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A STRONG COMPARISON PRINCIPLE
FOR THE p-LAPLACIAN
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(Communicated by David S. Tartakoff)

Abstract. We consider weak solutions of the differential inequality of p-
Laplacian type

−∆pu − f(u) ≤ −∆pv − f(v)

such that u ≤ v on a smooth bounded domain in R
N and either u or v is a weak

solution of the corresponding Dirichlet problem with zero boundary condition.
Assuming that u < v on the boundary of the domain we prove that u < v,
and assuming that u ≡ v ≡ 0 on the boundary of the domain we prove u < v
unless u ≡ v. The novelty is that the nonlinearity f is allowed to change sign.
In particular, the result holds for the model nonlinearity f(s) = sq − λsp−1

with q > p − 1.

1. Introduction and statement of the results

Throughout this article Ω will be a bounded smooth domain of R
N with N ≥ 2.

A function w ∈ C1,α(Ω) (see [6, 8, 12]) solves the equation

−∆pw = f(w) weakly on Ω

(where p > 1 and f is a continuous real function that is locally Lipschitz on its
domain) if and only if

(1.1)
∫

Ω

|∇w|p−2∇w · ∇φ dx =
∫

Ω

f(w)φ dx ∀ φ ∈ W 1,p
0 (Ω) .

In this paper we consider the following problem:

(1.2)

⎧⎨
⎩

−∆pw = f(w) weakly on Ω,
w > 0 on Ω,
w = 0 on ∂Ω .

We restrict our attention to the case of positive solutions, and we recall that by the
strong maximum principle for the p-Laplacian under quite general hypotheses on
f (see [10, 13]) any nonnegative solution is in fact strictly positive.

Two functions u, v ∈ C1,α(Ω) satisfy the inequality

−∆pu − f(u) ≤ −∆pv − f(v) weakly on Ω
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if and only if∫
Ω

|∇u|p−2∇u · ∇ψ dx −
∫

Ω

f(u)ψ dx ≤
∫

Ω

|∇v|p−2∇v · ∇ψ dx −
∫

Ω

f(v)ψ dx

for every ψ ∈ W 1,p
0 (Ω) such that ψ ≥ 0 a.e. Throughout this paper we will assume

(A)p

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

both u and v are nonnegative on Ω,

either u or v solves problem (1.2),

−∆pu − f(u) ≤ −∆pv − f(v) weakly on Ω .

We say that a Strong Comparison Principle (SCP for short) holds for two func-
tions u, v ∈ C1,α(Ω) satisfying (A)p if from the inequalities

u ≤ v on Ω

we can infer the alternative

u < v on Ω unless u ≡ v on Ω.

We want to prove that, under suitable boundary conditions, such an SCP holds.
The novelty of the paper is that f can be a sign changing nonlinearity. For

example, our assumptions allow us to consider nonlinearities such as

f(s) = sq − λsp−1 ( with q > p − 1).

Even when f has definite sign, it is well known that this is a hard task due to
the nonlinear degenerate nature of the p-Laplace operator. In fact, comparison
principles are not equivalent in this case to maximum principles as for the case
of linear operators. We refer the readers to [10] and the references therein for an
interesting overview on this topic, and we recall here some known results.

In [3] it is proved that, if f is locally Lipschitz, a Strong Comparison Principle
holds in any connected component of Ω \ Zu,v where Zu,v ≡ {x ∈ Ω | ∇u(x) =
0 = ∇v(x)}. In [7] it is proved that, if f is positive and nondecreasing, a Strong
Comparison Principle holds assuming that u, v are both solutions of problem (1.2)
or assuming as the boundary condition in (1.2) that u < v on ∂Ω. The results in
[7] have been recently extended to a more general class of operators in [9], where
also some interesting estimates on the set of possible touching points are proved.
The assumptions of Theorem 1.3 in [9] are equivalent, in our context, to assuming
that f is positive and nondecreasing. Also, we point out some interesting results
in [1, 2] where the case of solutions of (1.2) is considered and a Strong Comparison
Principle is proved for a particular class of problems involving nonlinearities that
do not change sign.1

Some details of our proofs are similar to the ones in [1, 2]. In particular, we
point out that we will use a Divergence Theorem stated and proved in [2], together
with some regularity results from [4]. The crucial tool anyway is a general result
recently obtained in [5] where the case of positive nonlinearities is considered. Here
we adapt Theorem 1.4 in [5] for future use.

