Fisica Matematica Avanzata, 22 II 2013(Anni Prec)

- 1. Si dimostri che un operatore densità ρ rappresenta uno stato puro se e soltanto se è un proiettore ortogonale di rango 1.
- 2. Si descrivano le relazioni di indeterminazione tra osservabili \mathcal{A} e \mathcal{B} tali che $[A,B]\neq \mathbf{0}$.
- 3. a) Si consideri il gruppo $G=(\mathbf{R}^2,+)$ e la corrispondenza

$$T: G \to GL(2, \mathbf{R}), \quad \mathbf{w} = (\xi, \eta) \to T_{\mathbf{w}}, \quad T_{\mathbf{w}} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e^{\xi} (x \cos \eta - y \sin \eta) \\ e^{\xi} (x \sin \eta + y \cos \eta) \end{bmatrix}.$$

- a.i) Verificare che T è una rappresentazione;
- a.ii) Trovare il nucleo della rappresentazione.
- a.iii) Verificare se T è irriducibile.
- b) Verificare quali tra i gruppi O(2), $SL(2, \mathbb{C})$ sono connessi.
- 4. a) Dimostrare che le costanti di struttura di un gruppo di Lie abeliano sono nulle.
 - b) Si consideri il gruppo di Lorentz in una dimensione spaziale,

$$O(1,1) = \{ \Lambda \in GL(2,\mathbf{R}) \mid \Lambda^t G \Lambda = G \}, \quad \text{dove } G = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Trovare l'algebra di Lieo(1,1) come sotto
algebra di $gl(2,{\bf R}).$

- 5. Il gruppo di Galileo G sia di simmetria per un sistema localizzabile in un punto di \mathbf{R}^3 . Date le regole per i commutatori $[J_{\alpha}, J_{\beta}]$,
- a) determinare i commutatori $[J_{\alpha}, P_{\beta}]$ e $[P_{\alpha}, P_{\beta}]$;
- b) Dalle proprietà di covarianza, determinare $[P_{\alpha}, Q_{\beta}]$.
- c) Indicare le condizioni per cui l'operatore hamiltoniano è $H = \frac{P^2}{2\mu} + cost$. In questo caso, determinare l'operatore accelerazione $A_{\alpha} = \frac{d}{dt}V_{\alpha} \mid_{t=0}$, dove V_x, V_y, V_z sono gli operatori velocità.

Fisica Matematica Avanzata, 22 II 2013

- 1. Provare che un'osservabile quantistica \mathcal{A} ha possibili valori 1 e $\hat{0}$ se e soltanto se è rappresentata da un proiettore ortogonale.
- **2.** Sia $D: G \to GL(n, \mathbb{C}), g \to D(g)$ una rappresentazione del gruppo G.
- a) Verificare che se D è irriducibile allora $A\in GL(n,\mathbf{C}) \text{ e } [A,D(g)]=\mathbf{0} \ \forall g\in G \quad \text{implicano} \quad A=\lambda \mathbf{1}.$
- b) Sia D unitaria. Dimostrare che se $\{ [A, D(g)] = \mathbf{0} \ \forall g \in G \ \text{implies} \ A = \lambda \mathbf{1} \ \}$ allora D è irriducibile.
- 3. Sia A l'operatore che rappresenta un'osservabile \mathcal{A} di un sistema quantistico la cui evoluzione temporale è governata da un operatore hamiltoniano H, cioè $\rho_t = e^{-iHt}\rho e^{iHt}$. Far vedere che se $[H,A] = \mathbf{0}$ e e $\rho_{t=0} = |\psi\rangle\langle\psi|$ allora
- a) per ogni funzione f il valore d'aspettazione di f(A) è costante nel tempo: $\frac{d}{dt}Tr(\rho_t A) = \frac{d}{dt}\langle \psi_t | f(A)\psi_t \rangle = 0, \text{ dove } |\psi_t\rangle\langle \psi_t| = \rho_t.$
- b) $A\psi = \lambda \psi$ implica $A\psi_t = \lambda \psi_t$ per ogni t.
- c) la densità di probabilità della variabile aleatoria \mathcal{A} è stazionaria.
- 4. Dato il gruppo $GL(3, \mathbf{R})$,
- a) Trovare un sistema di coordinate.
- b) Dimostrare che è un gruppo di Lie locale.
- c) Trovare l'algebra di Lie so(3) del sottogruppo SO(3) come sottoalgebra di $gl(3, \mathbb{R})$
- 5. Siano $P_{\alpha}, J_{\alpha}, G_{\alpha}, \alpha = x, y, z$ i generatori hermitiani di una rappresentazione proiettiva del gruppo di Galilei \mathcal{G} .

Date le regole per i commutatori $[J_{\alpha},J_{\beta}],[J_{\alpha},P_{\beta}],[J_{\alpha},G_{\beta}],[P_{\alpha},P_{\beta}],[G_{\alpha},G_{\beta}],$

- a) determinare i commutatori $[G_{\alpha}, P_{\beta}]$.
- Sia $\mathcal G$ il gruppo di simmetria per una particella localizzabile in $\mathbf R^3.$
- b) Usando il teorema di Mackey, individuare una rappresentazione proiettiva di \mathcal{G} .
- c) Identificare in essa i generatori G_{α} e gli operatori posizione Q_{α} .
- d!) Nella rappresentazione in (b), identificare J_x .

Fisica Matematica Avanzata, 12 IX 2013

- 1. Date due osservabili 1-0 A e B, far vedere che sono simultaneamente misurabili se e soltanto se i corrispondenti proiettori A e B commutano.
- 2. Verificare se $SL(2, \mathbb{C})$ è connesso.
- 3. a) Dato il gruppo $GL(2, \mathbb{C})$
 - a.i) Trovare un sistema di coordinate.
 - a.ii) Dimostrare che è un gruppo di Lie locale.
 - b) Determinare l'algebra di Lie su(n) del sottogruppo SU(n), come sottoalgebra di $gl(n, \mathbf{C})$.
- 4. a) Si derivino, usando il teorema di Wigner, la descrizione di Schroedinger e di Heisenberg dell'evoluzione temporale di un sistema quantistico.
 - b) Derivare, usando il teorema di Stone, l'equazione di evoluzione temporale di Schroedinger nel caso di tempo omogeneo.
- 5. Sia \mathcal{G} il gruppo di Galilei. Nell'ipotesi che \mathcal{G} sia un gruppo di trasformazioni di simmetria per un sistema quantistico,
- a) Determinare $[J_{\alpha}, G_{\beta}]$ (si faccia anche uso di $[J_{\alpha}, J_{\beta}] = i\epsilon_{\alpha\beta\gamma}J_{\gamma}$).
- b) Usare il teorema di Mackey per individuare la più semplice rappresentazione proiettiva di \mathcal{G} .

