On counterexamples to local-global divisibility in commutative algebraic groups

Laura Paladino

Abstract

Let k be a number field, let A be a commutative algebraic group defined over k and let n be a positive integer. We will prove that for almost all primes $p \in k$, the existence of a counterexample to the local-global divisibility by p^n in A assures the existence of a counterexample to the local-global divisibility by p^{n+s} in A, for all positive integers s. In particular, we will prove the existence of counterexamples to the local-global divisibility by 2^n and 3^n, for every $n \geq 2$, in the case when $k = \mathbb{Q}$ and A is an elliptic curve. Furthermore, we will show a method to find numerical examples. We will use this method to produce numerical counterexamples to the local-global divisibility by 2^n, for every $n \geq 2$, in elliptic curves defined over \mathbb{Q}.

1 Introduction

Let k be a number field and let A be a commutative algebraic group defined over k. Let $P \in A(k)$. We denote by M_k the set of the valuations $v \in k$ and by k_v the completion of k at the valuation v. In previous papers we were concerned with the following question

PROBLEM: Assume that for all but finitely many $v \in M_k$, there exists $D_v \in A(k_v)$ such that $P = qD_v$, where q is a positive integer. Is it possible to conclude that there exists $D \in A(k)$ such that $P = qD$?

This problem is known as Local-Global Divisibility Problem. There are known solutions in many cases, but many cases remain open too. By using the Bézout identity, it turns out that it is sufficient to solve it in the case when q is a power p^n of a prime p, to get answers for a general integer q.

The local-global divisibility problem is motivated by a strong form of the Hasse principle that says: If a quadratic form $ax^2 + bxy + cy^2 \in \mathbb{Q}[x,y]$ of rank 2 represents 0 non-trivially over all but finitely many completions \mathbb{Q}_p, then it
represents 0 non-trivially over \(\mathbb{Q} \). Then, in particular, if a rational number is a perfect square modulo all but finitely many primes \(p \), then it is a rational square. A generalization of this fact for \(q \)-powers of \(k \)-rational numbers is the Local-Global Divisibility Problem in the case when \(\mathcal{A} \) is the multiplicative group \(\mathbb{G}_m \). For this algebraic group a solution is classical. The answer is affirmative for all odd prime powers \(q \) and for \(q | 4 \) (see [AT], Chap IX, Thm. 1). On the other hand, there are counterexamples for \(q = 2^t, \ t \geq 3 \). The most famous of them was discovered by Trost (see [Tro]) and it is the diophantine equation
\[x^8 = 16, \]
that has a solution in \(\mathbb{Q}_p \), for all primes \(p \in \mathbb{Q} \) different from 2, but has no solutions in \(\mathbb{Q}_2 \) and in \(\mathbb{Q} \).

When \(\mathcal{A} \neq \mathbb{G}_m \) a classical way to proceed is to give a cohomological interpretation to the problem. It turns out that the answer is strictly connected to the behavior of two cohomological groups. The first of them is the cohomological group \(H^1(\operatorname{Gal}(k(\mathcal{A}[p^n])/k), \mathcal{A}[p^n]) \), where \(\mathcal{A}[p^n] \) denotes the \(p^n \)-torsion subgroup of \(\mathcal{A} \). The second is one of its subgroups, named \(H^1_{\text{loc}}(\operatorname{Gal}(k(\mathcal{A}[p^n])/k), \mathcal{A}[p^n]) \), that interprets the hypothesis of the problem in the cohomological context. This last group is known as first local cohomological group and was defined by R. Dvornicich and U. Zannier (see [DZ]).

Definition Let \(\Sigma \) be a group and let \(M \) be a \(\Sigma \)-module. We say that a cocycle \([e] = \{ \{ Z_\sigma \} \} \in H^1(\Sigma, M)\) satisfies the local conditions if there exists \(W_\sigma \in M \) such that \(Z_\sigma = (\sigma - 1)W_\sigma \), for all \(\sigma \in \Sigma \). We denote by \(H^1(\Sigma, M) \) the subgroup of \(H^1(\Sigma, M) \) formed by such cocycles.

Working with all valuations, instead of almost all, we would get the classical definition of the Shafarevich group. Modified Shafarevich groups similar to \(H^1_{\text{loc}}(\Sigma, M) \), appear in [San].

