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Abstract Group theoretical methods, worked out in particular by Mackey and Wigner,
allow to attain the explicit Quantum Theory of a free particle through a purely deductive
development based on symmetry principles. The extension of these methods to the case of
an interacting particle finds a serious obstacle in the loss of the symmetry condition for the
transformations of Galilei’s group. The known attempts towards such an extension introduce
restrictions which lead to theories empirically too limited. In the present article we show
how the difficulties raised by the loss of symmetry can be overcome without the restrictions
that affect tha past attempts. According to our results, the different specific forms of the wave
equation of an interacting particle are implied by particular first order invariance properties that
characterize the interaction with respect to specific sub-groups of galileian transformations.
Moreover, the possibility of yet unknown forms of the wave equation is left open.

Keywords Quantum theory · Interaction of particles · Group theory · Wave equations

1 Introduction

The explicit non-relativistic Quantum Theory of a free particle can be attained, for instance
following [1], through a purely deductive development based on symmetry principles, by
making use in particular of Wigner theorem [2, 3] on the representation of symmetries and
of Mackey’s imprimitivity theorem [4, 5].

The extension of these group-theoretical methods to an interacting particle finds seri-
ous obstacles because the galileian transformations no longer form a group of symmetry
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transformations in this case, so that neither Wigner’s theorem nor Mackey’s imprimitivity
theorem can directly apply. A strategy to go beyond the obstacle [6–8] is to restrict the
investigation to a class of interactions, those for which the galileian transformations are rep-
resented through a projective representation [5], as in the case of the free particle. In so
doing, however, the class of the interactions encompassed by the theory excludes a too large
class of interactions, as for instance electromagnetic [9] but also non-uniform forces [10].
The present work pursues a different group-theoretical approach to the Quantum Theory of
an interacting particle, without restrictions or assumptions that are not based on physical
principles.

The basic concept, introduced in Section 2, that enforces our work is that of quantum
transformation corresponding to a Galilei transformation g ∈ G, viable also in absence
of the condition of symmetry. The properties of these quantum transformations, inferred
on a conceptual ground in Section 2.1, are used in Section 2.2, together with a continuity
condition, to imply that every transformation g ∈ G can be assigned a unitary operator Ug ,
also if g is not a symmetry, that realizes the quantum transformation S�

g [A] of a quantum
observable A as S�

g [A] = UgAU−1
g .

In order that the imprimitivity theorem can be applied, we introduce in Section 3 the
notion of σ -conversion, which is a straight mathematical procedure that converts each Ug

into another unitary operator Ûg in such a way that g → Ûg is a projective representation;
this “projectivity” condition allows the application of the imprimitivity theorem to explic-
itly identify a mathematical formalism of the theory. But to attain an effective theory it is
necessary to determine which operators represent position and to determine the dynamical
law. In Section 3.1 we show how the operators that physically represent the position of the
particle are explicitly identified if the interaction admits “Q-covariant” σ -conversions, i.e.
σ -conversions that leave unaltered the covariance properties of the position with respect
to G. This class of interactions will result large enough to encompass also electromag-
netic interactions. A general dynamical law is determined in Section 4 for a theory with
Q-covariant σ -conversion.

Different specific forms of the hamiltonian H are compatible with this general law. Then
we face the problem of singling out conditions related to the interaction, which determine
the different specific wave equations. In Sections 4.1, 4.2, 4.3 we single out which specific
forms the wave equation must take if the σ -conversion admitted by the interaction leaves
unaltered, at the first order, the covariance properties of Q(t), namely of position at time t ,
with respect to specific sub-groups of G; in so doing, each known wave equation is obtained
and characterized by specific sub-groups. In the conclusive Section 4.4 the relation of the
present approach with other methods for obtaining the wave equation are briefly discussed.

2 Basic Concepts

Before introducing the founding concepts in Section 2.1 and developing some of their
implications in Section 2.2, let us outline the necessary mathematical tools. We begin by
listing the usual mathematical structures of a Quantum Theory formulated in a complex and
separable Hilbert spaceH of non-finite dimension:

– the set �(H) of all self-adjoint (densely defined) operators of H, which represent
quantum observables;

– the complete, ortho-complemented lattice �(H) of all projections operators of H, i.e.
quantum observables with possible outcomes in {0, 1};
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– the set �1(H) of all rank one orthogonal projections ofH;
– the set S(H) of all density operators ofH, which represent quantum states;
– the set U(H) of all unitary operators of the Hilbert spaceH.

In this article we shall make use of the theorem of imprimitivity [1, 4] relatively to the
euclidean group E only; then we formulate it for this specific case, after having introduced
the involved notions of projective representation and of imprimitivity system.

Definition 2.1 Let G be a separable, locally compact group with identity element e. A
correspondence U : G → U(H), g → Ug , with Ue = 1I and g → 〈Ugφ | ψ〉 being a
Borel function in g, is a projective representation of G if Ug1g2 = σ(g1, g2)Ug1Ug2 , where
σ : G × G → IC is a complex function.