Nell'ipotesi che \mathcal{G} sia il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 ,

- c) identificare i generatori G_{α} e gli operatori Q_{β} che rappresentano la posizione nella rappresentazione trovata in (b).
- d!) Nella rappresentazione in (b), determinare J_z

Fisica Matematica Avanzata, 25 VII 2013

- 1. Date due osservabili A e B, si tratti la relazione tra simultanea misurabilità e commutatività dei corrispondenti oparatori quantistici A e B.
- **2.** Si descrivano le relazioni di indeterminazione tra osservabili \mathcal{A} e \mathcal{B} tali che $[A,B]\neq \mathbf{0}$.
- 3. a) Verificare se O(n) è connesso.
 - b) Verificare se SO(3) è connesso.
- 4. a) Dato il gruppo $GL(3, \mathbf{R})$
 - a.i) Trovare un sistema di coordinate.
 - a.ii) Dimostrare che è un gruppo di Lie locale.
 - b) Determinare l'algebra di Lie $sl(2, \mathbf{C})$ del sottogruppo $SL(2, \mathbf{C})$), come sottoalgebra di $gl(2, \mathbf{C})$.
 - c) Dimostrare che le costanti di struttura di un gruppo di Lie abeliano sono nulle.
- 5. Sia il gruppo di Galilei $\mathcal G$ un gruppo di trasformazioni di simmetria per un sistema quantistico.
- a) Determinare $[J_{\alpha}, P_{\beta}]$ (si faccia anche uso di $[J_{\alpha}, J_{\beta}] = i\epsilon_{\alpha\beta\gamma}J_{\gamma}$).
- b) Usare il teorema di Mackey per individuare una rappresentazione proiettiva di \mathcal{G} .
- Sia \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 ,
- c) identificare i generatori P_{α} e gli operatori V_{β} che rappresentano la velocità nella rappresentazione trovata in (b).
- d!) Nella rappresentazione in (b), determinare J_z

Fisica Matematica Avanzata, 25 VII 2013 (Prec)

- 1. Date due osservabili \mathcal{A} e \mathcal{B} , si tratti la relazione tra simultanea misurabilità e commutatività dei corrispondenti oparatori quantistici A e B.
- 2. Si descrivano le relazioni di indeterminazione tra osservabili \mathcal{A} e \mathcal{B} tali che $[A,B]\neq \mathbf{0}$.
- 3. a) Verificare se O(n) è connesso.
 - b) Verificare se SO(3) è connesso.
- 4. a) Dato il gruppo $GL(3, \mathbb{R})$
 - a.i) Trovare un sistema di coordinate.
 - a.ii) Dimostrare che è un gruppo di Lie locale.
 - b) Determinare l'algebra di Lie $sl(2, \mathbb{C})$ del sottogruppo $SL(2, \mathbb{C})$), come sottoalgebra di $gl(2, \mathbb{C})$.
 - c) Dimostrare che le costanti di struttura di un gruppo di Lie abeliano sono nulle.
- 5. Sia il gruppo di Galilei $\mathcal G$ un gruppo di trasformazioni di simmetria per un sistema quantistico.
- a) Dimostrare, usando i teoremi di Wigner e di Stone, che $\mathcal G$ ammette una rappresentazione proiettiva unitaria.
- b) Determinare $[J_{\alpha}, P_{\beta}]$ (si faccia anche uso di $[J_{\alpha}, J_{\beta}] = i\epsilon_{\alpha\beta\gamma}J_{\gamma}$).
- Sia \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 ,
- c) identificare i generatori P_{α} e gli operatori Q_{β} che rappresentano la velocità.
- d!) Assumendo che $V_{\alpha} = \frac{d}{dt}Q_{\alpha}$, determinare l'operatore hamiltoniano H.

Fisica Matematica Avanzata, 2 X 2013

- 1. Sia la coppia (S_1, S_2) una trasformazione di simmetria quantistica.
- a) Dimostrare che essa trasforma stati puri in stati puri.
- b) Dimostrare che se E è un proiettore ortogonale ($E \in \Pi(\mathcal{H})$), allora $S_2(E) \in \Pi(\mathcal{H})$.
- 2. Mostrare che $GL(2, \mathbf{R})$ non è connesso.
- 3. a) Trovare un sistema di coordinate di $GL(n, \mathbf{R})$
 - b) Determinare l'algebra di Lie u(n) del sottogruppo U(n) di $GL(n, \mathbf{C})$, come sottoalgebra di $gl(n, \mathbf{C})$.
- 4. Sia il gruppo di Galilei $\mathcal G$ un gruppo di trasformazioni di simmetria per un sistema quantistico.
- a) Introdurre un sistema di coordinate di \mathcal{G} .
- b) Mostrare, attraverso i teoremi di Wigner e di Stone, che ogni rappresentazione proiettiva di \mathcal{G} è unitaria.
- c) Siano $A_1, A_2, ..., A_9$ generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Determinare il commutatore $[A_i, A_k]$.

Sia \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 .

- d) Indicare la più semplice rappresentazione proiettiva di \mathcal{G} ottenuta applicando il teorema di Mackey, e la forma assunta dagli operatori P_{α} , Q_{α} , V_{α} in tale rappresentazione.
- e) Nell'ipotesi che valga $\dot{Q}_{\alpha}=V_{\alpha},$ derivare la forma dell'operatore di evoluzione temporale H.

Fisica Matematica Avanzata, 15 XI 2013

- 1. Siano \mathcal{P} e \mathcal{Q} osservabili 1-0 rappresentate dai proiettori P e Q tali che [P,Q]=0. Se lo stato è $\rho=|\psi><\psi|$
- a) determinare le espressioni per le probablità che una misurazione simultanea di \mathcal{P} e \mathcal{Q} abbia rispettivamente come coppie di risulati (1,1), (1,0), (0,1), (0,0);
- b) Far vedere che il risultato 1 per \mathcal{P} implica sempre che il risultato per Q è anche 1 se e soltanto se $PQ\psi = P\psi$.
- 2. Verificare se $GL(2, \mathbb{C})$ è connesso.
- 3. Dato il gruppo $GL(n, \mathbf{R})$,
- a) mostrare come ottenere un sistema di coordinate nello spazio vettoriale $gl(n, \mathbf{R})$.
- b) Determinare l'agebra di Lie rispetto a tale sistema di coordinate;
- c) Determinare il commutatore q(a, b) di una generica coppia di elementi della'algebra di Lie di $GL(n, \mathbf{R})$).
- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico.
- a) Siano $A_1, A_2, ..., A_9$ generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Determinare la relazione tra il commutatore $[A_j, A_k]$ e i generatori hermitiani.

Sia ora \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 .

