
Visual Querying and Application Programming
Interface for an ASP-based Ontology Language⋆

Lorenzo Gallucci2,3 and Francesco Ricca1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
ricca@mat.unical.it

2 DEIS, University of Calabria, 87036 Rende (CS), Italygallucci@deis.unical.it
3 Exeura S.r.l., c/o University of Calabria, 87036 Rende (CS), Italy gallucci@exeura.it

Abstract. Answer Set Programming (ASP) is a logic-based programming paradi-
gm which has been recently exploited for solving complex real-world applica-
tions in an effective way. However, ASP systems currently miss important tools
for the development of industry-level applications, such as easy-to-use graphic
environments and application programming interfaces.
In this paper, we present two new tools, tailored for OntoDLP(an ASP-based
ontology representation and reasoning language), which represent a step towards
overcoming the above-mentioned limitations: a novel visual querying interface,
which allows non-expert users to compose and run queries; and a Java API, en-
abling the development of software systems embedding ASP programs.

1 Introduction

Motivation. Answer Set Programming (ASP) is a novel programming paradigm which
has been proposed in the area of non-monotonic reasoning andlogic programming. The
idea of ASP is to represent a given computational problem by alogic program whose
answer sets correspond to solutions, and then use a solver tofind such a solution [1]. The
language of ASP is able to express all problems belonging to the complexity classesΣP

2

andΠP
2

(under brave and cautious reasoning, respectively) [2]. Thus, ASP is strictly
more powerful than SAT-based programming (unless some widely believed complexity
assumptions do not hold), and, at the beginning, it has been profitably exploited to
solve problems of high complexity from the AI field (e.g. diagnosis and planning under
incomplete knowledge4).

Furthermore, the availability of some efficient ASP systems, like DLV [3], GnT [4],
Clasp [5], NoMore++[6] and Cmodels [7], made ASP a powerful tool for developing
advanced knowledge-based applications; and the viabilityof the approach has been
confirmed by the recent applications of ASP systems for solving problems in the areas
of Knowledge Management (KM), Security, and Information Integration [8].

⋆ Supported by M.I.U.R. within the PRIN project “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and within Internationalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni etecniche di ottimizzazione.”

4 Note that, both the above-mentioned problems are complete for the complexity classΣP

2 or
ΠP

2



Visual Querying and API for ASP-based Ontology Languages 57

However, ASP systems are far away from comfortably enablingthe development
of industry-level applications, mainly because they miss important tools for supporting
users and programmers. In particular, friendly user interfaces are missing, and there is
a lack of advanced Application Programming Interfaces (API) for implementing appli-
cations on top of ASP systems.

In this paper, we try to overcome the above-mentioned limitations by developing
and implementing advanced interfaces for both users and programmers of an ASP-
based system called OntoDLV [9]. OntoDLV is conceived for ontology representation
and reasoning, and it is already employed in a couple of industrial applications [10, 11].

OntoDLP. An ontology is the specification of a common vocabulary by defining the
meaning of terms and their relations, usually modeled by using primitives such as con-
cepts organized in taxonomy, relations, and axioms. Ontology representation languages
have become a central tool in many research areas and in particular in the field of
the Semantic Web. However, in general, the most common ontology languages miss5

“rule-based” inference mechanisms, an important feature considered indispensable for
enabling agents to reason about the knowledge represented in an ontology [14].

OntoDLP [9] is a novel ontology representation language which naturally com-
bines the reasoning power of ASP with the benefits of a set of ontology-representation
constructs. In particular, the language includes, besidesthe concept ofrelation, the
object-oriented notions ofclass, object (class instance),object-identity, complex ob-
ject, (multiple) inheritance, and the concept of modular programming by means of
reasoning modules.

A classcan be thought of as a collection of individuals that belong together because
they share some features. An individual, orobject, is any identifiable entity in the uni-
verse of discourse. Objects, also called class instances, are unambiguously identified by
their object-identifier (oid) and belong to a class. A class is defined by a name (which
is unique) and an ordered list of attributes, identifying the properties of its instances.
Each attribute has a name and a type, which is, in truth, a class. This allows for the
specification ofcomplex objects(objects made of other objects).

