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1. Introduction

Let Σ and Σ′ be two inertial frames. If a material point P moves according to

a law (t, ~x(t)) with respect to Σ, with respect to Σ′ its motion will be described

by a different law (t′, ~x′(t′)). To obtain the law (t′, ~x′(t′)) which corresponds to

(t, ~x(t)) a transformation is needed. The transformations which are coherent with

Electromagnetism and the Principle of Relativity, asserting that the physical laws must

be the same in all inertial frames, are the Lorentz’ transformations.

The usual derivations of Lorentz’ Transformations assume that the light travels

with the same velocity c = 1/
√

ε0µ0 ≈ 3 · 108m/s in all inertial reference frames;

this assumption can be motivated by arguing that the solutions of Maxwell equations

in empty space are electro-magnetic waves which propagate just with a velocity c =

1/
√

ε0µ0, hence depending only on universal constants. The full comprehension of this

motivation requires to solve partial differential equations. To achieve the derivation

of Lorentz’ transformations, further assumptions of mathematical regularity of the

searched transformations, as linearity and continuity, must be required.

Here we present an alternative derivation of Lorentz’ Transformations, which makes

use of physical principles, without assuming as a postulate the invariance of velocity of

light and without any assumption on the regularity of the transformations. In particular,

an empirical implication of a well known Electro-magneto-statics law is deduced, and

then we impose that this law holds in all inertial frames, according to the Principle of

Relativity.

Moreover, we use the principle that electrical charge does not change with velocity,

empirically justified by a quite familiar experience: if a solid body, with no (net) charge

is heated, then its (net) charge remains zero. Since the increase of the temperature

corresponds to an increase of the average kinetic energy of the particles constituting the

body, the velocity of electrons becomes much larger than the velocity of more massive

nuclei. If the charge was dependent on the velocity, the change of charge due to electrons

should overcome the change due to nuclei, and the body would acquire a (net) electrical

charge. But this phenomenon has never been observed.

The entire derivation is carried out by means of conceptual reasoning based on

symmetry and reciprocity rather than on mathematical technicalities. It consists of the

following steps:

(i) to formulate an empirical law as a consequence of electro-magneto-statics;

(ii) to show the invariance of distances transversal to the relative motion;

(iii) to show how lengths parallel to the relative motion transform (Lorentz Contraction);

(iv) to derive Lorentz’s Transformations.

2. An empirical consequence of electro-magneto-statics

We consider two parallel rectilinear wires in an inertial frame Σ, which carry a constant

electrical current i and an uniform charge density λ, placed at a distance r from each
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other. The Electro-magnetic fields produced by charges and currents would provoke an

attraction or repulsion between the wires. To equilibrate this interaction we introduce a

device I consisting of suitable distributions of springs in the plane of the wires, which act

on both wires (Figure 1), and they are chosen in such a way that their action establishes

equilibrium. If we change the values of λ or i, the equilibrium is broken, in general.

However, if these values are changed into suitable ones λ̂, î equilibrium is kept.

λ

∆

, i

Idevice

F

Figure 1. Device I yields equilibrium

The problem we want to address here is that of finding the pairs λ̂, î which do not

perturb the equilibrium established by I. According to Electro-magneto-statics, the

force ∆F acting on a piece of wire of length L has modulus ∆F =
∣∣∣ λ2

2πε0r
− µ0i2

2πr

∣∣∣ L (Fig.

1). Now we argue that if a different pair (λ̂, î) of charge density and current does not

perturb the equilibrium established by the action of I, then this implies that

∆̂F ≡
∣∣∣∣∣

λ̂2

2πε0r
− µ0î

2

2πr

∣∣∣∣∣ L = ∆F ≡
∣∣∣∣∣

λ2

2πε0r
− µ0i

2

2πr

∣∣∣∣∣ L.

Then, once introduced the function

φ(λ, i) =
λ2

2πε0r
− µ0i

2

2πr
, (1)

we formulate the following law.

(L) If the action of device I yields equilibrium for both the two pairs of values (λ, i)

and (λ̂, î), then

φ(λ̂, î) = φ(λ, i).

While the argument leading to (L) makes use of the concept of force, it is a remarkable

fact that the interpretation of law (L) does not require to attribute the meaning of

density of force to function φ. In the formulation of (L) function φ plays the role of

mere empirical tool for ruling over equilibrium in this particular experimental situation.

