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Chapter 0

Conceptual Foundations of Quantum Theory

It is shown that the conceptual basis of classical physical
theories is inconsistent with particular physical phenomena.
More precisely, the classical idea that at any time each
specimen of a physical system has a value for each of its
magnitudes as an objective property of the specimen leads
to predictions contradicted by particular real experimental
results. Therefore, classical theories become empirically
invalid. To attain a physical theory empirically consistent it
1s necessary to identify a conceptual basis that renounces to
such an idea. Such a consistent conceptual basis is identified
within the von Neumann approach to quantum mechanics.
The basic concepts are the concept of observable and the
concept of expectation value. The very physical meaning of
these concepts compels the set of observables and the set of
expectation values to satisfy precise mathematical
conditions.



1. An experimental paradox

Let us consider the following experimental setup, consisting of three apparatuses (Fig.1).
The first apparatus is a source that emits identical particles one at once, under identical
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Figure 1. Experimental setup

conditions of the source, in such a way that each particle travels towards the second
apparatus.

The second apparatus is an impenetrable screen S; that supports two parallel slits,
we call slit s; and slit sp, through which the particles can pass. One of the slits can be
chosen to be closed, so that the crossing of S; is allowed only through the other slit.

A screen S, at a certain distance behind S;, ascertains

i) whether each particle emitted from the source passes beyond S;, simply by revealing
if it hits S, itself, and also

ii) whether it hits or does not hit a fixed region A of S,.
This is the third apparatus of the setup.

By making use of this experimental setup three different experiments E(1), E(2),
E(1,2) can be performed.

Experiment E(1). Experiment E(1) consists in performing a large number N of
particle emissions with sy closed and s; open. A particle emitted from the source at
time to, will reach S; at time ¢; > ty. The condition of the particle between the source
and S; is that of free particle. The particle goes beyond S; and hence hits Sy only if its
position at time ¢, is in front the aperture of slit s;.

The condition of the particle between S; and S, is again that of free particle. Let
ny and n1(A) be the number of the particles that pass beyond S; and hence hit S,, and
the number of the particles that are revealed to hit A after N runs, respectively. Of
course 11 > nq(A). The number n; coincides with the number of particles localized in
front the aperture of slit s; when S; is reached.
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Experiment E(2). Experiment E(2) is almost identical to E(1); the only difference is
that slit s; is closed at time ¢;, while slit s, is left (7) open. By ny and ny(A) we denote
the number of the particles that pass beyond S; through s, to hit Sy, and the number
of particles that are revealed to hit A after N runs, respectively.

Experiment E(1,2). In experiment E(1,2) both slit s; and slit s, remain always open
and a number M>>2N of emissions are performed. By n and n(A) we denote the number
of the particles that pass beyond S; and hence hit Sy, and the number of particles that
are revealed to hit A after the M runs, respectively. By n(1) and n(2) we denote
the number of particles that hit S, passing through s; and s, respectively; of course
n(1,2) =n(1) +n(2). By n(A | 1) and n(A | 2) we denote the number of particles that
hit A passing through s; or s, respectively; of course n(A | 1) + n(A | 2) = n(A).

B e

!
[

Figure 2. Experiments E(1) with a setting of the source such that ny (A |1) >0
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Figure 3. With the same setting of the source of experiment E(1), experiment E(2)
yields ny(A | 2) >0
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Figure 4. With the same setting of the source of experiments E(1) and E(2), in
experiment E(1,2) n(A) = 0 has been found.

By setting of the setup we mean
i) the concrete choice of the source and of all its controllable conditions,



ii) the concrete choice of the screens S; and Sy,
iii) the concrete choice of the distances source-S;, S;-Sy and of the region A.

Remark 1.1. The physical condition of the particles that pass through slit s; in
experiment E(1) is the same of those that pass through slit s; in E(1,2): in both cases
they are free particles outcoming from s; with the same past history (they come from
the source under identical conditions and go towards s;). Therefore, there is no reason
for which the behavior of the particles of the first set should be different from the
behavior of the particles of the second set. In other words, the fact that s, is closed in
no way affects the condition of the particles that pass through s; in E(1) with respect
the particles that passes through s; with s, open in E(1,2).