Classes can be organized in a specialization hierarchy (or data-type taxonomy) us-
ing the built-inis-a relation (multiple inheritance).

Relationships among objects are represented by means ofrelations, which, like
classes, are defined by a (unique) name and an ordered list of attributes (with name
and type). As in DLP, logic programs are sets of logic rules and constraints. However,
OntoDLP extends the definition of logic atom by introducing class and relation predi-
cates, and complex terms (allowing for a direct access to object properties). In this way,
the OntoDLP rules merge, in a simple and natural way, the declarative style of logic
programming with the navigational style of the object-oriented systems. In addition,
OntoDLP logic programs are organized inreasoning modules, taking advantage of the
benefits of modular programming.

The OntoDLP language has been implemented in the OntoDLV system[9], which
is a cross-platform visual development environment for knowledge modeling and ad-

5 Even if there are some proposal combining Description Logic-based languages with rules (e.g.
see [12, 13])



58 Lorenzo Gallucci and Francesco Ricca

vanced knowledge-based reasoning. The OntoDLV system seamlessly integrates the
DLV system [3] exploiting the power of a stable and efficient DLP solver.

Importantly, the strongly-typed nature of OntoDLP allowedfor the implementation
of a number of type-checking routines that verify the correctness of a specification on
the fly, resulting in an help for the programmer.

Contribution. In this paper, we present two novel and important features ofthe On-
toDLV system which represent a first step towards overcomingthe above-mentioned
limitations of ASP systems:

– anadvanced visual-quering interface, which allows the user to formulate and run
queries on OntoDLV by using an intuitive graphic interface `a la QBE;

– and, anApplication Programming Interfacewhich enables the implementation of
Java applications embedding OntoDLP ontologies and reasoning modules.

The remainder of this paper is structured as follows. In the next section, we present
an informal overview of the OntoDLP language; followed, in Section 3 by a descrip-
tion of the OntoDLV system. After that, in Section 4 and 5, we present the visual-query
interface and the OntoDLV API , respectively. Finally, Section 6 we draw our conclu-
sions.

2 The OntoDLP Language

In this section we informally describe the OntoDLP language, a knowledge representa-
tion and reasoning language which allows one to define and to reason on ontologies.

An ontology in OntoDLP can be specified by means ofclassesandrelations. Classes
are organized in aninheritance(ISA) hierarchy, while the properties to be respected are
expressed through suitableaxioms, whose satisfaction guarantees the consistency of
the ontology.Reasoning modulesallow us to express rich forms of reasoning on the
ontologies.

For a better understanding, we will describe each constructin a separate section and
we will exploit an example (theliving being ontology), which will be built throughout
the whole section, thus illustrating the features of the language.

OntoDLP is actually an extension of the ASP language, which has been enriched
by ontology representation concepts, and hereafter we assume the reader to be familiar
with ASP syntax and semantics (for further details refer to [3]).

2.1 Classes

A classcan be thought of as a collection of individuals that belong together because
they share some properties.

Classes can be defined in OntoDLP by using the the keywordclassfollowed by its
name, and class attributes can be specified by means of pairs(attribute-name : attribute-
type), whereattribute-nameis the name of the property andattribute-typeis the class
the attribute belongs to.

Suppose we want to model theliving beingdomain, and we have identified four
classes of individuals:persons, animals, food, andplaces.



Visual Querying and API for ASP-based Ontology Languages 59

For instance, we can define the classpersonhaving the attributes name, age, father,
mother, and birthplace, as follows:

class person(name:string, age:integer, father:person, mother:person, birthplace:place).

Note that, this definition is “recursive” (both father and mother are of typeperson).
Moreover, the possibility of specifying user-defined classes as attribute types allows
for the definition of complex objects, i.e. objects made of other objects6. Moreover,
many properties can be represented by using alphanumeric strings and numbers by
exploiting the built-in classesstring and integer (respectively representing the class
of all alphanumeric strings and the class of non-negative numbers).