In 2001 R. Dvornicich and U. Zannier proved the following result (see [DZ])

Theorem 1. (Dvornicich, Zannier) Assume that \(H^1_{\text{loc}}(\operatorname{Gal}(k(\mathcal{A}[p^n])/k), \mathcal{A}[p^n]) = 0 \). Let \(P \in \mathcal{A}(k) \) be a point locally divisible by \(p^n \) almost everywhere in the completions \(k_\sigma \) of \(k \). Then there exists a point \(D \in \mathcal{A}(k) \), such that \(P = p^nD \).

Therefore, a natural question was if the non-vanishing of the group \(H^1_{\text{loc}}(G, \mathcal{A}[p^n]) \) could imply the existence of a counterexample to the problem. In 2007 they proved the following statement (see [DZ3])

Theorem 2. (Dvornicich, Zannier, 2007)

Let \(K_0 := k(\mathcal{A}[p^n]) \) and let \(G := \operatorname{Gal}(k(\mathcal{A}[p^n])/k) \). Let \(\{ Z_\sigma \}_{\sigma \in G} \) be a cocycle of \(G \) representing a nontrivial element in \(H^1_{\text{loc}}(G, \mathcal{A}[p^n]) \). Then there exists a number field \(L \) such that \(L \cap K_0 = k \) and a point \(P \in \mathcal{A}(L) \) which is divisible by \(p^n \) in \(\mathcal{A}(L_w) \) for all unramified places \(w \) of \(L \) but is not divisible by \(p^n \) in \(\mathcal{A}(L) \).

It is possible to find a suitable field \(L \) and a suitable point \(P \) by proceeding in the following way. Consider the restriction of scalars \(\mathcal{H} := \mathcal{R}_k^G(\mathcal{A}) \) of \(\mathcal{A} \) from \(K \) to \(k \). It is well known that \(\mathcal{H} \) is isomorphic over \(K \) to the product \(\mathcal{H}_K := \prod_{\sigma \in G} \mathcal{A}^\sigma \).
(see [Ser]), where \mathcal{A}^{σ} is now simply \mathcal{A}, but viewed over K. Consider the points $D \in \mathcal{A}$ satisfying

$$D^{\sigma} - D = Z_{\sigma}.$$

The map $D \mapsto D^{\sigma} := D + Z_{\sigma}$ is an K-isomorphism between \mathcal{A} and a subvariety \mathcal{B} of \mathcal{H} (see [DZ3], Proof of Prop. 1). Clearly \mathcal{B} depends on Z. Every L-rational point $\{D^{\sigma}\}_{\sigma \in G}$ over \mathcal{B} corresponds to a point $D \in \mathcal{A}(LK)$. The point $P := p^nD$ is an L-rational point of \mathcal{A}, locally divisible by p^m for all primes of L unramified in LK, but not globally (see [DZ3], Prop. 1 and the proof of Thm.).

In this paper, we will prove two generalizations of Theorem 2 (see Theorem 3 and Theorem 8).

Later, R. Dvornicich and U. Zannier investigated particularly the case when \mathcal{A} is an elliptic curve. They proved that for these algebraic groups we have an affirmative answer to the problem when q is a prime (see [DZ] and [Won]) and when q is a power of a prime $p \not\in S = \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}$ (see [DZ3], Thm 1). An interesting open question is if there exists a counterexample for $q = p^n$, for all $p \in S$ and $n > 1$. There are known counterexamples only to the local-global divisibility by 4 (see [DZ2] and [Pal]) and by 9 (see [Pal]).

In this paper we will prove the existence of counterexamples to the local-global divisibility by 2^n (see [DZ2] and [Pal]) and by 3^n, for every $n \geq 2$.

Acknowledgments. I would like to thank R. Dvornicich and the referee for their precious remarks about this paper.

2 On counterexamples to local-global divisibility

We will prove that for almost all primes $p \in \mathbb{N}$ the existence of a counterexample to the local-global divisibility by p^n in \mathcal{A}, assures the existence of a counterexample to the local-global divisibility by p^{n+s} in \mathcal{A}, for all positive integers s. The following theorem shows that in many cases the hypotheses of Theorem 2 are sufficient to prove that conclusion. As in the statement of Theorem 2 let $K_0 := k(A[p^n])$ and let $G := \operatorname{Gal}(k(A[p^n])/k)$.