- b) Derivare le regole di commutazione $[H, P_{\alpha}], [H, J_{\alpha}].$
- c) Determinare H nel caso che valga l'ipotesi $\dot{Q}_{\alpha}=V_{\alpha}$, dove V_{α} è l'operatore velocità.
- d) Sia $\mathcal{U}: L_2(\mathbf{R}^3) \to L_2(\mathbf{R}^3)$, $[\mathcal{U}\psi](\mathbf{x}) = e^{i\chi(\mathbf{x})}\psi(\mathbf{x})$, dove χ è una funzione reale, l'operatore unitario che realizza una trasformazione di simmetria quantistica (S_1, S_2) nella più semplice rappresentazione proiettiva di \mathcal{G} ottenuta applicando il teorema di Mackey. Trovare gli operatori $S_2(\mathbf{Q})$, $S_2(\mathbf{V})$, $S_2(H)$.

Fisica Matematica Avanzata, 4 II 2014

- 1. Siano \mathcal{P} e \mathcal{Q} osservabili 1-0 rappresentate dai proiettori P e Q tali che [P,Q]=0.
- a) Determinare un operatore autoaggiunto C e le funzioni f e g tali che P = f(C) e Q = g(C).
- b) Determinare le espressioni per le probablità che una misurazione simultanea di \mathcal{P} e \mathcal{Q} abbia rispettivamente come coppie di risulati (1,1), (1,0), (0,1), (0,0).
- c) Se l'operatore densità è $\rho = |\psi> <\psi|$, far vedere che in una misurazione simultanea di \mathcal{P} e \mathcal{Q} il risultato per \mathcal{P} è sempre uguale al risultato per \mathcal{Q} se e soltanto se $\mathcal{Q}\psi = \mathcal{P}\psi$.
- 2. Dato il gruppo $GL(2, \mathbf{C})$,
- a) mostrare come ottenere un sistema di coordinate nello spazio vettoriale reale $gl(2, \mathbb{C})$.
- b) Determinare l'agebra di Lie su(2) di SU(2) come sottoalgebra di $gl(2, \mathbb{C})$.
- c) Verificare se SU(2) è connesso.
- 3. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di tempo omogeneo, cioè se $(\rho_{t_1})_{t_2} = \rho_{t_1+t_2}$, derivare le equazioni di evoluzione quantistica per gli stati e le osservabili:

(1)
$$i\frac{d\psi_t}{dt} = H\psi_t$$
, (2) $\frac{dA_t}{dt} = i[H, A_t]$.

- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico, e siano P_{α} , J_{α} , G_{α} i generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Date le regole per $[J_{\alpha}, J_{\beta}]$, determinare $[J_{\alpha}, P_{\beta}]$.
- 5. Sia ora \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 . Date le regole $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [P_{\alpha}, P_{\beta}] \in [G_{\alpha}, G_{\beta}],$
- a) determinare $[P_{\alpha}, Q_{\beta}]$ e $[G_{\alpha}, Q_{\beta}]$ usando le proprietà di covarianza di \mathbf{Q} .

Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3),

- b) individuare gli operatori Q_{α} e P_{α} .
- c) Date le regole di commutazione per $[H, P_{\alpha}]$, $[H, J_{\alpha}]$, far vedere che $H = h(\mathbf{P})$, dove h è una funzione, e che $\frac{d}{dt}Q_{\alpha}^{(t)} = \frac{\partial}{\partial P_{\alpha}}h(\mathbf{P})$.

Fisica Matematica Avanzata, 22 II 2014

- 1. Siano \mathcal{P} e \mathcal{Q} osservabili 1-0 rappresentate dai proiettori P e Q tali che [P,Q]=0.
- a) Determinare un operatore autoaggiunto C e le funzioni f e g tali che P=f(C) e Q=g(C).
- b) Determinare le espressioni per le probabilità che una misurazione simultanea di \mathcal{P} e \mathcal{Q} abbia rispettivamente come coppie di risulati (1,1), (1,0), (0,1), (0,0).
- c) Far vedere che in una misurazione simultanea di \mathcal{P} e \mathcal{Q} il risultato 1 per \mathcal{P} implica sempre il risultato 1 per \mathcal{Q} se e soltanto se $P \leq \mathcal{Q}$.
- 2. a) Dato un gruppo di Lie locale G, introdurre il concetto di costanti di struttura.

Dato il gruppo $SL(3, \mathbf{C})$,

- b) Dimostrare che è connesso.
- c) Determinare l'algebra di Lie $sl(3, \mathbb{C})$ di $SL(3, \mathbb{C})$ come sottoalgebra di $gl(3, \mathbb{C})$.
- 3. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di evoluzione unitaria, cioè se $\psi_t = U_t \psi$ con U_t unitario, derivare l'equazione

$$\frac{d\psi_t}{dt} = B(t)\psi_t$$
, dove $B^*(t) = -B(t)$.

- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico, e siano P_{α} , J_{α} , G_{α} i generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Date le regole $[J_{\alpha}, J_{\beta}]$, $[J_{\alpha}, P_{\beta}]$, $[P_{\alpha}, P_{\beta}]$ e $[G_{\alpha}, G_{\beta}]$, determinare $[J_{\alpha}, G_{\beta}]$ e $[G_{\alpha}, P_{\beta}]$.
- 5. Sia ora \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbb{R}^3 .
- a) determinare $[J_{\alpha}, Q_{\beta}]$ e $[G_{\alpha}, V_{\beta}]$ usando le proprietà di covarianza di Q e V.

Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3),

- b) individuare gli operatori Q_{α} e V_{α} .
- c) Date le regole di commutazione $[H, P_{\alpha}]$ far vedere che $H = h(\mathbf{P})$, dove h è una funzione, che $\frac{d}{dt}Q_{\alpha}^{(t)} = \frac{\partial}{\partial P_{\alpha}}h(\mathbf{P})$ e che $\frac{d}{dt}V_{\alpha}^{(t)} = \mathbf{0}$.

