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Abstract. This document presents a strategy and some useful results for using
our random generator of formulas QSAT in non-clausal form, and disjunctive
logic programs.
Form more details about the random models see [3].
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1 Introduction

The ability to generate large numbers of CNF formulas and QBFs of a desired hardness
is important [8]. Inherently hard instances for SAT and QBF solvers are essential for
designing and testing new search techniques [1], and are used in solver competitions [9,
11, 5]. Large collections of easy instances support the so-called fuzz testing and can
help reveal issues in solver implementation, as well as defects in solver design [4]. The
ability to generate large numbers of easy and hard logic programs is equally impor-
tant to the field of answer-set programming solvers [7, 2]. Random formulas have been
used successfully to assess and test CDCL solvers on resource management, efficacy of
heuristics, see e.g., [6, 10].

The generator can be used for assessing solver performance or testing an implemen-
tation, and these activities usually have different requirements for instance properties.
In presence of so many generation parameters, it is not immediate to choose the right
settings for the purpose. Here we provide simple guidelines for identifying the settings
for generating formulas of the desired hardness. The key underlying property is that all
our models show some form of the easy-hard-easy pattern that can be exploited to find
“areas” of formulas of varying difficulty.

2 Parameter space exploration strategy

For the Chen-Interian model, one strategy is to fix a and e (to define the structure of a
clause). Next for each pair of values of A = |X | and E = |Y |, one runs the tool with dif-
ferent numbers m of clauses/rules. The formulas (programs) generated in this way show
the phase transition and the corresponding easy-hard-easy pattern. Running a solver on
those formulas allows one to observe these properties and select the value of m that
yields formulas/programs of the desired difficulty.
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3 Empirical results

Experiments were run on a Debian Linux with 2.30GHz Intel Xeon E5-4610 v2 CPUs
and 128GB of RAM. Each single execution was constrained to one single core by using
the taskset command. Time measurements were performed by using the runlim tool.
In all the experiments the results are averaged over 64 samples of the same size. We
report for space reasons and w.l.o.g. the time measurements obtained by running the
well-known ASP solver clasp. Indeed, our generator allows to print the same instance
of a model in several formats, and the results have been demonstrated to be reasonably
solver independent [3].

The results are summarized in Figure 1-4 formulas with clauses of four variables
(one universal and three existentials) both in terms of frequency of satisfiability (plots
on the left) and in terms of execution time (plots on the right).

Concerning the Chen Interian Model we observe in Figure 1 the behavior of formu-
las with one component. The plots allow to identify the phase transition zone, and in
correspondence one can find the hardest instances. As soon as the number of existential
variables (E) grows (observe plots from the top to the bottom of the page) an area of
maximum hardness (having the shape of a galaxy) arises in correspondence of some
critical values for the ratio of existential over universal variables.

The results obtained by increasing the number of components to two are reported
in Figure 2. As expected, the phase transitions move slightly on the right (as discussed
in [?]) and hardness significantly increases. Indeed the area of maximum hardness is
already visible with E = 30, and the peak of hardness is up to about two order of mag-
nitude higher w.r.t. instances with t = 1 for E = 60.

The results of an analogous experiment for the controlled model are reported in
Figure 4, which shows the behavior of formulas with one component. Here the number
of clauses is precisely two times the number of universal variables, thus we have only
one plot. The behavior of formulas from this model is more predictable, indeed hardness
just grows with the number of variables along the phase transition ridge. As reported
in [?], the hardest instances of controlled model are harder than those obtained with
Chen Interian with the same number of existential variables, and this is reflected in
out experiment, e.g., when E = 60 about 40 seconds on average are needed for solving
controlled model instances whereas 10 seconds are enough for Chen Interian ones. Once
one increases the number of components controlled model instances become extremely
hard, making unfeasible (with current hardware/solving technology) the exploration of
the same space of parameters. Nonetheless, in Figure 5 we summarize the behavior of
that model just for formulas with E = 12 and varying number of components up to 11.
Note that we already get a hardness peak at 60 seconds by generating formulas with
only 11 components.

It is worth observing that the plots in Figures 1-5 can be used as a reference for se-
lecting generation parameters. For example, if one wants very easy satisfiable instances
from Chen Interian, we know from Figures 1 that 1-Q(1,3,40,20,350) are such. Al-
ternatively, medium-hard instances (that are suited for assessing industrial solvers) be-
long to the family 2-Q(1,3,60,40,340) (see Figure 2). In case super hard formulas are
needed, one can select controlled model and increase the number of components at will.
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filename nonuniform matrix using 1:2:3
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(a) Frequency of Satisfiability
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(b) Execution Time (s)

Fig. 1: Phase transition and Hardness in Chen-Interian model formulas 1-Q(1,3,A,E,m).
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Fig. 2: Phase transition and Hardness in Chen-Interian model formulas 2-Q(1,3,A,E,m).
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Fig. 3: The position of the phase transition in controlled model formulas Qctd(4,A,E).
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Fig. 4: Phase transition and Hardness in controlled model formulas Qctd(4,A,E).
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Fig. 5: Effect of varying the number of components.


