao) is confirmed by or is "true" in the state x, while if xer
then it is refuted or is "false" in this state. Of course, a classical
fuzzy proposition can never be simultaneously confirmed and refuted by

any state xeS. If neither ngl_nor Xng,thenthe classical_fuzzy.proposition
(Al’AO) is neither confirmed nor refuted, that is its truth value is "in
determinate". At any rate we stress that we have no need to assign a gra

de of indeterminacy or fuzziness to the propositions under examination.

In the following the set of all classical fuzzy propositions based on

S will be denoted by Lf(S); this last can be regarded as a distributive
(8)

BZ-algebra <Lf(S),O,I,n,u, ~, =>, called the classical fuzzy proposi

tional logic, where we define

(Al’Ao)n(Bl’BO) = (AlﬂBl,AOUBO) Fconjunction)
(Al,Ao)u(Bl,Bo) = (AfJBl,AonBO) (disjunction)
~(h1s80) = (A ,S/A]) (intuitionistic not)
—(Al,AO) = (Ays Al) (diametrical not)

Therefore, in classical fuzzy propositional logic the conjunction pAg
of two propositions is understood to be a proposition that is true if
and only if each of the propositions p,q are true and is false if and

only if at least one of the propositions p,q is false; in all other ca-

‘ses the conjunction is indeterminate.Analogously, if either componentina

digjunction pVq .is true the disjunction is true, if both components p,q
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are false then the disjunction pVq is false and in all other cases

the disjunction is indeterminate.

The intuitionistic denial of a proposition is true whenéver the origi-
nal proposition is false and is false whenever the original proposition
is not true for wathever reason. On the contrary, the diametrical de-
nial of a true proposition is false, of a false one is true and of an

indeterminate one indeterminate.

We can also give rise to the propoéition

#(Al’AO)z_N_(Al’Ao) = (S/Al,Al) ' (exclusion not)

which is true iff the starting proposition is not true and is false iff
the starting proposition is true:

With the help of the two non-standard orthocomplementations, -the diame--
trical one and the intuitionistic one, it is possible to introduce the
two modal-like operators of "ﬁossibility" and "necessity" according to

the following definitions:
O(Ai’Ao):'~ (Al,AO) = (S/AO,AO) (possibitity)
D(Al’AO) f”- (Al,AO)= (Al,S/Al) (necessity)

Notice that the partidl ordering induced from this BZ-algebra is
i B d A i
(Al’AO)E (Bl,Bo) iff Al; , an BO c Ay (ordering)

and the exact or closed part, i.e. the collection of all cléssical fuzzy
propositions which coincide with their intuitionistic bi-denial, is- the
set % .

LC(S)= {(A,8/4) : AE S}
Let now (S,L,f) Be a semantical structure for classical fuzzy logic,
in analogy with [6] we can associate to any formula a the following

three subsets of the set of all semantical states:

The certainly-true domain of o consisting of all semantical states with

respect to which the formula o becomes a true sentence:

ST(a): = {xeS: f(a, x)=1} (1)
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The certainly-false domain of a consisting of all semantical states to

which the formula o becomes a false sentence:

SF(a) ; = {xeS : f(a, x) = 0} (2)

The indeterminacy-domain of o consisting of all other semantical states

to which we can affirme that the formula a is neither true nor false:

SI(u): = {xeS : 0<f(a,x)< 1} (3)
This being stated, we can associate with any formula aeL the fuzzy propo
sition ext(a)=(ST(a),SF(a)) from Lf(S), also called the extension of a.
In this way we have introduced a mapping

cext: L -——*Lf(s)
which satisfies the conditions:

(1) ext WAB$

ext(a)N ext (B)

(2) ext (aVB) = ext(a)Uext (8)

(3) ext (-a) = - ext (a)
(4) ext (~a)= ~ext(a)

(5,8)

(5) ext (0)= (#,S), ext(I)

Therefore, we can say that the pair (Lf(S), ext) is a classical proposi-
.tional or Lf(S) representation or interpretation of the set L of.all for
mulas of our fuzzy logic.

