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The group theoretical methods worked out by
Bargmann, Mackey and Wigner, which deductively
establish the Quantum Theory of a free particle for
which Galileian transformations form a symmetry
group, are extended to the case of an interacting
particle. In doing so, the obstacles caused by loss of
symmetry are overcome. In this approach, specific
forms of the wave equation of an interacting particle,
including the equation derived from the minimal
coupling principle, are implied by particular first-
order invariance properties that characterize the
interaction with respect to specific subgroups of
Galileian transformations; moreover, the possibility of
yet unknown forms of the wave equation is left open.

1. Introduction
In Quantum Theory, a complex and separable Hilbert
space H can be associated to the physical system
under investigation, in such a way that the self-adjoint
operators of H represent the quantum observables of
the system and the density operators represent quantum
states [1]. The formulation of the effective Quantum
Theory of a specific system requires two tasks: to explicitly
identify the self-adjoint operator of H representing each
relevant observable of the system, and secondly to
specify the dynamical law.

Canonical quantization is a primary method for
accomplishing these tasks; it obtains the Quantum
Theory of a particle, for instance, ‘quantizing’ the
position coordinates and their conjugate momenta, qj,
pj as operators Qj, Pj and then replacing qj and pj with
Qj and Pj in the Poisson brackets, transformed into
commutation brackets, of the equations of the classical
theory of that particle [2].

This method has played a decisive role for the
development of the Quantum Theories of specific
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systems. However, it has intrinsic limits, as explained for instance in [3,4]. Indeed, canonical
quantization can be implemented only if the observables to be ‘quantized’ already exist in a
classical form; this is not always the case, as in the case of spin observables. Another problem,
of an epistemological nature, is that while Quantum Theory aims to be more fundamental than
the Classical Theory, canonical quantization is based on the latter [3].

There are, however, group theoretical methods that do not suffer from these shortcomings. In fact,
they attain a formulation of the Quantum Theory of a free particle through a purely deductive
development based on symmetry principles. Put simply, these approaches proceed according to
the following scheme. First, they enforce the condition that Galilei’s group G (or Poincaré’s group
P , for a relativistic theory) is a group of symmetry transformations for an isolated particle, so that
Wigner’s theorem [5,6] on the representation of symmetries implies the existence of a projective
representation of that group. Then, since the position observables (Q1, Q2, Q3) = Q determine the
existence of an imprimitivity system with respect to the restriction of the projective representation
to the Euclidean group, Mackey’s imprimitivity theory [7,8] can be applied to derive the explicit
Quantum Theory of a free particle [9]. In this way, the drawbacks of canonical quantization are
obviated. For instance, the spin observables, having no classical analogue, are correctly predicted
by the approach [10,11]; no pre-existing classical theory is required.

This state of affairs makes it worthwhile to extend the group theoretical methods to develop
an analogous approach to the Quantum Theory of more general physical systems than the free
particle.

A line of research, effectively reviewed in [4], is devoted to generalizing the quantization
via Mackey’s imprimitivity theorem to the case of configuration manifolds M with topologies
different from the trivial topology of R

n; the physical interest of this line of research is also driven
by the fact that non-trivial topologies are related to new non-classical effects, such as Dirac’s
magnetic monopole [12] and the Aharanov–Bohm effect [13]. To this end, a notion of quantum Borel
kinematics has been introduced, investigated and classified, that generalizes the imprimitivity
systems of Mackey [4,14–18] in this direction. A weakening of the notion of quantum Borel
kinematics leads to the notion of generalized imprimitity systems that allows for the description of
particle in external gauge fields, as for instance magnetic fields [4].

In this work, we specifically address the problem of the development of a group theoretical
approach to the Quantum Theory of an interacting particle. In fact, the extension of the group
theoretical methods, so satisfactory for a free particle, to an interacting particle encounters
serious problems; the main obstacle is the fact that for a non-isolated system the Galileian
transformations, or Poincaré’s transformations in the relativistic case, do not form a group of
symmetry transformations [19], so that neither Wigner’s theorem nor Mackey’s imprimitivity
theorem can apply directly. One very special case was treated by Hoogland [20], who
derived the wave equation of a spin-0 charged particle subjected to an interaction having the
particular feature of leaving unaltered the symmetry condition of a rich subgroup of the whole
transformations group. We shall discuss this work in remark 4.3.

In fact, in the literature several general approaches extend the group theoretical methods to the
case of interacting particles. However, many of these proposals [9,19,21–23], in order to overcome
the difficulty raised by the loss of symmetry, have to introduce certain assumptions; yet, as we
argue in §2d, these assumptions lead to an empirically inadequate theory, unable, in particular,
to describe particles interacting with electromagnetic fields.

We show how a group theoretical approach to the Quantum Theory of an interacting
particle can be successfully pursued without introducing assumptions such as those required
in [9,19,21–23], which restrict the empirical domain of the theory too drastically. In fact, our
approach derives the known non-relativistic wave equations, and opens up the possibility of
yet unknown equations. The approach applies for interactions which leave the R

3 topology
of the localization space of the particle unaltered; hence, we do not make use of generalized
imprimitivity systems [4].

Let us now describe how the article is organized. First, we find preliminary results which
hold both for a non-relativistic and for a relativistic theory, i.e. independently of whatever
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group, Υ = G or Υ =P , is taken into account. The basic concept (QT) of quantum transformation
corresponding to a space–time transformation g ∈Υ , which is viable also in the absence of
the condition of symmetry, is introduced in §2b as a transformation SΣg defined on the whole
set of quantum observables. Three conditions (S.1), (S.2) and (S.3) required for this notion of
quantum transformation are identified in §§2b and 3a, where we show that they, together with a
continuity condition for g → SΣg , imply that every transformation g ∈Υ can be assigned a unitary
operator Ug that realizes the quantum transformation of a quantum observable A as SΣg [A] =
UgAU−1

g , even if g is not a symmetry; moreover, the correspondence g → Ug is proved to be a
continuous mapping.

However, there is another obstacle: the properties (S.1), (S.2) and (S.3) are insufficient to
imply that g → Ug is a projective representation, which is one of the conditions required for the
imprimitivity theorem to apply.

To address this problem in §3c we introduce the notion of σ -conversion, which is a straight
mathematical procedure that converts each Ug into another unitary operator Ûg in such a
way that g → Ûg is a projective representation. In the non-relativistic case, we prove that the
imprimitivity theorem for the Euclidean group E—not for the whole Galileian group G—can be
applied to identify a mathematical formalism of the theory explicitly; but in general the position
operators are not explicitly identified, so that the identified formalism turns out to be devoid of
physical significance.

In order to arrive at an effective theory it is necessary to determine which operators represent
position and to determine the dynamical law. In §3d, we show how the operators that physically
represent the position of the particle are explicitly represented for a particular class of interactions,
fully characterized by admitting ‘Q-covariant’ σ -conversions, i.e. σ -conversions that leave the
covariance properties of the position with respect to G unaltered. For this class of interactions, the
general dynamical law is determined in §3e.

This law does not specify the explicit form of the Hamiltonian operator H; in fact, different
specific forms of the wave equation are compatible with it. So we face the problem of singling out
conditions related to the interaction, which determine the different wave equations.

In §4, we identify these conditions as invariance properties related to the interaction. More
precisely, we single out the specific forms the wave equation takes if the σ -conversion admitted
by the interaction leaves unaltered, at the first order, the covariance properties of Q(t) (i.e. of
position at time t) with respect to specific subgroups of G. If this subgroup is the subgroup of boosts,
then in the spin-0 case the wave equation turns out to coincide with the equation obtained
by canonical quantization, or by means of the minimal electromagnetic coupling principle, that is
to say by replacing, in the free particle Schroedinger equation i(d/dt)ψt(x) = (1/2μ)(∂2/∂x2

1) +
∂2/∂x2

2 + ∂2/∂x2
3)ψt(x), the operator i(d/dt) by (i(d/dt) −Φ(x)) and −i(∂/∂xα) by (−i(∂/∂xα) +

aα(x)). By taking into account other subgroups, the known wave equations are recovered, and
also yet unknown ones could be derived.

In the final §4d, the relation of the present approach with other methods for quantizing
the interaction are briefly discussed, and apparent conflicts with some results of the approach
reviewed in [4] are clarified.

2. Space–time and quantum transformations
In this section, we establish the basic concepts and express them in the quantum formalism. In §2a,
the necessary mathematics is outlined. In §2b, we introduce a concept of quantum transformation,
corresponding to Galilei’s or Poincaré’s transformations, that is viable also in the case where the
system is interacting, i.e. when the transformations are not symmetries. A general property (S.1) of
these quantum transformations, entailed in their very meaning, is identified. The presence of the
symmetry condition of the transformations implies more marked properties; they are established
in §2c, where we outline how these further properties can be used to obtain the explicit Quantum
Theory of a free particle by mathematically deducing it from the principles of symmetry. This
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outline allows us to identify, in §§2d, the obstacles raised by the loss of the symmetry condition
to a similar deduction in the case of an interacting particle.

(a) Mathematical tools
Let us begin with the notation for the mathematical structures involved in the work. The Quantum
Theory of a physical system, formulated in a complex and separable Hilbert space H, needs the
following mathematical structures.

— The set Ω(H) of all self-adjoint operators of H, which represent quantum observables.
— The complete, ortho-complemented lattice Π (H) of all projections operators of H,

i.e. quantum observables with possible outcomes in {0, 1}.
— The set Π1(H) of all rank one orthogonal projections of H.
— The set S(H) of all density operators of H, which represent quantum states.
— The set U(H) of all unitary operators of Hilbert space H.

In the group theoretical approach, a key role is played by the imprimitivity theorem of Mackey,
which classifies representations of imprimitivity systems relative to projective representations [8].
The following definition recalls the notion of projective representation.

Definition 2.1. Let G be a separable, locally compact group with identity element e. A
correspondence U : G → U(H), g → Ug, with Ue =1, is a projective representation of G if the
following conditions hold.

(i) A complex function σ : G × G → C, called multiplier, exists such that Ug1g2 =
σ (g1, g2)Ug1 Ug2 ;

(ii) for all φ,ψ ∈H, the mapping g → 〈Ugφ |ψ〉 is a Borel function in g.