The empirical validity of (L) can be experimentally verified without making reference

to any underlying mechanical theory [1]. Thus we consider (L) an empirical law which,

according to the Principle of Relativity, must hold in all inertial frames.
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3. Invariance of distances transversal to the relative motion

Let Σ′ be another frame which moves with a constant velocity v in the direction parallel

to the wires, with respect to Σ. If device I establishes equilibrium between the wires

with respect to Σ, then the equilibrium holds also with respect to Σ′; indeed, we shall

show now that, as a consequence of the Principle of Relativity, the distance r′ between

the wires with respect to Σ′ must have the same value r of the distance between the

wires with respect to Σ. Equilibrium in Σ means that r does not change; then also r′

must not change, i.e. equilibrium holds also in Σ′.
Let us consider two inertial frames Σ1 and Σ2, which move with respect to each

other with a constant velocity v. Let us suppose that two material rectilinear wires

are parallel to the direction of the relative motion, and that one wire is at rest with

respect to Σ1, while the other is at rest with respect to Σ2. By r1 and r2 we denote the

distances between the two wires with respect to Σ1 and Σ2, respectively. Between these

distances the inequality r1 ≤ r2 or r2 ≤ r1 must hold. Let us suppose that the first case

is realized.

Σ2

1 2r r

v

v

Figure 2. The view of Σ1

An observer at rest in Σ2 sees a physical situation identical to that seen by an observer

at rest in Σ1, with the roles of r1 and r2 exchanged (Figures 2, 3).

Σ1

1 2r r

v

v

Figure 3. The view of Σ2
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Therefore, as a consequence of the Principle of Relativity r2 ≤ r1 should hold, i.e.

r1 = r2; hence the distances transversal to the relative motions are invariant.

4. Deriving Lorentz contractions

While tranversal distances must be invariant, we are going to show how the lenghts

along the direction of the relative motion may undergo modifications.

4.1. Invariant device

Device I in (L) can be conceived so that it appears to Σ physically indistinguishable

from how it appears to Σ′.
Such an “invariant” I consists of two uniform distributions, D1 and D2, of springs,

the spring of each distribution being identical with each other. The distibution D1 is

at rest with respect to frame Σ. The second distribution, D2, is at rest with respect to

Σ′. Let ρ1, ρ2 be the densities of the springs of D1 and D2 with respect to Σ, while ρ′1
and ρ′2 denote the values of these densities with respect to Σ′. Hence, with respect to Σ

device I consists of a distribution at rest with density ρ1 and another distribution with

density ρ2 which moves with velocity v (Figure 4).

ρ

ρ

D ,

D ,

v v v

1 1

22

density  device

densitydevice

Figure 4. Device I = D1 +D2 with respect to Σ

With respect to Σ′, device I consists of a distribution at rest with density ρ′2 and

a distribution with density ρ′1 which moves with velocity v (Figure 5).

Let the density ρ2 of D2 with respect to Σ be chosen in such a way that ρ′2 = ρ1,

this implies that if a distribution which moves with velocity v has denstiy ρ2, in a frame

where it is at rest its density must be ρ1; reciprocally, ρ′1 = ρ2 must hold. Thus, as

regards to the densities, device I appears to Σ identical to that seen by Σ′, apart from

an exchange of the roles of D1 and D2. In the same way, the value of any magnitude

characterizing D2, an which determines its action on the wires – as for instance the

angle between wires and springs – is chosen in such a way that device I appears to
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ρ =ρ
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Figure 5. Device I = D1 +D2 with respect to Σ′

Σ′ identical to that seen by Σ. The invariance of I is completed by the fact that the

distance r between the wires is invariant, as proved in the second step.

4.2. Lorentz’s Contraction

Now we specialize to the case that all charges together with the two wires of second

step are at rest in Σ, so that λ 6= 0 ed i = 0. Let I be the device so far devised which

establishes equilibrium in Σ. As argued in section 3, such an equilibrium must hold also

in Σ′. But the device which determines equilibrium in Σ′, where charge density and

current are λ′ and i′, is the same (indistinguishable from) that which yields equilibrium

in Σ. Therefore, according to law (L) φ(λ′, i′) = φ(λ, i = 0). Now, in Σ′ the current is

produced by the motion of the wires, therefore i′ = λ′v. Thus φ(λ′, λ′v) = φ(λ, 0) must

hold; more precisely, by (1)

λ2

2πε0r
=

∣∣∣∣∣
λ′2

2πε0r
− µ0

2π

(λ′v)2

r

∣∣∣∣∣ (2)

which implies λ2 = λ′2(1− ε0µ0v
2); therefore, if we set ε0µ0 = 1

c2
, we have

λ = λ′
√

1− v2

c2
. (3)

This result says that the charge density is not invariant.

Now we consider a piece of wire of length L carrying a charge δQ with respect to

Σ. With respect to Σ′, this same piece of wire has a length L′ and carries a charge

δQ′ = δQ.

Then

λ =
δQ

L
and λ′ =

δQ′

L′
=

δQ

L′
.

Therefore, (3) becomes

δQ

L
=

δQ

L′

√
1− v2

c2
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which leads to

L′ = L

√
1− v2

c2
. (4)

This relation is known as Lorentz’s Contraction.