The classical Chrysippian formulas from Lc are mapped by éxt into the

set Lc(S) of all classical closed propositions
% ext(o) e L (8), Vocch

In general, the mapping ext is not one-to-one:. indeed there could be dif-
ferent formulas a and B whose certainly-true and certainly-false domains

coincide but which are profoundly different on the indeterminacy domain.

5 Semantical relations of quasi-order on L

In the context of a semantical structure for classical fuzzy logic, one
can introduce three interesting binary relations of quasi-ordering on

the set of all formulas L. First of all, we have the
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(1&) Relation of logical deduction:
a<p iff  f£(a, x)< £(B,x), ¥/xeS. | (14)
Therefore, B is logically deduced from o iff in any S-relation <B’fx>
we have ‘that fx(a)f fx(B). It is straightforward to prove that
”df'ﬂf ta, ¥ a. (rie)
[jafaf()a, Y o (mo)

Besides the semantical relation of logical deduction we can further on

introduce two other semantical binary relations:

(si) Relation of semantical inference:
=8 i ) ) S_(8 i
al 8 1ff' ST(a); ST(B) and F(B)g SF(a) (si)

which, owing to the quasi-ordering relation of section 4, can be also

restated in the following way:
iff ext(a)c ext(B)

(se) Relation of semantical entailment :
af8 iff sT(a)E sT(B). ‘ (se)

Therefore, to say that a sentence o semantically entails another sentence
B is to say that whenever a is true than so is B. On the other hand, to
say that a sentence B is semantically inferred by a sentence o is to say

_that whenever o is true so is B and whenever B is false so is o.
Trivially, we have tha&t

~a<g  implies Qk g implies al8 (im)
but in general the converse is not true. In particular, from the previ-

ous definitions it follows that a formula o is a S-tautology

Fa iff I <a iff sT(a)=s

Definition 1. A formula o is said to be self-contradictory, or, simply,

a contradiction, iff af-o, i.e. iff ST(a)= ¢ .



The previously introduced relations of quasi-ordering induce the follo-
wing corresponding relations of equivalente on L:

u;B iff qu and Bfa (eq-14d)
iff f(a,x):f(s,%), Vxes

0B iff o }B and B o (eq-si)
iff ST(a)= ST(BS and SF(a)= SF(B)

axB  iff d—sbaniek a (eq-se)
irf Sp(a) = 5,(8)

While the first of these. equivalence relations is just the relation of
semantical equivalence introduced in section 2, definition 2, the second
of these equivalence relations can be. named the extensional equivalence

since a =8 iff ext(a) = ext (B).

The extensional equivalence class generated by a formula o will be deno-

ted by || o || and its extension Ext ( || o || ) is defined as the ex-
tension of any, and therefore all, of the formulas from }Iall . Therefo
re, to any extensional equivalence class of formulas |lal] there cor-

. responds a unique fuzzy proposition Ext( |[al] )=(ST(a),sF(a))and this cor
respondence Ext from the quotient set L/Z onto Lf(S) is one-to-one; in
this way the algehraic strucﬁure of distributive BZ-poset of the set of
all fuzzy propositions Lf(S) can be translated onto the quotient set of
all extensional equjvalence classes L/=. The formulas ajellall are said
to be formulas which realize the fuzzy proposition Ext( [|al| ). In this
way we have that, in general, several different formulas realize a uni-

que classical fuzzy proposition.
Example. Let ext(a) = (Al,AO) then

ext (~aVa)= (AlU Ao,ﬂ ) ext(-dVa) = (Aiu AO,¢ )

ext(~oha)= (4 , S) ext (-alo)

(@, AJUAl).
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From which we get ("aVu)E(—dVd). Notice that in general .aVa¥-oVo; for

instance, if_f(d,x)=l/u then f(-dVd,X)= 3/4h and f(~oVd,x)=1/4.