1The nonlinearities considered in [1, 2] could change sign if the solutions u, v change sign.
Anyway this does not occur since the authors show that the solutions are nonnegative.
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Lemma 1.1. Assume 2N+2
N+2 < p ≤ 2 or p ≥ 2. Let u, v ∈ C1,α(Ω) satisfy (A)p

and f satisfy the following hypothesis:

(f1) f is continuous on [0, +∞) ,
(f2) f is locally Lipschitz continuous on (0, +∞) .

Assume that u is a solution of (1.2) in Ω and assume that f(u) has a definite sign
on a domain Ω′ ⊆ Ω (let us say f(u) > 0); if u ≤ v and u 	= v in Ω′, then u < v in
Ω′.

The same result follows assuming that v is a solution of (1.2) in Ω and f(v) has
a definite sign on Ω′.

Remark 1.2. The restriction p > 2N+2
N+2 allows |∇u|p−2 to be in L1(Ω) (in [4] see

Theorem 2.3). Lemma 1.1 follows from Theorem 1.4 in [5] by simple considerations.
In Theorem 1.4 of [5] only the assumption f(u) > 0 is considered, however it is
clear from its proof that the assumption f(u) < 0 is equivalent to the assumption
f(u) > 0. The statement of Lemma 1.1 is a local version of Theorem 1.4 in [5]
since it holds in any domain Ω′ ⊆ Ω. Looking at the proof of Theorem 1.4 in [5]
this causes only that a local version of Theorem 2.1 in [5] (see also Theorem 1.1 in
[4]) is needed. The latter can be found in [11].

The aim of this paper is to deal with sign changing nonlinearities. More precisely,
we keep hypothesis (A)p, (f1), (f2) without assuming that f(u) or f(v) has definite
sign. We simply assume

(f3) f(t)

⎧⎨
⎩

= 0 if t = 0 or t = k > 0,
< 0 if t ∈ (0, k),
> 0 if t ∈ (k, +∞),

(f4) f is nondecreasing on some open interval Ik containing k .

We prove the following

Theorem 1.3. Assume 2N+2
N+2 < p ≤ 2 or p ≥ 2. Let u, v ∈ C1,α satisfy (A)p with

f fulfilling (f1), (f2), (f3), (f4), and assume that u ≤ v in Ω. Then, if u < v on ∂Ω,
it follows

u < v in Ω.

Theorem 1.4. Assume 2N+2
N+2 < p ≤ 2 or p ≥ 2. Let u, v ∈ C1,α both satisfy (1.2)

with f fulfilling (f1), (f2), (f3), (f4), and assume that u ≤ v in Ω. Then, if u ≡ v ≡ 0
on ∂Ω, the following alternative holds:

u < v in Ω or u ≡ v in Ω.

2. Proof of Theorem 1.3

Let us consider the set where u and v possibly coincide:

Cu,v =
{
x ∈ Ω : u(x) = v(x)

}
.

We want to show that Cu,v = ∅. By contradiction, we assume that the closed set
Cu,v is not empty. This, under our hypothesis, equals ∂Cu,v 	= ∅.
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2.1. Step 1. We claim that at each x ∈ ∂Cu,v we have u(x) = k. We already know
that u ≡ v > 0 on Cu,v ⊃ ∂Cu,v since either u or v is a solution of problem (1.2).
Assume by contradiction that there exists some x̄ ∈ ∂Cu,v such that u(x̄) 	= k. By
hypothesis (f3), we have f

(
u(x̄)

)
	= 0. Without loss of generality we can consider

f
(
u(x̄)

)
> 0, and u as a solution of problem (1.2); in this case we can find an open

ball B(x̄, rx̄) centered at x̄ such that f(u) > 0 on B(x̄, rx̄). Since x̄ ∈ ∂Cu,v, u can
not coincide with v on the whole B(x̄, rx̄), thus we can apply Lemma 1.1 getting
u < v on B(x̄, rx̄), and this contradicts the hypothesis u(x̄) = v(x̄).

2.2. Step 2. By assuming Cu,v 	= ∅, the function dist(x, Cu,v) is well defined at
each x ∈ Ω and we can consider the open set

Cε
u,v =

{
x ∈ Ω : dist(x, Cu,v) < ε

}
(where ε > 0).

Since u ≡ v ≡ k on ∂Cu,v, we can claim that there exists a ε̄ > 0 such that

(2.1) ∀x ∈ C ε̄
u,v \ Cu,v u(x) ∈ Ik and v(x) ∈ Ik.

On the contrary we would have that

∀ε > 0 ∃xε ∈ Cε
u,v \ Cu,v u(xε) 	∈ Ik or v(xε) 	∈ Ik.

