Univerität Basel

Herbsemester 2012

Master course A. Surroca - L. Paladino

Some topics on modular functions, elliptic functions and transcendence theory

Sheet of exercises n.4

- **4.1.** Let $\gamma \in SL_2(\mathbb{Z})$ and let $L' = \mathbb{Z}^2 \setminus \{(0,0)\}$. Show that right multiplication by γ defines a bijection from L' to L'.
- **4.2.** Let $k \geq 3$. Use Exercise **3.7** to show that G_k is bounded on

$$\Omega = \{ \tau \in \mathcal{H} : |\operatorname{Re}(\tau)| \le A, \operatorname{Re}(\tau) \ge B \},\$$

where A and B are fixed positive numbers.

Deduce from Exercise 4.1 that G_k is weakly modular and in particular that $G_k(\tau + 1) = G_k(\tau)$. Show that therefore G_k is bounded as $\operatorname{Im}(\tau) \to \infty$.

- **4.3.** Let $\tau \in \mathcal{H}$. Prove that
 - (a) $\pi \cot \pi \tau = \frac{1}{\tau} + \sum_{d=1}^{\infty} \left(\frac{1}{\tau d} + \frac{1}{\tau + d}\right);$ (b) $\pi \cot \pi \tau = \pi i - 2\pi i \sum_{m=0}^{\infty} e^{2m\tau \pi i}, \quad \text{with } m \in \mathbb{N}.$
- **4.4.** As usual let ζ denote the Riemann zeta function and B_k denote the Bernoulli numbers, with $k \in \mathbb{N}$. Use the expressions of Exercise **4.3** (*a*) and Exercise **4.3** (*b*) for $\pi \cot \pi \tau$ to show
 - (a) $\pi \tau \cot \pi \tau = 1 2 \sum_{k=1}^{\infty} \zeta(2k) \tau^{2k};$
 - (b) $\pi \tau \cot \pi \tau = \tau \pi i + \sum_{k=0}^{\infty} B_k \frac{(2\pi\tau i)^k}{k!}.$

Use the two formulas to prove that for $k\geq 2$ even, the Riemann zeta function satisfies

$$2\zeta(k) = -\frac{(2\pi i)^k}{k!}B_k,$$

and in particular $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, $\zeta(6) = \pi^6/945$. Deduce that the normalized Eisenstein series of weight k

$$E_k(\tau) = \frac{G_k(\tau)}{2\zeta(k)} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n,$$

has rational coefficients with a common denominator.