In the same way, we could specify the other above mentioned classes in our domain
as follows:

class place(name:string).

class food(name:string, origin:place).

class animal(name:string, age:integer, speed:integer).

Each class definition contains a set of attributes, which is calledclass scheme. The
class scheme represents, somehow, the “structure” of (the data we have about) the indi-
viduals belonging to a class.

Next section illustrates how we represent individuals in OntoDLP.

2.2 Objects

Domains contain individuals which are calledobjectsor instances.
Each individual in OntoDLP belongs to a class and is univocally identified by using

a constant calledobject identifier(oid) orsurrogate.
Objects are declared by asserting a special kind of logic facts (asserting that a given

instance belongs to a class). For example, with the following two facts

rome : place(name:”Rome”).
john:person(name:”John”, age:34, father:jack, mother:ann, birthplace:rome).

we declare that “Rome” and “John” are instances of the classplaceandperson, re-
spectively. Note that, when we declare an instance, we immediately give an oid to the
instance (e.g.romeidentifies a place named “Rome”), which may be used to fill an at-
tribute of another object. In the example above, the attribute birthplace is filled with the
oid romemodeling the fact that “John” was born in Rome; in the same way, “ jack” and
“ann” are suitable oids respectively filling the attributesfather, mother(both of type
person).

The language semantics (and our implementation) guarantees the referential in-
tegrity, bothjack, annandromehave to exist whenjohn is declared.

6 Attributes model the properties thatmustbe present in all class instances; properties thatmight
be present or not should be modeled by using relations. In other words, an attribute(n : k) of
a classc is a total function fromc to k; while partial functions fromc to k can be represented
by a binary relation on(c, k).



60 Lorenzo Gallucci and Francesco Ricca

2.3 Inheritance

OntoDLP allows one to model taxonomies of objects by using the well-known mecha-
nism of inheritance.

Inheritance is supported by OntoDLP by using the special binary relationisa. For
instance, one can exploit inheritance to represent some special categories of persons,
like studentsandemployees, having some extra attribute, like a school, a company etc.
This can be done in OntoDLP as follows:

class studentisa {person}(
code:string,
school:string,
tutor:person).

class employeeisa {person}(
salary:integer,
skill:string,
company:string,
tutor:employee).

In this case, we have thatpersonis a more generic concept orsuperclassand both
studentandemployeeare a specialization (orsubclass) of person. Moreover, an instance
of studentwill have both the attributes: code, school, and tutor, which are defined lo-
cally, and the attributes: name, age, father, mother, and birthplace, which are defined
in person. We say that the latter are “inherited” from the superclassperson. An analo-
gous consideration can be made for the attributes ofemployeewhich will be name, age,
father, mother, birthplace, salary, skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper in-
stance of bothemployeeandstudentwill also be automatically considered an instance
of person(the opposite does not hold!).

For example, consider the following instance ofstudent:

al:student(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome,
code:”100”, school:”Cambridge”, tutor:hanna).

It is automatically considered also instance of person as follows:

al:person(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome).

Note that it is not necessary to assert the above instance.
In OntoDLP there is no limitation on the number of superclasses (i.e. multiple in-

heritance is allowed). We complete the description of inheritance recalling that there is
also another built-in class in OntoDLP, which is the superclass of all the other classes
and is calledobject (or ⊤). For a formal description of inheritance we refer the reader
to [9].

2.4 Relations

Relationships can be modeled in OntoDLP by means ofRelations.
Relationsare declared like classes: the keywordrelation (instead ofclass) precedes

a list of attributes.
As an example, the relationfriend, which models the friendship between two per-

sons, can be declared as follows:



Visual Querying and API for ASP-based Ontology Languages 61

relation friend(pers1:person, pers2:person).