A projective representation U : G → U(H) is said to be continuous if for any fixed
ψ ∈ H the mapping � : G → H, g → �(g) = Ugψ is continuous.

Let E be the Euclidean group, i.e. the semi-direct product E = IR3©s SO(3) between the
group of spatial translations IR3 and the group of spatial proper rotations SO(3); each trans-
formation g ∈ E bi-univocally corresponds to the ordered pair (a, R) ∈ IR3 × SO(3) such
that R−1x − R−1a ≡ g(x) is the result of the passive transformation of the spatial point
x = (x1, x2, x3) by g.

Let g → Ûg be every continuous non trivial projective representation of Galilei’s group
G, i.e. the group generated by the nine one-parameter abelian sub-groups Tα,Rα , Bα ,
α = 1, 2, 3, of spatial translation, spatial rotations and galileian velocity boosts, relative
to all axes xα . Then there exist nine self-adjoint generators P̂α , Ĵα , Ĝα of the nine one-

parameter unitary subgroups {e−iP̂αaα , a ∈ IR}, {e−iĴαθα , θα ∈ IR}, {eiĜαuα , uα ∈ IR} that
represent the sub-groups Tα,Rα , Bα according to the projective representation g → Ûg .
The structural properties of G as a Lie group imply the following commutation relations [11].

(i) [P̂α, P̂β ] = IO, (ii) [Ĵα, P̂β ] = iε̂αβγ P̂γ , (iii) [Ĵα, Ĵβ ] = iε̂αβγ Ĵγ ,

(iv) [Ĵα, Ĝβ ] = iε̂αβγ Ĝγ , (v) [Ĝα, Ĝβ ] = IO, (vi) [Ĝα, P̂β ] = iδαβμ 1I, (1)

where ε̂α,β,γ is the Levi-Civita symbol εα,β,γ restricted by the condition α �= γ �= β, and μ

is a non-zero real number which characterizes the projective representation.

Definition 2.2 Let H be the Hilbert space of a projective representation g → Ug of the
Euclidean group E . A projection valued (PV) measure E : B(IR3) → �(H), � → E(�)

is an imprimitivity system for the projective representation g → Ug if

UgE(�)U−1
g = E(g−1(�)) ≡ E(R(�) + a) (2)

holds for all (a, R) ∈ E and for all � ∈ B(IR3).

Mackey’s theorem of imprimitivity for E . If a PV measure E : B(IR3) → �(H) is an
imprimitivity system for a continuous projective representation g → Ug of the Euclidean
group E , then a projective representation L : SO(3) → U(H0) exists such that, modulo a
unitary isomorphism,

(M.1) H = L2(IR3,H0),
(M.2) (E(�)ψ)(x) = χ�(x)ψ(x), where χ� is the characteristic functional of �,
(M.3) (Ugψ)(x) = LRψ(g(x)) ≡ LRψ(R−1x − R−1a), for every g = (a, R) ∈ E .
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Furthermore, the projective representation U is irreducible if and only if the “inducing”
representation L is irreducible.

2.1 Quantum Transformations

Now we formulate a concept of quantum transformation which is viable also for space-time
transformations that are not symmetry transformations.

We stipulate to interpret the galileian group G as a group of changes of reference frame in
a class F of frames which move uniformly with respect to each other: given any reference
frame � in F , by �g we denote the frame related to � just by g.

Let us consider the Quantum Theory of a localizable particle, that is to say of a physical
system which can be localized in a point of the physical space. If (Q1,Q2,Q3) ≡ Q is
the commuting triple of self-adjoint operators which represent the three coordinates of the
position with respect to � and if g ∈ E , then the α-th coordinate of the position with
respect to the frame �g must be represented by the operator S�

g [Qα] ≡ [g(Q)]α , where
g(x) = (y1, y2, y3) is the triple of the coordinates, with respect to �g , of the spatial point
that is represented by x in �. Then the operators that represent the three coordinates of
position depend on the frame they refer to.

In the case of a galileian boost g ∈ G, characterized by a velocity u = (u, 0, 0) of
�g relative to �, it does not change the instantaneous position at all; hence g(x) = x
and S�

g [Q] = g(Q) = Q; but to transform the “position at time t”, i.e. the opera-

tors Q(t) = eiHtQe−iH t , a function gt different from g is required; namely, S�
g [Q(t)] =

(Q
(t)
1 − ut, Q2,Q3) ≡ gt (Q

(t)), where gt (x) = (x1 − ut, x2, x3)

In general, we can state that for every g ∈ G the following covariance relations hold,

(i) S�
g [Q] = g(Q), (ii) S�

g [Q(t)] = gt (Q
(t)), (3)

where gt is a suitable function, in general different from g. In fact, relations (3) are the
conditions which define the position operators of a localizable particle.