A projective representation with multiplier σ is also called σ -representation.

A projective representation is said to be continuous if for any fixed ψ ∈H the mapping
g → Ugψ from G to H is continuous with respect to g.

Let E be the Euclidean group, i.e. the semi-direct product E = R
3 s©SO(3) between the group of

spatial translations R
3 and the group of spatial proper rotations SO(3); each transformation g ∈ E

bi-univocally corresponds to the pair (a, R) ∈ R
3 × SO(3) such that R−1x − R−1a ≡ g(x) is the result

of the passive transformation of the spatial point x = (x1, x2, x3) by g. The general imprimitivity
theorem is an advanced mathematical result [8] with valuable generalization (see [4,24] and
reference therein); in this article we shall make use of this theorem with relation to the Euclidean
group E only. Then we introduce the concept of imprimitivity system and the theorem for this
specific case [7,9].

Definition 2.2. Let H be the Hilbert space of a σ -representation g → Ug of Euclidean group
E . A projection valued (PV) measure E : B(R3) →Π (H), �→ E(�) is an imprimitivity system for the
σ -representation g → Ug if the relation

UgE(�)U−1
g = E(g−1(�)) ≡ E(R(�) + a) (2.1)

holds for all (a, R) ∈ E .
Mackey’s theorem of imprimitivity for E . If a PV measure E : B(R3) →Π (H) is an imprimitivity

system for a continuous σ -representation g → Ug of the Euclidean group E , then a σ -
representation L : SO(3) → U(H0) exists such that, modulo a unitary isomorphism,

(M.1) H= L2(R3,H0),
(M.2) (E(�)ψ)(x) = χ�(x)ψ(x), where χ� is the characteristic functional of �,
(M.3) (Ugψ)(x) = LRψ(g(x)) ≡ LRψ(R−1x − R−1a), for every g = (a, R) ∈ E .
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Furthermore, the σ -representation U is irreducible if and only if the ‘inducing’ representation
L is irreducible.

(b) Basic concepts
In this subsection, we formulate a concept of quantum transformation, which is also viable for
space–time transformations that are not symmetry transformations.

For the sake of synthesis, in the following by Υ we denote the group G of Galileian
transformations without time translations and space–time inversions, or the group P of Poincaré’s
transformations without space–time inversions; therefore, whatever holds for Υ must hold for G
and P . In the present work, group Υ is interpreted as a group of changes of reference frame in a
class F of frames which move uniformly with respect to each other. So, given any reference frame
Σ in F , a transformation g ∈Υ univocally singles out the reference frame Σg related to Σ by g.

Let us consider the Quantum Theory of a localizable particle, that is to say of a physical system
which can be localized in a point of physical space, so that its Quantum Theory contains a unique
triple (Q1, Q2, Q3) ≡ Q of commuting self-adjoint operators representing the three coordinates
of the position. Now, the point of space, where the particle is localized by a measurement of
the position observables, is identified only if the frame the values of the coordinates refer to is
specified. For instance, if (Q1, Q2, Q3) ≡ Q are the three self-adjoint operators which represent
the three coordinates of the position with respect to Σ and if g ∈ E , then the α-th coordinate
of the position with respect to another frame Σg, related to Σ by g, must be represented by
[g(Q)]α , where g(x) = (y1, y2, y3) is the triple of the coordinates, with respect to Σg, of the spatial
point represented by x with respect to Σ . In the non-relativistic case, a pure Galileian boost
g ∈ G characterized by a velocity u = (u, 0, 0), does not change the instantaneous position at all;
hence g(x) = x and SΣg [Q] = g(Q) = Q, so that the operators which represent the coordinates of the
‘position with respect to Σg’ coincide with the operators representing the position coordinates
with respect to Σ . In order to transform the position quantum observables at time t, i.e. the
operators Q(t) = eiHtQ(t) e−iHt, by a Galileian boost g, a function gt other than g must be used.
Indeed, Q(t) represents the position measured with a delay t, therefore the operators which
represent the ‘position at time t with respect toΣg’ must be SΣg [Q(t)] = (Q(t)

1 − ut, Q2, Q3) ≡ gt(Q
(t)),

where gt(x) = (x1 − ut, x2, x3).
In general, we can state that for every g ∈ G the following covariance relations hold for all g ∈ G,

(i) SΣg [Q] = g(Q) and (ii) SΣg [Q(t)] = gt(Q
(t)), (2.2)

where gt is a function, in general different from g. In fact, relations (2.2) are the conditions which
define the position operators of a localizable particle.

We cannot exclude a priori that observables other than position change their representation
according to the frame they are referred to; so, in order that the Quantum Theory of our particle
can account for such a possibility, it must extend transformations SΣg to all quantum observables.
To this end, given two reference frames Σ1 and Σ2 in F , we introduce the following concept of
relative indistinguishability between measuring procedures.

(Ind) Let M1 and M2 be two measuring procedures. If M1 with respect to Σ1 is identical to
M2 with respect to Σ2, then we shall say that M1 and M2 are indistinguishable with relation to
(Σ1,Σ2).

Then, for every g ∈Υ and every Σ in F , we introduce the mapping

SΣg :Ω(H) →Ω(H), A → SΣg [A] (2.3)

with the following conceptually explicit interpretation.

(QT) The self-adjoint operators A and SΣg [A] represent two measuring procedures M1 and M2
indistinguishable with relation to (Σ ,Σg).
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For instance, if A represents a detector placed in the origin of Σ with a given orientation relative
to Σ , then SΣg [A] is the operator that represents an identical detector placed in the origin of
Σg with that orientation relative to Σg. It must be noted that (QT) presupposes that for each
quantum observable A ∈Ω(H) and every g ∈Υ , two measuring procedures with the required
indistinguishability exist, at least in principle.

We call SΣg the quantum transformation corresponding to g.
Relations (2.2) explicitly specify the action of the transformations SΣg on the position operators

Q(t); for an arbitrary observable no such kind of explicit specification can be established a priori.
However, the authentic meaning (QT) of the notion of quantum transformation is sufficient to
infer, at a conceptual level, the following general constraint.

(S.1) For every frame Σ in F the following statement holds.

SΣgh[A] = SΣh
g [SΣh [A]], for all A ∈Ω(H). (2.4)

This general statement stresses how, without further conditions, the mapping SΣg , with g fixed,
can change by changing the ‘starting’ frame Σ .

(c) Symmetry transformations
Let us now briefly outline the particularly important implications of the existence of conditions
of symmetry. A transformation h ∈Υ is a symmetry transformation for the physical system under
investigation if a class F exists such that for every frame Σ in F , the frames Σ and Σh are
equivalent for the formulation of the empirical theory of the system; for an isolated system, all
g ∈Υ are symmetry transformations.

The symmetry property allows us to apply Wigner’s theorem, and in doing so the following
implication is obtained [5,6,25,26].

SYM.1. If g ∈Υ is a symmetry transformation then a unitary or an anti-unitary operator UΣ
g , unique

modulo a phase factor, exists such that

SΣg [A] = UΣ
g A[UΣ

g ]∗. (2.5)

Moreover, according to the Principle of Relativity, for an isolated system all g ∈Υ are symmetry
transformations. Therefore, a class F exists such that the following statement holds.

SYM.2. In the Quantum Theory of an isolated system, for each g ∈Υ the quantum transformation SΣg
must be independent of Σ , i.e. SΣg = SΣh

g ≡ Sg and UΣ
g = eiλUΣh

g (with λ ∈ R), so that (2.4) and (2.5)
imply

Sgh[A] = Sg[Sh[A]]. (2.6)

Therefore, Ugh = σ (g, h)UgUh holds, which implies that each Ug is unitary [9,25]; in particular,
U∗

g = U−1
g . Thus, if Υ is a group of symmetry transformations, the correspondence g → Ug such

that Sg[A] = UgAU∗
g is a projective representation [8,9,27].

A free localizable particle is just a particular kind of isolated system, so that according to SYM.2
for every g ∈Υ a unitary operator Ug exists such that Sg[A] = UgAU−1

g . The restriction of g → Ug

to the Euclidean group E is a projective representation of E [9]. Thus, from (2.2) and SYM.1, the
relation UgQU−1

g = g(Q) holds; this implies that the common spectral PV spectral measure of Q =
(Q1, Q2, Q3) is an imprimitivity system for U |E [9]; we can apply therefore Mackey’s imprimitivity
theorem. In so doing, to each choice of the representation L : SO(3) → U(H0) in Mackey’s theorem
there corresponds a different theory. Accordingly, the Hilbert space of the theory can be identified
as L2(R3,H0) and the position operators are (Qαψ)(x) = xαψ(x). Furthermore, in a non-relativistic
theory, by making use of Galileian invariance, valid for a free particle, it can be proved [9,28]
that the form of the Hamiltonian operator must be H = −(1/2μ)

∑3
α=1(∂2/∂x2

α). By choosing L
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as an irreducible σ -representation of SO(3) of dimension 2s + 1 (s ∈ 1
2 N), the Standard Quantum

Theory of a spin-s free particle is obtained.

(d) The interacting particle
If the system under investigation is not isolated, e.g. if it is an interacting particle, then neither
SYM.1 nor SYM.2 apply, so that we find an obstacle in extending the group theoretical approach
to the non-relativistic interacting particle. However, in the literature several proposals can be
found [9,19,22,23] where the group theoretical methods are extended to the interacting case. Each
proposal overcomes the aforesaid obstacles by introducing particular assumptions which we can
reformulate in the following statement.

PROJ. Each Galileian transformation g is represented in the formalism of the Quantum Theory by a unitary
operator Ug in such a way that

(i) SΣg [Q(t)] = UgQ(t)U−1
g is the quantum transformation of the ‘position at time t’ observables

corresponding to g;
(ii) the correspondence g → Ug is a continuous projective representation.

Statement PROJ is introduced as an assumption in [9, p. 201]; the conditions assumed by
Jauch in [22, p. 236] are implied by PROJ; Ekstein, instead, essentially derives it from another
assumption, namely from the ‘empirical statement that it is possible to give an operational
definition of any initial state intrinsically’, i.e. independently of the presence or absence of the
interaction [19, p. 1401].

