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Sheet of exercises n.10

For all the sheet, let Λ be a complex lattice.

10.1. For ω ∈ Λ, ω ̸= 0, let
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Prove that the infinite product

∏
ω∈Λ\{0}

gω(z)

converges absolutely and uniformly on every bounded subset of the

plane and then defines an entire function.

10.2. Let σΛ(z) = σ(z) = z
∏

ω∈Λ\{0} gω(z) be the Weierstrass σ-function

associated to the lattice Λ. Prove that
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10.3. Define the Weierstrass ζ-function associated to the lattice Λ by

ζ(z) = ζΛ(z) :=
σ′(z)

σ(z)
.



Prove that the functions σΛ(z) and ζΛ(z) have the following homo-

geneity properties with respect to z and Λ. For z ∈ C and λ ∈ C∗,

σλΛ(λz) = λσλ(z) and ζλΛ(λz) = λ−1ζλ(z).

10.4. Prove that the functions σ(z) and ζ(z) are odd.

10.5. Prove that the functions ℘Λ(z) and ℘′
Λ(z) have the following homo-

geneity properties with respect to z and Λ. For z ∈ C and λ ∈ C∗,

℘λΛ(λz) = λ−2℘Λ(z) and ℘′
λΛ(λz) = λ−3℘Λ(z).

10.6. Let Λ = Zω1 ⊕ Zω2 and let ηΛ(ω) be the function defined by ζΛ(z +

ω) = ζΛ(z) + ηΛ(ω), for all z ∈ C and ω ∈ Λ. Denote η1 := ηΛ(ω1)

and η2 := ηΛ(ω2). Prove the Legendre relation

−η2ω1 + η1ω2 = 2πi.