Theorem 3. Let n, t be positive integers such that $t \leq n$. Suppose there exists a cocycle \bar{Z} of the group G with values in $A[p^{n-t}]$, representing a nonzero element in $H_{\text{loc}}^1(G, A[p^n])$. Furthermore, suppose there are no k-rational p^{t+1}-torsion points in $A(k)$. Then, for all positive integers s, there exist number fields $L^{(s)}$ linearly disjoint from K_0 over k, and points $P_s \in A(L^{(s)})$ such that P_s is locally divisible by p^{n+s} for almost all $v \in M_k$, but P_s is not divisible by p^{n+s} in $A(L^{(s)})$.

Proof. By [[DZ3], Thm. 3] we have the conclusion when $s = 0$. Now, suppose $s \geq 1$. Let $K_s := k(A[p^{n+s}])$, let G_s be the Galois group $\operatorname{Gal}(K_s/k)$ and let H_s be the Galois group $\operatorname{Gal}(K_s/K_0)$. We have $G \cong G_s/H_s$. We consider the map
\[\alpha : H^1(G, \mathcal{A}[p^n]) \to H^1(G_s, \mathcal{A}[p^{n+s}]) \]
defined by
\[
(\alpha(Z))(\sigma) := Z(\sigma H_s), \quad \text{for all } \sigma \in G_s.
\]

We will prove that \(\alpha\) is a homomorphism and that its restriction to the first cohomology group \(H^1_{\text{loc}}(G, \mathcal{A}[p^n])\) induces a homomorphism
\[\alpha : H^1_{\text{loc}}(G, \mathcal{A}[p^n]) \to H^1_{\text{loc}}(G_s, \mathcal{A}[p^{n+s}]) \]
that is injective on the elements in \(H^1_{\text{loc}}(G, \mathcal{A}[p^n])\) represented by cocycles with values in \(\mathcal{A}[p^n]\). Let \(Z \in H^1(G, \mathcal{A}[p^n])\) and let \(\sigma, \tau \in G_s\). We have
\[
(\alpha(Z))(\sigma \tau) = Z(\sigma \tau H_s) = Z(\sigma H_s \tau H_s) = Z(\sigma H_s) + \sigma(Z(\tau H_s)).
\]
Since \(Z(\tau H_s) \in \mathcal{A}[p^n]\), it is fixed by \(H_s\). Thus
\[
Z(\sigma H_s) + \sigma(Z(\tau H_s)) = (\alpha(Z))(\sigma) + \sigma((\alpha(Z))(\tau))
\]
and \(\alpha(Z)\) is a cocycle.

We will show that the image of a coboundary under \(\alpha\) is again a coboundary. Let \(Z \in H^1(G, \mathcal{A}[p^n])\) such that \(Z(\sigma) = (\sigma - 1)A\), with \(A \in \mathcal{A}[p^n]\). Therefore
\[
(\alpha(Z))(\sigma) = Z(\sigma H_s) = (\sigma H_s - H_s)A = (\sigma - 1)A.
\]
Since \(H_s\) fixes \(\mathcal{A}[p^n]\), we have \((\alpha(Z))(\sigma) = (\sigma - 1)A\), with \(A \in \mathcal{A}[p^n] \subseteq \mathcal{A}[p^{n+s}]\). Therefore \(\alpha\) is well defined. It is clearly a homomorphism.

Remark. Let \(\mathcal{A}[p^{n+s}]^{H_s}\) be the set of the \(p^{n+s}\)-torsion points of \(\mathcal{A}\) fixed by \(H_s\). When \(\mathcal{A}[p^{n+s}]^{H_s} = \mathcal{A}[p^n]\), then \(\alpha\) is the inflation and it is injective.

Now, we prove that \(\alpha(H^1_{\text{loc}}(G, \mathcal{A}[p^n])) \subseteq H^1_{\text{loc}}(G_s, \mathcal{A}[p^{n+s}])\). Let \(Z \in H^1_{\text{loc}}(G, \mathcal{A}[p^n])\). Then, for all \(\sigma \in G\), we have
\[Z(\sigma) = (\sigma - 1)A_{\sigma}, \quad \text{with } A_{\sigma} \in \mathcal{A}[p^n]. \]
Let \(\sigma \in G_s\). Therefore
\[
(\alpha(Z))(\sigma) = Z(\sigma H_s) = (\sigma H_s - H_s)A_{\sigma} = (\sigma - 1)A_{\sigma}.
\]
Since $A_\tau \in \mathcal{A}[p^n] \leq \mathcal{A}[p^{n+s}]$, we can conclude $\alpha(Z) \in H^1_{loc}(G, \mathcal{A}[p^{n+s}])$. Furthermore, we observe that if $h \in H_\delta$, then $(\alpha(Z))(h) = O$, where O is the zero point in \mathcal{A}.

