
Introduction

Processing of Declarative Knowledge

–Complexity Issues–

Francesco Ricca

Computational Intelligence Curriculum
Institute of Information Systems

Francesco Ricca Datalog



Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

Complexity of Reasoning with ASP
Complete the picture of what can be done...
the computational cost

Francesco Ricca Datalog



Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

Complexity of Reasoning with ASP
Complete the picture of what can be done...
the computational cost

Francesco Ricca Datalog



Introduction

Complexity Issues

Understand ASP Complexity
know language subclasses
understand the solving process (later)

Consider Data-Complexity
programs offer uniform solutions over instances
i.e., fixed encoding + facts
basic language: no aggregates, no functions

Francesco Ricca Datalog



Introduction

Complexity Issues

Understand ASP Complexity
know language subclasses
understand the solving process (later)

Consider Data-Complexity
programs offer uniform solutions over instances
i.e., fixed encoding + facts
basic language: no aggregates, no functions

Francesco Ricca Datalog



Introduction

Decision Problems

Main Decision Problems:
1 Answer Set Checking

Given an ASP program P and an interpretation I,
is I an answer set of P?

2 Brave Reasoning
Given an ASP program P and a ground atom a,
is a true in some answer set of P?

3 Cautious Reasoning
Given an ASP program P and a ground atom a,
is a true in all answer sets of P?

Francesco Ricca Datalog



Introduction

Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Level Mapping: a function ‖.‖ from ground literals to positive integers.

Example (Stratified Program)

p(a) | p(c) :- not q(a).
p(b) :- not q(b).

is stratified since:
‖p(a)‖s = 2, ‖p(b)‖s = 2, ‖p(c)‖s = 2
‖q(a)‖s = 1, ‖q(b)‖s = 1

Francesco Ricca Datalog



Introduction

Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Example (Stratified Program)
p(a) | p(c) :- not q(a).
p(b) :- not q(b).

is stratified since:
‖p(a)‖s = 2, ‖p(b)‖s = 2, ‖p(c)‖s = 2
‖q(a)‖s = 1, ‖q(b)‖s = 1

Francesco Ricca Datalog



Introduction

Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Example (Unstratified Program)
p(a) | p(c) :- not q(b).
q(b) :- not p(a)

No stratified level mapping exists!

Francesco Ricca Datalog



Introduction

Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Stratification Theorems:
Stratified non-disjunctive programs admit at most one
answer set
The answer set of a stratified and non-disjunctive program
is computable in Polynomial Time.

Francesco Ricca Datalog



Introduction

Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Example (HCF Program)
a | b.
a :- b.

is HCF since:
‖a‖h = 2; ‖b‖h = 1

Francesco Ricca Datalog



Introduction

Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Example (Non-HCF Program)
a | b.
a :- b.
b :- a.

Recursion trough disjunction → Non HCF level mapping exists!

Francesco Ricca Datalog



Introduction

Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Head-Cycle Free Theorem:
Every head-cycle free program P is equivalent to an
non-disjunctive program where disjunction is “shifted” to
the body

e.g., a |b :- c. is equivalent to: b :- not a, c. a :- not b, c.

Francesco Ricca Datalog



Introduction

Intuitive explanation

Three main sources of complexity:

the exponential number of answer set “candidates”

the difficulty of checking whether a candidate M is an
answer set of P (the minimality of M can be disproved
by exponentially many subsets of M)

the difficulty of determining the optimality of the
answer set w.r.t. the violation of the weak constraints

Francesco Ricca Datalog



Introduction

Complexity of Answer Set Checking

{} nots not 

{} P P P 

Vh P P P 

V coNP coNP coNP 

Francesco Ricca Datalog



Introduction

Complexity of Brave Reasoning

{} nots w w,nots not w, not 

{} P P P P NP ΔP
2 

Vh NP NP ΔP
2 ΔP

2 NP ΔP
2 

V ΣP
2 ΣP

2 ΔP
3 ΔP

3 ΣP
2 ΔP

3 

Completeness	
  under	
  Logspace	
  reduc2ons	
  

Francesco Ricca Datalog



Introduction

Complexity of Cautious Reasoning

{} nots w w,nots not w, not 

{} P P P P coNP ΔP
2 

Vh coNP coNP ΔP
2 ΔP

2 coNP ΔP
2 

V coNP ΠP
2 ΔP

3 ΔP
3 ΠP

2 ΔP
3 

Note	
  that	
  <	
  V,	
  {}	
  >	
  is	
  “only”	
  coNP-­‐complete!	
  

Francesco Ricca Datalog



Introduction

Exercise 2QBF

Given a propositional formula ∃x∀yΦ(x , y) in DNF,
compute an assignment to y -variables that satisfies Φ

for all assignments to x-variables, if it exists.

Write a disjunctive logic program P(∃x∀yΦ(x , y)) such
that answer sets of P(∃x∀yΦ(x , y)) correspond to

satisfying assignments of ∃x∀yΦ(x , y)

Francesco Ricca Datalog



Introduction

Exercise 2QBF

Given a propositional formula ∃x∀yΦ(x , y) in DNF,
compute an assignment to y -variables that satisfies Φ

for all assignments to x-variables, if it exists.

Write a disjunctive logic program P(∃x∀yΦ(x , y)) such
that answer sets of P(∃x∀yΦ(x , y)) correspond to

satisfying assignments of ∃x∀yΦ(x , y)

Francesco Ricca Datalog


	Introduction