By making use of PROJ, some of the cited approaches [9,22] deduce that, in the non-relativistic
Quantum Theory of a spin-0 particle, undergoing an interaction homogeneous in time, the
Hamiltonian operator H must have the form below, and hence it can describe interactions with
electromagnetic fields [9,22].

H = 1
2μ

3∑
α=1

(
−i

∂

∂xα
+ aα(x

)2
+Φ(x). (2.7)

On the other hand, we shall prove the following statement.

STAT. Assumption PROJ implies that the Hamiltonian of the Quantum Theory of a spin-0 particle
undergoing an interaction homogeneous in time must have the form

H = 1
2μ

3∑
α=1

(
−i

∂

∂xα

)2
+Φ(x).

To prove the sentence STAT we shall make use of the following results.

MP.1. The general evolution law of quantum observables with respect to a homogeneous time
can be obtained [25] as implication of Wigner’s theorem: a self-adjoint operator H exists, called
the Hamiltonian operator, such that

A(t) = eiHtA e−iHt and
d
dt

A(t) ≡ Ȧ(t) = i[H, A(t)]. (2.8)

MP.2. Let g → Ûg be every continuous non-trivial projective representation of Galilei group
G, i.e. the group generated by the Euclidean group E and by Galileian velocity boosts. Now, the
nine one-parameter Abelian subgroups Tα ,Rα , Bα of spatial translations, spatial rotations and
Galileian velocity boosts, relative to axis xα , are all additive; then, from Stone’s theorem [25], there

exist nine self-adjoint generators P̂α , Ĵα , Ĝα of the nine one-parameter unitary subgroups {e−iP̂αaα ,

a ∈ R}, {e−iĴαθα , θα ∈ R}, {eiĜαuα , uα ∈ R} that represent the subgroups Tα ,Rα , Bα according to the
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projective representation g → Ûg of Galilei group G. The structural properties of G as a Lie group
imply the following commutation relations [29].

(i) [P̂α , P̂β ] = O, (ii) [Ĵα , P̂β ] = iε̂αβγ P̂γ , (iii) [Ĵα , Ĵβ ] = iε̂αβγ Ĵγ ,

(iv) [Ĵα , Ĝβ ] = iε̂αβγ Ĝγ , (v) [Ĝα , Ĝβ ] = O and (vi) [Ĝα , P̂β ] = iδαβμ1, (2.9)

where ε̂α,β,γ is the Levi–Civita symbol εα,β,γ restricted by the condition α 	= γ 	= β, and μ is a
non-zero real number which characterizes the projective representation.

Proof of STAT. Now we explicitly prove STAT. Since g → Ug in PROJ is a projective
representation, according to (MP.2) the subgroups Tα , Rα , Bα can be represented by the one-
parameter unitary subgroups {e−iPαa}a∈R, {e−iJαθ }θ∈R, {eiGαu}u∈R, in such a way that the self-
adjoint generators Pα , Jα , Gα satisfy (2.9). Once the self-adjoint operators Fα = Gα/μ are defined,
it can be shown that relations (2.9) imply that the following relation holds for all g ∈ G.

UgFU−1
g = g(F). (2.10)

Since by (2.9(v)) the Fα ’s commute with each other, according to spectral theory, a unique PV
measure E : B(R3) →Π (H) exists such that Fα = ∫

λdE(α)
λ , where E(1)

λ = E((−∞, λ] × R
2), E(2)

λ =
E(R × (−∞, λ] × R), E(3)

λ = E(R2 × (−∞, λ]). Then (2.10) implies that �→ E(�) satisfies (2.1) and
hence it is an imprimitivity system for the restriction to E of g → Ug; therefore, Mackey’s theorem
applies. Thus, the simplest choice for H0, i.e. H0 = C, leads to identify H, Fα , Pα and Ug for g ∈ E
as

H= L2(R3), (Fαψ)(x) = xαψ(x), Pα = −i
∂

∂xα
and (Ugψ)(x) =ψ(g(x)). (2.11)

Now we can demonstrate that the position operators Q coincide with F = G/μ. �

Proposition 2.3. If PROJ holds, then in the simplest Quantum Theory of a localizable interacting
particle equality F = Q holds for the position operators satisfying the covariance properties (2.2).

Proof. If g ∈ Tβ and PROJ holds, so that by (MP.2) Ug = e−iPβa, then (2.2(i)) implies [Qα , Pβ ] =
iδαβ1; since [Fα , Pβ ] = iδα,β1 is implied by (2.9(iv)), also [Fα − Qα , Pβ ] = O holds. On the other
hand, (2.2(i)) for Ug = eiGβu implies [Fα − Qα , Fβ ] = O, and hence Fα − Qα = cα1≡const. must
hold for the irreducibility of (F, P). Finally, PROJ.i together with (2.9(iv)) and (2.2(i)) for Ug = e−iJαθ

imply [Jα , Fβ − Qβ ] = iε̂α,β,γ (Fγ − Qγ ) = iε̂α,β,γ cγ1= [Jα , cβ1] = O; thus, Fα − Qα = O.
Proposition 2.3 together with (2.2(ii)) is sufficient to determine the form of Hamiltonian

operator H consistent with PROJ. First, we determine [Gα , Q̇β ]. Let us start with

eiGαuQ̇βe−iGαu = Q̇β + i[Gα , Q̇β ]u + o(u), (2.12)

where o(u) is an infinitesimal operator of order greater than 1 with respect to u. By making use of
Q̇β = i[H, Qβ ] = limt→0((Q(t)

β − Qβ )/t), and of eiGαuQ(t)
β e−iGαu = Q(t)

β − δαβut1, implied by (2.2(ii)),
we also find

eiGαuQ̇βe−iGαu = lim
t→0

eiGαu
Q(t)
β − Qβ

t
e−iGαu = Q̇β − δαβu1. (2.13)

The comparison between (2.12) and (2.13), and proposition 2.3 yields

[Gα , Q̇β ] = [Qα ,μQ̇β ] = iδαβ1, which implies [Fα ,μQ̇β − Pβ ] = O. (2.14)

This argument can be repeated with Ug = e−iPαa instead of eiGαu, and also with Ug = e−iJαθ instead
of eiGαu. In doing so we obtain, respectively, [Pα ,μQ̇β − Pβ ] = O and [Jα ,μQ̇β ] = iε̂α,β,γ μQ̇γ ; the
first of these two equations, together with (2.14), imply μQ̇β − Pβ = bβ1; then, by making use of
the second equation, we obtain iε̂αβγ (μQ̇γ − Pγ ) = [Jα ,μQ̇β − Pβ ] = [Jα , bβ1] = O, i.e. μQ̇β = Pβ .
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At this point the determination of H is straightforward. From (2.9(vi)), we obtain

i[H, Qβ ] = Q̇β = 1
μ

Pβ = i

⎡
⎣ 1

2μ

∑
γ

P2
γ ,

Gβ
μ

⎤
⎦≡ i

⎡
⎣ 1

2μ

∑
γ

P2
γ , Qβ

⎤
⎦ . (2.15)

So the completeness of Q implies that the operator H − (1/2μ)
∑
γ P2

γ is a function Φ of Q. Thus,

H = − 1
2μ

(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

)
+Φ(Q). (2.16)

Thus, assumption PROJ excludes the description of electromagnetic interactions, because their
physics is correctly described by the Hamiltonian in (2.7), inequivalent to (2.16). �

3. Quantum Theory of an interacting particle
In line with the conclusion of the previous section, to develop a Quantum Theory of a particle
able to describe also electromagnetic interactions, assumption PROJ must be abandoned. In this
section, we undertake this task, under the hypothesis that the interaction does not destroy time
homogeneity, so that according to (MP.1) Hamiltonian operator H exists such that (2.8) holds.

We begin by identifying two further properties (S.2) and (S.3) of quantum transformations,
which add to the general property (S.1) already established.

(S.2) For every g ∈Υ , the mapping SΣg is bijective.
(S.3) For every real Borel function f such that if A is a self-adjoint operator, then B = f (A) is a

self-adjoint operator too, the following equality holds:

f (SΣg [A]) = SΣg [ f (A)]. (3.1)

In fact, these further properties are implied by the authentic meaning of quantum transformation
expressed by (QT). For instance, with regard to (S.3), one can argue as follows. Let f be any fixed
real Borel function such that if A is a self-adjoint operator, then B = f (A) is a self-adjoint operator
too. Now, according to Quantum Theory a measurement of the quantum observable f (A) can
be performed by measuring A and then transforming the obtained outcome a by the purely
mathematical function f into the outcome b = f (a) of f (A). Let M1 and M2 be the procedures
that measure A and SΣg [A]. Since M1 and M2 are indistinguishable with relation to (Σ ,Σg),
transforming the outcomes of both procedures by means of the same function f should not affect
the relative indistinguishability of the thus modified procedures. So we should conclude that (3.1)
holds.

Hence, the concept (QT) entails the validity of (S.2) and (S.3); for the time being, however,
we formulate them as conditions which characterize a class of interactions, for reasons we shall
explain in remark 3.11.

In §3a and 3b, we show that the further properties (S.2), (S.3) imply that if the correspondence
g → SΣg is continuous according to the metric adopted by Bargmann [27], then for every g ∈Υ a
unitary operator Ug must exists such that

(i) g → Ug is continuous;
(ii) SΣg [A] = UgAU−1

g .

This result addresses one of the difficulties encountered by the extension of the group theoretical
approach to an interacting particle; but other obstacles remain. Indeed, in order to identify the
mathematical formalism of the theory explicitly we should apply the imprimitivity theorem;
but this is not possible because, while the mapping g → Ug is continuous under a condition of
continuity for g → SΣg , it is not a projective representation, and such a condition is required by the
imprimitivity theorem.
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To address this new obstacle we shall introduce in §3c, the notion of ‘σ -conversion’, which is
a consistent mathematical process converting the mapping U :Υ → U(H), g → Ug into a mapping
Û : Υ → Û(H), g → Ûg which is a projective representation.