Remark. We have already noticed that when $\mathcal{A}[p^{n+s}]_{H^1_\delta} = \mathcal{A}[p^n]$, then α is injective. In this case, by using [[DZ3], Thm. 3], we immediately get the conclusion.

Now, let \tilde{Z} be a cocycle with values in $\mathcal{A}[p^{n-t}]$, representing an element in $H^1_{loc}(G, \mathcal{A}[p^n])$. Suppose that $\alpha(\tilde{Z})$ is a coboundary. Therefore, for all $\sigma \in G$, we have

$$\tilde{Z}(\sigma H_\delta) = (\alpha(\tilde{Z}))(\sigma) = (\sigma - 1)\tilde{A}, \quad \text{with} \quad \tilde{A} \in \mathcal{A}[p^{n+s}].$$

We are assuming $\tilde{Z}(\sigma H_\delta) \in \mathcal{A}[p^{n-t}]$, thus

$$0 = p^{n-t}\tilde{Z}(\sigma H_\delta) = p^{n-t}((\sigma - 1)\tilde{A}) = p^{n-t}\sigma(\tilde{A}) - p^{n-t}\tilde{A} = \sigma(p^{n-t}\tilde{A}) - p^{n-t}\tilde{A}.$$

Therefore $p^{n-t}\tilde{A} \in \mathcal{A}(k)$. Since \tilde{A} is a p^{n+s}-torsion point, we have $p^{n-t}\tilde{A} \in \mathcal{A}[p^{n+t}]$. By hypothesis there are no k-rational p^{t+1}-torsion points that implies there are no k-rational p^{t+s}-torsion points, for every $s \geq 1$. So $p^{n-t}\tilde{A} \in \mathcal{A}[p^t]$ that implies $\tilde{A} \in \mathcal{A}[p^n]$. It follows that \tilde{Z} is a coboundary. Thus, the restriction of α to $H^1_{loc}(G, \mathcal{A}[p^n])$ is injective on the cocycles with values in $\mathcal{A}[p^{n-t}]$. Let \tilde{Z} be as in the statement of the theorem. Therefore $\alpha(\tilde{Z})$ is a nonzero element in $H^1_{loc}(G, \mathcal{A}[p^{n+s}])$. By applying [[DZ3], Thm. 3], we have the conclusion. □

Clearly, the best cases to apply Theorem 3 are the cases when t is very small. The most suitable possibility is when $t = 0$. In this case, the algebraic group \mathcal{A} must have no k-rational p-torsion points. In fact, for every \mathcal{A}, it happens for infinitely many primes p. When \mathcal{A} is an elliptic curve and $k = \mathbb{Q}$, the famous Mazur’s Theorem assures that there are no rational torsion points of order p, for $p \geq 11$. For completeness, we recall the statement of this theorem

Theorem 4. (Mazur) Let \mathcal{E} be an elliptic curve defined over \mathbb{Q}. Then its subgroup \mathcal{E}_{tors}, formed by the rational torsion points of \mathcal{E}, is isomorphic to one of the following groups

$$\mathbb{Z}/m\mathbb{Z}, \quad \text{for} \quad m = 1, 2, 3, ..., 10, 12$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, \quad \text{for} \quad m = 2, 4, 6, 8$$