Let us suppose that for a given setting of the apparatus experiment E(1) is performed
and n1(A) > 0 is found as a result. This implies in particular that the number n; of
the particles that pass beyond S; is positive, that is to say n, particles had a position
in front the aperture of slit s; at time ¢;.

Let experiment FE(1,2) be performed with the same setting. Since according
to remark 1.1 the behavior of the particles between the source and S; mus be
indistinguishable from that of the particles in the same region in E(1), if M is large
enough then a number n(1) > n; of particles will have a position in front the aperture
of s; at time t; and hence they go in the region between S; and Sy. Here the behavior of
these n(1) particles is indistinguishable from that of the n; particles between S; and S,
in E(1); since ny(A) > 0 in E(1), we must infer that n(A | 1) > 0 and hence n(A) > 0.
Thus, the following statement should hold.

(St.1) Whatever the setting of the apparatus, if experiment E(1) yields ny(A) > 0, then
a number M exists such that an execution of experiment E(1,2) with the same setting
yields n(A) > 0.

This statement holds also if we replace E(1) with E(2) and n;(A) with ny(A), because
the argument leading to (St.1) holds also with these changes.

In fact, particular settings of the source have been realized (Figs. 2-4) such that in
actual performances of the experiments E(1), E(2), E(1,2) turned out to be found that

ni(A) >0, ng(A) >0, but n(A) =0 for every M > 0.

This experimental result contradicts statement (St.1). So the question arises: given that
the condition of the particles that pass beyond S; is the same in E(1) and E(1,2), why
does a difference arise in their behavior? The answer is that something must be wrong
in our reasoning that leads to (Sp)



2. What’s wrong

What is wrong arises clearly if we analyze another experimental procedure characterized
by analogous paradoxical fatures. This new experimental procedure concerns with a
particular kind of physical system, a particle P that after a given time from its emission
by a suitable source S divide into two particles P; and Py that travel in opposite
directions, say left h.s. and right h.s., respectively.

Once P, and Pr are separated they can simultaneously undergo separated
measurement procedures of a physical magnitude £ of P, and of another physical
magnitude R of Pgr. Every magnitude considered in this experiment has two possibile
values, 0 or 1; so the value v(£) obtained by measuring £ on P, as well as the value
v(R) measured on Pg, can be 0 or 1.

The question can be asked whether for a particular pair (£, R) of such magnitudes a
setting of the experimental apparatus exists such that the values v(£) and v(R) obtained
by the respective measurements are constrained to each other, for instance in such a
way that the correlation

v(£) =1 implies v(R)=1

holds between the actually measured values, with that given setting.
In fact, a setting has been concretely found such that the following correlations
hold for three particular pairs (£1,R1), (L2, R1), (L2, R2) of magnitudes:

(1) if £, and R4 are measured then v(£;) = 1 implies v(R1) = 1;
(2) if L and R, are measured then v(R,) = 1 implies v(Ly) = 1;
(3) if Lo and Ry are measured then v(Ls) = 1 implies v(Ry) = 1.

These correlations are indisputable facts in that setting.

Now, in the case that the pair (L1, R,) is measured with the same setting for which
(1-3) hold, and v(£;) = 1 is obtained, what can we state about v(R;)? The answer is
straightforward in the case that all magnitudes L1, L5, R1, Ro are measured together at
time ?g on the same specimen, i.e. the pair Pp, Pg, of the physical system in the setting
for which (1-3) hold: the statement

v(L1) =1 implies v(R,) = 1,

is an unavoidable implication of (1-3).
Let us now suppose that £, R, cannot be measured together with £, R, that are
actually performed. We can argue according the following steps.

Step 1. Let the outcome of an actually performed measurement of £; at time ¢y be
v(£1) = 1. Though correlation (1) implying v(R;) = 1 refers to actually measured
outcomes, such assignment can be extended to the (not measured) value of R; according
to the following statement.
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Value Assignment Assumption. The outcome of a measurement of a magnitude at any
time ¢ on a specimen of the physical system is nothing else but the revealation of the
value of the magnitude at that time.

Step 2. By making use of this assumption and of (2), we can state that for this specimen
if £, were measured instead of £;, then the outcome would be v(L£y) = 1 with certainty.
Indeed, the outcome of R; if measured instead of R, at ¢ty would be 1 with certainty,
and the outcome of an eventual measurement of £, at tq cannot depend on the fact that
R1 is measured or not, because the measurements occur at the same time tq in spatially
separated places; therefore we can state that

v(Ly) =1 if Ly were measured instead of L.

