Univerität Basel

Herbsemester 2012
Master course A. Surroca - L. Paladino

Some topics on modular functions, elliptic functions and transcendence theory

Sheet of exercises n. 12

12.1. We consider the double series

$$
\begin{aligned}
G_{2}(z) & =\sum_{n} \sum_{m}{ }^{\prime} \frac{1}{(m+n z)^{2}} ; \\
G(z) & =\sum_{m} \sum_{n}^{\prime} \frac{1}{(m+n z)^{2}} ; \\
H_{2}(z) & =\sum_{n} \sum_{m}^{\prime} \frac{1}{(m-1+n z)(m+n z)} ; \\
H(z) & =\sum_{m} \sum_{n}^{\prime} \frac{1}{(m-1+n z)(m+n z)}
\end{aligned}
$$

where the symbol \sum^{\prime} indicates that (m, n) runs through all $m \in \mathbb{Z}, n \in$ \mathbb{Z}, with $(m, n) \neq(0,0)$ for G_{2} and G and $(m, n) \notin\{(0,0),(1,0)\}$, for H_{2} and H. (Notice the order of the summations!)
a) Prove that both H_{2} and H converge and that $H_{2}=2, H=2-$ ($2 \pi i) / z$.
Hint: use the formulas

$$
\begin{aligned}
& \frac{1}{(m-1+n z)(m+n z)}=\frac{1}{m-1+n z}-\frac{1}{m+n z} \\
& \pi \cot \pi \tau=\frac{1}{\tau}+\sum_{d=1}^{\infty}\left(\frac{1}{\tau-d}+\frac{1}{\tau+d}\right) \\
& \pi \cot \pi \tau=\pi i-2 \pi i \sum_{m=0}^{\infty} e^{2 m \tau \pi i}, \quad \text { with } m \in \mathbb{N} .
\end{aligned}
$$

b) Prove that $G_{2}-H_{2}=G-H$.

Hint: use the formula

$$
\frac{1}{(m-1+n z)(m+n z)}-\frac{1}{(m+n z)^{2}}=\frac{1}{(m+n z)^{2}(m-1+n z)}
$$

c) Prove that $G_{1}(-1 / z)=z^{2} G(z)$.
d) Prove that

$$
G_{1}(z)=\frac{\pi^{2}}{3}-8 \pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

where, as usual, $q=e^{2 \pi i z}$.
Hint: use a similar proof to the one needed to show the Fourier expansion of the Eisenstein series:

$$
G_{k}(z)=2 \zeta(z)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}, \quad \text { for } k \geq 4
$$

e) Define $F(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}$. Prove that

$$
\frac{F^{\prime}}{F}(z)=2 \pi i\left(1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}\right)
$$