Like classes, the set of attributes of a relation is calledscheme, while the cardinality
of the scheme is called arity. The scheme of a relation definesthe structure of its tuples
(this term is borrowed from database terminology).

In particular, to assert that two persons, say “john” and “bill” are friends (of each
other), we write the following logic facts (that we call tuples):

friend(pers1:john, pers2:bill). friend(pers1:bill, pers2:john).

Thus, tuples of a relation are specified similarly to class instances, that is, by assert-
ing a set of facts (but tuples are not equipped with an oid).

2.5 Axioms and Consistency

An axiomis a consistency-control construct modeling sentences that are always true (at
least, if everything we specified is correct). They can be used for several purposes, such
as constraining the information contained in the ontology and verifying its correctness.

As an example suppose we declared the relation colleague, which associates persons
working together in a company, as follows:

relation colleague (emp1:employee, emp2:employee).

It is clear that the information about the company of an employee (recall that there is
an attribute company in the scheme of the class employee) must be consistent with the
information contained in the tuples of the relation colleague. To enforce this property
we assert the following axioms:

(1) :–colleague(emp1 : X1, emp2 : X2), not colleague(emp1 : X2, emp2 : X1)
(2) :–colleague(emp1 : X1, emp2 : X2),

X1 : employee(company : C), not X2 : employee(company : C).

The above axioms states that,(1) the relation colleague is symmetric, and(2) if two
persons are colleagues and the first one works for a company, then also the second one
works for the same company.

If an axiom is violated, then we say that the ontology is inconsistent (that is, it con-
tains information which is, somehow, contradictory or not compliant with the intended
perception of the domain).

2.6 Reasoning modules

Given an ontology, it can be very useful to reason about the data it describes.
Reasoning modulesare the language components endowing OntoDLP with power-

ful reasoning capabilities. Basically, areasoning moduleis a disjunctive logic program
conceived to reason about the data described in an ontology.Reasoning modules in On-
toDLP are identified by a name and are defined by a set of (possibly disjunctive) logic
rules and integrity constraints.



62 Lorenzo Gallucci and Francesco Ricca

Syntactically, the name of the module is preceded by the keyword modulewhile
the logic rules are enclosed in curly brackets (this allows one to collect all the rules
constituting the encoding of a problem in a unique definitionidentified by a name).

As an example consider the following module, which allows tosingle out in the
derived predicateyoungAndShythe names of the persons who are less than 18 years
old, and who have less than ten friends:

module(shyFriends){
youngAndShy(N) :–P : person(name : N, age : A), A < 18,

#count{F : friend(pers1 : P, pers2 : F )} < 10.}

Note that, this information is implicitly present in the ontology, and the reasoning
module just allows to make it explicit.

2.7 Querying

An important feature of the language is the possibility of asking queries in order to
extract knowledge contained in the ontology, but not directly expressed. As in DLP a
query can be expressed by a conjunction of atoms, which, in OntoDLP, can also contain
complex terms.

As an example, we can ask for the list of persons having a father who is born in
Rome as follows:

X:person(father:person(birthplace:place(name: “Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate only the
relevant ones for querying. In general, we can use in a query both the predicates defined
in the ontology and the derived predicates in the reasoning modules.

For instance, consider the reasoning moduleshyFriendsdefined in the previous sec-
tion, the following query asks whether there is a person whose name is “Jack” and is
“young and shy”:

youngAndShy(X), X:person(name:”Jack”))?

3 The OntoDLV System

OntoDLV is a complete framework that allows one to specify, navigate, query and per-
form reasoning on OntoDLP ontologies. We refrain from describing the implementation
details of OntoDLV in this paper. Rather, we illustrate the overall OntoDLV architec-
ture, and present the main features of the system; subsequently, in the following sec-
tions, we will describe the main components of the graphicaluser interface of OntoDLV.