The use of σ -conversions will allow us to proceed. In the non-relativistic case, where Υ = G,
we prove that the position operators Q coincide with the multiplication operators endowed with
the usual interpretation if and only if the interaction admits ‘Q-covariant’ σ -conversions, i.e.
σ -conversions that leave unaltered the covariance properties of the position operators Q with
respect to G. For Q-covariant σ -conversions, we derive a general dynamical equation (3.11),
in §3d.

(a) General implications for quantum transformations
Conditions (S.2) and (S.3) are sufficient to show further properties of the mappings SΣg , according
to the following propositions 3.1 and 3.3.

Proposition 3.1. Let S :Ω(H) →Ω(H) be a bijective mapping such that S[f (A)] = f (S[A]) for every
Borel real function f such that f (A) ∈Ω(H) if A ∈Ω(H). Then the following statements hold.

(i) If E ∈Π (H) then S[E] ∈Π [H], i.e. the mapping S is an extension of a bijection of Π (H].
(ii) If A, B ∈Ω(H) and A + B ∈Ω(H), then [A, B] = O implies S[A + B] = S[A] + S[B].

This partial additivity implies S[A] = O if and only if A = O.
(iii) For all E, F ∈Π (H), EF = O implies S[E + F] = S[E] + S[F] ∈Π (H); as a consequence, E ≤ F if

and only if S[E] ≤ S[F].
(iv) S[P] ∈Π1(H) if and only if P ∈Π1(H).

Proof. (i) If E ∈Π (H) and f (λ) = λ2 then f (E) = E holds; so S[f (E)] = f (S[E]) implies
(S[E])2 ≡ f (S[E]) = S[E2] ≡ S[E], i.e. S2[E] = S[E].

(ii) If [A, B] = O then a self-adjoint operator C and two functions fa, fb exist so that A = fa(C)
and B = fb(C); once defined the function f = fa + fb, we have S[A + B] ≡ S[f (C)] = f (S[C]) =
fa(S[C]) + fb(S[C]) = S[fa(C)] + S[fb(C)] ≡ S[A] + S[B].

(iii) If EF = O, then [E, F] = O and (E + F) ∈Π (H) hold. Statements (i) and (ii) imply S[E + F] =
S[E] + S[F] ∈Π (H].

(iv) If P ∈Π1(H) then S[P] ∈Π (H) by (i). If Q ∈Π1(H) and Q ≤ S[P] then P0 ≡ S−1[Q] ≤ P by
(iii); but P is rank 1, therefore P0 = P and Q = S[P].

�

Corollary 3.2. From proposition 3.1 immediately follows that the restriction of S to Π (H) is a bijection
that also satisfies S[O] = O, S[1] =1, E ≤ F iff S[E] ≤ S[F], S[E⊥] = (S[E])⊥.

Different equivalent formulations of Wigner’s theorem [6,30] have been demonstrated in the
literature. The following version can be applied for the the mapping S of propostion 3.1.

Wigner’s theorem. If S :Π (H) →Π (H) is an automorphism of Π (H), i.e. if it is a bijective mapping
such that

E1 ≤ E2 ⇔ S[E1] ≤ S[E2] and S[E⊥] = (S[E])⊥, ∀E1, E2, E ∈Π (H),

then either a unitary operator or an anti-unitary operator U of H exists such that S(E) = UEU∗ for all
E ∈Π (H), unique modulo a phase factor.

In virtue of corollary 3.2 and Wigner’s theorem, the following proposition can be easily proved.

Proposition 3.3. If a mapping S satisfies the hypothesis of proposition 3.1, then a unitary or an anti-
unitary operator exists such that S[A] = UAU∗ for every A ∈Ω(H); if another unitary or anti-unitary
operator V satisfies S[A] = VAV∗ for every A ∈Ω(H), then V = eiθU with θ ∈ R.

Propositions 3.1 and 3.3 are proved for a mapping S :Ω(H) →Ω(H); therefore, they hold
for every quantum transformation SΣg of the Quantum Theory of a particle whose interaction
is in the class for which (S.2), (S.3) hold. Then, for each g ∈Υ , according to proposition 3.3
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each transformation g ∈Υ is assigned a unitary or an anti unitary operator Ug which realizes
the corresponding quantum transformation as the automorphism SΣg :Π (H) →Π (H), SΣg [A] =
UgAU∗

g , even if g is not a symmetry transformation.

(b) Continuity and unitarity of g→ Ug
Given g ∈Υ , the unitary or anti-unitary operator Ug such that SΣg [A] = UgAU∗

g can be chosen
arbitrarily within an equivalence class Ug of operators, all unitary or all anti-unitary, which differ
from each other by a complex phase factor; this class Ug is called operator ray [27]; from Wigner’s
theorem, there is a bijective correspondence between operator rays and automorphisms of Π (H).
The possibility that the choice of Ug within Ug makes the correspondence g → Ug continuous has
a decisive role in developing the Quantum Theory of a physical system; for instance, for the non-
relativistic Quantum Theory of a free particle, it makes possible to apply Stone’s theorem, and as
a consequence the one-parameter subgroups Tα , Rα , Bα can be represented as e−iPαa, e−iJαθ , eiGαu,
respectively. According to results from Bargmann [27], a choice of Ug in Ug leading to a continuous
correspondence g → Ug exists if the mapping g → SΣg is continuous, where SΣg :Π (H) →Π (H) is
the restriction to Π (H) of the quantum transformation corresponding to g. However, in his proof
Bargmann required all operators Ug to be unitary. Now we see how Bargmann’s result also holds if
such a restriction is removed.

The continuity notion of Bargmann1 for g → SΣg is based on the following metric of Π1(H).

Definition 3.4. Given two rank 1 projection operators D1, D2 ∈Π1(H), the distance d(D1, D2)
is the minimal distance ‖ψ1 − ψ2‖ between vectors ψ1,ψ2 such that D1 = |ψ1〉〈ψ1| and D2 =
|ψ2〉〈ψ2|, i.e. d(D1, D2) = [2(1 − |〈ψ1 |ψ2〉|]1/2.

Then, following Bargmann, the continuity of a mapping from a topological group G to the
automorphisms of Π (H), is defined as follows.

Definition 3.5. A correspondence g → Sg from a topological group G to the set of all
automorphisms of Π (H) is said to be continuous if for any fixed D ∈Π1(H) the mapping from
G to Π1(H), g → Sg[D] is continuous in g with respect to the distance d defined on Π1(H) by
definition 3.4

Before proving the main result proposition 3.9, we formulate three lemmas. The first,
lemma 3.6, was proved by Bargmann as lemma 1.1 in [27].

Lemma 3.6. The real function κ :Π1(H) ×Π1(H) → R, κ(D1, D2) = Tr(D1D2) is continuous in both
variables D1 and D2 with respect to the metric of definition 3.4.

Lemma 3.7. Given a topological group G and a mapping g → Sg from G to the automorphisms ofΠ (H),
for every g ∈ G let Ug denote the operator ray identified by Sg; for every ϕ ∈H with ‖ϕ‖ = 1, let us define

zh,g(ϕ) = Ugϕ − 〈Uhϕ | Ugϕ〉Uhϕ,

where h, g ∈ G, Uh ∈ Uh and Ug ∈ Ug. Then

‖zh,g(ϕ)‖2 = 1 − |〈Uhϕ | Ugϕ〉|2 ≤ d2(Sh[Dϕ], Sg[Dϕ]);

where Dϕ = |ϕ〉〈ϕ| ∈Π1(H).

Proof. The proof is identical to the proof of statement (1.9) in theorem 1.1 of [27]; indeed that
proof can be successfully demonstrated independently of the unitary or anti-unitary character of
Ug or Uh. �

1In fact Bargmann’s continuity refers to a correspondence g → Ug from a topological group G to the set of all unitary operator
rays Ug; but, since an operator ray can be bijectively identified with an automorphism of Π(H), Bargmann’s continuity can
be reformulated in terms of automorphisms; this reformulation immediately extends to all automorphisms, including those
corresponding to anti-unitary operator rays, through our definition 3.5.



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160629

...................................................

Lemma 3.8. Let G be a topological group, let g → Sg be a continuous mapping from G to the
automorphisms of Π (H), and let us fix an operator Ug ∈ Ug for each g ∈ G.

If Ugϕ0 is continuous in g as a function from G to H for a vector ϕ0 ∈H with ‖ϕ0‖ = 1, then Ugϕ1 is
continuous in g for every fixed ϕ1 ∈H with ‖ϕ1‖ = 1, such that ϕ1 ⊥ ϕ0.

Proof. We prove the lemma by adapting a part of the proof of theorem 1.1 in [27]. Let us define

ϕ =
(

1/
√

2
)

(ϕ0 + ϕ1); so that 〈Ugϕ0 | Ugϕ〉 = 1/
√

2 for all g ∈ G independently of the unitary or
anti-unitary character of Ug ∈ Ug. Then

〈Uhϕ0 | zh,g(ϕ)〉 = 〈Uhϕ0 − Ugϕ0 | Ugϕ〉 + 〈Ugϕ0 | Ugϕ〉 − 〈Uhϕ | Ugϕ〉〈Uhϕ0 | Uhϕ〉

= 〈Uhϕ0 − Ugϕ0 | Ugϕ〉 + 1√
2

(1 − 〈Uhϕ | Ugϕ〉.

So
(1 − 〈Uhϕ | Ugϕ〉) =

√
2{〈Uhϕ0 | zh,g(ϕ)〉 + 〈Ugϕ0 − Uhϕ0 | Ugϕ〉}. (3.2)

Now,

‖Ugϕ − Uhϕ‖2 = 2|Re(1 − 〈Uhϕ | Ugϕ〉)| ≤ 2|1 − 〈Uhϕ | Ugϕ〉|
≤ 2

√
2{|〈Uhϕ0 | zh,g(ϕ)〉| + 2

√
2|Ugϕ0 − Uhϕ0 | Ugϕ〉|}

≤ 2
√

2‖ | zh,g(ϕ)‖ + 2
√

2‖Ugϕ0 − Uhϕ0‖
≤ 2

√
2(d(Sh[Dϕ], Sg[Dϕ]) + ‖Ugϕ0 − Uhϕ0‖),

where we made use of (3.2) in the second inequality, in the third inequality we use the Schwarz
inequality, and in the fourth inequality lemma 3.7 is applied. These inequalities imply that Ugϕ

is continuous in g; indeed, the distance d(Sh[Dϕ], Sg[Dϕ]) vanishes as g → h because the mapping
g → Sg is continuous according to definition 3.5 from the first continuity hypothesis; but also
‖Ugϕ0 − Uhϕ0‖ vanishes as g → h, because Ugϕ0 is continuous in g by the second continuity
hypothesis.

