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Sheet of exercises n.10

For all the sheet, let A be a complex lattice.

10.1. Forw € A, w # 0, let
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Prove that the infinite product
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converges absolutely and uniformly on every bounded subset of the
plane and then defines an entire function.

10.2. Let oa(z) = 0(z) = z[] e\ 0y 9w(2) be the Weierstrass o-function
associated to the lattice A. Prove that
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10.3. Define the Weierstrass (-function associated to the lattice A by
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Prove that the functions oa(2z) and (4(z) have the following homo-
geneity properties with respect to z and A. For z € C and A € C*,

oam(A2) = Aoa(z) and  (Ga(Az) = AT (2).
10.4. Prove that the functions o(z) and {(z) are odd.

10.5. Prove that the functions p,(z) and @/, (z) have the following homo-
geneity properties with respect to z and A. For z € C and A € C*,

pran(Az) = A7pa(2)  and g (Az) = Apa(2).

10.6. Let A = Zw; @ Zw, and let ny(w) be the function defined by (a(z +
w) = (a(2) + Na(w), for all z € C and w € A. Denote 1 := na(wy)
and 7y := na(wq). Prove the Legendre relation
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