In general, a Quantum Theory must account for the possibility that also operators rep-
resenting observables other than position depend on the reference frame; therefore, the
transformations S�

g must be appropriately extended to all quantum observables. To do this,
given two reference frames �1 and �2 in F , we introduce the following concept of relative
indistinguishability between measuring procedures:

If a measuring procedure M1 is relatively to �1 identical to what is M2 relatively to
�2, we say that M1 and M2 are indistinguishable relatively to (�1, �2). Then, for every
g ∈ G and every � in F we introduce the mapping

S�
g : �(H) → �(H), A → S�

g [A] (4)

with the following conceptually explicit interpretation.

(QT) The self-adjoint operators A and S�
g [A] can be respectively measured by two

measuring proceduresM1 andM2 indistinguishable relatively to (�,�g).

We call the mapping S�
g Quantum Transformation of g relative to �.

For instance, if A is a quantum observable measured by a detector placed in the origin of �

with a given orientation relative to �, then S�
g [A] is the operator that represents an identical

detector placed in the origin of �g with that orientation relative to �g . It must be noticed
that (QT) presupposes that for each quantum observable A ∈ �(H) and every g ∈ G,
twomeasuringprocedureswith the required relative indistinguishability exist, at least in principle.
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The authentic meaning (QT) of the notion of quantum transformation immediately infers,
at a conceptual level, the following general property.

(S.1) For every frame � in F the following statement holds.

S�
gh[A] = S�h

g

[
S�

h [A]], for all A ∈ �(H). (5)

This statement stresses how in general, i.e. without further particular conditions, the
mapping S�

g , with g fixed, can change by changing the “starting” frame �. Two fur-
ther properties (S.2) and (S.3) can be inferred according to the meaning of quantum
transformation expressed by (QT).

(S.2) For every g ∈ G, the mapping S�
g is bijective.

(S.3) For every real Borel function f , if A and B = f (A) are self-adjoint operators, then
the following equality holds:

f (S�
g [A]) = S�

g [f (A)]. (6)

While (S.2) is straightforward, to infer (S.3), one can argue as follows. Let f be any fixed
real Borel function, and let A and B = f (A) be self-adjoint operators. According to Quan-
tum Theory a measurement of the quantum observable f (A) can be performed bymeasuring
A and then transforming the obtained outcome a by the purely mathematical function f

into the outcome b = f (a) of f (A). The measurement procedures of A and S�
g [A] are

indistinguishable relatively to (�, �g); then transforming the outcomes of both procedures
by means of the same function f should not affect the relative indistinguishability of the so
modified procedures. So we should conclude that (6) holds.

2.2 Peliminary Results

Now we show that conditions (S.2) and (S.3), together with a continuity condition, are
sufficient to prove that each transformation g ∈ G is assigned a unitary operator Ug which
realizes the corresponding quantum transformation S�

g as S�
g [A] = UgAU−1

g , also if g is
not a symmetry transformation.

Proposition 2.1 Let S : �(H) → �(H) be a bijective mapping such that S[f (A)] =
f (S[A]) for every Borel real function f , whenever A, f (A) ∈ �(H). Then the following
statements hold.

i) If E ∈ �(H) then S[E] ∈ �[H], i.e., the mapping S is an extension of a bijection of
�(H].

ii) If A,B ∈ �(H) and A + B ∈ �(H), then [A, B] = IO implies S[A + B] = S[A] +
S[B].
This partial additivity immediately implies S[A] = IO if and only if A = IO.

iii) For all E,F ∈ �(H), EF = IO implies S[E + F ] = S[E] + S[F ] ∈ �(H); as a
consequence, E ≤ F if and only if S[E] ≤ S[F ].

iv) S[P ] ∈ �1(H) if and only if P ∈ �1(H).

Proof (i) If E ∈ �(H) and f (λ) = λ2 then f (E) = E holds; so S[f (E)] = f (S[E])
implies (S[E])2 ≡ f (S[E]) = S[E2] ≡ S[E], i.e. S2[E] = S[E].

(ii) If [A, B] = IO then a self-adjoint operator C and two functions fa , fb exist so that
A = fa(C) and B = fb(C); once defined the function f = fa +fb, we have S[A+B] ≡
S[f (C)] = f (S[C]) = fa(S[C]) + fb(S[C]) = S[fa(C)] + S[fb(C)] ≡ S[A] + S[B].
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(iii) If EF = IO, then [E, F ] = IO and (E+F) ∈ �(H) hold. Statements (i) and (ii) imply
S[E + F ] = S[E] + S[F ] ∈ �(H].

(iv) If P ∈ �1(H) then S[P ] ∈ �(H) by (i). If Q ∈ �1(H) and Q ≤ S[P ] then
P0 ≡ S−1[Q] ≤ P by (iii); but P is rank 1, therefore P0 = P and Q = S[P ].