Now, ϕ1 = √
2ϕ − ϕ0, so that Ugϕ1 = √

2Ugϕ − Ugϕ0 for all g such that Ug is unitary, but also for
all g such that Ug is anti-unitary. Thus Ugϕ1 is continuous because Ugϕ and Ugϕ1 are continuous.

�

Let us arbitrarily fix a vector ϕ0 ∈H, with ‖ϕ0‖ = 1. Given any mapping g → Sg from a
topological group G to the automorphisms of Π (H), we define the real function ρϕ0 : G → R,
ρϕ0 (g) = Tr1/2(Dϕ0 Sg[Dϕ0 ]). Since Sg[Dϕ0 ] = ŨgDϕ0 Ũ∗

g , where Ũg is any operator in Ug, we have

ρϕ0 (g) = |〈ϕ0 | Ũgϕ0〉|. Hence, 〈ϕ0 | Ũgϕ0〉 = eiα(g)|〈ϕ0 | Ũgϕ0〉| = eiα(g)ρϕ0 (g), for some α(g) ∈ R. Then
ρϕ0 (g) = |〈ϕ0 | Ũgϕ0〉| = e−iα(g)〈ϕ0 | Ũgϕ0〉. Therefore, if for each g ∈ G we choose Ug = e−iα(g)Ũg we
obtain

ρϕ0 (g) = 〈ϕ0 | Ugϕ0〉; in particular, Ue =1. (3.3)

Proposition 3.9. Let G be a topological group, and let ϕ0 be any fixed vector in H with ‖ϕ0‖ = 1. Given
a continuous mapping g → Sg from G to the automorphisms ofΠ (H), if each g ∈ G is assigned the operator
Ug ∈ Ug such that (3.3) holds, then Ugψ is continuous in g, whatever the vector ψ ∈H.

Proof. Bargmann showed that if g → Sg is continuous according to definition 3.5 and if Ug is the
operator such that (3.3) holds, then Ugϕ0 is continuous.2 Now, let ψ be any vector of H.

If ψ = 0, then the continuity of Ugψ is obvious. It is sufficient, therefore, to prove the
proposition for ψ 	= 0.

If ψ = λϕ0 for λ ∈ C \ {0}, then we can choose any ϕ1 ⊥ ϕ0, with ‖ϕ1‖ = 1. According to
lemma 3.8, Ugϕ1 is continuous. The same lemma implies that Ug(ψ/‖ψ |) is continuous because
(ψ/‖ψ‖) ⊥ ϕ1. But Ugψ = ‖ψ‖Ug(ψ/‖ψ‖ for all g ∈ G. Therefore, Ugψ is continuous.

2In fact, Bargmann proved this statement for unitary Ug; but Bargmann’s proof can be successfully carried out without
assuming that all Ug are unitary.
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If ψ 	= λϕ0, define ϕ =ψ/‖ψ‖; then a vector ϕ1 ∈H exists, with ‖ϕ1‖ = 1 and ϕ1 ⊥ ϕ0, such that

ϕ = aϕ0 + bϕ1 where a ∈ C but b ∈ R. (3.4)

Now, a real number r and a vector ϕ2, with ‖ϕ2‖ = 1 exist such that aϕ0 = rϕ2; this implies ϕ2 ⊥
ϕ1 and ϕ = rϕ2 + bϕ1. Lemma 3.8 implies that Ugϕ1 is continuous because ϕ1 ⊥ ϕ0; but the same
lemma implies that Ugϕ2 is continuous too, because ϕ2 ⊥ ϕ1. Therefore, since r and b are real
numbers, Ugϕ = rUgϕ2 + bUgϕ1 is continuous in g. Thus, Ugψ = ‖ψ‖Ugϕ is continuous too. �

Another condition with useful implications is the unitary character of the operators Ug that
realize the quantum transformations according to SΣg [A] = UgAU−1

g . If the correspondence g →
SΣg satisfied SΣg1g2

= SΣg1
◦ SΣg2

so that g → Ug would be a projective representation, then it can be
easily proved, from [7,9,25,27], that every Ug must be unitary. But in the presence of interaction
SΣ1

g can be different from SΣ2
g , so that only the more general statement (S.1) holds, and hence

the unitary character of Ug cannot be implied from the cited proofs. Now we shall show that
anti-unitary Ug can be excluded under the only hypothesis that the correspondence g → SΣg is
continuous according to definition 3.5.

Proposition 3.10. If the mapping g → SΣg , that assigns each g ∈Υ the quantum transformation of
(2.3), is continuous according to definition 3.5, then every operator Ug such that SΣg [A] = UgAU∗

g for all
A ∈Ω(H) is unitary.

Proof. According to proposition 3.9, for every g ∈Υ a unitary or anti-unitary operator such
that SΣg [A] = UgAU∗

g exists which makes Ugψ continuous in g for all ψ . According to (3.3)
Ue =1 which is unitary. Hence, because of the continuity of g → Ugψ for all ψ , a maximal-
neighbourhood Ke of e must exist in Υ such that Ug is unitary for all g ∈ Ke; otherwise, a sequence
gn → e would exist with Ugn anti-unitary, so that 〈ψ | ϕ〉 = 〈Ugnϕ | Ugnψ〉 for all ψ ,ϕ ∈H, and
then 〈ψ | ϕ〉 = limn→∞〈Ugnϕ | Ugnψ〉 = 〈Ueϕ | Ueψ〉 = 〈ϕ |ψ〉. This last equality cannot hold for all
ψ ,ϕ ∈H unless H is real.

Now we prove that neighbourhood Ke has no boundary, and since Υ is a connected group,
Ke =Υ . If g0 ∈ ∂Ke, two sequences gn → g0 and hn → g0 would exist with Ugn unitary and Uhn anti-
unitary; therefore, the continuity of Ug would imply that Ug0 should simultaneously be unitary
and anti-unitary. �

Remark 3.11. The work of this subsection has shown that (S.2) and (S.3) imply that SΣg [A] =
UgAU−1

g , where Ug is unitary if g → SΣg is continuous; as a consequence, the spectrum of any
quantum observable is left unchanged by SΣg . Now, for every translation x → x − a we have

UgQU−1
g = SΣg [Q] = Q − a. As a consequence the spectrum of Q must be the whole R

3 because of
the invariance of the spectrum. Hence the notion (QT) of quantum transformation satisfying (S.1)–
(S.3) is inconsistent with some non-trivial topologies of the configurations manifold of the particle
investigated in [4] and references therein. From another stand point, an interaction that spatially
confines is inconsistent with (QT). Thus, for the time being we establish (S.1)–(S.3) as conditions
which characterize the class of interactions investigated in this work. In the following, we shall
see that such a class is large, enough, in particular, to encompass electromagnetic interaction.

(c) σ -Conversions
In §3b, we established, under a continuity condition for g → SΣg , that in the Quantum Theory
of a physical system, even if it is not isolated, a continuous correspondence U :Υ → U(H) exists
such that SΣg [A] = UgAU−1

g . To assume that such a correspondence is a projective representation
implies PROJ; therefore, according to §2d, the resulting theory is unable to describe particles
interacting with electromagnetic fields. So, we must relinquish this condition in order to develop
an empirically more adequate Quantum Theory of an interacting particle. But without such a
‘projectivity’ Mackey’s imprimitivity theorem does not apply. Hence, the development of our
group-theoretical approach encounters a further obstacle. We shall now address this obstacle.
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The correspondence g → Ug, can be converted into a continuous σ -representation if we multiply
each operator Ug by a suitable unitary operator Vg of H; namely, Vg is a unitary operator such that
the correspondence g → Ûg = VgUg turns out to be a σ -representation. The transition from the
correspondence {g → Ug} to {g → Ûg = VgUg} will be called σ -conversion; the mapping V :Υ →
U(H), g → Vg that realizes the σ -conversion will be called σ -conversion mapping. If g → Vg is a
σ -conversion mapping for g → Ug and θ :Υ → R is a real function, then also g → eiθ(g)Vg is a
σ -conversion mapping, provided that eiθ(e) = 1. In any case, Ve =1 must hold.

Since non-trivial projective representations of Υ exist, we can state the following proposition.

Proposition 3.12. A correspondence V :Υ → U(H) always exists such that Û :Υ → U(H), g → Ûg =
VgUg is a non-trivial projective representation.

The σ -conversion allows us to immediately identify a mathematical formalism for the
Quantum Theory of the system, also in the case where the system is not isolated. In the case of a
non-relativistic theory, where Υ = G, if g → Vg is a σ -conversion mapping for Ug then, according
to (MP.2) in §2d, the σ -representation g → Ûg = VgUg has nine Hermitian generators P̂α , Ĵα , Ĝα
for which (2.9) hold. Then, following the argument of the proof of STAT in §2d, the common
spectral measure of the triple F = Ĝ/μ turns out to be an imprimitivity system for the restriction
of g → Ûg to E . So, by applying Mackey’s imprimitivity theorem [9], we can explicitly identify H
as L2(R3,H0), modulo unitary isomorphisms, where the operators Fα , P̂α , Ĵα and Ĝα are explicitly
specified according to

H= L2(R3,H0), (Fαψ)(x) = xαψ(x), P̂α = −i
∂

∂xα

and Ĵα = Fβ P̂γ − Fγ P̂β + Sα , Ĝα =μFα .

