A Magic Set Implementation for Disjunctive Logic
Programming with Function Symbols

Marco Marano, Francesco Ricca, and Giovambattista Ianni

Dipartimento di Matematica, Universita della Calabria, I-87036 Rende (CS), Italy.
mmarano@deis.unical.it,ianni@mat.unical.it, ricca@mat.unical.it

Abstract. The Magic Sets rewriting technique (MS) consists in rewriting a logic
program P with respect to a query @ in such a way that, the bottom-up eval-
uation of the rewritten program simulates the top-down evaluation of @ in the
original program. In this way, only a restricted part of the ground program of P is
evaluated, thus obtaining valuable efficiency improvements. Many extensions and
modifications of the base technique have been proposed in literature, but most of
them are confined to the Datalog realm. In this paper we present an implementa-
tion of the Magic Set rewriting technique that is applicable to positive disjunctive
logic programs with function symbols under the answer set semantics. We show
how the base technique has to be modified when both disjunction in the rule
heads and function symbols occur contemporarily in the input program. Finally,
we describe our implementation of the technique, which is able to produce magic
programs compatible with DLV syntax.

1 Introduction

The Magic Sets rewriting technique takes a significant place in the literature about logic
programming and deductive database systems, since its early definition in [1]. Given a
logic program P and a query @ over its vocabulary, this technique consists in rewriting
P with respect to @, by adding some predicates and some newly created rules: these
latter are introduced in order to simulate the top-down computation of the program. By
using Magic Sets it is possible to reduce the amount of unnecessary computation, due to
portions of the ground version of P which cannot alter the answer to), but are however
evaluated if a pure bottom-up scheme is used. Many extensions and modifications of
the base technique have been proposed in literature, aimed at improving or extending
it to more specific cases. Among them, we mention here the extensions to disjunctive
logic programs in [2,6], and the one realized for programs with (possibly unstratified)
negation in [3]. In this paper we focus our attention on positive disjunctive logic programs
with function symbols, applying the magic set technique to this kind of programs. Some
particular issues arise when considering this language, due to the presence of function
symbols along with disjunction. The main contributions of this work are: (i) we extend
the magic set technique to the case of positive disjunctive programs with function symbols
by devising an appropriate transformation algorithm; (ii) we give an implementation of
the algorithm, and we show how it works by example.

In the following, we first recall both syntax and stable model semantics of disjunctive logic
programs; then, we present by means of an example the classic Magic Sets transformation
for Datalog programs, followed by the detailed description of our “magic” algorithm;
some notes regarding the implementation and comments about future work conclude the

paper.

2 DLP with function symbols

Let C be a denumerable set of distinguished constant and function symbols. Let X be a
set of variables. Let P be a set of predicate symbols. We conventionally denote variables
with uppercase first letter, while constants will be denoted by lowercase first letter. A
term is either a simple term or a functional term. A simple term is either a constant

symbol from C or a variable from X. A functional term is of the form f(t1,...,t,) where
t1,...,ty are terms and fis a function symbol of arity n.

An atom is of the form p(t1,...,t,), where t1,...,t, are terms, and p € P represents
the predicate name of the atom.

A program is a set of rules of the form a; V ---V ay, :=b1,...,b,, where aq,...,a, and
bi,...,b, are atoms, and n > 0, m > 0. The disjunction a; V --- V a,, is the head of r,

denoted by H(r), while b1,...,b,, is a conjunction denoted as B(r) (the body of r). A
rule with empty body will be called fact. A predicate appearing only in rule bodies and in
facts is referred to as EDB predicate, otherwise as IDB predicate. In the following, we will
assume to deal with safe programs, that is, programs in which each variable appearing
in a rule 7 appears in at least one atom in B(r).

Given the program P, the Herbrand Universe Up is the set of ground terms which can
be constructed using the symbols of C appearing in P. A substitution for a rule r of P
is a mapping 6 from the set of variables of r to Up. We denote rf as the ground rule
obtained by substituting variable occurring in r with elements of Up according to 6. A
ground rule contains only ground atoms; the set of all possible ground atoms that can be
constructed combining predicates of P and terms in Up is usually referred to as Herbrand
Base (Bp). We denote by grnd(r) the set of ground rules obtained by applying all the
possible substitutions to r. Given a plain program P, its ground version grnd(P) is the
union of all the sets grnd(r) for r € P.