Properties (S.2), (S.3) imply that every quantum transformation S�
g satisfies the hypotheses

of Prop. 2.1; therefore, it is an automorphism of the lattice �(H). Hence, according to an
equivalent version of Wigner theorem [3], a unitary or anti-unitary operator Ug exists such
that S�

g [E] = UgEU∗
g for every E ∈ �(H); Prop. 2.1 can be re-used for extending this

equality to S�
g [A] = UgAU∗

g for all A ∈ �(H). Moreover, under the condition that the
correspondence g → Ug is continuous, Ug is forced to be unitary because Ug is connected
with Ue = 1I which is unitary [9].

Remark 2.1 The unitarity of each Ug implies that the spectrum of any quantum observable
A is invariant under S�

g : σ(S�
g [A]) = σ(A). An important consequence of such an invari-

ance is that an interaction having the effect of sharply confining a particle in a bounded
region of the physical space, hence such that σ(Q) ⊂ IR3, is not consistent with the theory;
indeed, (3.i) implies g(σ (Q)) = σ(g(Q)) = σ(S�

g [Q]) ≡ σ(Q), which cannot hold for all

g ∈ G unless σ(Q) = IR3. For this reason we find appropriate, for the time being, to re-
establish (S.2) and (S.3) as conditions characterizing the class of interactions investigated in
the present work. In the following we shall see that such a class is a very large one, enough
to encompass also electromagnetic interaction.

3 σ -Conversions

In Section 2.2 we concluded, under a continuity condition for g → Ug , that in the Quantum
Theory of a physical system, also if it is not isolated, a continuous correspondence U :
G → U(H) exists such that S�

g [A] = UgAU−1
g . Elsewhere [9] it has been shown that if

the mapping g → Ug , such that Sg[A] = UgAU−1
g , is a projective representation, then the

Hilbert space of the simplest Quantum Theory for a localizable particle can be identified
with L2(IR3), where the position operators Qα form a complete system, the translations’
and boosts’ generators are Pα = μQ̇α and Gα = μQα . However, the Hamiltonian must be
H = (2μ)−1 ∑

α P 2
α + �(Q), where �(q1, q2, q3) is a real function of q ∈ IR3; therefore,

electromagnetic interaction cannot be described.
But the empirical inadequateness of this ‘projectivity’ condition is much stronger,

because, as argued in [10], it excludes a much larger class of interactions. Let us out-
line the argument. If Ug = eiGαu, then (3.ii) implies eiGαuQ

(t)
β eiGαu = Q

(t)
β − δαβut ;

this equality can be used to compute eiGαuQ̇
(t)
β eiGαu = Q̇

(t)
β − δαβu and, in cascade,

eiGαuQ̈
(t)
β eiGαu = Q̈

(t)
β , eiGαu

...
Q

(t)

β eiGαu = ...
Q

(t)

β . Last equality implies [Gα,
...
Qβ ] = IO, i.e.

...
Qβ = hβ(Q) by the completeness of Q. Yet, since H = (2μ)−1 ∑

α P 2
α + �(Q), we have

Q̈β = i[H, Q̇β ] = i[H,
Pβ

μ
] = − ∂�

∂qβ
(Q); hence

...
Qβ = i[H, Q̈β ] = i

[
H, − ∂�

∂qβ
(Q)

]
=

= − i
2μ

∑
α

[
P 2

α , ∂�
∂qβ

(Q)
]

= − i
2μ

∑
α

(
Pα

[
Pα, ∂�

∂qβ
(Q)

]
+

[
Pα, ∂�

∂qβ
(Q)

]
Pα

)
=

= − 1
2μ

∑
α

(
Pα

∂2�
∂qα∂qβ

+ ∂2�
∂qα∂qβ

Pα

)
= − 1

2μ

∑
α

([
Pα, ∂2�

∂qα∂qβ

]
+ 2 ∂2�

∂qα∂qβ
Pα

)
.
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Now,
...
Qβ = hβ(Q) implies

[∑
α

([
Pα, ∂2�

∂qα∂qβ

]
+ 2 ∂2�

∂qα∂qβ
Pα

)
,Qγ

]
= IO, and then

2
[∑

α
∂2�

∂qα∂qβ
Pα, Qγ

]
= 2 ∂2�

∂qα∂qβ

∑
α

[
Pα, Qγ

] = −2i ∂2�
∂qγ ∂qβ

= IO, i.e. ∂�
∂qβ

= λβ1I .

Therefore, if g → Ug were a projective representation and (3) held, then only interac-
tions with linear ‘potentials’ � could be described. Thus, in order to develop an empirically
more comprehensive Quantum Theory of an interacting particle, we have to remove the
‘projectivity’ condition or (3). Since (3) expresses just the notion of position, in this work
we give up the projectivity condition for g → Ug; without it, however, Mackey’s imprim-
itivity theorem does not apply and the approach finds an obstacle. Now we address this
obstacle.

The continuous correspondence g → Ug , can be converted into a continuous projective
representation if we multiply each operator Ug by a suitable unitary operator Vg of H;
namely, Vg is a unitary operator such that the correspondence g → Ûg = VgUg turns out to
be a projective representation; the transition from {g → Ug} to {g → Ûg ≡ VgUg} will be
called σ -conversion. If {Ug → VgUg} is a σ -conversion and θ : G → IR is a real function
such that eiθ(e) = 1, then also {Ug → [eiθ(g)Vg]Ug} is a σ -conversion.