⎫⎪⎬
⎪⎭ (3.5)

Here (α,β, γ ) is a cyclic permutation of (1,2,3); the Sα are operators that act on H0 only, i.e.
their action is (Sαψ)(x) = ŝαψ(x) where the ŝα are self-adjoint operators of H0 which form a
representation of the commutation rules [ŝα , ŝβ ] = iε̂αβγ ŝγ . Since the reducibility of the inducing
representation L : SO(3) → U(H0) implies the reducibility of Û : G → U(H), if Û is irreducible then
also (ŝ1, ŝ2, ŝ3) must be an irreducible representation of [ŝα , ŝβ ] = iε̂αβγ ŝγ ; in this case, modulo
unitary isomorphisms, H0 is one of the finite-dimensional Hilbert spaces C

2s+1, with s ∈ 1
2 N: the

ŝα are the familiar spin operators.
Hence, the mathematical formalism of the Quantum Theory of a localizable particle has

been explicitly identified. However, the operators Ûg concretely identified are not the unitary
operators which realize the quantum transformations: given g ∈ G, in general SΣg [A] = ÛgAÛ−1

g
does not hold. As a consequence the operators Q = (Q1, Q2, Q3) representing the position cannot
be identified as illustrated in §2c or the argument of the proof of proposition 2.3. So, our explicit
realization of the mathematical formalism of the theory would, in general, be devoid of physical
significance.

Two tasks have to be accomplished for the formalism established by (3.5) to become the
mathematical formalism of the effective Quantum Theory of an interacting particle.

First, the operators Q of the Hilbert space H= L2(R3,H0) in (3.5), which represent the position
of the particle, should be explicitly determined. We shall address this task in §3d.

Second, the wave equation ruling over the time evolution should be determined. In §3d, we
derive a general dynamical law. Specific wave equations corresponding to specific features of the
interaction are determined in §4.

(d) Q-covariantσ -conversions
The position operators Q can be determined for those interactions that have the particular feature
of admitting a σ -conversion Ug → Ûg = VgUg that leaves unaltered the covariance properties of the
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position operators Q, i.e. such that

ÛgQÛ−1
g = g(Q), ∀g ∈ G. (3.6)

A σ -conversion satisfying (3.6) is said to be Q-covariant. Indeed, the following proposition holds.

Proposition 3.13. If a σ -conversion for a particle yields an irreducible projective representation Û, then
it is a Q-covariant σ -conversion if and only if the position operators Q coincide with F.

Proof. If Q = F = Ĝ/μ, then (2.9) and (3.6) imply ÛgQÛ−1
g ≡ ÛgFÛ−1

g = g(F) = g(Q).
Conversely, if Û : G → U(H) is an irreducible projective representation obtained from U :

G → U(H) through a Q-covariant σ -conversion, then (3.6) for Ûg = eiĜβu = eiμFβu and (2.9(v))
imply [Qα − Fα , Fβ ] = [Qα , Fβ ] − [Fα , Fβ ] = O − O = O; therefore (Qα − Fα)ψ(x) = (fα(Q)ψ)(x) =
fα(x)ψ(x), where fα(x) is a self-adjoint operator of H0. However, the Q-covariance and (2.9(vi))
also imply [Qα − Fα , P̂β ] = [Qα , P̂β ] − [Qα , P̂β ] = iδαβ1 − iδαβ1= 0, i.e. [fα(Q), P̂β ] = 0 for all x; this
relation, since P̂ = −i(∂/∂xα), implies that (∂fα/∂xα)(x) = 0, for all α,β; therefore fα(x) is an operator
f̂α of H0 which does not depend on x. Now, since f̂α = Qα − Fα , also [f̂α , f̂β ] = 0 holds; moreover,
from (2.2(i)) for a pure spatial rotation g about xα and from (2.9(iv)) we obtain [Ĵα , Qβ − Fβ ] =
iε̂αβγ (Qγ − Fγ ) = iε̂αβγ f̂γ ; but the irreducibility of Û implies the irreducibility of the inducing
projective representation L : SO(3) → U(H0), so that H0 is finite dimensional; then [f̂α , f̂β ] = 0 and
[Ĵα , f̂β ] = iε̂αβγ f̂γ can hold only if f̂α = 0, i.e. Fα = Qα . �

Hence, in the Quantum Theory of an interacting particle, where Û is irreducible, the
multiplication operators can be identified with the position operators if and only if the interaction
has the particular regularity feature of admitting a σ -conversion which preserves the covariance
properties of the position operators.

Extending a standard practice we say that a particle, whose interaction admits Q-covariant
σ -conversion, is elementary if Û is irreducible.

The following proposition specifies how in the Quantum Theory of an elementary particle each
Ûg is related to the unitary operator Ug that realizes the quantum transformation corresponding
to g.

Proposition 3.14. For every g ∈ G, the operator Vg of a Q-covariant σ -conversion has the form
(Vgψ)(x) = (eiθ(g,Q)ψ)(x) = eiθ(g,x)ψ(x), where θ (g, x) is a self-adjoint operator of H0 which depends on x
and on g.

Proof. Relations (3.6) and (2.2) imply VgUgQU−1
g V−1

g = g(Q), which implies Vg(g(Q))V−1
g =

g(Q), i.e. [Vg, g(Q)] = O. Then [Vg, f(g(Q))] = O for every sufficiently regular function f; by taking
f= g−1 we have [Vg, Q] = 0. Then (Vgψ)(x) = hg(x)ψ(x), where hg(x) is an operator of H0. Finally,
the unitary character of Vg imposes that hg(x) must be unitary as an operator of H0; thus a
self-adjoint operator θ (g, x) of H0 exists such that hg(x) = eiθ(g,x). �

If g → SΣg is continuous according to definition 3.5, then g → Vg must be continuous because

g → Ûg = VgUg is continuous.

Remark 3.15. In the present approach the imprimitivity system for applying Mackey’s theorem
is identified within the abstract projective representation itself, namely it is the PV spectral
measure of Ĝ/μ. This is remarkably different from previous approaches, e.g. Mackey’s, where
the imprimitivity system is identified as the PV measure of the position operators.

(e) General dynamical law
We now derive a general dynamical equation governing the time evolution of an elementary
particle, under the condition that the σ -conversion mapping g → Vg is differentiable with respect
to the parameters aα , θα , uα of the group G.

Let us consider the pure velocity boost g ∈ G such that Ûg = eiĜαu. According to §3c, the
formalism of its Quantum Theory can be identified with that established by (3.5). Since Ĝα =
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μFα =μQα , we can write Ûg = eiμQαu; therefore

ÛgQ̇βÛ−1
g = Q̇β + iμ[Qα , Q̇β ]u + o1(u). (3.7)

On the other hand,

ÛgQ̇βÛ−1
g = lim

t→0
VgUg

(Q(t)
β − Qβ )

t
U−1

g V−1
g . (3.8)

By making use of UgQ(t)
β U−1

g = Q(t)
β − δαβut1, implied by (2.2), and of proposition 3.3,

Proposition 3.9 in (3.8), and then comparing it with (3.7) we obtain

ÛgQ̇βÛ−1
g = VgQ̇βV−1

g − δαβu1= Q̇β + iμ[Qα , Q̇β ]u + o1(u). (3.9)

But proposition 3.14 implies that Vg = eiςα (u,Q), where ςα(u, x) is a self-adjoint operator of H0;
replacing in (3.9) we obtain

Q̇β + i[ςα(u, Q), Q̇β ] + o2(u) − δαβu1= Q̇β + iμ[Qα , Q̇β ]u + o1(u). (3.10)

Since eiςα(0, Q) =1, the expansion of ςα with respect to u yields ςα(u, Q) = (∂ςα/∂u)(0, Q)u +
o3(u); by replacing the latter relation in (3.10) we obtain

μ[Qα , Q̇β ] = [ηα(Q), Q̇β ] + iδαβ1,

where ηα(Q) = (∂ςα/∂u)(0, Q). By replacing Q̇β = i[H, Qβ ] in this equation we can apply Jacobi’s
identity, and in so doing we obtain [Qβ ,μQ̇α] = [Qβ , η̇α(Q)] + iδαβ1, i.e.

[Qβ , η̇α(Q) − μQ̇α] = −iδαβ1= [Qβ , −P̂α].

Hence [η̇α(Q) − μQ̇α − P̂α , Qβ ] = 0, from which it follows that for every x ∈ R
3 an operator fα(x)

of H0, must exist such that the equation {η̇(Q) − μQ̇α + P̂α}ψ(x) = fα(x)ψ(x) holds, which can be
rewritten as

i[H,μQα − ηα(Q)] = P̂α − fα(Q). (3.11)

This is a general dynamical equation for a localizable particle whose interaction admits Q-
covariant σ -conversions; according to this law, the effects of the interaction on the dynamics are
encoded in the six ‘fields’ ηα , fα .

(f) Electromagnetic interaction for spin-0 particles
Once the general dynamical law (3.11) for an elementary particle with homogeneous in time
interaction has been derived, it is worth reviewing the wave equation currently adopted in
quantum physics as a particular case of the general equation (3.11). In this subsection we do this
for a spin-0 particle, for which H0 = C so that H= L2(R3). The currently adopted Schroedinger
equation for a spin-0 particle, obtained via the minimal electromagnetic coupling or canonical
quantization, has the form

i
d
dt
ψt =

{
1

2 m

3∑
α=1

[P̂α + aα(Q)]2 +Φ(Q)

}
ψt, (3.12)

i.e. the Hamiltonian operator is H = (1/2μ)
∑3
α=1{P̂α + aα(Q)}2 +Φ(Q), where aα(Q) and Φ(Q)

are self-adjoint operators of L2(R3) functions of Q. Now we show that within our approach this
specific Quantum Theory bi-univocally corresponds to the case where the functions ηα in the
general law (3.11) are constant functions multiple of 1.