An interpretation for P is a set of ground atoms, that is, an interpretation is a subset
I C Bp. We define the following entailment notion with respect to an interpretation I.
For a a ground atom: I |= a iff a € I; For ay,...,a, ground atoms:

ITEa,...;,apiff I Ea;, foreachl1 <i<mn;I a1 V---Va,iff I | a; for at least one
i,1<i<n.Foraruler: I =riff I = H(r) or I = B(r);

A model for P is an interpretation M for P such that every rule r € grnd(P) is such
that M |= r. A model M for P is minimal if no model N for P exists such that N is a
proper subset of M. The set of all minimal models for P is denoted by MM(P).

An interpretation I for a program P is an answer set for P if I € MM(P) (i. e., I is a
minimal model for the positive program P). The set of all answer sets for P is denoted
by ans(P). We say that P = a for an atom a, if M = a for all M € ans(P).

3 Informal Overview

The Magic Sets rewriting technique consists of a simulation of the top-down evaluation
of a query @ by modifying an original program P and producing a rewritten program
M (P, Q) which comprises additional rules, and updates to the original ones. M (P, Q) is
conceived in order to reduce computation to what is actually relevant for answering the
query. In fact, grnd(P) contains, in general, many ground rules that have no impact in
answering () as they are related to atoms which @) does not depends on. In general, it is
expected that grnd(M (P, Q)) has smaller size than grnd(P).

The original magic sets method was first described in [1] for the case of Datalog, i.
e. logic programs without function symbols. Following work considered the presence
of functional terms, yet not explicitly taking disjunction also into account (see e.g. []).

Concerning the stable model semantics, it is known how to apply this rewriting technique
to Datalog Programs with disjunction [2, 6] and also (with some restricting assumption)
to unstratified programs [3].

To give an intuition about the general magic set technique for Datalog programs, we can
consider the following (traditional) example. Let us consider the query Q = path(1,5)?
on the following program P;:

path(X,Y) i=edge(X,Y). path(X,Y) -edge(X, Z),path(Z,Y).

As a first step, head predicates are “adorned”. Basically, we simulate the top-down
computation and annotate the way how the variable bindings are propagated from the
head atom to body atoms. Each rule of the input program is replaced by an “adorned” one
in which the name of each predicate is modified by appending the binding information.
Given an I DB predicate, we denote a bound argument with the b letter, while a free
one is labeled with f. For instance path®’ is a predicate which is in principle a subset
of path: in particular its first argument is restricted to a set of values (the magic set
of path®’) which is usually much smaller than the range of path on its first argument.
The adornment process starts from the query @. This latter is adorned in a very simple
manner: all constants in the query become bound, all variables are marked as free (we
obtain in this case the predicate path®). Adornment is propagated to rules’ heads in
which path appears, and subsequently from the head to the body. If a new adorned
predicate is created (as it is present in the head or the body of the rule), this is processed
in turn in the same way of the original adorned query, until no more adorned predicates
have to be processed. SIPs (Sideways Information Passing Strategies) are used in order
to establish the adornment policy: for space reasons we refer the reader to [7], for a
detailed explanation about SIPs. In our example, the arguments of the given query are
both constants,and thus bound; we will build the adorned program according to path?:

Note that EDB predicates are excluded from adornment. The next step of the trans-
formation consists in generating magic rules starting from the adorned program. These
rules define magic predicates. A magic predicate defines the allowed range of values for
bound arguments of a predicate. We start from the head of the rule.

Given an adorned head atom a(t), we obtain the set of terms t’, derived from t by
removing all the terms corresponding to free arguments, and generate the magic atom
magicy(t'). Then, for each atom b in the body, we create its magic version magicy(. . .).
Subsequently, we generate a magic rule having magic, in the head and magic, in the
body, followed by all the atoms of the adorned rule which can propagate the binding.
The third step consists of the modification of the adorned rules. In this step we add to
the bodies of the rules the magic atoms which have been generated in the previous step.
For each rule with head h, an according magic atom magicy, is inserted in the body of
the rule.

magic_path®®(1,5). magic_path®™(Z,Y) :- magic_path®®(X,Y), edge(X, Z).
path(X,Y) - magic_path®(X,Y), edge(X,Y).
path(X,Y) :-magic_path®(X,Y), edge(X, Z), path(Z,Y).

