A.A. 2013/2014

Corso di Laurea in Matematica Geometria Proiettiva, Curve e Superfici

A. Canetti-L. Paladino

Parte di geometria proiettiva

Primo esercizio. (9 punti)

a) In \mathbb{R}^3 si consideri la quadrica di equazione

$$\mathcal{I}: -2y^2 + 3y + 4xy + 2xz - z^2 + 3z - 1 = 2.$$

- **a.1)** Scrivere \mathcal{I} in forma canonica. (3 punti)
- **a.2)** Per ogni $i \in \{0,1,2,3\}$, sia j_i l'isomorfismo canonico tra \mathbb{R}^3 e $U_i = \{(x_0,x_1,x_2,x_3) \in \mathbb{P}^3(\mathbb{R}) | x_i \neq 0\}$. Trovare l'immagine $j_0(\mathcal{I})$, dire di quale quadrica proiettiva si tratta e calcolare i suoi punti impropri rispetto all'immersione fatta con j_0 . (2 punti)
- **a.3)** Si consideri l'ipersuperficie $\widetilde{\mathcal{I}}$ di equazione z=-2y. Calcolare il risultante dei polinomi che danno le equazioni di \mathcal{I} e $\widetilde{\mathcal{I}}$. Quante intersezioni ci sono tra \mathcal{I} e $\widetilde{\mathcal{I}}$? (2 punti)
- b) In \mathbb{R}^3 disegnare la quadrica di equazione $4x^2-y^2+4z^2+1=0$. (2 punti)

Secondo esercizio. (6 punti)

- a) Sia $R = \{P_1, P_2, P_3\}$ il riferimento proiettivo di $\mathbb{P}^1(\mathbb{R})$ formato dai punti $P_1 = [2, 1], P_2 = [1, 3]$ e $P_3 = [1, 8]$. Calcolare il birapporto $\beta(P_1, P_2, P_3, Q)$, dove Q = [-4, 3]. (3 punti)
- b) Sia φ un isomorfismo di $\mathbb{P}^1(\mathbb{C})$ con due punti fissi A e B, tale che $\varphi^2 = \mathrm{Id}$ e $\varphi \neq \mathrm{Id}$. Dimostrare che $\beta(A, B, P, \varphi(P)) = -1$, per ogni $P \in \mathbb{P}^1(\mathbb{C}) \setminus \{A, B\}$. (3 punti)

Le risposte a tutti gli esercizi devono essere giustificate. Buon lavoro!

Spazio per la costruzione della risposta.