The system architecture of OntoDLV, depicted in Figure 1, can be divided in three
abstraction levels. The lowest level, namedOntoDLV corecontains the components im-
plementing the main functionalities of the system, namely:Persistency Manager, Type
Checker, andRewriter. The Persistency Manager provides all the methods needed to
store and manipulate the ontology components. In particular, it exploits theParser



Visual Querying and API for ASP-based Ontology Languages 63

submodule to analyze and load the content of several OntoDLPtext files, and aDB
Managersubmodule to implement data persistency on relational databases through Hi-
bernate/JDBC.

The admissibility of an ontology is ensured by the Type Checker module which
implements a number of type checking routines. TheRewritermodule translates On-
toDLP ontologies, axioms, reasoning modules and queries toan equivalent ASP pro-
gram which runs on the DLV system, and redirects results and possible error mes-
sages to the Persistency Manager. TheRewriterfeatures a number of optimization and
caching techniques in order to reduce the time used by interacting with DLV. All

Fig. 1.The OntoDLV architecture

the features implemented by theOntoDLV core(data persistency, browsing invocations
results etc.) can be employed by both system developers and programmers through a
sophisticated application interface (which will be described in detail in Section 5): the
OntoDLV API. Eventually, the end user exploits the system through an easy-to-use vi-
sual environment calledGUI (Graphical User Interface), which is built on top of the
OntoDLV API. TheGUI combines a number of specialized visual tools for authoring,
browsing and querying a OntoDLP ontology. In particular, the GUI features a graph-
based ontology viewer and a graphical query environment (which will be described in
detail in the next Section).

The OntoDLV system has been implemented in Java and exploitsthe DLV system,
a state-of-the-art ASP solver that has been shown to performefficiently on both hard
and “easy” (having polynomial complexity) problems

The DLV system is a highly portable software written in ISO C++, available for
various operating systems. Thus, the OntoDLV system runs under a variety of operating
systems.

4 Visual Querying

In this section we describe the visual query interface of theOntoDLV system. This tool
has been designed in a way that a non-expert user can ask queries without worrying
about the syntax of the language, and a programmer can compose and test in an easy
way complex queries. The query interface is integrated in the OntoDLV Graphical User



64 Lorenzo Gallucci and Francesco Ricca

Interface. We fist report a description of the GUI, in order togive an idea of the en-
vironment in which the query tool is embedded, and then describe it by running an
example.

4.1 The OntoDLV GUI

The OntoDLV GUI was designed to be simple for a novice to understand and use,
and powerful enough to support experienced users. A snapshot of the system running
the ontology described in Section 2 is depicted in Figure 2. The GUI presents several

Fig. 2. OntoDLV GUI: Browsing and editing the ontology.

panels offering access to several facilities combining thebrowsing environment with
the editing environment.

The class/subclass hierarchy is displayed both in an indented text (on the left in
Figure 2) and a graph-based form (on the bottom in Figure 2).

The user can browse the ontology by double-clicking the items in the panels. The
structure of each ontology entity (classes, relations, andinstances) can be displayed
in the middle of the screen by switching between several tabbed panels. For example,
in Figure 2 the class person is selected in the class list and the class panel shows the
scheme of that class. In particular, the name and the type of the class attributes are
shown in a table, while, on the left, both the relations and the axioms involving the
class, together with the list of the instances, are reportedin an indented text form.



Visual Querying and API for ASP-based Ontology Languages 65

In the editing phase, the user enters the domain informationby filling in the blanks
of intuitive forms and selecting items from lists (exploiting an simple mechanism based
on drag-and-drop). An up-to-date list of messages informs the user about the occur-
rence of errors (e.g. type checking messages, etc.) in the ontology under development.
When the user clicks on an error message item the system promptly shows the entity
involved in it. Reasoning and querying can be performed by selecting the appropriate
panel, where the user can create/edit reasoning modules andqueries, respectively. The
reasoning module panel contains a text editor featuring syntax coloring and a simple
auto-complete feature. The interface also allows the reasoning modality (both brave
reasoning and cautious reasoning are supported) to be selected, and the reasoning mod-
ules needed to solve the specified reasoning task to be enabled/disabled.