Finally, in the last step the query is processed by adding a magic fact magic_q_ad if g is
the query and ad its adornment; In our example we add magic_path®®(1,5).
The resulting program is then evaluated w.r.t. the query.

4 Magic Sets for DLP with Function Symbols

In this section we present a new version of the standard Magic Set technique presented
above, which works on disjunctive programs with function symbols. The algorithm is
sketched in Figure 1. The main procedure is called magify.

Program magify(Program P, Query Q)

{

Program createAdornedProgram(Program P,

Program M(P,Q)=0; ?uery Q)
if(Q.isconjunctive()) Stack S = 0; Program AP = 0;
, , S.push(createAdorned VersionOf(Q));
Rule R’,Query Q’; while(S. size > 0)
(Q’,R’) = normalizeQuery(Q); {
P.add’Rule(R’); Atom x= S.pop();
Q=Q% for(Rule r in P)
Rules adornedRules = adornRule(r,x);
Program AP = createAdorpedProgram(P,Q); AP.add(adornedRules);setDone(X);
Program MR = createMagicRules(AP); for(Rule ar in adornedRules)
Program MP = addMagicAtoms(P); for(Atom a in ar)
Fact MF = createMagicFact(Q); if(!done(a)) S.push(a);
M(P,Q)=removeAdornments(MPUMRUMF); i
return M(P,Q); return AP;
¥ }
Fig. 1. Function createAdornedProgram Fig.2. Function createAdorned-
Program

The function magify takes a program P and a query @ as input, and applies the Magic
Sets Transformation, generating M (P, Q) (the magified program). magify is made of
other subprocedures, detailed in the following. Let us assume it is given the query:
Q2 = a(f(1))? and the program Ps:

rl:a(X)Vbh(X) —c(X),e(X). r2:c(f(X)) =e(X). 3:e(l). rd:c(l).

When a query is conjunctive, it is transformed into a rule, having in the head a new
atom which contains all the variables from the atoms in the original query. The original
query is replaced by a new one which consists of the head of the newly created rule. This
procedure is performed by the function normalizeQuery(Query Q).

The next step consists of creating the adorned program AP, by means of the function
createAdornedProgram(Program P, Query Q), reported in Figure 2. A stack S is
used in order to keep the atoms scheduled for adornment. The query is adorned using
the function createAdornedVersionOf and pushed in S at first. The main cycle pops
out from S a given atom a and accordingly adorns each rule having in the head an atom
whose name matches with it. When a certain adornment is generated for the first time
for a predicate, this is pushed into S, in order to be processed. The algorithm iterates
until S is empty.

The adornment of each rule is actually performed by the inner function adornRule(r, x)
which returns a set of adorned rules according to the labels of z, to be added to the
adorned program. If z is not in the head of r, adornRule returns an empty set. More
in detail, the output of adornRule contains a set R’ of adorned rules for each atom
a2’ € H(r) which unifies with . Each v’ € R’ is built according to the following strategy:
per each 2’ € H(r) which unifies with z, 2’ is labelled according to x, then such labelling is
propagated to B(r), according to a SIP [7]. Successively, adornments are propagates from

B(r) to the remaining head atoms. Moreover, from the obtained adorned disjunctive rule
r’, corresponding to =, we obtain | H (r)| —1 auxiliary rules obtained by leaving in the head
only one atom x € H(r)\ {2’} and having B(r) U (H(r) \ z) as body. The obtained set of
auxiliary rules in AP will not take part in the final program M (P, @), but will be further
processed in order to obtain the set of magic rules M R. In turn, magic rules are created,
according with the traditional strategy, by calling the CreateMagicRules function.
In our example, we get first from rule 71 and 2, the adorned versions r1’ : a®(X) vV
b (X):=cb(X),e(X) and 72’ : P(f(X)):-c’(X) then createMagicRules(Program P)
obtains from r1” and r2’ the corresponding magic rules; and from r1’ we get the two rules:
a’(X) == cP(X),e(X),b(X). b°(X) - c(X), e(X),a’(X)., while r2’ is left unchanged.
Now the function createMagicRules simply applies the normal Magic-Set strategy to
these intermediate rules, as seen in previous section. In our example we obtain:

magic.c®(X) :-magic.a®(X),e(X),b*(X). magic.c®(X) - magicb®(X),e(X),a’(X).
magic.c®(X) :-magic_c®(f(X)).