Remark 3.1 Since non-trivial continuous projective representations Ũ : G → U(H̃) exist,
we can state that a σ -conversion to non-trivial projective representations g → Ûg always
exists. Indeed, both H̃ and the Hilbert space H of the Quantum Theory of our interact-
ing particle have the same (countably infinite) dimension. Therefore a unitary mapping
W : H → H̃ exists. Hence Û : G → U(H), g → Ûg = WŨgW

−1 is a projec-
tive representation of G in H. If we define Vg = ÛgU

−1
g , then VgUg = Ûg; therefore

{Ug → VgUg} is a σ -conversion. This argument leaves completely undetermined the
σ -conversion; actually, there is a σ -conversion for each projective representation of G. This
‘degeneracy’ will be eliminated by physically meaningful further conditions, as argued in
Remark 4.1.

3.1 Mathematical Formalism of the Theory

If {Ug → VgUg} is a σ -conversion then, according to Section 2, the continuous projective
representation g → Ûg = VgUg has nine self-adjoint generators P̂α , Ĵα , Ĝα for which (1)
hold. These commutation relations imply

ÛgFÛ−1
g = g(F) , ∀g ∈ G , (7)

for the triple F = Ĝ/μ, and then its common spectral measure is an imprimitivity
system for Û |E . So, according to the imprimitivity theorem we can explicitly identify
H modulo a unitary isomorphism, but also Fα , P̂α , Ĵα and Ĝα by means of (M.3) in the
theorem:

H = L2(IR
3,H0) , (Fαψ)(x) = xαψ(x) , P̂α = −i

∂

∂xα

, (8)

Ĵα = FβP̂γ − Fγ P̂β + Sα , Ĝα = μFα .

Here (α, β, γ ) is any cyclic permutation of (1,2,3); the Sα are operators that act onH0 only,
i.e. their action is (Sαψ)(x) = ŝαψ(x) where the ŝα are self-adjoint operators of H0 which
form a representation of the commutation rules [ŝα, ŝβ ] = iε̂αβγ ŝγ . Since the reducibility

Author's personal copy



Int J Theor Phys

of the inducing representation L : SO(3) → U(H0) implies the reducibility of Û : G →
U(H), if Û is irreducible then also (ŝ1, ŝ2, ŝ3) must be an irreducible representation of
[ŝα, ŝβ ] = iε̂αβγ ŝγ ; in this case, modulo unitary isomorphisms, H0 is one of the finite-
dimensional Hilbert spaces IC2s+1, with s ∈ 1

2 IN: the ŝα are the familiar spin operators
of IC2s+1.

Hence, the mathematical formalism of the Quantum Theory of an interacting particle
has been explicitly identified. However, the operators Q = (Q1,Q2, Q3) representing the
position are not identified. So, the mathematical formalism (8) turns out to be devoid of
physical significance.

In order that the formalism become that of an effective Quantum Theory of an interacting
particle at least two tasks shoud be accomplished.

First, the operators Q of H = L2(IR3,H0) in (8), that represent the position of the
particle, should be explicitly determined. We address this task in Section 3.2.

Second, the wave equation ruling over the time evolution should be determined. In
Section 4, once derived a general dynamical law, specific wave equations corresponding to
specific features of the interaction are determined.

3.2 Q-Covariant σ -Conversions

The position operators Q can be determined within the formalism (8) for interactions that
have the particular feature of admitting a σ -conversion Ug → Ûg = VgUg that leaves
unaltered the covariance properties of the position operators Q, i.e. such that

ÛgQÛ−1
g = g(Q) , ∀g ∈ G. (9)

A σ -conversion satisfying (9) is said to be Q-covariant.
The relevance of the concept of Q-covariance stands in the fact that it is a necessary and

sufficient condition for representing position of a particle by the multiplication operators;
indeed, the following proposition holds.

Proposition 3.1 If a σ -conversion for a particle yields an irreducible projective representa-
tion Û , then it is a Q-covariant σ -conversion if and only if the position operatorsQ coincide
with F.

Proof If Q = F = Ĝ/μ, then (9) and (1) imply ÛgQÛ−1
g = g(Q) ≡ ÛgFÛ−1

g = g(F).