Fisica Matematica Avanzata, 4 IV 2014

- 1. Siano A e B operatori autoaggiunti rappresentanti le osservabili quantistiche A e B, e sia $\rho = |\psi > \langle \psi|$ lo stato quantistico.
- a) Dimostrare che se ogni misurazone di \mathcal{A} ha come risultato il valore fisso λ_0 , allora $A\psi = \lambda_0 \psi$.
- b) descrivere le relazioni di indeterminazione tra \mathcal{A} e \mathcal{B} .
- 2. a) Stabilire sotto quali condizioni vale la seguente asserzione: se $D: G \to GL(n, K)$ è una rappresentazione irriducibile di un gruppo G, allora $[A, D(g)] = \mathbf{0}$ per ogni $g \in G$ implica $A = \lambda \mathbf{1}$.
 - b) formulare l'inverso del lemma di Schur e stabilire sotto quali condizioni è valido.
 - c) Verificare se $GL(2, \mathbf{R})$ e $GL(2, \mathbf{C})$ sono connessi.
 - d) Determinare l'algebra di Lie u(2) di U(2).
- 3. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di tempo omogeneo, cioè se $\rho_t = e^{-iHt}\rho_t e^{iHt}$, far vedere che se $[A,H] = \mathbf{0}$ e $A\psi = \lambda_o \psi$ allora $A\psi_t = \lambda_0 \psi_t$.
- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico, e siano P_{α} , J_{α} , G_{α} i generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Determinare $[J_{\alpha}, J_{\beta}]$ e $[J_{\alpha}, P_{\beta}]$.
- 5. Sia ora \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbf{R}^3 . Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3), date le regole $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [P_{\alpha}, P_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}]$
 - a) individuare gli operatori posizione Q_{α} e velocità V_{α} .
 - b) Date le regole di commutazione per $[H, P_{\alpha}]$, $[H, J_{\alpha}]$, far vedere che se $\frac{d}{dt}Q_{\alpha}^{(t)} = V_{\alpha}^{(t)}$ allora $H = (-1/2\mu)\Delta + E_0$, dove Δ è l'operatore laplaciano.
 - c) Determinare gli operatori $Q_{\alpha}^{(t)}$ e $V_{\alpha}^{(t)}$.

Fisica Matematica Avanzata, 8 IX 2014

- 1. Siano A e B operatori autoaggiunti rappresentanti le osservabili quantistiche A e B, e sia $\rho = |\psi \rangle \langle \psi|$ lo stato quantistico.
- a) Dimostrare che se ogni misurazone di \mathcal{A} ha come risultato il valore fisso λ_0 , allora $A\psi = \lambda_0 \psi$.
- b) descrivere le relazioni di indeterminazione tra \mathcal{A} e \mathcal{B} .
- 2. a) formulare l'inverso del lemma di Schur e stabilire sotto quali condizioni è valido.
 - b) Verificare se U(2) è connesso.
 - c) Determinare l'algebra di Lie u(2) di U(2).
- **3.** a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di tempo omogeneo, cioè se $\rho_t = e^{-iHt}\rho_t e^{iHt}$, far vedere che se $[A,H] = \mathbf{0}$ e $A\psi = \lambda_o \psi$ allora $A\psi_t = \lambda_0 \psi_t$.
- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico, e siano P_{α} , J_{α} , G_{α} i generatori hermitiani di una rappresentazione proiettiva di \mathcal{G} . Date le regole $[J_{\alpha}, J_{\beta}]$, determinare $[J_{\alpha}, P_{\beta}]$.
- 5. Sia ora \mathcal{G} il gruppo di simmetria per una particella libera localizzabile in \mathbf{R}^3 . Date le regole $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [P_{\alpha}, P_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}],$
 - a) determinare le regole di commutazione $[G_{\alpha}, V_{\beta}], [J_{\alpha}, Q_{\beta}], [J_{\alpha}, V_{\beta}],$ dove Q_{α} e V_{α} indicano gli operatori posizione e velocità;
 - b) usare il teorema di Mackey per stabilire che nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3), $H=(1/2\mu)(P_x^2+P_y^2+P_z^2)+\Phi(\mathbf{Q})$.

Fisica Matematica Avanzata, 29 IX 2014

- 1. Siano \mathcal{P} e \mathcal{Q} osservabili 1-0 rappresentate dai proiettori P e Q tali che [P,Q]=0.
- a) Determinare un operatore autoaggiunto C e le funzioni f e g tali che P = f(C) e Q = g(C).
- b) Determinare le espressioni per le probabilità che una misurazione simultanea di \mathcal{P} e \mathcal{Q} abbia rispettivamente come coppie di risulati (1,1), (1,0), (0,1), (0,0) se lo stato è $\rho = |\psi> <\psi|$.
- c) Far vedere che in una misurazione simultanea di \mathcal{P} e \mathcal{Q} il risultato 1 per \mathcal{P} implica sempre il risultato 1 per \mathcal{Q} se e soltanto se $P\mathcal{Q}\psi = P\psi$.
- 2. a) Individuare un sistema di coordinate per il gruppo $GL(3, \mathbf{R})$ e verificare che è un gruppo di Lie locale.
 - b) Verificare se è connesso.
 - c) Determinare l'algebra di Lie su(n) di SU(n) come sottoalgebra di $gl(n, \mathbb{C})$.
- 3. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di tempo omogeneo, derivare le equazioni di evoluzione nei due casi.
- 4. Sia il gruppo di Galilei \mathcal{G} un gruppo di trasformazioni di simmetria per un sistema quantistico, e siano (A_1, A_2, A_3) , (A_4, A_5, A_6) , (A_7, A_8, A_9) i generatori hermitiani dei sottogruppi unitari a un paramentro rappresentanti rispettivamente le traslazioni spaziali, le rotazioni spaziali, i boost di Galilei relativi ai tre assi $x, y \in z$ in una rappresentazione proiettiva di \mathcal{G} . Stabilire la relazione tra il commutatore $[A_j, A_k]$ e i generatori $A_1, \ldots A_9$.
- 5. Sia ora \mathcal{G} il gruppo di simmetria per una particella localizzabile in \mathbf{R}^3 . Date le regole per $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [G_{\alpha}, G_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}]$
- a) determinare $[J_{\alpha}, V_{\beta}]$ e $[P_{\alpha}, Q_{\beta}]$ usando le proprietà di covarianza di \mathbf{Q} e \mathbf{V} ;

Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3),

- b) individuare gli operatori Q_{α} e V_{α} .
- c) Sotto l'ipotesi $\dot{\mathbf{Q}} = \mathbf{V}$, determinare l'operatore hamiltoniano H se non vale $[H, P_{\alpha}] = \mathbf{0}$.

Fisica Matematica Avanzata, 25 novembre 2014

- 1. Sia A l'operatore che rappresenta l'osservabile quantistica \mathcal{A} , con risoluzione dell'identità $\lambda \to E_{\lambda}$.
- a) Far vedere che se lo stato quantististico del sistema è $\rho = |\psi\rangle\langle\psi|$ il valore misurato di \mathcal{A} è certamente a se e soltanto se $A\psi = a\psi$.
- b) Dimostrare che se λ_0 è un punto di discontinuità per E_{λ} , allora esiste $\psi_0 \in \mathcal{H} \setminus \{0\}$ tale che $A\psi_0 = \lambda_0 \psi_0$.
- 2. Spiegare, dopo aver formulato il lemma di Schur, perché esso non si applica alla rappresentazione

 $R: G \equiv (\mathbf{R}, +) \to GL(2, \mathbf{R}), \quad \theta \to R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$

3. Verificare se i seguenti gruppi sono connessi:

(a)
$$GL(2, \mathbf{R});$$
 (b) $SL(2, \mathbf{C}).$

- 4. a) Determinare le algebre di Lie di SU(2) e SO(3).
 - b) Verificare che sono isomorfe.
- 5. Sia G un gruppo di trasformazioni di simmetria per un sistema quantistico.
 - a) Facendo uso del teorema di Wigner, dedurre l'esistenza di una rappresentazione proiettiva $g \to U_g$ di G.
 - b) Se G è il gruppo di Galilei \mathcal{G} , individuare, nella rappresentazione proiettiva di \mathcal{G} , un sistema di imprimitività per la restrizione al gruppo di Euclide di $g \to U_g$ e identificare esplicitamente la più semplice rappresentazione proiettiva di \mathcal{G} facendo uso del teorema di imprimitività di Mackey.