5. Lorentz’s Transformations

Let Σ′ be an inertial frame which moves with a constant velocity v with respect to frame

Σ in the direction of the x axis. The x axes of Σ′ and Σ overlap, while the y axis of Σ′

lies in the plane xy of Σ and the z axis of Σ′ lies in the plane xz of Σ, and such that

at time t = 0 the two origins of the axes of the two frames coincide. The fourth step

consists of three sub-steps:

(I) first, we consider the case in which particle P is at rest in Σ on the x axis and we

use Lorentz’s Contraction to derive its law of motion in Σ′;

(II) we extend (I) to a particle at rest in any spatial point of Σ;

(III) by means of the results of (II), we derive the law of motion in Σ′ when the particle

moves in Σ according to any known law, i.e. the Lorentz’s Transformations.

Sub-step (I). If particle P is at rest in the point of coordinate x of the x axis with

respect to Σ, its motion with respect to Σ′ is described by the “world line” (t′, x′(t′)),
where x′(t′) is the x coordinate of the particle at time t′ with respect to Σ′. The particle

moves with respect to Σ′ with a velocity −v.

The value x represents the length l of the segment [0, x] on the spatial x axis of Σ.

This length l is related to the length l′ of this same segment with respect to Σ′ just by

Lorentz’s Contraction

l′ = l

√
1− v2

c2
≡ x

√
1− v2

c2
. (5)

But l′ is also the difference between the coordinate of P and of the origin of Σ, with

respect to Σ′, which are x′(t′) and −vt′:

l′ = x′(t′)− (−vt′) = x′(t′) + vt′. (6)

Therefore, by equating (5) and (6) we get

x′(t′) = x

√
1− v2

c2
− vt′, for all t′. (7)

This relation is the law of motion with respect to Σ′ in the case (I). The same argument

can be used to show that if a particle is at rest in point x′ with respect to Σ′, then its

world line (t, x(t)) with respect to Σ is given by

x(t) = x′
√

1− v2

c2
+ vt, for all t. (8)

Sub-step (II). Now we consider a particle P at rest in the point of spatial coordinates

(x, y, z) with respect to Σ. Our aim is to find the world line (t′, x′(t′), y′(t′), z′(t′))
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with respect to Σ′. Let us imagine a parallelepiped at rest in Σ with a vertex in the

origin of Σ, three edges lying along the axes x, y, z, and particle P in the vertex with

the greatest distance from the origin (Figure 6). With respect to Σ′ the coordinates

(x′(t′), y′(t′), z′(t′)) of P at time t′ coincide with those of this last vertex. The coordinates

y′(t′) e z′(t′) are distances between edges of the parallelepiped parallel to the relative

motion, i.e. they are distances transversal to the relative motion and therefore are

invariant. For the x coordinate, we can repeat the argument of sub-step (I); thus, with

respect to Σ′, particle P moves according to




x′(t′) = x
√

1− v2

c2
− vt′

y′(t′) = y

z′(t) = z

(9)

for all t′, while x, y, z are constant.

Reciprocally if a particle is at rest in the point (x′, y′, z′) with respect to Σ′, then

its law of motion with respect to Σ is




x(t) = x′
√

1− v2

c2
+ vt

y(t) = y′

z(t) = z′
(10)

for all t, while x′, y′, z′ are constant.

x

y

z

P

Figure 6. A particle at rest in Σ

Sub-step (III). Now we let particle P move in an arbitrary way with respect to Σ;

suppose that at time t0 it is in the point (x0, y0, z0). Let us imagine a particle A at

rest with respect to Σ and another particle B at rest in Σ′, such that both A and B

collide with particle P just in the space-time point (t0, x0, y0, z0). Our assumption is

simply that this threefold collision occurs also in Σ′ in a space-time point denoted by

(t′0, x
′
0, y

′
0, z

′
0) (Figure 7). The space-time point of the collision must belong to the world

line of particle A in Σ′. Therefore by (9) we have




x′0 = x0

√
1− v2

c2
− vt′0

y′0 = y0

z′0 = z0

(11)
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where (x0, y0, z0) are the constant coordinates of A with respect to Σ.

Reciprocally, the space-time point of the impact with respect to Σ must belong to

the world line of B in Σ. By (10)




x0 = x′0
√

1− v2

c2
+ vt0

y0 = y′0
z0 = z′0

(12)

where (x′0, y
′
0, z

′
0) are the constant coordinates of B with respect to Σ′.

By rewriting (11) and (12) in explicit form, we get the usual form of Lorentz’s

Transformations:



x′0 = x0−vt0√
1− v2

c2

y′0 = y0

z′0 = z0

t′0 =
t0− v

c2
x0√

1− v2

c2.

(13)

Σ Σ

(x ,y ,z )

t

P

A
B

(x ,y ,z )

t

P

A

B0 0 0

0

0 0 0

0

Figure 7. World lines of P , A and B with respect to Σ and to Σ′
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