Now, we consider the more general case when \mathcal{A} is a commutative algebraic group defined over a number field k. For every integer m, we have that the
On counterexamples to local-global divisibility

m-torsion subgroup of \mathcal{A} is isomorphic to $(\mathbb{Z}/m\mathbb{Z})^{n_{\mathcal{A}}}$, for a certain integer $n_{\mathcal{A}}$, depending only on \mathcal{A} (see for instance [DZ, § 2]). Therefore, if \mathcal{A} is a linear algebraic group, we can deduce from [[Jar], Thm. B] that the torsion part of \mathcal{A} over k is finite. If \mathcal{A} is an abelian variety, we can use the Mordell-Weil Theorem (see [Wei], VIII, Thm. 6.7) to get the same conclusion. Thus, the torsion part of a commutative algebraic group over a number field k is finite (see for instance [Sha], III, §4, Thm. C). Then, for every \mathcal{A}, there exists a prime $p_{\mathcal{A},k}$, depending on \mathcal{A} and k, such that for all primes $p \geq p_{\mathcal{A},k}$, we can choose $t = 0$ to apply Theorem 3. When $k = \mathbb{Q}$, we will denote $p_{\mathcal{A},k}$ simply by $p_{\mathcal{A}}$. For every elliptic curve E, we have already observed that $p_{E} \leq 11$.

By Theorem 1, the existence of a counterexample to the local-global divisibility by p^n in $\mathcal{A}(k)$ is a sufficient condition to the non-vanishing of the group $H^1_{\text{loc}}(G, \mathcal{A}[p^n])$. Therefore, in particular we have proved the following statement

Theorem 5. For all but finitely many primes $p \in \mathbb{N}$, the existence of a counterexample to the local-global divisibility by p^n in \mathcal{A} assures the existence of a counterexample to the local-global divisibility by p^{n+s} in \mathcal{A}, for all positive integers s. ☑

The case of elliptic curves when $p \in \{2, 3\}$

In [DZ2], [Pal] and [Pal2] appear counterexamples to the local-global divisibility by 4 and by 9 in elliptic curves defined over \mathbb{Q}. We will use Theorem 3 to get the existence of counterexamples to the local-global divisibility by 2^n and 3^n, $n \geq 2$. We have the following result

Corollary 6. For every integer $n \geq 2$, there exist counterexamples to the local-global divisibility by 2^n and 3^n in elliptic curves.

Proof. In [DZ2] and [Pal] appear elliptic curves such that $H^1_{\text{loc}}(\text{Gal}(\mathcal{E}[4]/\mathbb{Q}), \mathcal{E}[4]) \neq 0$, and in [Pal2] appear elliptic curves such that $H^1_{\text{loc}}(\text{Gal}(\mathcal{E}[9]/\mathbb{Q}), \mathcal{E}[9]) \neq 0$. Since those curves have a rational point of order respectively 2 or 3, we cannot apply Theorem 3 with $t = 0$. But in the same numerical examples, the cocycles representing non-zero elements in the first local cohomological group, have values in $\mathcal{E}[p]$, where p is respectively 2 or 3. Therefore, we may try to apply Theorem 3 with $t = 1$. We have only to prove that the cited elliptic curves have no rational p^2-torsion points. It is possible to verify that by calculating the rational points of finite order of those curves by the software PARI. The line command is `elltors(E)`. ☑

Some remarks about the first local cohomological groups

In the proof of Theorem 3 we have shown that for commutative algebraic groups $\mathcal{A}(k)$ with no k-rational torsion points of order p, there is an injective map α between $H^1_{\text{loc}}(G, \mathcal{A}[p^n])$ and $H^1_{\text{loc}}(G, \mathcal{A}[p^{n+s}])$, for every positive integer s. In
particular, there is an injective map from $H^1_{\text{loc}}(G, A[p^n])$ to $H^1_{\text{loc}}(G_1, A[p^{n+1}])$. Therefore, the first local cohomological groups $H^1_{\text{loc}}(G_s, A[p^{n+s}])$ form an increasing sequence

$$H^1_{\text{loc}}(G, A[p^n]) \leq H^1_{\text{loc}}(G_1, A[p^{n+1}]) \leq \ldots \leq H^1_{\text{loc}}(G_s, A[p^{n+s}]) \leq \ldots$$

when n varies in \mathbb{N}.

Now, we will prove that there exists also an injective map φ from $H^1_{\text{loc}}(G, A[p^n])$ to $H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1})$. Then, the first local cohomological groups $H^1_{\text{loc}}(G, A[p^n]^{H_1})$ also form an increasing sequence

$$H^1_{\text{loc}}(G, A[p^n]) \leq H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1}) \leq \ldots \leq H^1_{\text{loc}}(G, A[p^{n+s}]^{H_1}) \leq \ldots$$

when n varies in \mathbb{N}.