Proposition 3.16. The Hamiltonian operator H of an interacting spin-0 particle which admits Q-
covariant σ -conversion has the form H = (1/2μ)

∑3
α=1{P̂α + aα(Q)}2 +Φ(Q) if and only if the functions

ηα in (3.11) are constant functions. In this case aα = −fα .
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Proof. If ηα is a constant function, then (3.11) becomes i[H,μQα] = P̂α − fα(Q) which holds if
H0 = (1/2μ)

∑3
α=1{P̂α − fα(Q)}2 replaces H. Hence the operator H − H0 must be a function Φ of

Q because of the completeness of Q. Then ηα(Q) = cα1 implies H = (1/2μ)
∑3
α=1[P̂α − fα(Q)]2 +

Φ(Q).
We shall now prove the converse. Let us suppose that H = (1/2μ)

∑3
α=1{P̂α + aα(Q)}2 +Φ(Q);

by replacing this H in (3.11) we obtain

i[H,μQα − ηα(Q)] = P̂α − fα(Q)

= i
2μ

∑
β

[P̂2
β ,μQα] + i

2μ

∑
β

[aβ P̂β ,μQα] + i
2μ

∑
β

[P̂βaβ ,μQα] + i
2μ

∑
β

[a2
β ,μQα]

− i
2μ

∑
β

[P̂2
β , ηα] − i

2μ

∑
β

[aβ P̂β , ηα] − i
2μ

∑
β

[P̂βaβ , ηα] − i
2μ

∑
β

[a2
β , ηα]

+ i[Φ(Q),μQα − ηα].

In the final member of these equalities, the fourth, the eighth and the last term are zero. Thus we
have

i[H,μQα − ηα(Q)] = P̂α − fα(Q)

= P̂α + i
2

∑
β

(aβ P̂βQα − Qαaβ P̂β + P̂βaβQα − QαP̂βaβ )

− i
2μ

∑
β

[P̂2
β , ηα] − i

2μ

∑
β

(aβ P̂βηα − ηαaβ P̂β + P̂βaβηα − ηαP̂βaβ ) (3.13)

= P̂α + i
2

∑
β

(aβ [P̂β , Qα] + [P̂β , Qα]aβ ) − i
2μ

∑
β

[P̂2
β , ηα]

− i
2μ

∑
β

(aβ [P̂β , ηα] + [P̂β , ηα]aβ )

= P̂α + i
2

(−2iaα) − i
2μ

∑
β

[P̂2
β , ηα] − i

2μ

∑
β

(
−2iaβ

∂ηα

∂qβ

)

= P̂α + aα − 1
μ

∑
β

aβ
∂ηα

∂qβ
− i

2μ

∑
[P̂2
β , ηα]. (3.14)

From the second and final member of this chain of equations we obtain −fα(Q) = aα −
(1/μ)

∑
β aβ (∂ηα/∂qβ ) − (i/2μ)

∑
[P̂2
β , ηα], which implies that

∑
β [P̂2

β , ηα] is a function of Q.
Therefore, we have

∑
β

[P̂2
β , ηα] = φα(Q) =

∑
β

(P̂β [P̂β , ηα] + [P̂β , ηα]P̂β ) = (−i)
∑
β

(
P̂β
∂ηα

∂qβ
+ ∂ηα

∂qβ
P̂β

)

= (−i)
∑
β

([
P̂β ,

∂ηα

∂qβ

]
+ 2

∂ηα

∂qβ
P̂β

)

= (−i)
∑
β

(
(−i)

∂2ηα

∂q2
β

+ 2
∂ηα

∂qβ
P̂β

)
.

As a consequence
∑
β (∂ηα/∂qβ )P̂β must be a function of Q, so that for every γ we have∑

β [Qγ , (∂ηα/∂qβ )P̂β ] = O = (∂ηα/∂qγ )[Qγ , P̂γ ] = i(∂ηα/∂qγ ); therefore ∂ηα/∂qγ = O; thus ηα is a
constant function. By using this result in the equality between the second and the final members
of (3.13) we obtain aα = −fα . �
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4. Implying wave equations
From §3f, for a spin-0 particle the interaction described by (3.12), which encompasses the
electromagnetic interaction, is determined by the fact that each operator ηα(Q) appearing in
the general dynamical law (3.11) is a real multiple of the identity operator: ηα(Q) = λα1, with

λα ∈ R. Hence, according to proposition 3.14, eiĜαu = VgUg = eiς(u,Q)Ug = ei{ηα (Q)u+oα (u,Q)}Ug =
eiλαu eioα (u,Q)Ug, where oα(u, Q) is an operator infinitesimal of order greater than 1 in u with respect

to the topology of H, so that eiĜαuQ(t)
β e−iĜαu = eioα (u,Q)UgQ(t)

β U−1
g e−ioα (u,Q) = Sg[Q(t)

β ] + ω(u, Q),
where ω(u, Q) is an operator infinitesimal of order greater than 1 in u and t. Therefore, the σ -
conversion leaves the transformation properties of Q(t) invariant with respect to Galileian boosts
at the first order.

This result suggests that several possible forms of the wave equation, i.e. of the Hamiltonian
operator H, could be similarly determined by this kind of invariance relative to specific subgroups
of G, also for arbitrary values of the spin.

This is, in fact, the case. In this section we shall determine the specific form the Hamiltonian
operator H must take as a consequence of the fact that the covariance properties of Q(t) with
respect to specific subgroups of G are left unaltered at the first order by the σ -conversion permitted
by the interaction. In §4a we address the case where such a subgroup is the subgroup of boosts, for
every value of the spin, and in §4b we shall tackle the task for the subgroup of spatial translations.

(a) Invariance under boosts: minimal coupling
The covariance properties of Q(t) with respect to Galileian boosts g are expressed by Sg[Q(t)

β ] =
UgQ(t)

β U−1
g = Q(t)

β − δαβut1; therefore the equality

eiĜαuQ(t)
β e−iĜαu = Q(t)

β − δαβut1 + o(t)
1 (u), (4.1)

where o(t)
1 (u) is an operator infinitesimal of order greater than 1 is the necessary and sufficient

condition so that the σ -conversion leaves the covariance properties of Q(t) with respect to boosts
unaltered, at the first order in u.

Proposition 4.1. A Q-covariant σ -conversion leaves unaltered the covariance properties of Q(t) under
Galileian boosts at the first order if and only if

[ηα(Q), Q(t)
β ] = O. (4.2)

If (4.2) holds, then the following relations must hold.

(i) [Ĝα , Q(t)
β ] = iδαβ t, (ii) [Ĝα , Q̇β ] = iδαβ ; (4.3)

and

(i) μQ(t)
β − P̂β t = ϕ

(t)
β (Q), (ii) Q̇β = 1

μ
(P̂β + aβ (Q)), (4.4)

where ϕ(t)
β (x) and aβ (x) = (d/dt)ϕ(t)

β (x) |t=0 are self-adjoint operators of H0.

Proof. Let Ûg = eiĜαu = VgUg be the σ -converted unitary operator associated with the Galileian
boost g, where Vg = eiςα (u,Q) from proposition 3.14. By starting from (4.1) and expanding e±iςα (u,Q)

with respect to u we obtain

eiĜαuQ(t)
β e−iĜαu = VgUgQ(t)

β U−1
g V−1

g = Q(t)
β + i[ηα(Q), Q(t)

β ]u − δαβut1 + o(t)
2 (u). (4.5)

Comparison with (4.1) shows that such a condition holds if and only if (4.2) holds.

By expanding e±iĜαu with respect to u we find eiĜαuQ(t)
β e−iĜαu = Q(t)

β + i[Ĝα , Q(t)
β ]u + o(t)

3 (u), so

that (4.1) holds if and only if i[Ĝα , Q(t)
β ] = −δαβ t1; therefore (4.3) holds. Finally, since Ĝα =μQα ,
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(4.3(i)) implies [μQα , Q(t)
β ] = [Ĝα , Q(t)

β ] = [Qα , P̂β ]t, and then a self-adjoint operator ϕ(t)
β of H0 must

exist for every x such that (4.4) hold. �

If we put H0 = (1/2μ)
∑
γ (P̂γ + aγ (Q))2, then a simple calculation yields i[H0, Qβ ] = (1/μ)(P̂β +

aβ (Q)). Whenever (4.2) holds, proposition 4.1 implies i[H0, Qβ ] = Q̇β , i.e. [H, Qβ ] = [H0, Qβ ];
therefore,

H = H0 +Φ(Q) = 1
2μ

∑
γ

(P̂γ + aγ (Q))2 +Φ(Q), (4.6a)

where Φ(x) is a self-adjoint operator of H0. Then the wave equation is

i
∂

∂t
ψt =

⎧⎨
⎩ 1

2μ

∑
γ

(P̂γ + aγ (Q))2 +Φ(Q)

⎫⎬
⎭ψt. (4.6b)

Thus, the minimal electromagnetic coupling principle has been derived from group theoretical
invariance properties.

According to (4.6), the dynamics of the particle is determined by the Ω(H0)-valued functions
aα , Φ. We can call them the ‘fields’ which describe the effects of the interaction; in so doing,
however, we must not confuse them with other notions of field involved in Quantum Physics.
Now we shall see how these fields are related to the fields ηα , fα entering the general dynamical
law (3.11).

From (4.4(ii)) we imply [ηα(Q), Q̇β ] = (1/μ)[η(Q), P̂β ] + (1/μ)[ηα(Q), aβ (Q)]. By making use of
(4.2), we obtain

∂ηα

∂xβ
(Q) = i

2
[ηα(Q), aβ (Q)]. (4.7a)

Now, by replacing the form (4.6) of H in (3.11), we obtain

P̂α − fα(Q) = i[H,μQα − ηα(Q)]

= i

⎡
⎣ 1

2μ

∑
β

μ2Q̇2
β +Φ(Q),μQα

⎤
⎦− i

⎡
⎣ 1

2μ

∑
β

μ2Q̇2
β +Φ(Q), ηα(Q)

⎤
⎦

= i

⎧⎨
⎩1

2
μ
∑
β

[Q̇2
β ,μQα] + [Φ(Q),μQα]

⎫⎬
⎭− i

⎧⎨
⎩1

2
μ
∑
β

[Q̇2
β , ηα(Q)] + [Φ(Q), ηα(Q)]

⎫⎬
⎭ . (4.8)

By making use of (4.3(ii)), which implies [μQα , Q̇2
β ] = 2iδαβQ̇β , of (4.2) and of (4.4(ii)), we find

P̂α − fα(Q) = 1
2
μ
∑
β

(−2iδαβQ̇β ) + O − i
2
μO − i[Φ(Q), ηα(Q)]

=μQ̇α − i[Φ(Q), ηα(Q)] = P̂α + aα(Q) − i[Φ(Q), ηα(Q)] = P̂α − fα(Q).