Conversely, if Û : G → U(H) is an irreducible projective representation obtained from

U : G → U(H) through a Q-covariant σ -conversion, then (9) for Ûg = eiĜβu = eiμFβu and
(1.v) imply [Qα−Fα, Fβ ] = [Qα, Fβ ]−[Fα, Fβ ] = IO−IO = IO; therefore (Qα−Fα)ψ(x) =
(fα(Q)ψ) (x) = fα(x)ψ(x), where fα(x) is a self-adjoint operator ofH0. However, the Q-
covariance and (1.vi) imply also [Qα −Fα, P̂β ] = [Qα, P̂β ]−[Qα, P̂β ] = iδαβ1I− iδαβ1I =
IO, i.e. [fα(Q), P̂β ] = IO for all x; this relation, since P̂ = −i ∂

∂xα
, implies that ∂fα

∂xα
(x) = 0,

for all α, β; therefore fα(x) is an operator f̂α ofH0 which does not depend on x. Now, since
f̂α = Qα − Fα , also [f̂α, f̂β ] = IO holds; moreover, from (3.i) for a pure spatial rotation
g about xα and from (9.iv) we obtain [Ĵα,Qβ − Fβ ] = iε̂αβγ (Qγ − Fγ ) = iε̂αβγ f̂γ ; but
the irreducibility of Û implies the irreducibility of the inducing projective representation
L : SO(3) → U(H0), so that H0 is finite dimensional; then [f̂α, f̂β ] = IO and [Ĵα, f̂β ] =
iε̂αβγ f̂γ can hold only if f̂α = IO, i.e. Fα = Qα .
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Following a customary habit, we say that a particle, whose interaction admits Q-covariant
σ -conversion, is elementary if Û is irreducible. The following proposition specify how in
the Quantum Theory of an elementary particle each Ûg is related to the unitary operator Ug

that realizes the quantum transformation corresponding to g.

Proposition 3.2 The action of each operator Vg of a Q-covariant σ -conversion is of the
kind (Vgψ)(x) = (

eiθ(g,Q)ψ
)
(x) = eiθ(g,x)ψ(x), where θ(g, x) is a self-adjoint operator

ofH0 which depends on x and on g.

Proof Relations (9) and (3) imply VgUgQU−1
g V −1

g = g(Q), i.e. Vg(g(Q))V −1
g = g(Q),

which implies [Vg, g(Q)] = IO. Then [Vg, f(g(Q))] = IO for every sufficiently regular func-
tion f; by taking f = g−1 we have [Vg,Q] = IO. Then (Vgψ)(x) = hg(x)ψ(x), where
hg(x) is an operator of H0. Finally, the unitary character of Vg imposes that hg(x) must
be unitary as an operator of H0; thus a self-adjoint operator θ(g, x) of H0 exists such that
hg(x) = eiθ(g,x).

4 Wave Equations

Nowwe derive a general dynamical equation ruling over the time evolution of an elementary
particle whose interaction admits Q-covariant σ -conversion. In so doing we shall suppose
that the mapping g → Vg is differentiable with respect to the parameters aα, θα, uα of the
group G.

Let us consider the pure velocity boost g ∈ G such that, in the formalism (8), Ûg = eiĜαu.
Since Ĝα = μFα = μQα , we can write Ûg = eiμQαu; therefore

ÛgQ̇βÛ−1
g ≡ lim

t→0
VgUg

(Q
(t)
β − Qβ)

t
U−1

g V −1
g = Q̇β + iμ[Qα, Q̇β ]u + o1(u). (10)

By making use in (10) of UgQ
(t)
β U−1

g = Q
(t)
β − δαβut1I, implied by (3), we obtain

ÛgQ̇βÛ−1
g = VgQ̇βV −1

g − δαβu1I = Q̇β + iμ[Qα, Q̇β ]u + o1(u). (11)

But Prop. 3.2 implies that Vg = eiςα(u,Q), where ςα(u, x) is a self-adjoint operator of H0;
replacing in (11) we obtain

Q̇β + i[ςα(u,Q), Q̇β ] + o2(u) − δαβu1I = Q̇β + iμ[Qα, Q̇β ]u + o1(u). (12)

Since eiςα(0,Q) = 1I, the expansion of ςα with respect to u yields ςα(u,Q) = ∂ςα

∂u
(0,Q)u +

o3(u); by replacing this last relation in (12) we obtain

μ[Qα, Q̇β ] = [ηα(Q), Q̇β ] + iδαβ1I,

where ηα(Q) = ∂ςα

∂u
(0,Q). By replacing Q̇β = i[H, Qβ ] in this last equation we can apply

Jacobi’s identity, and in so doing we obtain [Qβ,μQ̇α] = [Qβ, η̇α(Q)] + iδαβ1I, i.e.

[Qβ, η̇α(Q) − μQ̇α] = −iδαβ1I = [Qβ, −P̂α].
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Hence [η̇α(Q)−μQ̇α − P̂α,Qβ ] = IO, from which we imply that for every x ∈ IR3 an oper-
ator fα(x) ofH0, must exist such that the equation {η̇(Q) − μQ̇α + P̂α}ψ(x) = fα(x)ψ(x)
holds, that we can rewrite as

i[H, μQα − ηα(Q)] = P̂α − fα(Q). (13)

This is a general dynamical equation for a localizable particle whose interaction admits
Q-covariant σ -conversions; according to such a law, the effects of the interaction on the
dynamics are encoded in the six “fields” ηα , fα .