Finally, we shall dénote by ]d[ thé equivalence class generated by o
using the third equivaléncé réiation; any such equivalence class is
called property. All the formulas of a property P:=[a| are characterized
by the same certainly-true domain which can be defined as the certainly-

true domain of the whole property and will be denoted by ST(|a|)_

Of course, in général, the certainly-false domains of all formulas belon
ging to a certain property P are different among them and so It is not

possible to individuate a wunique certainly-false domain of P starting

- from the certainly false domains of the formulas ajsP which represent

the property P.

Notice that the condition a > B in general does not imply neither (-a)Z
¢B) nor (~0)z(~8) and so we cannot introduce the denials =P or ~P of
the property P=|a| as the equivalence classes |-a| or |~ a|, respectively,
génerated by any of the formulas‘representing the property P. Gn the con-
trary, we have that axB implies #ox#B and so the "denial" of property

P= |a| can be defined as the property #P =[# al.
We write PL Q iff aeP, BeQ and o-B, i.e. iff ST(a)_E_ sT(B).

Since it is obviously P= Qiff ST(P)=ST(Q)Athe previous relation is a par-
tial ordering on the set of all properties, denoted by pr(L), which turns
out to be a Boolean algebra with respect to the operations, whatever be

P=|ajand Q=B8] :
PVQ = |ayB| PAQ= |aAB| # P=[}al
In particular we have that

ST(PVQ) = ST(P)UST(Q) ST(PAQ) = ST(P)H ST(Q)

sT(# P) = S/ST(P)
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6 Rules of inference
The fact that some formulas are logical cbnsequence of others can be
formalized generalizing the relations of quasiordering of section 5, by

the following definitions:

Definition 1, In a semantical structure for classical fuzzy logic,a
strong or standard rule of inference which associates with a finite num-
ber of premises'{al,dgrvun} from L a logical consequence 6r conclusion
BeL is defined iff

e S
a2Aa2A . AanNB

In our opinion, contrary to [7], [8], what seems minimally required to a
binary connective k on L to be an implication connective is that the fol-. -
lowing condition is satisfied:
ah(a k B) < B (modus ponens)
from wHich, in particular, it follows that '

F_ (akB) implies o< B
‘i.e. every tautology of the form akB provides a strong inference rule of

the form "B is a logical consequence of a".

Examples. In this connection we can introduce two implication connecti-
ves, also called i-material conditionals, in terms of the basic logical

connectives conjunction, disjunction and intuitionistic negation

o = B : =.0V8

whose truth value function is

1 iff f(a,x)=0
fla =8 )=
P £(B,x) iff f£(a,x)#0
and the Sasaki material conditional defined as a =>>8 : =~oV (aAB)

with associated truth valued function

1 iff f(a,x) = O
fla=>>8 ’x) = {
max { f(a,x),f(B,x)} iff f(a,x)# O
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In this way, (a=>>8) < (0=>B). Moreover, these two implication connec-
tives satisfy also the~following strong rule of inference:
~BA(akB) < . B  (i-modus tollens)

Notice tha;, once denoted these two implication connectives by 'k, we ha-
ve that .

FX(uKd), VxeS/SI (a) v
Analogously, the d-material contidionals are defined in terms of conjuc-
tion, disjunction and diametrical negation as

“a+B:= -aVB and‘a—> >B:==a V (a A B)
which satisfy the inferénce rule

-B A (o k B)< -8B (&-modus tollens)

On the other hand, if one take into account the fact that any formula
can be represented as a fuzzy proposition by the extension mapping, the-
re is a more appropriate definition of rule of inference according to the

definition

Definition 2.A rule of inference which associates with any family of pre-
mises {aj:jeJ} from L a logical consequence or conclusion B is defined
iff the following conditions hold:

- .) €
(1-a) f\ST(uJ) ST(B)

(1-1) SF(B) = USF(aj)

i.e. whenever all the formulas c% are true then also the formula B is
true and if the formula B is false then at least one of the formulas

aj is false. This fact is noted as {aj=ng} E B.

