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Introduction

What is Datalog?

Datalog:
A logic language for querying databases
Overcomes some limits of Relational Algebra and
SQL
→Recursive definitions

Why Datalog?
The basic fragment of ASP
→ Deductive database applications, query answering
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Introduction

Datalog Syntax

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn).

Intuitively:

infer head(h) if body1(x1), . . . ,bodyn(xn) is true.

Fact:

A rule with empty body ( :- symbol is omitted)
→ Facts are true and model the input database←

Variables:

are allowed in atom’s arguments, Prolog-like syntax

Safety:

all variables must occur in the body
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Datalog Syntax

Example
Program and query:

father(X ) :-parent(X ,Y ),male(X ).

Database:

male(rob).
parent(rob,ann).
parent(rob,ann).
parent(mary ,ann).

Query Result:

father(rob).
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Recursive Example Datalog

Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_).

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

...can you write an SQL query?

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).
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Recursive Example Datalog

Example (Reachable airports)
Input: A set of direct connections between some cities
represented by connected(_,_).

Query: Retrieve all the cities reachable by flight from
Vienna airport, through a direct or undirect connection.

Datalog:

reaches(vienna,B) :- connected(vienna,B).

reaches(vienna,C) :- reaches(vienna,B), connected(B,C).
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Datalog Programs (1)

Datalog Program:
A set of rules
EDB: predicates appearing only in bodies or in facts
IDB : predicates defined (also) by rules

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y ) :-edge(X ,Y ).

% Reachability is transitive
reachable(X ,Y ) :- reachable(X ,Z ),edge(Z ,Y ).
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Datalog Programs

Example (Reachability)
Input: a graph encoded by relation edge(_,_).
Problem: Find all pairs of reachable nodes.

% if there is an edge from X to Y
% then X is reachable from Y
reachable(X ,Y ) :-edge(X ,Y ).

% Reachability is transitive
reachable(X ,Y ) :- reachable(X ,Z ),edge(Z ,Y ).

Intuitive meaning: (bottom-up evaluation)
“Start with the facts in the EDB and iteratively derive facts

for IDBs until no new fact is derived.”
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Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 2:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).
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Fully Declarative Language

Example (Ancestor)

Input: parent relation modeled by parent(_,_).
Problem: Define the relation of arbitrary ancestors.

Solution 1:

ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),ancestor(B,C).

Solution 3: Declarative: Atoms’ and Rules’ order is immaterial!

ancestor(A,C) :-ancestor(A,B),parent(B,C).← No LOOP!
ancestor(A,B) :-parent(A,B).

Solution 2:
ancestor(A,B) :-parent(A,B).
ancestor(A,C) :-ancestor(A,B),parent(B,C).
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Arithmetic Expressions and Builtins

Arithmetic and comparison operators
<,>,<=, >=,=

+,−, ∗, /

Example (Fibonacci numbers)

fib(0,1).
fib(1,1).

fib(N + 2,Y1 + Y2) :- fib(N,Y1), fib(N + 1,Y 2).

For recursive definitions an upper bound for integers (system
setting) or a domain has to be specified.
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Example pure Datalog limits

Example (No Peroni here!)
Input: Information about bars and beers represented by
facts of the form
beers(name,manufacturer). sells(bar ,beer)

Query: Retrieve all bars that do not sell Peroni

...can you write an Datalog query?

Datalog:

noPeroni(Bar) :- sells(Bar ,Beer),

not sellsPeroni(Bar).

sellsPeroni(Bar) :- sells(Bar ,Beer),beer(Beer ,peroni).
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Example (No Peroni here!)
Input: Information about bars and beers represented by
facts of the form
beers(name,manufacturer). sells(bar ,beer)

Query: Retrieve all bars that do not sell Peroni

Datalog:

noPeroni(Bar) :- sells(Bar ,Beer),

not sellsPeroni(Bar).

sellsPeroni(Bar) :- sells(Bar ,Beer),beer(Beer ,peroni).
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Datalog with Negation

Rule:

head(H) :- body1(X1), . . . ,bodyn(Xn),
not bodyn+1(Xn+1), . . . , notbodym(Xm).