Step 3. From this statement, by making use once again of the Value Assignment
Assumption and of (3), we infer that if R, were measured , then the outcome is
v(Ry) = 1 with certainty.

Thus, the conclusion of our conceptually compelling reasoning is the following statement.
(S) If Ly and Ry are measured at time to, then v(£1) = 1 implies v(Ry) = 1.

In fact, analogously to the experiment of section 1, a setting for this new experimental
procedure has been concretely found for which (1-3) hold, but in some actually
performed measurements of (£, R2) the outcome turned to be

(ER) v(L£1) =1 and v(Ry) =0,

in contradiction with statement (S). Therefore, there must be a mistake in the

reasoning that leads to (S) from (1-3). Since (1-3) are indisputable facts, the unique
possible conclusion is that the Value Assignment Assumption cannot be maintained.
This assumption is an unavoidable consequence of the following apparently obvious
principle.

(BP) Every specimen of the physical system has a precise value of each of its magnitudes
at any time.

This principle establishes the existence of these values as objective properties of the
specimen, independently of its experimental revealation. Also if (BP) is not explicitly
formulated, the development of all classical theories makes continuously use of it, and
their formulation cannot be carried out if its validity is removed.

The experimental result (€R) implies that the principle (BP) does not always hold
in Physics. So, classical theories are not able to explain these physical phenomena,
because they assume a principle that turns out to be empirically invalid.

3. Conceptual re-foundation for empirically consistent physical theories

Since all classical physical theories have been developed complying with (BP), and
therefore are empirically unadequate, the physical theories must be re-founded. A
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physical theory of a specific system is a specific formal system whose role is to establish
the relationships among the phenomena of that physical system. These physical
phenomena include the occurences of the outcomes of measurements performed on
specimens of the physical system, of course. In our re-foundation of the physical theories,
however, the existence of the value of every magnitude at any time cannot be assumed
as physical phenomenon. Coherently, the classical concept of physical magnitude is
replaced by the following concept of observable.

Observables. By observable we mean any physical magnitude measurable, by means of a
concrete apparatus, on individual specimens of the physical system under investigation,
which has real numbers as outcomes; the coordinates of the position of a particle are
examples of observables. An observable is not assigned an objective value if such a value
is not the outcome of an actually performed measurement.

The set of all observables is denoted by O. The set of all possible outcomes of the
measurement of an observable is denoted by 6(.A), and it is called physical spectrum of
the observable A.

Remark 1. Coherently with the new basic concept, the performance of a
measurement of an observable R on a specimen of the physical system assigns that
specimen the objective value of R that is necessarily consistent with the ascertained
physical circumstances. Therefore, if any value assignment to a set of oservables is not
consistent with the ascertained conditions, then the measurement of these observables
together on the same specimen is not possible — otherwise the assignment would be
consistent.

In the experimental procedure of section 2 the assignment of values to Ly and R,
is proved to be inconsistent with the ascertained conditions (1-3) and the ascertained
outcomes of the measurements of £; and R,. Thus, £;, R1, £, and R, cannot be
measured together. In the experiment of section 1 we have shown that in experiment
E(1,2) the outcomes of the measurement of the position at the time of the final impact
on S, makes inconsistent the assignment of position at time ¢;; therefore, according to
the implication assignment not consistent = measurement not possible above, we have
to conclude that in E(1,2) the measurement of the position at the time of the final
impact cannot be performed together to the measurement of the position at time ¢; on
the same specimen of the physical system.

Hence, a theory with the present conceptual basis allows for the existence of
observables that cannot be measured together

3.1. Functional Principle for observables and co-measurability

The very meaning of the concepts of observable allows to establish mathematical
conditions to be satisfied by the set of observables, which are expressed by the following
principle.

Functional Principle. Let R be an observable. In correspondence with each function
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f : or = IR, there is another observable, denoted by f(R), whose outcomes can be
obtained by applying the function f to the outcomes of R; we notice that, if f is
injective, R and f(R) measure the same magnitude, by using two different scales.

