Corso di Laurea in Scienze Geologiche

Corso di Matematica

L. Paladino

Foglio di esercizi n. 5

Dire se le seguenti funzioni sono continue nei rispettivi domini. In caso non siano continue, elencare i punti di discontinuità e dire di che tipo di discontinuità si tratta.

1)
$$f(x) = xe^x$$
;

2)
$$f(x) = \frac{x-1}{x^2-4};$$

3)
$$f(x) = \frac{\log x}{x^2}$$
;

4)
$$f(x) = |\sin x|$$
;

5)
$$f(x) = \begin{cases} 1, & x \ge 1 \\ 0, & 0 \le x < 1 \\ x^2 & x < 0 \end{cases}$$
;

6)
$$f(x) = \begin{cases} \frac{1}{x^2}, & x > 0\\ 0, & -\frac{\pi}{2} \le x \le 0\\ \tan x & x < -\frac{\pi}{2} \end{cases}$$
;

7)
$$f(x) = \begin{cases} x, & x > 0 \\ 1, & x = 0 \\ -x & x < 0 \end{cases}$$
.

Dire se le seguenti funzioni sono continue in tutto \mathbb{R} . In caso non siano continue, elencare i punti di discontinuità e dire di che tipo di discontinuità si tratta.

8)
$$f(x) = \frac{|x|}{x}$$
;

9)
$$f(x) = \frac{\sin x}{x}$$
;

10)
$$\frac{1}{x^2}$$
;

11)
$$f(x) = \frac{\cos x - 1}{x^2};$$

12)
$$f(x) = e^{x^2}$$
.

Calcolare la derivata prima delle seguenti funzioni.

13)
$$f(x) = x^2 + 7x + 6$$
;

14)
$$f(x) = x^2 - 4x + 4$$
;

15)
$$f(x) = 7x^2 - 6x + 2;$$

16)
$$f(x) = -x^2 + 2x - 1;$$

17)
$$f(x) = x^3 - 7x + 6;$$

18)
$$f(x) = x^4 + 2x^2 + 1$$
;

19)
$$f(x) = x^4 + 13x + 36;$$

20)
$$f(x) = e^{x-1}$$
;

21)
$$f(x) = -5e^{2x}$$
;

22)
$$f(x) = -\sin 2x;$$

23)
$$\cot x$$
;

24)
$$f(x) = \cos x^2$$
;

25)
$$f(x) = \cos^2(x)$$
;

26)
$$f(x) = \sqrt{x^2 - x}$$
;

27)
$$f(x) = \sqrt[3]{x}$$
;

28)
$$f(x) = \sqrt[4]{2x}$$
;

29)
$$f(x) = \frac{x-1}{x}$$
;

30)
$$f(x) = \frac{x^2 + 5}{x - 2}$$
;

31)
$$f(x) = \frac{x^2 - 12x}{x^3 + 8}$$
;

32)
$$f(x) = \frac{x-2}{x^2-3x+2};$$

33)
$$f(x) = \log(x^2 + 1);$$

34)
$$f(x) = \log(3x - 2);$$

35)
$$f(x) = \log(5x) + \log(x+3);$$

36)
$$f(x) = e^{x^2 - 4} \log(x^2 - 3);$$

37)
$$f(x) = 3 \log \sin x;$$

38)
$$f(x) = \sin \log x;$$

39)
$$f(x) = \log \cos x;$$

40)
$$f(x) = \cos \log x;$$

41)
$$f(x) = 2e^{\sin x}$$
;

42)
$$f(x) = e^{\log 2x}$$
;

43)
$$f(x) = e^{\sin x}$$
;

44)
$$f(x) = e^{\cos \frac{x}{2}};$$

45)
$$f(x) = e^{\sin x}$$
;

46)
$$f(x) = \sin(\sin x);$$

47)
$$f(x) = \cos \cos \cos x$$
;

48)
$$f(x) = \cos^2 \cos \cos 2x$$
;

49)
$$f(x) = \frac{\sqrt{x^2 - 4x}}{x + 1}$$
;