Proposition 7. Let k be a number field and let A be a commutative algebraic group defined over k. Let p be a prime and suppose there are no k-rational torsion points of order p in A. Then there exists an injective map $\varphi : H^1_{\text{loc}}(G, A[p^n]) \rightarrow H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1})$ such that the following diagram commutes

$$
\begin{array}{ccc}
H^1_{\text{loc}}(G, A[p^n]) & \xrightarrow{\alpha} & H^1_{\text{loc}}(G_1, A[p^{n+1}]) \\
\varphi \downarrow & & \uparrow \iota \\
H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1}) & & \\
\end{array}
$$

where ι is the restriction of the inflation map to $H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1})$.

Proof. Let α be the homomorphism defined in Theorem 3. Let

$$\varphi : H^1_{\text{loc}}(G, A[p^n]) \rightarrow H^1_{\text{loc}}(G, A[p^{n+1}]^{H_1})$$

defined by $(\varphi(Z))(\sigma) := Z(\sigma)$, for all $\sigma \in G$. Clearly φ is a well defined homomorphism. Now, we show that the preimage of a coboundary is a coboundary. Suppose $(\varphi(Z))(\sigma) = (\sigma - 1)\tilde{A}$, with $\tilde{A} \in A[p^{n+1}]^{H_1}$, for all $\sigma \in G$. Therefore, by definition, we have $Z(\sigma) = (\sigma - 1)\tilde{A}$. Since $Z \in H^1_{\text{loc}}(G, A[p^n])$, then $Z(\sigma) = (\sigma - 1)A_\sigma$, with $A_\sigma \in A[p^n]$, for all $\sigma \in G$. We get

$$(\sigma - 1)A_\sigma = (\sigma - 1)\tilde{A}, \quad \text{for all } \sigma \in G.$$
Thus \(\sigma(\tilde{A} - A_\sigma) = \tilde{A} - A_\sigma \). We have \(p^n(\sigma(\tilde{A} - A_\sigma)) = p^n(\tilde{A} - A_\sigma) \), i.e. \(\sigma(p^n \tilde{A} - p^n A_\sigma) = p^n \tilde{A} - p^n A_\sigma \). Since \(A_\sigma \) is a point of order \(p^n \), then
\[
\sigma(p^n \tilde{A}) = p^n \tilde{A}, \quad \text{for all } \sigma \in G.
\]

We are assuming \(\tilde{A} \in \mathcal{A}[p^{n+1}]^{H_1} \). If \(\tilde{A} \) has order \(p^{n+1} \), then \(p^n \tilde{A} \) has order \(p \) and we have a contradiction with the hypothesis that \(\mathcal{A} \) has no \(k \)-rational points of order \(p \). Therefore \(\tilde{A} \in \mathcal{A}[p^n] \) and \(\varphi \) is injective. Now, we consider the map
\[
\iota : H^1_{\text{loc}}(G, \mathcal{A}[p^{n+1}]^{H_1}) \to H^1_{\text{loc}}(G_1, \mathcal{A}[p^{n+1}]),
\]
defined by \((\iota(Z))(\sigma) := Z(\sigma H_1) \), that is simply the restriction of the inflation to \(H^1_{\text{loc}}(G, \mathcal{A}[p^{n+1}]^{H_1}) \). Clearly, \(\varphi \circ \iota = \alpha \). □

3 Numerical examples

As we have seen, we can use Theorem 3 to prove the existence of counterexamples to the local-global divisibility in many cases. But Theorem 3 gives no method to find numerical examples. Under the same assumptions, the next theorem shows how we can find a sequence of points \(P_s \) violating the local-global divisibility by \(p^{n+s} \), for every \(s \in \mathbb{N} \).

Theorem 8. Let \(n, t \) be positive integers such that \(t \leq n \). Suppose there exists a cocycle \(\tilde{Z} \) of the group \(G \) with values in \(\mathcal{A}[p^{n-t}] \), representing a nonzero element in \(H^1_{\text{loc}}(G, \mathcal{A}[p^n]) \). Suppose there are no \(k \)-rational \(p^{t+1} \)-torsion points in \(\mathcal{A}(k) \). Furthermore, suppose there exists a point \(D \in \mathcal{A}(K_0) \) of infinite order, such that \(\tilde{Z}(\sigma) = D^{\sigma} - D \), for all \(\sigma \in G \). Then, for every positive integer \(s \), the point \(P_s := p^{n+s} D \) is divisible by \(p^{n+s} \) in \(\mathcal{A}(k_v) \) for all valuations \(v \in M_k \) unramified in \(K_0 \), but \(P_s \) is not divisible by \(p^{n+s} \) in \(\mathcal{A}(k) \).