Now we show how co-measurability can be characterized. Given two observables A
and B, let us suppose that a third observable C and two functions f and g exist such
that A = f(C) and B = ¢(C) according to the functional principle. If a measurement of
C is performed with outcome ¢, then the values of a and b can be obtained, according to

the functional principle, simply as a = f(c) and b = g(c). Thus, the following statement
holds.

(Co.l) If A= f(C) and B = ¢g(C) then A and B are measurable together.

Conversely, let A and B be two observables that are measurable together on a same
specimen of the physical system. In the case that their physical spectra are finite, say

5’(./4) = {)\1,)\2, .A.7>\N} and 5'(8) = {/J,l,/J,Q, ---;,LL]V[}y

the existence can be proved of a third observable C and of two functions f, g such that
A= f(C) and B = g(C) according to the following procedure:

(1) Fix a bijection:
2 6(A) X 5-(8) - {71:7% "'a’)/NX]V[} =T g ]R'7 ()‘Ja/J‘k) = 90</\])N/k) = Tn-

A unique pair j : {1,2,..,N x M} — {1,2,..,N}, k : {1,2,..,N x M} —
{1,2,..., M} of mappings exists such that ©(Aj(n)» Né(n)) = Y.

(2) Now, let us define C as the observable that can be measured by measuring together
A and B, being A;, pr the respective outcomes, and assigning C the outcome
(N, ) = Yn. Of course, j(n) = j and k(n) = k.

Accordingly, the spectrum of C is 6(C) =T.

(3) Finally, define: f : 6(C) — G(A), f(1a) = Ajmy and g : 5(C) = 6(B), 9() = Mgy
If A and B are measured together with outcomes Aj, and pu;, respectively, then the
outcome of C is ¢ = p(Ajy, fiky) = Vno, 50 that f(c) = \j, and g(c) = pjo-

Thus, A = f(C), B = ¢(C).

We can conclude that

(Co.2) in the case that 6(A) and 5(B) are finite, if A and B are measurable together then
C, f, g exists such that A = f(C) and B = g(C).

This statement could be immediately extended to the case of general spectra 6(.A), &(B)
if a bijection ¢ : 6(A) x5(B) — I' C IR existed, where 5(.A) and &(BB) are not necessarily
finite closed subsets of IR. In general, continuous such bijections do not exist: in other
words, it is not possible to transform a plane in a line bijectively by means of a continuous
function. However, this kind of transformation is possible if the continuity condition is
removed, keeping measurability. Since the continuity condition is not required by our
argument, it can be conclude that:
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(Co) Two observables A and B are measurable together if and only if a third observable
C and two functions f, g exist such that A = f(C) and B = ¢(C).

3.2. Expectation Value of observables

By expectation value we mean a function E, : O, — IR assigning a numerical value
E,(R) to every observable R in a suitable subset O, of observables, which is to be
interpreted as the expectation value of the measurement of the observable R, in the
sense of statististical probability theory. Hence, any expectation value E, refers to a
population N of specimens of the physical systems such that if the measurement of
an observable R is performed on each specimen of a concrete sample N; C N of N,
specimens, anyway extracted from N, with actual outcomes outcomes aq,as, ... , AN,
and mean value (R)y;, = Y4 a;/Ny, then (R),, converges to the expectation value
E,(R) as N1 — oo.

The population corresponding to an expectation value E, is to be identified with
the process, natural or laboratorial or of any nature, that selects the specimens of the
physical system that belongs to the population. Two different such selection processes
are physically equivalent if they yields the same expectation values. In the experiments
of sections 1 and 2 such a selection is operated by the source in a fixed setting.

This peculiar possibility is not in contradiction with the existence of the expectation
values of two different observables, also in the case that they cannot be measured
together. Indeed, the two expectation values can be determined as the limits of the
mean values of the two observables measured on two different sequences of samples for
the two observables such that every sample of the first sequence has empty set theoretic
intersection with any sample of the other sequence.

The theory based on these basic concepts does not make predictions about a single
measurement, but rather it establishes the probability of each possible outcome; then,
in general, its prediction can be verified by repeating the selection and the measurement
many times, and then constructing the statistical distribution of the results.

4. Quantum Theory

The quantum theory of a specific physical system is the physical theory of that physical
system developed coherently with the basic concepts of observable and expectation value
defined in this chapter. The formulation of complete specific quantum theories requires
the mathematical formalism of particlar classes of operators in Hilbert space.