Se il sistema fisico è una particella localizzabile

- c) identificare l'operatore posizione nella rappresentazione proiettiva trovata in (b);
- d) Sia $\mathcal{U}: L_2(\mathbf{R}^3) \to L_2(\mathbf{R}^3)$, $[\mathcal{U}\psi](\mathbf{x}) = e^{i\chi(\mathbf{x})}\psi(\mathbf{x})$, dove χ è una funzione reale, l'operatore unitario che realizza una trasformazione di simmetria quantistica (S_1, S_2) nella più semplice rappresentazione proiettiva di \mathcal{G} . Trovare gli operatori $S_2(\mathbf{Q}), S_2(\mathbf{V}), S_2(H)$.

Fisica Matematica Avanzata, 27 II 2015

- 1. Nello spazio di Hilbert $\mathcal{H} = \mathbf{C}^2$, si considerino i vettori di stato $|\psi_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e $|\psi_2\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
- a) Determinare gli stati quantistici $\rho_1 = |\psi_1\rangle\langle\psi_1|$, $\rho_2 = |\psi_2\rangle\langle\psi_2|$ e $\rho = \frac{1}{2}(\rho_1 + \rho_2)$.
- b) Sia $\{|\varphi_1\rangle, |\varphi_2\rangle\}$ una base orto-normale di \mathbf{C}^2 e poniamo $\hat{\rho}_1 = |\varphi_1\rangle\langle\varphi_1|, \ \hat{\rho}_2 = |\varphi_2\rangle\langle\varphi_2|$. Verificare che $\frac{1}{2}(\hat{\rho}_1 + \hat{\rho}_2) = \frac{1}{2}(\rho_1 + \rho_2)$.
- 2. Sia (S_1, S_2) una trasformazione di simmetria quantistica. Dimostrare che se $\{A_n\}$ è una successione di operatori auto-aggiunti che converge debolmente all'operatore autoaggiunto A, cioè se $\lim_{n\to\infty} \langle \psi \mid A_n\psi \rangle = \langle \psi \mid A\psi \rangle$ per ogni $\psi \in \mathcal{H}$, allora la successione $\{S_2(A_n)\}$ converge debolmente a $S_2(A)$.
- 3. Sia il gruppo di Galilei \mathcal{G} un gruppo di simmetria per un sistema quantistico, e sia U_g l'operatore che realizza la corrispondente trasformazione di simmetria quantistica $(S_g^{(1)}, S_g^{(2)})$ in accordo col teorema di Wigner, per ogni $g \in \mathcal{G}$.
- a) Dimostrare che ogni U_g è un operatore unitario e che la corrispondenza $g\to U_g$ è una rappresentazione proiettiva.
- b) Determinare le regole di commutazione $[J_{\alpha}, J_{\beta}]$.
- c) Individuare nella rappresentazione proiettiva un sistema di imprimitività rispetto alla restrizione di $g \to U_g$ al gruppo di Euclide \mathcal{E} .
- 4. Siano Q_1, Q_2, Q_3 gli operatori posizione di una particella libera localizzabile.
- a) Determinare le regole di commutazione $[J_{\alpha}, Q_{\beta}], [P_{\alpha}, Q_{\beta}], [G_{\alpha}, Q_{\beta}].$ Nella più semplice rappresentazione proiettiva di \mathcal{G} ottenuta col teorema di imprimitività,
- b) Dimostrare che si ha $Q_{\alpha} = G_{\alpha}/\mu$, $P_{\alpha} = -i\frac{\partial}{\partial x_{\alpha}}$.
- c) Siano V_1, V_2, V_3 operatori auto-aggiunti che commutano, tali che $[P_{\alpha}, V_{\beta}] = \mathbf{0}$, $[J_{\alpha}, V_{\beta}] = i\epsilon_{\alpha\beta\gamma}V_{\gamma}$, $[G_{\alpha}, V_{\beta}] = i\delta_{\alpha\beta}$. Dimostrare che $V_{\alpha} = P_{\alpha}/\mu$.
- d!) Determinare le regole di commutazione $[P_{\alpha}, \dot{Q}_{\beta}], [J_{\alpha}, \dot{Q}_{\beta}], [G_{\alpha}, \dot{Q}_{\beta}].$
- e!) Dimostrare che $\ddot{Q}_{\alpha} = 0$.
- f!) Determinare l'operatore hamiltoniano ${\cal H}.$

Fisica Matematica Avanzata, 15 IV 2015

- 1. Sia A l'operatore che rappresenta l'osservabile quantistica \mathcal{A} , con risoluzione dell'identità $\lambda \to E_{\lambda}$.
- a) Far vedere che se lo stato quantististico del sistema è $\rho = \sum_{j} |\psi_{j}\rangle\langle\psi_{j}|$, con $||\psi_{j}|| = 1$, il valore misurato di \mathcal{A} è certamente a se e soltanto se $A\psi_{j} = a\psi_{j}$ per ogni j.
- b) Dimostrare che se λ_0 è un punto di discontinuità per E_{λ} , allora esiste $\psi_0 \in \mathcal{H} \setminus \{0\}$ tale che $A\psi_0 = \lambda_0 \psi_0$.
- **2.** Stabilire un omomorfismo suriettivo tra SU(2) e SO(3).
- 3. Sia G un gruppo di trasformazioni di simmetria per un sistema quantistico.
 - a) Facendo uso del teorema di Wigner, dedurre l'esistenza di una rappresentazione proiettiva $g \to U_g$ di G.
 - b) Se G è il gruppo di Galilei \mathcal{G} , individuare, nella rappresentazione proiettiva di \mathcal{G} , un sistema di imprimitività per la restrizione al gruppo di Euclide di $g \to U_g$ e identificare esplicitamente la più semplice rappresentazione proiettiva di \mathcal{G} facendo uso del teorema di imprimitività di Mackey.
- 4. Se il sistema fisico del quesito 3) è una particella localizzabile, nella rappresentazione proiettiva del punto 3.b)
- a) identificare l'operatore posizione Q.
- Se (S_1, S_2) è una trasformazione di simmetria quantistica indotta da un operatore unitario U tale che $|(U\psi)(x)| = |\psi(x)|$ per ogni $\psi \in L_2(\mathbf{R}^3)$.
- b) Dimostrare che $[Q_{\alpha}, U] = \mathbf{0}$ e che $U = e^{i\chi(\mathbf{Q})}$ dove χ è una funzione reale;
- c) determinare gli operatori $S_2(Q_\alpha)$, $S_2(P_\alpha)$, $S_2(H)$.