Proof. Let \(v \in M_k \), unramified in \(K_0 \). By [[DZ3], Thm.3 and its proof], the point \(P_0 := p^n D \) is divisible by \(p^n \) in \(\mathcal{A}(k_v) \). Therefore, there exists a point \(D_v \in \mathcal{A}(k_v) \) such that \(P_0 = p^n D_v \). Let \(P_s := p^{n+s} D \). We have
\[
P_s = p^{n+s} D = p^s P_0 = p^{n+s} D_v.
\]

Then \(P_s \) is divisible by \(p^{n+s} \) in \(\mathcal{A}(k_v) \) for all valuations \(v \in M_k \) unramified in \(K_0 \). Now, we will prove that \(P_s \) is not divisible by \(p^{n+s} \) over \(k \). Suppose there exist \(D_\sigma \in \mathcal{A}(k) \) such that \(P_s = p^{n+s} D_\sigma \). Therefore \(D = D_\sigma + T \), with \(T \in \mathcal{A}[p^{n+s}] \).

Let \(\alpha \) be the homomorphism defined in Theorem 1. We have shown that \(\alpha(\tilde{Z}) \) is a nonzero element in \(H^1_{\text{loc}}(G_\sigma, \mathcal{A}[p^{n+s}]) \). Suppose \(\sigma \in G_\sigma \). Then
\[
(\alpha(Z))(\sigma) = Z(\sigma H_\sigma) = D^{\sigma} - D.
\]
The last equality follows because $D \in A(K_0)$, then it is fixed by H_s, for every positive integer s. In fact, if $h \in H_s$, we have $S = (\alpha(\tilde{Z}))(h) = Z(H_s) = D - D,$ as required. Thus, for all $\sigma \in G_s$, we have

$$(\alpha(Z))(\sigma) = D^\sigma - D = (D_s + T)^\sigma - (D_s + T) = D_s^\sigma - D_s + T^\sigma - T = T^\sigma - T.$$

Since $\alpha(\tilde{Z})$ is a nonzero element in $H^1_{\text{loc}}(G_s, A[p^{n+s}])$, there is a contradiction. We can conclude that P_s is not divisible by p^{n+s} over k. □

Numerical examples for 2^n

The numerical examples that appear in [DZ2] and [Pal], satisfy every assumption of Theorem 8, except the infinite order of the point D, that we have to prove. It suffices to prove that the point $P = 4D$ has infinite order. Since $P \in \mathcal{E}(Q)$ and its coordinates are not integers, by the Nagell-Lutz theorem it has infinite order. Therefore, for every integer $n \geq 2$, the point $2^{n-2}P = 2^nD$, gives a numerical counterexample to the local-global divisibility by 2^n over Q.

For completeness, we recall the cited numerical examples that appear respectively in [DZ2] and [Pal]:

\[E : \quad y^2 = x(x + 15)(x - 5)(x + 10) \]

\[
D = \left(7 + 4\sqrt{-1}, -4 + 22\sqrt{-1}\right), \quad P = 4D = \left(\frac{1561}{12^2}, -\frac{19459}{13^3}\right)
\]

and

\[E : \quad y^2 = x(x + 93)(x - 31)(x - 62) = x^3 - 6727x + 178746 \]

\[
D = \left(-\frac{403}{2} - \frac{31}{2}\sqrt{-31}, 1922 - 434\sqrt{-31}\right), \quad P = 4D = \left(\frac{5006244481}{16646400}, -\frac{341996266999871}{67917312000}\right)
\]

By using the software \textit{PARI} it is possible to calculate $2^{n-2}P = 2^nD$, for every $n \geq 2$. The line command is \textit{ellpow}(E, P, 2^{n-2}).
References

[Pal2] Paladino L., *Elliptic curves with $\mathbb{Q}(E[3]) = \mathbb{Q}(\zeta_3)$ and counterexamples to local-global divisibility by 9*, J. Théor. Nombres Bordeaux, **22** no. 1 (2010), 139-60.