4.2 Querying Interface

After creating or loading an ontology, the most common operation performed by users
is to query the system to obtain information stored in the ontology. This task can be
performed in OntoDLV by running queries through an appropriate interface7. Even if
the OntoDLP language simplifies (w.r.t. standard ASP languages) the task of writing
a query by exploiting both complex terms and strong typing, this operation may be
performed by expert users only. In order to make more intuitive and easy this task, and
to allow a non-expert user to query an ontology, the system features a full graphical
query interface similar to the QBE (Query By Example) editors, which are nowadays
largely adopted for formulating queries on relational databases. Compared to relational
QBE interfaces (like, e.g., the QBE of MS Access), ours interface is more powerful
thanks to the exploitation of the strong typing informationof the underlying language.
Thus, by using the graphical interface an user can create queries without worrying about
the syntax, simply selecting classes and relations from thepanels (elements can be
added exploiting drag-and-drop) and creating links between class attributes and relation
parameters.

In order to practically understand how the interface works,we describe it by the fol-
lowing example. Suppose the system already loaded the living being ontology described
in Section 2, and an we want to compose the following query:

X : person(father : person(birthP lace : place(name : ”Rome”)))?
(i.e. who are the people whose father was born in a place namedRome?).

This query can be easily composed by selecting from the left panel, displaying the list
of classes of the ontology (Fig. 3a), the person class, and bydragging it inside the query
panel. Automatically, a box representing the person class together with its attributes
(name, age, father, and birthplace, namely) appears in the panel (Fig. 3b). To complete
the query we now have to indicate that the father of this person was born in a place
named “Rome”. To do that, we just drag the attribute father out of the box representing
the class person (Fig. 3c). The system automatically buildsa list (by exploiting the
strongly typed nature of the language) suggesting classes and relations that can correctly
“join” with the attribute father, which is of the type person(Fig. 3d). In this case, we

7 Due to space constraints, and since we are mainly interestedin describing the graphical query
editor, we refrain from describing the text-based query interface.



66 Lorenzo Gallucci and Francesco Ricca

Fig. 3.OntoDLV GUI: How to build a query.



Visual Querying and API for ASP-based Ontology Languages 67

select the person class in order to indicate that the father is a person having birthplace
attribute valued to rome. Consequently, another box of typeperson appears (Fig. 3e),
and we link the oid field with the father attribute of the original person box (Fig. 3f).
We continue by applying the same criterion; in particular, we drag-out (Fig. 3g) the
birthplace attribute (which is of type place) of the second person box (representing the
father) and we select the place class (creating a place box linked with the birthplace
attribute, see Fig. 3h). Finally, we double click on the nameattribute (which is of type
string) of the place box to set the value of this attribute to ”Rome” (Fig. 3i). The obtained
query is shown in Figure 3j. It is easy to see that the graphical interface makes the
meaning of that query more intuitive, and it allows an unexperienced user to work with
the system without knowledge about the underlying syntax details. Importantly, the
system helps the user suggesting the classes or the relationthat are allowed to “join”
a given attribute, exploiting the strongly-typed nature ofthe language. Moreover, to
help expert users, a sort of “reverse-engineering” procedure allows to smoothly switch
between the text editing and the visual editing environment.

5 OntoDLV API

In order to enable third parties develop their own knowledge-based applications on
top of OntoDLV, we developed an application programming interface named OntoDLV
API. Since OntoDLV is a Java application, the OntoDLV API hasbeen written in this
language. In particular, all the operations the user can require (e.g. creation and brows-
ing of ontology elements, reasoner invocations etc.) are made available through a suit-
able set of Java interfaces. It is worth noting that, the OntoDLV API is characterized by
a rather high level of abstraction; and it is composed of a relatively rich set of Java inter-
faces, together with a single factory class (like, e.g., theJAXP API from Sun). However,
the extensive usage of standard Java components (e.g. both the interfacesCollection

andIterator play a central role) makes expert programmers rapidly familiar with our
interface.