The general law (13) does not specify the concrete form of the hamiltonian operator
H . In fact, equation (13) is satisfied by different inequivalent concrete operators H . This
equation has been determined by requiring that the covariance properties of Q with respect
to the whole group G are invariant under the σ -conversion; in Sections 4.1–4.3 we show
how specific forms of H , i.e. of the wave equation, are implied by more stringent invariance
of this kind.

4.1 Boosts Sub-Group and Electromagnetic Interaction

By o(t)(u) we denote an operator infinitesimal of order greater than 1 with respect to√
t2 + u2, that satisfies limt→0

o(t)(u)
t

= o(u) and limu→0
o(t)(u)

u
= õ(t), where the oper-

ators o(u) and õ(t) are infinitesimal of order greater than 1. We say that the σ -conversion
leaves unaltered the covariance properties of Q(t) at the first order with respect to Galileian
boosts if the following equalities hold for all α and β.

eiĜαuQ
(t)
β e−iĜαu = Sg[Q(t)

β ] + o(t)(u) = Q
(t)
β − δαβut1I + o(t)(u), (14)

Proposition 4.1 If a Q-covariant σ -conversion leaves unaltered the covariance properties
of Q(t) under galileian boosts at the first order, then

[ηα(Q),Q
(t)
β ] = ô(t) , where lim

t→0

ô(t)

t
= IO ; (15)

(i) [Ĝα,Q
(t)
β ] = iδαβ t + ô(t) , (ii) [Ĝα, Q̇β ] = iδαβ ; (16)

Q̇β = 1

μ

(
P̂β + aβ(Q)

)
, (17)

where aβ(x) is a self-adjoint operator ofH0, for any x ∈ IR3.

Proof Let Ûg = eiĜαu = VgUg be the σ -converted unitary operator associated with the
galileian boost g, where Vg = eiςα(u,Q) as in (12). By making use of these equalities, of

UgQ
(t)
β U−1

g = Q
(t)
β − δαβut1I and by expanding e±iςα(u,Q) in u we obtain

eiĜαuQ
(t)
β e−iĜαu = Q

(t)
β + i[ηα(Q),Q

(t)
β ]u − δαβut1I + ω1(u,Q

(t)
β ) , (18)

where limu→0
ω1(u,Q

(t)
β )

u
= IO. Replacing (18) in (14), we imply (15).

By expanding e±iĜαu with respect to u we find

eiĜαuQ
(t)
β e−iĜαu = Q

(t)
β + i[Ĝα, Q

(t)
β ]u + ω2(u,Q

(t)
β ), where limu→0

ω2(u,Q
(t)
β )

u
= IO,

so that if (14) holds then i[Ĝα,Q
(t)
β ] = −δαβt1I + ô(t) follows; therefore (16) hold.
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Finally, Ĝα = μQα , (16.i) imply [μQα, Q̇β ] = iδαβ = [Ĝα, Q̇β ] = [Qα, P̂β ], and then
a self-adjoint operator aβ(x) ofH0 must exists for every x such that (17) hold.

If we put H0 = 1
2μ

∑
γ

(
P̂γ + aγ (Q)

)2
, then i[H0, Qβ ] = 1

μ

(
P̂β + aβ(Q)

)
straightfor-

wardly follows. Whenever (14) holds, Prop. 4.1 implies i[H0, Qβ ] = Q̇β = i[H, Qβ ];
therefore

H = H0 + �(Q) = 1

2μ

∑

γ

(
P̂γ + aγ (Q)

)2 + �(Q),

where �(x) is a self-adjoint operator ofH0. Then the wave equation is

i
∂

∂t
ψt = Hψt =

⎧
⎨

⎩
1

2μ

∑

γ

(
P̂γ + aγ (Q)

)2 + �(Q)

⎫
⎬

⎭
ψt . (19)

Thus, the usual wave equation of a particle interacting with an electromagnetic field
is implied by the fact that it admits σ -conversions that leave unaltered the covariance
properties of Q(t) with respect to boosts at the first order.

Remark 4.1 The condition for the σ -conversion of being Q-covariant and of leaving unal-
tered the covariance properties of Q(t) with respect to boosts at first order eliminates
the indeterminateness of the σ -conversion, i.e. of the irreducible projective representation
Û : G → U(H) that results from it, highlighted in Remark 3.1.

Indeed, each such projective representation is completely identified by the pair (μ, s).
Now, the mentioned conditions imply Ĝα = μQα and, by Prop. 4.1, that P̂α = μQ̇α − aα ,
then iμ ≡ [Ĝα, P̂α] = μ2[Qα, Q̇α]. Therefore μ is determined by the physical observables
Qα and Q̇α: the physics of the system imposes the value of μ. On the other hand, the
operator S2 = S2

1 + S2
2 + S2

3 in an irreducible projective representation is the constant
operator S2 = s(s + 1)1I. So the value s ∈ 1

2 IN identifying Û , and hence the σ -conversion,
is the unique possible outcome of a measurement of the observable represented by S2.

