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Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

Complexity of Reasoning with ASP
Complete the picture of what can be done...
the computational cost
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Introduction

Complexity Issues

Understand ASP Complexity
know language subclasses
understand the solving process (later)

Consider Data-Complexity
programs offer uniform solutions over instances
i.e., fixed encoding + facts
basic language: no aggregates, no functions
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Introduction

Decision Problems

Main Decision Problems:
1 Answer Set Checking

Given an ASP program P and an interpretation I,
is I an answer set of P?

2 Brave Reasoning
Given an ASP program P and a ground atom a,
is a true in some answer set of P?

3 Cautious Reasoning
Given an ASP program P and a ground atom a,
is a true in all answer sets of P?
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Introduction

Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Level Mapping: a function ‖.‖ from ground literals to positive integers.

Example (Stratified Program)

p(a) | p(c) :- not q(a).
p(b) :- not q(b).

is stratified since:
‖p(a)‖s = 2, ‖p(b)‖s = 2, ‖p(c)‖s = 2
‖q(a)‖s = 1, ‖q(b)‖s = 1
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Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Example (Unstratified Program)
p(a) | p(c) :- not q(b).
q(b) :- not p(a)

No stratified level mapping exists!
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Syntactic Restrictions

Stratified Programs (i.e., no recursion trough negation)

P is (locally) stratified if there is a level mapping ‖.‖s of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖s ≤ ‖l ′‖s

2 For any not l in the negative body, and for any l ′ in the head
of r , ‖l‖s < ‖l ′‖s

Stratification Theorems:
Stratified non-disjunctive programs admit at most one
answer set
The answer set of a stratified and non-disjunctive program
is computable in Polynomial Time.
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Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Example (HCF Program)
a | b.
a :- b.

is HCF since:
‖a‖h = 2; ‖b‖h = 1
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Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Example (Non-HCF Program)
a | b.
a :- b.
b :- a.

Recursion trough disjunction → Non HCF level mapping exists!
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Syntactic Restrictions (2)

Head-Cycle Free (HCF) Programs

P is head-cycle free if there is a level mapping ‖.‖h of P such
that for every rule r of P:

1 For any l in the positive body of r , and for any l ′ in the head
of r , ‖l‖h ≤ ‖l ′‖h

2 For any pair l , l ′ of atoms in the head of r , ‖l‖h <> ‖l ′‖h

Head-Cycle Free Theorem:
Every head-cycle free program P is equivalent to an
non-disjunctive program where disjunction is “shifted” to
the body

e.g., a |b :- c. is equivalent to: b :- not a, c. a :- not b, c.
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Intuitive explanation

Three main sources of complexity:

the exponential number of answer set “candidates”

the difficulty of checking whether a candidate M is an
answer set of P (the minimality of M can be disproved
by exponentially many subsets of M)

the difficulty of determining the optimality of the
answer set w.r.t. the violation of the weak constraints
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Complexity of Answer Set Checking

{} nots not 

{} P P P 

Vh P P P 

V coNP coNP coNP 
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Complexity of Brave Reasoning
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Complexity of Cautious Reasoning
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Introduction

Exercise 2QBF

Given a propositional formula ∃x∀yΦ(x , y) in DNF,
compute an assignment to y -variables that satisfies Φ

for all assignments to x-variables, if it exists.

Write a disjunctive logic program P(∃x∀yΦ(x , y)) such
that answer sets of P(∃x∀yΦ(x , y)) correspond to

satisfying assignments of ∃x∀yΦ(x , y)
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