It is impossible, due to space constraints, to give here an in-depth description of all
the methods and classes which constitute the OntoDLV API; however, in the following
subsections we describe its core components and we sketch its working principles by
running an example.

5.1 Core API Components and Ontology browsing

In the core part of the OntoDLV API each language construct (class schema, relation
schema, instance etc.) has an associated Java interface describing it. In particular, the
available interfaces are:Class, Relation, ClassInstance, Tuple, Query, Axiom,
ReasoningModule. All the concrete objects implementing the above-mentioned in-
terfaces are made available to the user through another interface containing a set of
browsing methods calledComponentBrowser. In particular,ComponentBrowser

has seven methods which return lists of component, namely:classes(), relations(),
classInstances(), tuples(), queries(), axioms(), modules(). The first method re-
turns the list of all class objects, the second one the list ofall relation objects and so



68 Lorenzo Gallucci and Francesco Ricca

forth. For example, ifcb is aComponentBrowser, one can print out the definition of
all known classes with this code:

for (Class cl: cb.classes()) System.out.println(cl);

It is worth noting that these lists are not “materializations” of the corresponding
entities8; they rather represent virtual “views” aggregating a set ofobjects, possibly
coming from many sources (e.g. different physical storage9), and they are a extensions
of Java standardCollections, which henceforth can manipulated using well-known
Java methods such asadd(), contains(), remove(), etc.

The same principle, based on lists ofComponents, is applied to browse the content
of schemas and instances. For example, theClass component has a method which
returns the list of all superclasses of the given class object. Moreover, the lists returned
by the browsing methods also provide the user the ability to performselectionsover the
set of objects through specialized methods. Those methods,called “selectors”, return a
list of the same kind as the one they were called on (cascadingcalls are allowed), but
filtered on the basis of a given criterion.

A number of selection criteria has been designed by exploiting the properties of each
collection; and, for instance, a list of classes has a set of specialized selectors that deal
with the schema properties (such ashavingSubclass() andhavingSuperclass()). As
an example, the following code snippet allows one to print out the names of all classes
(if any) which are common ancestors of bothaClass andbClass:

System.out.printf("Class names are: %s",
cb.classes().havingSubclass(aClass).
havingSubclass(bClass).names());

Similarly, a list of instances (namely, eitherClassInstanceLists orTupleLists)
may be queried for the occurrence of a particular value for anattribute by using the
methodhavingV alue(). For example, one can obtain the list of instances (ofany
class) having, among their attribute values, both the number 1974 and the string “Rome”
(clearly, for different attributes of a given instance) in this way:

ClassInstanceList specialInstances =
cb.classInstances().havingValue(1974).havingValue("Rome");

5.2 OntoDLP API Usage

In this section, we show how to use OntoDLV API by running an example. In particular,
we describe a snippet of Java code which uses the API to deal with the living being
ontology introduced in Section 2. We refrain from reportingall the technical details
(package inclusions, main function declaration etc.), while we focus on the part of the
code where the API methods are used. In particular, we reporta program which executes
the following four operations:

8 Importantly, whereas core data is always kept in memory, anyinformation derived by the
framework for internal purposes (such as collections, dependency graphs, computed attributes,
etc.) is “memoized” (basically, it is stored to make the computation efficient); but, if needed,
the garbage collector of the Java virtual machine can reclaim it. This allows the API to dynam-
ically adapt the memory usage to the available system resources.

9 As described in Secion 3 OntoDLV Core supports both filesystem and database persistency,
which are handled transparently by the API



Visual Querying and API for ASP-based Ontology Languages 69

1. load a text file containing the living being ontology;
2. add some new data to the relationfriends;
3. build the reasoning moduleshyFriends described in Section 2.6;
4. perform the queryyoungAndShy(X), X:person(name:”Jack”))?, and print the ob-

tained results in standard output.

To perform step 1, we first create an instance of theProjectclass, which, in general,
allows one to handle many different sources of data (e.g. text files, and/or, relational
databases).