We have, therefore, shown that

fα(Q) = i[Φ(Q), ηα(Q)] − aα(Q). (4.9a)

Hence, whenever (4.2) holds, the fields ηα and fα in the general law (3.11) are determined,
according to (4.7), by the fields aα , Φ.

In the particular case of a spin-0 particle, we can show the following further characterization.

Proposition 4.2. In the simplest Quantum Theory of an interacting particle, corresponding to the case
H0 = C in (3.5), the Q-covariant σ -conversions for which ηα(Q) = const. are those and only those which
leave the covariant properties of Q(t) with respect to the Galileian boosts unaltered, at the first order in the
boost’s velocity.

Proof. If ηα =const. then (4.2) holds. Therefore, in order to prove the proposition, it is sufficient
to prove the inverse implication. Hence we assume that (4.2) holds, which implies the condition
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[ηα(Q), Qα] = O. On the other hand, (4.4(i)) implies Q(t)
β = (t/μ)(ϕ(t)

β (Q) + P̂β ), which replaced in

(4.2) yields [ηα(Q), P̂β ] = O; therefore ηα(Q) is a constant operator λα1. �

Remark 4.3. In a highly particular case, Hoogland [20] obtained a different derivation of
the minimal electromagnetic coupling. He considered a non-isolated particle for which the
subgroup G0 generated by space–time translations, rotations around the z-axis and boosts along
the z-direction continues to be a symmetry group; this is a very particular kind of interaction,
corresponding for instance to a charged particle interacting with a uniform electric field and a
uniform magnetic field, both oriented along z. Since G0 is a symmetry group, the Quantum Theory
of the system must contain a projective representation of it; Hoogland derived the commutation
rules for the self-adjoint generators of this projective representation, which were used to derive
the form (3.12) of the wave equation, that coincides with that dictated by the minimal coupling
principle; Hoogland was also able to explicitly determine the ‘fields’ Φ and aα for this case.

Hoogland’s derivation has the merit of avoiding σ -conversion, thanks to the fact that residual
symmetry group G0 is sufficiently rich; it is hard therefore to extend this argument to more
general kind of interaction. Moreover, it must be noted that Hoogland’s argument requires the
assumption that the state vectors can be expressed as wave functions ψ(x) in such a way that
|ψ(x)|2 is the position probability density of the particle, which amounts to assuming that the
position operators are the multiplication operators. Our approach, on the other hand, establishes
general conditions that determine the form (4.6b) of the wave equation.

(b) Invariance under spatial translations
Let us now suppose that the interaction admits a Q-covariant σ -conversion such that if Ûg = e−iP̂αa

then
e−iP̂αaQ(t)

β eiP̂αa = Q(t)
β − δαβa1 + o(t)

1 (a), (4.10)

where o(t)
1 (a) is an infinetisimal operator of order greater than 1. In fact, we are studying the case

where the σ -conversion leaves the covariance properties of Q(t) with respect to spatial translations

unaltered at the first order. Now, by expanding e−iP̂αa with respect to the translation parameter a,
(4.10) yields

(i) [Q(t)
β , P̂α] = iδαβ which implies (ii) [Q̇β , P̂α] = O. (4.11)

Therefore, we can state that
Q̇β = vβ (P̂), (4.12)

where vβ (p) is a self-adjoint operator of H0. Since [Qα , vβ (P̂)] = i(∂vβ/∂pα)(P̂), by making use of
the Jacobi identity for [Qα , [H, Qβ ]] we obtain

i
∂vβ

∂pα
(P̂) = [Qα , Q̇β ] = i[Qα , [H, Qβ ]] = [Qβ , Q̇α] = i

∂vα

∂pβ
(P̂).

This equality shows that v(p) = (v1(p), v2(p), v3(p)) is an irrotational field; hence a function F of p
exists such that vα(p) = (∂F/∂pα)(p), where F(p) is a self-adjoint operator of H0. Therefore, we can
establish the following equalities.

Q̇α = vα(P̂) = ∂F
∂pα

(P̂) = i[F(P̂), Qα] = i[H, Qα]. (4.13)

The last equation implies that a function Ψ of x exists such that H − F(P̂) =Ψ (Q), i.e.

H = F(P̂) + Ψ (Q), (4.14)

where Ψ (x) is a self-adjoint operator of H0. Then the wave equation is

i
∂

∂t
ψt = {F(P̂) + Ψ (Q)}ψt.
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(c) Invariance under both
Let us suppose the interaction admits a σ -conversion that leaves unaltered the covariance
properties of Q(t) under both subgroups of boosts and of spatial translations. Accordingly, the
following equality holds

H = F(P̂) + Ψ (Q) = 1
2μ

∑
γ

(P̂γ + aγ (Q))2 +Φ(Q)

= 1
2μ

∑
γ

(P̂2
γ + aγ (Q)P̂γ + P̂γ aγ (Q) + a2

γ (Q)) +Φ(Q).

Since aγ (Q)P̂γ + P̂γ aγ (Q) = [aγ (Q), P̂γ ] + 2P̂γ aγ (Q) = i(∂aγ /∂xγ )(Q) + 2P̂γ aγ (Q) the equality
above implies

1
μ

∑
γ

P̂γ aγ (Q) =
⎛
⎝F(P̂) − 1

2μ

∑
γ

P̂2
γ

⎞
⎠+ Ψ (Q) − i

2μ

∑
γ

∂aγ
∂xγ

(Q) −Φ(Q) −
∑
γ

a2
γ (Q).

Then
1
μ

∑
γ

P̂γ aγ (Q) = F1(P̂) + F2(Q),

where F1(p) = (F(p) − (1/2μ)
∑
β p2

β ) and F2(x) =Ψ (x) − (i/2μ)
∑
β (∂aβ/∂xβ )(x) −Φ(x) −∑

β a2
β (x). Therefore, ⎡

⎣Qγ ,
1
μ

∑
β

P̂βaβ (Q)

⎤
⎦= i

μ
aγ (Q) = ∂F1

∂pγ
(P̂).

Then

[P̂α , aγ (Q] = −i
∂aγ
∂xα

(Q) = −iμ
[

P̂α ,
∂F1

∂pγ
(P̂)
]

= O.

Therefore, aγ (Q) is an operator that acts as follows:

(aγ (Q)ψ)(x) = âγ ψ(x),

where âγ is an operator of H0 which does not depend on x.
Thus, if (4.2) and (4.10) hold, then H = (1/2μ)

∑
γ (P̂γ + âγ )2 +Φ(Q), and the wave equation is

i
∂

∂t
ψt =

⎧⎨
⎩ 1

2μ

∑
γ

(P̂γ + âγ )2 +Φ(Q)

⎫⎬
⎭ψt. (4.15)

In the spin-0 case, if the σ -conversion also leaves unaltered the covariance properties of Q(t) with
respect to the rotations subgroup, then âγ = 0.

(d) Concluding remarks
Our work has been successful in deriving the known forms (4.6b) and (4.15) of the non-
relativistic wave equation of an interacting particle, through a deductive development based
on group theoretical methods. However, the present approach does not exclude the possibility
of wave equations, and hence of interactions, different from those already known. In fact, the
existence of interactions besides those described by equations (4.6) and (4.15) is manifestly
implied by the phenomenological reality. It is sufficient to recall that in its classical limit (4.6)
describes a charged particle slowly accelerated by the electromagnetic field; for strongly accelerated
particles, the wave equation must be different from (4.6) and from (4.15). This implies that the
corresponding σ -conversion cannot leave unaltered the covariance properties of Q(t) with respect
to the subgroup of boosts. The present theoretical framework, therefore, lays the groundwork
for such an investigation.
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This is not possible with the other methods for quantizing the interaction; for instance, those
based on the gauge principle—without entering Quantum Field Theories—immediately lead to
wave equations of the form (4.6). On the other hand, the method of canonical quantization is
inherently constrained to the wave equations implied by the classical equations.

Now we can explain some relations of our results with those of the approach involving
Quantum Borel kinematics (QBk), cited in the introduction [4,15–18], we shall refer to as the (QBk)
approach.

In the (QBk) approach the notion of generalized system of imprimitivity that allows for the
description of a particle in an external field is introduced and investigated (e.g. [4, ch. 4] and
references therein). In these generalized imprimitivity systems, the quantum transformations of
the projection operator E(S) representing the localization of the particle in the subset S are realized
by unitary operators Wg (denoted by VX(t) in [4, §3.1]) according to

E(S) → Sg[E(S)] = WgE(S)W−1
g , (4.16)

where g belongs to a one-parameter subgroup of transformations; moreover, these operators Wg

form a unitary representation and hence a projective representation of this subgroup.
On the other hand, in this work, it is proved that the unitary operators Ug that realize the

quantum transformation A → Sg[A] = UgAU−1
g , in general, do not form a projective representation,

otherwise electromagnetic interaction could not be encompassed by the theory.
At first sight these results of the two approaches seem to contradict each other. We shall

see now that this not the case. In fact, in the present approach a projective representation of
the transformations group exists; indeed, the σ -converted operators Ûg do form a projective
representation. Yet, in general, they do not realize the quantum transformations: ÛgAÛ−1

g 	= Sg[A]

does not hold for all quantum observables A; for convenience we can call the Ûg pseudo quantum
transformers. However, for Q-covariant σ -conversions, according to §3d, a pseudo-quantum
transformer Ûg becomes a true transformer if restricted to position observables: ÛgQαÛ−1

g =
Sg[Qα]. Hence, if E : B(R3) →Π (H) is the common spectral PV-measure of the position operators
(Q1, Q2, Q3), then

ÛgE(�)Û−1
g = Sg[E(�)] holds for all � ∈ B(R3) (4.17)

and g → Ûg is a projective representation.
Now, the projection operators E(S) of the (QBk) approach in (4.16) are just localization quantum

observables; thus the contradiction disappears: the operators Wg of the (QBk) approach are
pseudo quantum transformers; in particular, they correctly realize the quantum transformation
of position operators according to (4.16); but in general, they cannot be used for the quantum
transformation of quantum observables other than localization observables.
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