Univerität Basel

Herbsemester 2012

Master course A. Surroca - L. Paladino

Some topics on modular functions, elliptic functions and transcendence theory

Sheet of exercises n.10

For all the sheet, let Λ be a complex lattice.

10.1. For $\omega \in \Lambda$, $\omega \neq 0$, let

$$g_{\omega}(z) = \left(1 - \frac{z}{\omega}\right) e^{\frac{z}{\omega} + \frac{1}{2}(\frac{z}{\omega})^2}$$

Prove that the infinite product

$$\prod_{\omega \in \Lambda \setminus \{0\}} g_{\omega}(z)$$

converges absolutely and uniformly on every bounded subset of the plane and then defines an entire function.

10.2. Let $\sigma_{\Lambda}(z) = \sigma(z) = z \prod_{\omega \in \Lambda \setminus \{0\}} g_{\omega}(z)$ be the Weierstrass σ -function associated to the lattice Λ . Prove that

$$\frac{\sigma'(z)}{\sigma(z)} - \frac{1}{z} = \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{z - \omega} + \frac{1}{\omega} + \frac{z}{\omega^2} \right).$$

10.3. Define the Weierstrass ζ -function associated to the lattice Λ by

$$\zeta(z) = \zeta_{\Lambda}(z) := \frac{\sigma'(z)}{\sigma(z)}.$$

Prove that the functions $\sigma_{\Lambda}(z)$ and $\zeta_{\Lambda}(z)$ have the following homogeneity properties with respect to z and Λ . For $z \in \mathbb{C}$ and $\lambda \in \mathbb{C}^*$,

$$\sigma_{\lambda\Lambda}(\lambda z) = \lambda \sigma_{\lambda}(z)$$
 and $\zeta_{\lambda\Lambda}(\lambda z) = \lambda^{-1} \zeta_{\lambda}(z).$

- **10.4.** Prove that the functions $\sigma(z)$ and $\zeta(z)$ are odd.
- **10.5.** Prove that the functions $\wp_{\Lambda}(z)$ and $\wp'_{\Lambda}(z)$ have the following homogeneity properties with respect to z and Λ . For $z \in \mathbb{C}$ and $\lambda \in \mathbb{C}^*$,

$$\wp_{\lambda\Lambda}(\lambda z) = \lambda^{-2} \wp_{\Lambda}(z) \quad \text{and} \quad \wp'_{\lambda\Lambda}(\lambda z) = \lambda^{-3} \wp_{\Lambda}(z).$$

10.6. Let $\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ and let $\eta_{\Lambda}(\omega)$ be the function defined by $\zeta_{\Lambda}(z + \omega) = \zeta_{\Lambda}(z) + \eta_{\Lambda}(\omega)$, for all $z \in \mathbb{C}$ and $\omega \in \Lambda$. Denote $\eta_1 := \eta_{\Lambda}(\omega_1)$ and $\eta_2 := \eta_{\Lambda}(\omega_2)$. Prove the Legendre relation

$$-\eta_2\omega_1 + \eta_1\omega_2 = 2\pi i.$$