4.2 Invariance Under Spatial Translations

Let us now suppose that the interaction admits a Q-covariant σ -conversion that leaves unal-
tered the covariance properties of Q(t) with respect to spatial translations at the first order,
i.e. we are supposing that

e−iP̂αaQ
(t)
β eiP̂αa = Q

(t)
β − δαβa1I + o(t)(a), (20)

This relation implies

(i) [Q(t)
β , P̂α] = iδαβ + ô(t) and hence (ii) [Q̇β, P̂α] = IO. (21)

Therefore we can state that Q̇β = vβ(P̂), where vβ(p) is a self-adjoint operator of H0, for

all p ∈ IR3. Since [Qα, vβ(P̂)] = i
∂vβ

∂pα
(P̂), Jacobi identity for

[
Qα, [H, Qβ ]] implies

i
∂vβ

∂pα

(P̂) = [Qα, Q̇β ] = i
[
Qα, [H, Qβ ]] = [Qβ, Q̇α] = i

∂vα

∂pβ

(P̂).
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Hence v(p) = (v1(p), v2(p), v3(p)) is an irrotational field, so that vα(p) = ∂F
∂pα

(p), for
some function F , where F(p) is a self-adjoint operator of H0. Therefore we are led to the
following equalities.

Q̇α = vα(P̂) = ∂F

∂pα

(P̂) = i[F(P̂),Qα] = i[H, Qα].

The last equality implies that a function � : IR3 → �(H0) exists such that H = F(P̂) +
�(Q). Then the wave equation is

i
∂

∂t
ψt = Hψt =

{
F(P̂) + �(Q)

}
ψt . (22)

4.3 Invariance Under Both Boosts and Translations

If the covariance properties of Q(t) with respect to boosts and to spatial translations are
invariant at the first order under the σ -conversion, then (19) and (22) imply

H = F(P̂) + �(Q) = 1

2μ

∑

γ

(
P̂γ + aγ (Q)

)2 + �(Q)

= 1

2μ

∑

γ

(
P̂ 2

γ + aγ (Q)P̂γ + P̂γ aγ (Q) + a2γ (Q)
)

+ �(Q).

These equalities, since aγ (Q)P̂γ + P̂γ aγ (Q) = [aγ (Q), P̂γ ] + 2P̂γ aγ (Q) = i
∂aγ

∂xγ
(Q) +

2P̂γ aγ (Q), imply

1

μ

∑

γ

P̂γ aγ (Q) =
⎛

⎝F(P̂) − 1

2μ

∑

γ

P̂ 2
γ

⎞

⎠+�(Q)− i

2μ

∑

γ

∂aγ

∂xγ

(Q)−�(Q)−
∑

γ

a2γ (Q) ,

i.e.

1

μ

∑

β

P̂βaβ(Q) = F1(P̂) + F2(Q), (23)

where F1(P̂) =
(
F(P̂) − 1

2μ

∑
β P̂ 2

β

)
and F2(Q) = �(Q) − i

2μ

∑
γ

∂aγ

∂xγ
(Q) − �(Q) −

∑
γ a2γ (Q). Then

⎡

⎣Qγ ,
1

μ

∑

β

P̂βaβ(Q)

⎤

⎦ = i

μ
aγ (Q) = ∂F1

∂xγ

(P̂).

The commutator of this equation with P̂α yields

[P̂α, aγ (Q] = −i
∂aγ

∂xα

(Q) = −iμ

[
P̂α,

∂F1

∂xγ

(P̂)

]
= IO.

Therefore, aγ (Q) is an operator that acts as follows
(
aγ (Q)ψ

)
(x) = âγ ψ(x),

where âγ is an operator ofH0 which does not depend on x.
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Thus, H = 1
2μ

∑
γ (P̂γ + âγ )2 + �(Q), and the wave equation is

i
∂

∂t
ψt = Hψt =

⎧
⎨

⎩
1

2μ

∑

γ

(P̂γ + âγ )2 + �(Q)

⎫
⎬

⎭
ψt . (24)

In the spin-0 case, if the σ -conversion leaves unaltered also the covariance properties of
Q(t) at first order with respect to the rotations subgroup, then aγ = 0 [9]. In other words,
this twofold invariance characterizes non-magnetic interactions.

4.4 Conclusive Remarks

We have implied the known forms (19) and (24) of the wave equation as consequences
of peculiar properties of the interaction. According to our approach, if the σ -conversion
admitted by the interaction undergone by the particle does not leave unaltered the covari-
ance properties of Q(t) with respect to the subgroup of boosts, then the wave equation
can be different from the known ones. Therefore our development opens to the possibility
for interactions different form those described by (19) and (24). The present work has a
general character, and these possibilities have not been specifically explored; however, the
present theoretical framework allows for such an investigation. This possibility is precluded
by other practiced methods for quantizing the interaction; for instance the methods based
on the gauge principle – without entering Quantum Field Theories – immediately lead to
wave equations of the form (19). On the other hand, the method of canonical quantization
is constitutionally constrained to the wave equations implied by the classical equations.
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