Positive and Negative Body:

body1(x1), . . . ,bodyn(xn)← positive body
bodyn+1(xn+1), . . . ,bodym(xm). ← negative body

Intuitively:

infer head(h) if all atoms in the positive body are true
and all atoms in the negative body are false

Safety:
all variables must occur in a positive body literal

Stratification (intuitive):
negation must not be involved in recursive definitions!
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Stratification (i.e., no recursion trough negation)

Example (Unstratified Program)

p(X ) :- l(X ), not q(X ).
q(X ) :- l(X ), not p(X )

Example (Stratified Program)

p(X ) :-p(X ), not q(X ).
q(X ) :- l(X ), not m(b).
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Needed Restrictions

Safety:

s(X ) :- r(Y ).

s(X ) :-notr(X ).

s(X ) :- r(Y ),X < Y .

Intuitively:

In each of these cases the result is infinite!?!

Stratification:

Negation wrapped inside recursion is not that obvious

a :- not b. b :- not a.

More on this later...
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Practice

Practice

Download a Datalog implementation
http://www.dlvsystem.com

Download a GUI
http://www.mat.unical.it/ricca/aspide

Francesco Ricca Datalog
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Introduction

Syntax & Notation

Terms: Constants and Variables

Atoms: of the form predicate(t1, . . . , tn)

Literals: atoms a (pos.) and negated atoms not a (neg.)

Rules: h :- p1, . . . ,pn, not n1, . . . not nn.

Head: H(r) = h

Body: B(r) = {p1, . . . ,pn, not n1, . . . not nn.}
Positive Body: B+(r) = {p1, . . . ,pn}
Negative Body: B−(r) = {not n1, . . . not nn}
Program: A set of rules

Safety: All variables occur in some positive body atom

Ground: no variable occurs in it
Positive Program: all rules are such that B−(r) = ∅
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Semantics Positive Programs

Interpretation: a set I of ground atoms
atom a is true w.r.t. I if a ∈ I, it is false otherwise, and
negative literal not a is true w.r.t. I if a 6∈ I, it is false
otherwise.

Satisfaction: a rule r is satisfied w.r.t. I if H(r) ∈ I
whenever all literals ` ∈ B(r) are true w.r.t. I

Model: an interpretation I is a model for program P if all
rules in P are satisfied by I

Least Model: an interpretation I is the least or minimal
model for program P if every I ′ ⊂ I is not a model for P
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Example Models

Given:

a : −b, c.

c : −d .

d .

Interpretations and Models:

I1 = {b, c,d}, I2 = {a,b, c,d} I3 = {c,d}
→ only I2 and I3 are models!

→ I3 is minimal!
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Semantics Positive Programs

Rule Instantiation: I(r) is the set ground rules that can
be obtained by replacing every variable in r by a constant
occurring in P

Instantiation: G(P) = ∪r∈P I(r)

Model: an interpretation M is a model for program P if M
is a model of G(P)

Least Model: an interpretation M is the least model of
program P if M is the least model of G(P)
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Operational Semantics Positive Programs (Ground
case)

Immediate Consequence Operator: Given ground
program P, and Interpretation I

Tp(I) = {a|∃r ∈ P s.t. H(r) = a ∨ ∀l ∈ B(r) are true in I}

Example: a :-b. c :-d . e :-a. I = {b} Tp(I) = {a}.

Fixpoint procedure:
Start with I = ∅
Repeatedly apply Tp until a fixpoint Tp(I) = I is
reached.

Least Model: The least fixpoint Tp.
Theorem: A positive Datalog program P has a unique
least model, which is the minimal model corresponding to
the intersection of all models of P.
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Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
TG(P)(M) = M

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . .
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Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
TG(P)(M) = M

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do we need all ground rules?
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Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
TG(P)(M) = M

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Do they have any chance to be satisfied?
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Operational Semantics

Ground + Fixpoint:

Given P, build G(P), apply operator to compute fixpoint
TG(P)(M) = M

Consider:
a(X ) : −b(X ), c(X ).

b(a). b(b). c(a). c(c).

