Univerität Basel

Herbsemester 2012

Master course A. Surroca - L. Paladino

Some topics on modular functions, elliptic functions and transcendence theory

Sheet of exercises n.3

3.1. Let

$$\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \mathrm{SL}_2(\mathbb{Z}).$$

Show that

$$\frac{d\gamma(\tau)}{d\tau} = \frac{1}{(c\tau + d)^2}, \quad \text{for } \tau \in \mathcal{H}.$$

- **3.2.** Show that the set $\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))$ of the modular forms of weight k forms a vector space over \mathbb{C} .
- **3.3.** Let f be a modular form of weight k and let g be a modular form of weight l. Show that the product fg is a modular form of weight k+l.
- **3.4.** Show that $\mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$ is a vector subspace of $\mathcal{M}_k(\mathrm{SL}_2(\mathbb{Z}))$ and show that $\mathcal{S}(\mathrm{SL}_2(\mathbb{Z}))$ is an ideal in $\mathcal{M}(\mathrm{SL}_2(\mathbb{Z}))$.
- **3.5.** Let $k \geq 3$ be an integer and let $L' = \mathbb{Z}^2 \setminus \{(0,0)\}$. Show that the series

$$\sum_{(c,d)\in L'} (\sup\{|c|,|d|\})^{-k}$$

converges, by considering the partial sums over expanding squares.

3.6. Let $k \ge 3$ be an integer and let $L' = \mathbb{Z}^2 \setminus \{(0,0)\}$. Fix positive numbers A and B and let

$$\Omega = \{ \tau \in \mathcal{H} : |\operatorname{Re}(\tau)| \le A, \operatorname{Re}(\tau) \ge B \}.$$

Prove that there exists a constant C > 0 such that

$$|\tau + \delta| > C \sup\{1, |\delta|\}, \text{ for all } \tau \in \Omega \text{ and } \delta \in \mathbb{R}.$$

3.7. By using exercises **3.5** and **3.6**, prove that the series defining $G_k(\tau)$ converges absolutely and uniformly, for $\tau \in \Omega$. Conclude that $G_k(\tau)$ is holomorphic on \mathcal{H} .