Proposition 1. The formula o satisfies the "contradictory" inference ru-

# ‘ .
le for the diametrical negation: a | (-a) iff ST(a)=¢.

For this reason a formula oa#0 such that ST(a) = ¢ holds has been called
a self-contradictory formula of the language L; a self-contradiction is
thus characterized by the fact that there is no semantical state in which
the formula can be interpreted as a true sentence. Notice that there is
no classical Chrysippian non trivial formula which satisfies the contra-

diction inference rule.

In conclusion, the diametrical negation violates the law of self-contra-

diction which requires that a formula that implies its hegation is limi-
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téd to the constant absurdity. Watanabe asserts that "this law is so fun-
damental in human thinking that any violation of fhi; law by a proposed
logic wouldvdeny its qualification as a logic "[9]. This may be linked

to the believe that the fact that for classical Chrysippian formulas if

' the self-contradiction law is violated by o then every other formula B is
deduced from o. In the fuzzy approach to inference rules this is not the

case since, in general, SF(B) g SF(a)-

Proposition 2. If o is-a self-contradictory formula, then o | B8 and

a | -8 irff sT(s)’ US(B)ES, (a).

Besides the previous rules of inference we can consider the weak rules

of inference according to the following

Definition 3.In a semantical structure for classical fuzzy logic a weak
rule of inference which associates with a set of premises {aJ :j e J}

a logical consequence BelL is defined iff the following condition holds:
v/\ST(aj)E ST(B)

A weak rule af inference will be noted by {a.:jeJ} - 8. or course,

if o is a self-contradiction then¥/8, (a | 8).
6.1 The classical Chrysippian logic.

Once givemrasemantical structure for classical fuzzy logic, as we have
seen in section 2.1, it is possible to single out the system
<LC,O,I,A,—> of all classical Chryssipian formulas endowed with two con-
nectives, aAb and -a, and defining two other connectives aVb:=~-(-alA-b)
and a+b: =-aVb. Of course, if one take into account the larger system of
all fuzzy formulas <I#0,I,A,V,-,~> it is easy to check the following se-
mantical equlvalences involving classical Chrysippian formulas only:
-a ¥ ~a=%aand a+b = a =>> b = a =>b ¥ g=3>p. In the classical Chrisip
pian system also the three kinds of rules of inference for any
finite number of premises coalesce, in particular we have

asb iff a F b iff a | b
Moreover, we have the following equivalent statements:

| (a»b) iff a < b (ti)

-
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And so, in the classical Chrysippian system every tautology of the form

= (a»b) 1is equivaient to an inference rule of the form "b is a logical

consequence of a".

These considerations, with the aim to avoid some misunderstandings in
extension to quantum logics, lead to a clarification of the Jauch-Piron
affirmation that "the role of a<b (in clasical logic) corresponds obviou-
sly to the conditional, and in logic the conditional is considered a pro-
position just as all the other. It is the proposition which affirms 'if a
then b'. (....)'[.On the contrary, the object <] is not a new element of
the language, but rather a relation between certain elements of the langua
ge, and it is therefore something entirely different from the other ele-
ments of the language " [10]. Of course, it is a binary relation between
formulas, to be more precise the logical deduétion relation, which, as .
a sign, pertains to the metalanguage and is semantically specified by the

set of all semantical states thé language is applicable to.

Quoting [7]: "In view of the ordering properties, it is tempting, indeed
it is often done, to let the partial [quasi—] order < to play the role of
implication in the logic. However, it has been objected to this, since
implication is treated as a binary connective. This implication should be
on the same linguistic level as conjunction and disjunction. HOwever, -

< is a relation on L rather than a binary operation on L. To insist on
using < to play the role of implication .amount to a violation of the sa-
crosanct distinction between object language and metalanguége. The rela-
tion ¢ should be viewed as a statement about "deducibility". One might

read 'a<b' as 'b i% deducible from a'."

Therefore, < dis a sign of.the'mgtalanguage which differs from the sign-+
of‘the language, the very conditional connective. The relation a<b ‘does
not .correspond to the conditional connective a+b, but, rather, is equiva
lent to state that a»b is a tautology, that is a quite different thing.
Precisely, it is equivalent to the fact that 'from a we can infer b' or

that 'b is a logical consequence of a'.
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