50)
$$f(x) = \frac{e^{\sqrt{2x}}}{x^2 + 6x + 8};$$

51)
$$f(x) = \frac{\log\sqrt{2x+1}}{x^2 - x - 5};$$

52)
$$f(x) = \sqrt{\frac{\log x}{x+2}};$$

53)
$$f(x) = \sqrt{\frac{x^2 - 4x + 4}{x - 3}};$$

54)
$$f(x) = \sqrt{e^{\sqrt{x}}x^2}$$
;

55)
$$f(x) = \sin(4x - 4);$$

56)
$$f(x) = \cos(2x+2)$$
;

57)
$$f(x) = \tan(\frac{x}{2});$$

58)
$$f(x) = \frac{\sin x}{x^2}$$
;

59)
$$f(x) = \frac{\cos^2 x}{x}$$
;

60)
$$f(x) = \frac{\log(x-2)}{x-2}$$
;

61)
$$f(x) = |x - 3|;$$

62)
$$f(x) = \frac{|x-2|}{x+5}$$
;

63)
$$f(x) = \frac{|\sin x|}{x}$$
;

64)
$$f(x) = \log x + e^{\sqrt{x}} + \frac{1}{x}$$
;

65)
$$f(x) = \frac{1}{x^3 - 2x};$$

66)
$$f(x) = \frac{1}{e^x}$$
;

67)
$$f(x) = \frac{1}{\cos x}$$
;

68)
$$f(x) = \frac{3}{x^4 - 16}$$
;

69)
$$f(x) = e^{|x|}$$
;

70)
$$f(x) = \log(x - 2);$$

71)
$$f(x) = \frac{\sqrt[3]{x^2 + 1}}{x^2};$$

72)
$$f(x) = \sin 2x$$
;

73)
$$f(x) = \frac{3x+1}{\sqrt{2x-1}};$$

74)
$$f(x) = \frac{4x^2 - 1}{\sqrt{x + 2}};$$

75)
$$f(x) = \frac{3x^3 + 3}{\sqrt{x+1}};$$

76)
$$f(x) = 2x \log x;$$

77)
$$f(x) = x + \sqrt{x};$$

78)
$$f(x) = x - \sqrt{x};$$

79)
$$f(x) = e^{|x|}$$
;

80)
$$f(x) = \arcsin 2x;$$

81)
$$f(x) = (\arccos x)^2$$
;

82)
$$f(x) = \arccos \sin x;$$

83)
$$f(x) = 3\arctan(2x);$$

84)
$$f(x) = \arctan\sqrt{x}$$
;

85)
$$f(x) = \arctan x^2$$
;

86)
$$f(x) = \arcsin e^x$$
;

87)
$$f(x) = \arccos x^2;$$

88)
$$f(x) = \arctan \frac{x}{2};$$

89)
$$f(x) = 4 \arctan e^x$$
;

90)
$$f(x) = \arctan(3x^3)$$
.

Trovare l'equazione della retta tangente al grafico delle seguenti funzioni y=f(x) nel punto x_0 assegnato.

91)
$$f(x) = \frac{x^2 - x}{x^3 - 8}$$
 in $x_0 = 0$;

92)
$$f(x) = \sqrt{3x-3}$$
, in $x_0 = 4$;

93)
$$f(x) = \log_2 x^2$$
, in $x_0 = 8$;

94)
$$f(x) = e^{x^2 - 2x + 1}$$
, in $x_0 = -1$;

95)
$$f(x) = (x-2)\log(x-2)$$
, in $x_0 = 3$;

96)
$$f(x) = \sin(2x) + 3x^4 - e^{\sqrt{x}}$$
, in $x_0 = 0$;

97)
$$f(x) = \frac{x^2 - x}{x^3 - 8}$$
, in $x_0 = 1$;

98)
$$f(x) = \frac{\sin x}{x}$$
, in $x_0 = \pi$;

99)
$$f(x) = \sin x - \frac{e^{\sqrt{x^2-1}}}{x^2-1}$$
, in $x_0 = 0$;

100)
$$f(x) = \arctan x - 2$$
, in $x_0 = 3$.