Instantiation:
a(a) : −b(a), c(a).

a(b) : −b(b), c(b).

a(c) : −b(c), c(c).

. . . Start from facts, match bodies, apply ... fixpoint!
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Example Semantics

Consider:
grandParent(X ,Y ) :-parent(X ,Z ),parent(Z ,Y ).

parent(a,b). parent(b, c).

Evaluation:
1 I = {parent(a,b),parent(b, c)}
2 the body can be instantiated

(parent(a,b),parent(b, c))
I := I ∪ {grandParent(a, c)}

3 no body can be matched with atoms in I ... STOP!

Results: {parent(a,b),parent(b, c),grandParent(a, c)} is
the least model
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Semantics c.t.d.

Immediate Consequence Operator:
Given ground program P, and Interpretation I

Tp(I) = {H(rg)|∃rg instantiating r ∈ P s.t.
the body of rg is true w.r.t. I}

Operational Semantics:

Compute M = Tp(M) by repeatedly applying Tp starting
from EDB.
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Stratified Programs

Dependency Graph: Given program P, graph DG(P) is
as follows:

a node p in V for each predicate in p occurring in P
positive edge p ← q if there is rule r s.t. p occurs in
H(r) and q occurs in B+(r)
negative edge p ←n q if there is rule r s.t. p occurs in
H(r) and q occurs in B−(r)

Recursive Program: P is recursive if DG(P) is cyclic.

Stratified Program: P is stratified if no cycle in DG(P)
contains a negative edge.
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Negation and Recursion

Consider:
p(X ) :-q(X ), not p(X ).

q(1). q(2).

Evaluation:
1 q = {(1), (2)},p = {}
2 q = {(1), (2)},p = {(1), (2)}
3 q = {(1), (2)},p = {}
4 ...
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Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),notreach(X ).

Dependency Graph:
V = {reach,source,target,noReach,arc}
E = {(reach,source), (reach,reach), (reach,arc),
(noReach,target), (noReach,reach)n}
cyclic, but stratified!
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Stratified Program - components and modules

Components and Subprograms:
Let Comp(DG) be the set of the strongly connected
components of DG
Given C ∈ Comp(DG) the subprogram associated to
C is Sub(P,C) = {r ∈ P s.t. H(r) ∈ C}
Given C ′ depends on C ′′ if there is some (negative)
arc in DG from a node in C ′′ to a node in C ′

Example ctd:
Comp(DG) = {{reach}, {noReach}}
Sub(P, {reach}) = {r1, r2}
Sub(P, {noReach}) = {r3}
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Stratified Program - Evaluation

Evaluation:
Start from the components that do not depend on
other components
Evaluate subprograms associated to components as
for positive programs
Remove evaluated components
repeat until all components are evaluated

Example ctd:
1 Evaluate {{reach}}
2 Evaluate {{noReach}}
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Example Stratified Program

Consider:
r1 : reach(X ) : −source(X ).

r2 : reach(X ) : −reach(Y ),arc(Y ,X ).

r3 : noReach(X ) : −target(X ),notreach(X ).

EDB: node(1).node(2).node(3).node(4).arc(1,2).
arc(3,4).arc(4,3).source(1), target(2).target(3).

Evaluate Sub(P, {reach}) = {r1, r2}:
1 I = {source(1), target(2), target(3), ...}
2 I := I ∪ {reach(1)}
3 I := I ∪ {reach(2)}...STOP!

Evaluate Sub(P, {noReach}) = {r3}:
1 I := I ∪ {noReach(3)}...STOP!
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Exercise... limits

Given the following relational database schema
(* indicates primary keys):

beers(name∗,manufacturer)
sells(bar∗,beer∗,price)
associate(bar ,bar)

Write the following (if possible) in SQL, and Datalog
1 find the manufacturers of the beers "John’s bar" sells
2 find the number of beers that "John’s bar" sells at a

price higher than "Anns’s bar"
3 find the bars that sell exactly two beers
4 find the bars that sell more than three beers
5 find the bars that are associated, directly or indirectly,

trough a chain of bar associations to "John’s bar"
6 find the most expensive beer
7 find the bars that sell more beers
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