The third rule has been obtained by applying the algorithm for the non disjunctive case.
Now, the function addMagicAtoms(P) is called, which returns a version of P including
magic predicates within the body of each rule of P. In this simple step, for each atom in
the head of the rule the corresponding magic atoms are added in the body. Successively,
a magic atom from the query is generated by the function createMagicFact(Query
Q)) to be added to the final output. In our example we get: magic_a®(f(1)). Finally, the
function call removeAdornments(M P UM RUMF') removes all adornments from the
non-magic predicates. This is necessary as stated in [2]. The final output for our example
is the following;:

magic_c’(X) :-magic_.a®(X), e(X), b’(X). magic_c®(X) :-magicb®(X),e(X),a’(X).
magic.c®(X) :-magic_c®(f(X)). magic.a®(f(1)).
a(X) Vb(X) -e(X), e(X), magica®(X), magicb®(X). c¢(f(X)) - e(X), magicc®(f(X)).

It must be noted here that two aspects of the class of programs we are treating, disjunc-
tion and the presence of function symbols, need a particular treatment. In particular:

Disjunction requires modifications on the adornment strategy. Let r be a rule of the
form:

1 hy(8) VeV hn(tn) =b1(p1), - -, b (D).

If we adorn the rule w.r.t. the atom h;(¢;), also other head atoms have to be taken into
consideration, because they can contain variables which are actually important for the
evaluation. The function acts as follows:(i) the atom h;(t;) is adorned w.r.t. the query;
(ii) the body is adorned w.r.t. the adornments of h;(¢;) by using a suitable SIP; (iii)
other head atoms hy(t1) V...V hi—1(ti—1) V hiz1(tix1) V... V hy(t,) are adorned w.r.t.
patterns found in the body.

In fact, it has been shown in [6] that if we want to keep the algorithm sound, other head
predicates cannot propagate bindings, but can only receive them. In this case bindings
are propagated from the body to the remaining head atoms.

Function symbols have impact on the choice of the labelling for arguments: Given an
atom a(..., t,...) for ¢ a functional term ¢ , the corresponding argument of a is labelled
as bound iff all the subterms of ¢ are set as bound at the moment of adornment of a.

Remark. Our transformation applies to programs with function symbols, thus, in gen-
eral, an evaluation of the M (P, Q) is not guaranteed to terminate. However, there are
language restrictions that ensures termination, for instance see [9].

5 Implementation Notes and Future Work

The prototype has been implemented in the Java programming language as a preproces-
sor able to generate a magified program M (P, Q) compatible with the DLV input format
[4] from a given program P and a, possibly conjunctive, query Q. The system uses a new
Library, called DLVParser, which contains a full framework of classes useful for both the
parsing and the manipulation of a Disjunctive Logic Programs in standard syntax.
Design patterns have been used, in order to keep the system flexible and easily extensible.
In particular, the Strategy pattern has been used for allowing the implementation of mul-
tiple SIPs, so that the user of the API of our system is allowed to define his own strategy.
To define a new SIP, only a few methods have to be implemented. We have implemented
a default SIP, which mimics the propagation of bindings in the Prolog SLD resolution.
Inclusion of other constructs such as negation and constraints are forthcoming.

References

1. Bancilhon, F.; Maier, D., Sagiv, Y., Ullman, J. D. Magic Sets and Other Strange Ways to
Implement Logic Programs. InPODS’86,1986.

2. Cumbo C., Faber W., Greco G., Leone N. Enhancing the Magic-Set Method for Disjunctive
Datalog Programs. In ICLP’0/ pages 371-385,2004.

3. Faber W., Greco G., Leone N. Magic Sets and their Application to Data Integration. In
ICDT 2005 pages 306-320, 2005.

4. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning. ACM
TOCL, 7(3):499-562, 2006.

5. Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing, 9:401-424, 1991.

6. Greco, S. Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE TKDE 15 (2), 368-285, 2003.

7. Beeri, C., Ramakrishnan, R. On the power of magic. JLP 10 (1,2,364), 255-299,1991.

8. Ramakrishnan, R. Magic Templates: A Spellbinding Approach To Logic Programs. JLP 11
(364), 189-216 , 1991.

9. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni and Nicola Leone. Bottom-up
Evaluation of Finitely Recursive Queries. CILC09., 2009.