Project project = ProjectFactory.buildEmptyProject();

Then, we load the ”living-beings.dlpp” text by writing:

project.buildStreamRepository("LB",
new File("living-beings.dlpp"));

This statement, actually, creates a newRepositoryclass object that handles the data
stored in the ”living-beings.dlpp” text file. Basically, the text file is parsed, and an in-
memory representation of its content can be handled exploiting that object.

Then, we add some tuple to the relationfriends (step 2) by writing as follows:

repository.buildTuple("friend(pers1:ted, pers2:frank).");
repository.buildTuple("friend(pers1:frank, pers2:josh).");

In order to perform step 3, we build an object of the classReasoningModule, and
we add a rule within it:

ReasoningModule module = ontology.buildReasoningModule(
"shyFriends");

module.buildRule("youngAndShy(N) :- P:person(name:N, age:A),
A<18, #count{ F : friend(pers1:P, pers2:F)} < 10.");

Eventually, we perform step 5 by building aQueryInvocationobject as follows:

String queryText = "youngAndShy(X), X:person(name:"Jack"))?";
QueryInvocation queryInvocation =
project.getEngine().performQuery(queryText, DerivationMode.BRAVE);
queryInvocation.invokeSynchronously();

The last statement, basically, performs a synchronous invocation of the internal rea-
soner (i.e. the current thread it is constrained to wait until the output is computed); then
we get and print the results on standard output by writing:

QueryResult result = queryInvocation.getResults();
System.out.printf("Results: \%s", result.toString());

6 Conclusions

In this paper we have presented two novel tools tailored for an integrated ontology
development and reasoning platform called OntoDLV:



70 Lorenzo Gallucci and Francesco Ricca

– avisual query interfacèa la QBE, which simplifies the usage of the system for both
developers and unexperienced users;

– an application programming interface, which enables the programmers to embed
ASP programs in systems that are based on Java.

These tools represent a step towards the development of frameworks supporting the
implementation of industry-level applications based on ASP.

References

1. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: ICLP’99, Las Cruces, New
Mexico, USA, The MIT Press (1999) 23–37

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22(3) (1997) 364–418
3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562
4. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctivelogic programs. In: Proceedings of

the Seventh International Conference on Logic Programmingand Nonmonotonic Reasoning
(LPNMR-7). LNCS 2923

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven Answer Set Solving.
In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), AAAI Press/The MIT Press (2007)

6. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.:The nomore++ Approach to
Answer Set Solving. In: Logic for Programming, Artificial Intelligence, and Reasoning,
12th International Conference, LPAR 2005. LNCS 3835

7. Lierler, Y.: Cmodels for Tight Disjunctive Logic Programs. In: W(C)LP 19th Workshop on
(Constraint) Logic Programming, Ulm, Germany. Ulmer Informatik-Berichte, Universität
Ulm, Germany (2005) 163–166

8. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), Baltimore, Maryland, USA, ACM Press (2005) 915–917

9. Ricca, F., Leone, N.: Disjunctive logic programming withtypes and objects: The dlv+ sys-
tem. Journal of Applied Logics (2005) To appear.http://www.kr.tuwien.ac.at/
research/reports/rr0510.ps.gz.

10. Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto, A.: Exploiting ASP for Semantic
Information Extraction. In: Proceedings ASP05 - Answer SetProgramming: Advances in
Theory and Implementation, Bath, UK (2005)

11. Cumbo, C., Iiritano, S., Rullo, P.: Reasoning-based knowledge extraction for text classifica-
tion. In: Discovery Science. (2004) 380–387

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logics. In: Proceedings ofthe Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary. (2003) 48–57

13. Horrocks, I., Patel-Schneider, P.F.: A proposal for an owl rules language. In: Proceedings
of the 13th international conference on World Wide Web, (WWW2004), New York, USA
(2004) 723–731

14. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet,S., Grosof, B., Dean, M.: Swrl: A
semantic web rule language combining owl and ruleml (2004) W3C Member Submission.
http://www.w3.org/Submission/SWRL/.