Fisica Matematica Avanzata, 17 VI 2015

- 1. Siano \mathcal{P} e \mathcal{Q} osservabili 1-0 rappresentate dai proiettori P e Q tali che $[P,Q]=\mathbf{0}$.
- a) Determinare un operatore autoaggiunto C e le funzioni f e g tali che P=f(C) e Q=g(C).
- b) Determinare le espressioni per le probabilità che una misurazione simultanea di \mathcal{P} e \mathcal{Q} abbia rispettivamente come coppie di risulati (1,1), (1,0), (0,1), (0,0).
- c) Far vedere che in una misurazione simultanea di \mathcal{P} e \mathcal{Q} , nello stato $\rho = |\psi\rangle\langle\psi|$, i risultati coincidono sempre se e soltanto se se e soltanto se $P\psi = Q\psi$.
- **2.** Stabilire un omomorfismo tra SU(2) e SO(3).
- 3. Sia data una rappresentazione proiettiva del gruppo di Galilei \mathcal{G} .
- a) Indicati con $A_1, A_2,, A_9$ i generatori hermitiani della rappresentazione, stabilire la relazione che esprime i commutatori $[A_i, A_k]$ in termini di costanti di struttura.
- b) Date le regole di commutazione $[J_{\alpha}, J_{\beta}]$, determinare $[J_{\alpha}, P_{\beta}]$.
- c) Dimostrare che nella più semplice rappresentazione proiettiva del gruppo di Galilei \mathcal{G} ottenuta usando il teorema di imprimitività esiste un unico sistema di imprimitività rispetto alla restrizione della rappresentazione al gruppo di Euclide \mathcal{E} .
- 4. Sia ora \mathcal{G} il gruppo di simmetria per una particella libera localizzabile in \mathbb{R}^3 .
- a) determinare $[P_{\alpha}, Q_{\beta}]$ e $[J_{\alpha}, Q_{\beta}]$ usando le proprietà di covarianza di \mathbf{Q} .

Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3),

- b) individuare gli operatori Q_{α} e \dot{Q}_{α} .
- c) Dimostrare che $J_3 = Q_1P_2 Q_2P_1$.

Fisica Matematica Avanzata, 9 IX 2015

- 1. Sia $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ la matrice che rappresenta una osservabile \mathcal{A} di un sistema quantistico nello spazio di Hilbert $\mathcal{H} = \mathbf{C}^3$.
- a) Trovare la risoluzione dell'identità di A.
- b) Determinare i possibili risultati di una misurazione di A.
- c) Se lo stato è rappresentato da $\rho = |\psi\rangle\langle\psi|$ dove $\psi = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, determinare la probabilità di ottenere ognuno dei valori possibili.
- d) L'operatore $B = \frac{1}{2}(A+1)$ rappresenta un'osservabile 1-0?
- 2. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Nel caso di tempo omogeneo, cioè se $(\rho_{t_1})_{t_2} = \rho_{t_1+t_2}$, derivare le equazioni di evoluzione quantistica per gli stati e le osservabili:

(1)
$$i\frac{d\psi_t}{dt} = H\psi_t$$
, (2) $\frac{dA_t}{dt} = i[H, A_t]$.

- **3.** Sia $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ una rappresentazione proiettiva del gruppo di Galilei \mathcal{G} in \mathcal{H} .
- a) Indicati con $A_1, A_2,, A_9$ i generatori hermitiani della rappresentazione, stabilire la relazione che esprime i commutatori $[A_j, A_k]$ in termini di costanti di struttura.
- b) Date $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}]$ per i generatori hermitiani, individuare un sistema di imprimitività \mathbf{F} per la restrizione della rappresentazione proiettiva al gruppo di Euclide e identificare esplicitamente la più semplice rappresentazione proiettiva di \mathcal{G} facendo uso del teorema di imprimitività di Mackey.

Sia \mathcal{H} anche lo spazio di Hilbert della teoria quantistica di un sistema che possiede tre osservabili rappresentate dagli operatori Q_{α} , $\alpha = 1, 2, 3$ tali che $[Q_{\alpha}, Q_{\beta}] = \mathbf{0}$,

i)
$$[Q_{\beta}, P_{\alpha}] = i\delta_{\alpha\beta}, [J_{\alpha}, Q_{\beta}] = i\epsilon_{\alpha\beta\gamma}Q_{\gamma}, [G_{\alpha}, Q_{\alpha}] = \mathbf{0},$$

ii)
$$[G_{\alpha}, \dot{Q}_{\beta}] = i\delta_{\alpha\beta}, [P_{\alpha}, \dot{Q}_{\beta}] = 0, [J_{\alpha}, \dot{Q}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\dot{Q}_{\gamma}.$$

Dimostrare che

- c) $\mathbf{Q} = \mathbf{F}$, dove \mathbf{F} è il sistema di imprimitività del punto (b).
- d) Esiste una funzione $\Phi(x_1, x_2, x_3)$ tale che $H = \frac{1}{2\mu} \sum_{\alpha=1}^{3} P_{\alpha}^2 + \Phi(\mathbf{Q})$.

$$e)$$
 $\ddot{Q}_{\alpha} = -\frac{\partial \Phi}{\partial x_{\alpha}}(Q_1, Q_2, Q_3).$

Fisica Matematica Avanzata, 22 IX 2015

- 1. Sia $A = \begin{bmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix}$ la matrice che rappresenta una osservabile $\mathcal A$ di un sistema quantistico nello spazio di Hilbert $\mathcal H = \mathbf C^3$.
- a) Determinare i possibili risultati di una misurazione di \mathcal{A} e la risoluzione dell'identità di A.
- b) Se lo stato è rappresentato da $\rho=|\psi\rangle\langle\psi|$ dove $\psi=\begin{bmatrix}1\\0\\0\end{bmatrix}$, determinare la probabilità di misurare un valore non nullo.
- c) L'operatore A² rappresenta un'osservabile 1-0?
- 2. Si consideri l'evoluzione temporale di un sistema quantistico nel caso di tempo omogeneo.
- a) Usando il teorema di Wigner e di Stone, far vedere che esiste un operatore hermitiano H tale che

(1)
$$i\frac{d\psi_t}{dt} = H\psi_t$$
, (2) $\frac{dA_t}{dt} = i[H, A_t]$.

