Univerität Basel

Herbsemester 2012
Master course A. Surroca - L. Paladino

Some topics on modular functions, elliptic functions and transcendence theory

Sheet of exercises n. 2

2.1. Show that

$$
\operatorname{Im}(\gamma \cdot \tau)=\frac{\operatorname{Im}(\tau)}{|c \tau+d|^{2}}, \quad \text { for all } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

2.2. Show that

$$
\left(\gamma \gamma^{\prime}\right) \cdot \tau=\gamma \cdot\left(\gamma^{\prime} \cdot \tau\right), \quad \text { for all } \gamma, \gamma^{\prime} \in \mathrm{SL}_{2}(\mathbb{Z}) \text { and } \tau \in \mathcal{H} .
$$

2.3. Let

$$
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and let $\Gamma^{\prime}=<S, T>$ be the subgroup of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ spanned by S and T. For every

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

a) calculate $A^{\prime}=A T^{n}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$, for all $n \in \mathbb{Z}$;
b) show that there exists $n \in \mathbb{Z}$ such that $\left|d^{\prime}\right| \leq|c| / 2$;
c) calculate $A^{\prime \prime}=A^{\prime} S$;
d) show that there exists a matrix $M \in \Gamma^{\prime}$ such that the bottom row of $A M$ is of the form $(0, *)$.

Deduce that $A M \in \Gamma$ and then that $\Gamma=\Gamma^{\prime}$.