- b) Sia A un operatore autoaggiunto tale che $[A, H] = \mathbf{0}$, e a indichi il risultato di una misurazione dell'osservabile rappresentata da A. Far vedere che per ogni intervallo $(\lambda_1, \lambda_2] \subseteq \mathbf{R}$ la probabilità che $a \in (\lambda_1, \lambda_2]$ indipendente dal tempo t in cui si effettua la misurazione.
- 3. Sia \mathcal{H} lo spazio di Hilbert di una particella libera localizzabile e $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ una rappresentazione proiettiva del gruppo di Galilei \mathcal{G} in \mathcal{H} .
- a) Usare il teorema di Wigner e di Stone per dimostrare l'esistenza di una rappresentazione proiettiva $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ del gruppo di Galilei \mathcal{G} .
- b) Date $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}]$ per i generatori hermitiani, identificare esplicitamente, usando il teorema di imprimitività, la più semplice rappresentazione proiettiva di \mathcal{G} .
- c) Se \mathbf{Q} è la terna degli operatori posizione, date $[Q_{\beta}, P_{\alpha}] = i\delta_{\alpha\beta}, [J_{\alpha}, Q_{\beta}] = i\epsilon_{\alpha\beta\gamma}Q_{\gamma},$ $[G_{\alpha}, Q_{\alpha}] = \mathbf{0}, [G_{\alpha}, \dot{Q}_{\beta}] = i\delta_{\alpha\beta}, [P_{\alpha}, \dot{Q}_{\beta}] = \mathbf{0}, [J_{\alpha}, \dot{Q}_{\beta}] = i\epsilon_{\alpha\beta\gamma}\dot{Q}_{\gamma},$ dimotrare che

(i)
$$\dot{Q}_{\alpha} = \frac{1}{\mu} P_{\alpha}$$
, (ii) $H = \frac{1}{2\mu} \sum_{\alpha=1}^{3} P_{\alpha}^{2} + c\mathbf{1}$, (iii) $\frac{d}{dt} J_{\alpha} = 0$.

Fisica Matematica Avanzata, 4 II 2016

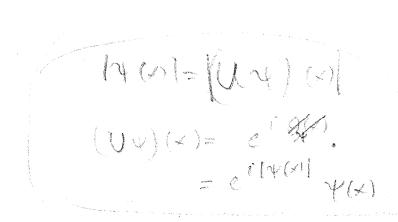
- 1. a) Si dimostri che un operatore densità ρ rappresenta uno stato puro se e soltanto se è un proiettore ortogonale di rango 1.
 - b) Sia $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ la matrice che rappresenta una osservabile \mathcal{A} di un sistema quantistico nello spazio di Hilbert $\mathcal{H} = \mathbf{C}^2$. Determinare i possibili risultati di una misurazione di \mathcal{A} e le probabilità di ottenere ognuno dei valori possibili se lo stato è rappresentato da $\rho = |\psi\rangle\langle\psi|$ dove $\psi = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- 2. a) Spiegare, dopo aver formulato il lemma di Schur, perché esso non si applica alla rappresentazione $R:G\equiv(\mathbf{R},+)\to GL(2,\mathbf{R}),\quad \theta\to R(\theta)=\begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}.$
 - b) Provare che in un gruppo di Lie abeliano le costanti di struttura sono nulle.
- 3. Sia il gruppo di Galilei \mathcal{G} il gruppo di simmetria per una particella localizzabile e \mathcal{H} lo spazio di Hilbert della sua teoria quantistica.
- a) Usare il teorema di Wigner e di Stone per dimostrare l'esistenza di una rappresentazione proiettiva $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ del gruppo di Galilei \mathcal{G} .
- b) Date $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}]$ per i generatori hermitiani, dimostrare che $[G_{\alpha}, P_{\beta}] = i\mu\delta_{\alpha\beta}$ e che $e^{iG_{\alpha}u}P_{\beta}e^{-iG_{\alpha}u} = P_{\beta} \delta_{\alpha\beta}\mu u$.
- c) Date, oltre alle $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}],$ le regole $[P_{\alpha}, Q_{\beta}],$ $[J_{\alpha}, Q_{\beta}], [G_{\alpha}, Q_{\beta}]$ per l'operatore posizione \mathbb{Q} , introdurre le condizioni per determinare l'operatore hamiltoniano H nella più semplice rappresentazione proiettiva di \mathcal{G} .
- d) Spiegare perché, nella rappresentazione al punto (c), la costante μ del punto (d) non può essere nulla.
- **4.** Sia $H = \frac{1}{2}A^2 + \frac{1}{2}B^2$ l'operatore hamiltoniano di un sistema quantistico, con [A, B] = i.
- a) Scrivere l'equazione dinamica per l'osservabile $\mathcal B$ al tempo t.
- b) Determinare esplicitamente gli operatori $C = \frac{dB^{(t)}}{dt}\mid_{t=0}$ e $D = \frac{dC^{(t)}}{dt}\mid_{t=0}$.

Fisica Matematica Avanzata, 16 II 2016

- 1. Von Neumann ha dimostrato che per ogni valore d'aspettazione v esiste un operatore lineare ρ tale che $v(A) = Tr(\rho A)$, per ogni A. Dimostrare che ρ è unico, che $Tr(\rho) = 1$ e che $\rho \geq 0$.
- 2. Sia (S_1, S_2) una trasformazione di simmetria quantistica.
- a) Dimostrare, senza far uso del teorema di Wigner, che $S_1: \mathcal{S}(\mathcal{H}) \to \mathcal{S}(\mathcal{H})$ è un isomorfismo convesso, e che $S_2: \Omega(\mathcal{H}) \to \Omega(\mathcal{H})$ è lineare.
- b) Dimostrare che S_2 è debolmente continua, cioè che se per ogni ψ si ha $\lim_{n\to\infty} \langle \psi|A_n\psi\rangle = \langle \psi|A\psi\rangle$, allora per ogni φ si ha $\lim_{n\to\infty} \langle \varphi|S_2(A_n)\varphi\rangle = \langle \varphi|S_2(A)\varphi\rangle$.
- 3. Sia il gruppo di Galilei \mathcal{G} il gruppo di simmetria per una particella localizzabile e \mathcal{H} lo spazio di Hilbert della sua teoria quantistica.
- a) Usare il teorema di Wigner per dimostrare l'esistenza di una rappresentazione proiettiva unitaria $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ del gruppo di Galilei \mathcal{G} .
- b) Date $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}]$ per i generatori hermitiani, determinare $[J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}].$
- c) Date, oltre alle relazioni di commutazione del punto (b), anche $[H, P_{\alpha}]$, $[H, J_{\alpha}]$, determinare, nella più semplice rappresentazione proiettiva di \mathcal{G} , l'operatore hamiltoniano H, facendo uso dellé relazioni di covarianza.
- d) Spiegare perché, nella rappresentazione al punto (c), la costante μ del punto (b) non può essere nulla.
- 4. Sia il gruppo di Galilei \mathcal{G} il gruppo di simmetria di un sistema isolato, non necessariamente localizzabile, e siano date $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}]$. Dimostrare che, nella più semplice reappresentazione proiettiva di \mathcal{G} , se $[G_{\alpha}, H] = iP_{\alpha}$, allora $H = \frac{P_1^2 + P_2^2 + P_3^2}{2\mu} + E_0$.

Fisica Matematica Avanzata, 31 iii 2016

- 1. Dimostrare che se uno stato quantistico è rapprentato da un proiettore ρ , allora ρ ha rango 1 e lo stato è puro.
- 2. a) Descrivere l'evoluzione temporale di un sistema quantistico secondo lo schema di Schroedinger e secondo lo schema di Heisenberg.
 - b) Sia $p_t(\Delta)$ la probabilità di ottenere un risultato $a \in \Delta$ da una misurazione di un'osservabile \mathcal{A} effettuata al tempo t. Nel caso di tempo omogeneo, cioè se $\rho_t = e^{-iHt}\rho e^{iHt}$, far vedere che se $[A, H] = \mathbf{0}$ allora $p_t(\Delta) = p_0(\Delta)$.
- 3. Sia il gruppo di Galilei \mathcal{G} un gruppo di simmetria per un sistema quantistico, e sia $g \to U_g$ la rappresentazione proiettiva che realizza le trasformazioni di simmetria quantistica $(S_g^{(1)}, S_g^{(2)})$ in accordo col teorema di Wigner, per ogni $g \in \mathcal{G}$.
- a) Determinare la relazione che esprime il commutatore $[A_j, A_k]$ di una coppia di generatori hermitiani della rappresentazione proiettiva come combinazione dei generatori stessi.
- b) Date le regole per $[J_{\alpha}, J_{\beta}]$, $[J_{\alpha}, P_{\beta}]$, $[J_{\alpha}, G_{\beta}]$, $[P_{\alpha}, P_{\beta}]$, $[G_{\alpha}, G_{\beta}]$, $[G_{\alpha}, P_{\beta}]$, individuare nella rappresentazione proiettiva un sistema di imprimitività rispetto alla restrizione di $g \to U_g$ al gruppo di Euclide \mathcal{E} .
- c) Nella rappresentazione proiettiva di \mathcal{G} indotta dalla rappresentazione banale di SO(3), dimostrare che se $[H, P_{\alpha}] = 0$ e $[H, G_{\alpha}] = -iP_{\alpha}$ allora $H = (-1/2\mu)\Delta + E_0$, dove Δ è l'operatore laplaciano e E_0 è una costante reale.
- d) Se il sistema è una particella localizzabile in uno spazio identificabile con \mathbb{R}^3 , individuare gli operatori posizione Q_{α} e velocità V_{α} .
- 4. Nella più semplice teoria quantistica di una particella libera localizzabile del quesito 4, sia $\mathcal{U}: L_2(\mathbf{R}^3) \to L_2(\mathbf{R}^3)$ un operatore unitario tale che $|(\mathcal{U}\psi)(\mathbf{x})| = |\psi(\mathbf{x})|$ quasi ovunque su \mathbf{R}^3 .
- a) Dimostrare che $[\mathcal{U}, Q_{\alpha}] = \mathbf{0}$ e che $(\mathcal{U}\psi)(\mathbf{x}) = e^{i\chi(\mathbf{x})}\psi(\mathbf{x})$ quasi ovunque su \mathbf{R}^3 , dove χ è una funzione reale.
- b) Determinare $S(Q_{\alpha})$, $S(P_{\alpha})$, S(H), dove $A \to S(A) = \mathcal{U}A\mathcal{U}^{-1}$ è la trasformazione delle osservabili indotta dall'operatore unitario \mathcal{U} .



Fisica Matematica Avanzata, 26 vii 2016

- 1. Sia $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ la matrice che rappresenta una osservabile \mathcal{A} di un sistema quantistico nello spazio di Hilbert $\mathcal{H} = \mathbf{C}^3$.
- a) Trovare la risoluzione dell'identità di A.
- b) Determinare i possibili risultati di una misurazione di A.
- c) Se lo stato è rappresentato da $\rho = |\psi\rangle\langle\psi|$ dove $\psi = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, determinare la probabilità di ottenere ognuno dei valori possibili.
- **2.**a) Far vedere che se lo stato quantististico del sistema è $\rho = \sum_{n=1}^{\infty} (1/2)^n |\psi_n\rangle\langle\psi_n|$, con $\|\psi_n\| = 1$, il valore misurato di un'osservabile quantistica \mathcal{A} è certamente a se e soltanto se $A\psi_n = a\psi_n$ per ogni n.
 - b) Dimostrare che se λ_0 è un punto di discontinuità per la risoluzione dell'identità E_{λ} dell'osservabile quantistica A, allora esiste $\psi_0 \in \mathcal{H} \setminus \{0\}$ tale che $A\psi_0 = \lambda_0 \psi_0$.
 - **3.** Sia $U: \mathcal{G} \to \mathcal{U}(\mathcal{H})$ una rappresentazione proiettiva del gruppo di Galilei \mathcal{G} in \mathcal{H} .
 - a) Indicati con $A_1, A_2,, A_9$ i generatori hermitiani della rappresentazione, stabilire la relazione che esprime i commutatori $[A_j, A_k]$ in termini di costanti di struttura.

Sia ora $\mathcal G$ il gruppo di simmetria di una particella localizzabile.

- b) Date, oltre alle $[J_{\alpha}, J_{\beta}], [J_{\alpha}, P_{\beta}], [P_{\alpha}, P_{\beta}], [J_{\alpha}, G_{\beta}], [G_{\alpha}, G_{\beta}], [G_{\alpha}, P_{\beta}],$ le regole $[P_{\alpha}, Q_{\beta}], [J_{\alpha}, Q_{\beta}], [G_{\alpha}, Q_{\beta}]$ per l'operatore posizione \mathbf{Q} , dimostrare che $\mathbf{Q} = \mathbf{G}/\mu$.
- c) Stabilire le regole di commutazione $[H, P_{\alpha}], [H, J_{\alpha}]$ e determinare esplitamente l'operatore H.
- **4.** Siano A e B ooperatori autoaggiunti tali che [A,B]=i, e sia $H=\frac{1}{2}A^2+\frac{1}{2}B^2$ l'operatore hamiltoniano del sistema.
- a) Scrivere l'equazione dinamica per le osservabili \mathcal{A} e \mathcal{B} al tempo t.
- b) Determinare esplicitamente gli operatori $C = \frac{dB^{(t)}}{dt} \mid_{t=0} e D = \frac{dA^{(t)}}{dt} \mid_{t=0}$.
- c!) Determinare $A^{(t)} \in B^{(t)}$.