By choosing ε = 1
n there would exist a sequence (xn) such that

xn ∈ C
1
n
u,v \ Cu,v u(xn) 	∈ Ik or v(xn) 	∈ Ik.

From this sequence we could extract a subsequence (xn′) such that

xn′ ∈ C
1

n′
u,v \ Cu,v w(xn′) 	∈ Ik

where w would be either u or v. As Ω is bounded we could extract from (xn′) a
subsequence (xn′′) that would necessarily converge to some point z ∈ ∂Cu,v where
w(z) = k. But this would end the contradiction w(xn′′) → k and w(xn′′) 	∈ Ik.

2.3. Step 3 [Contradiction]. By construction we have that u < v on ∂C ε̄
u,v. As

∂C ε̄
u,v is compact, there exists some ρ > 0 such that u + ρ < v on ∂C ε̄

u,v. Let us
consider the function wρ : Ω̄ → [0, +∞) defined as follows:

wρ =

⎧⎨
⎩

(
u + ρ − v

)+ on C ε̄
u,v,

0 on Ω̄ \ C ε̄
u,v .

Since u + ρ < v on ∂C ε̄
u,v, we have that wρ ∈ W 1,p

0

(
Ω

)
and

∇wρ =

⎧⎨
⎩

∇u −∇v where wρ > 0,

0 elsewhere.
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As wρ is a test function, we can use it in (1.1) obtaining2

∫
Ω

∣∣∇u
∣∣p−2 ∇u · ∇wρ =

∫
Ω

f(u)wρ 〈
since wρ = 0 on Ω \ C ε̄

u,v

〉

=
∫

C ε̄
u,v

f(u)wρ

=
∫

C ε̄
u,v\Cu,v

f(u)wρ +
∫

Cu,v

f(u)wρ

=
∫

C ε̄
u,v\Cu,v

f(u)wρ +
∫

Cu,v

f(v)wρ〈
by (2.1) and (f4)

〉

≤
∫

C ε̄
u,v\Cu,v

f(v)wρ +
∫

Cu,v

f(v)wρ

=
∫

C ε̄
u,v

f(v)wρ =
∫

Ω

f(v)wρ〈
recall (A)p and u is a solution of (1.2)

〉

≤
∫

Ω

∣∣∇v
∣∣p−2 ∇v · ∇wρ

that is,
∫

Ω

(∣∣∇u
∣∣p−2 ∇u −

∣∣∇v
∣∣p−2∇v

)
· ∇wρ

=
∫
{wρ>0}

(∣∣∇u
∣∣p−2∇u −

∣∣∇v
∣∣p−2∇v

)
· (∇u −∇v) ≤ 0 .

By recalling (see for example [3]) that there exists some positive constant Cp such
that for each η, η′ ∈ R

N

(
|η|p−2η − |η′|p−2η′) · (η − η′) ≥ Cp

(
|η| + |η′|

)p−2 |η − η′|2 ,

we get

Cp

∫
{wρ>0}

(∣∣∇u
∣∣ +

∣∣∇v
∣∣)p−2∣∣∇u −∇v

∣∣2 ≤ 0 .

This implies that u− v equals some constant on {wρ > 0}, that is, wρ is a constant
on {wρ > 0}. By continuity of wρ this constant must be zero since wρ = 0 on
∂C ε̄

u,v. Thus, we have that wρ ≡ 0 in C ε̄
u,v, that is,

u + ρ ≤ v on C ε̄
u,v

(
i.e. u < v on C ε̄

u,v

)
,

and this contradicts the fact that C ε̄
u,v ⊃ Cu,v 	= ∅.

2We put comments between 〈 〉 brackets.
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3. Proof of Theorem 1.4

Since u = 0 on ∂Ω and u ∈ C1,α(Ω), there exists an open neighborhood U of ∂Ω
such that 0 < u < k on V = U ∩ Ω. Since f(u) < 0 on V , there the SCP holds by
Lemma 1.1; therefore u ≡ v on V or u < v on V . In the latter case we can find a
set Γε =

{
x ∈ Ω : dist(x, ∂Ω) ≥ ε

}
for a suitable ε > 0 such that u < v on ∂Γε;

exploiting Theorem 1.3, we get u < v on Γε, and therefore u < v on Ω. Thus, in
the sequel we will consider the former case

(
u ≡ v on V

)
and prove that u must

coincide with v on Ω. As in Theorem 1.3, we define Cu,v =
{
x ∈ Ω : u(x) = v(x)

}
and Cε

u,v =
{
x ∈ Ω : dist(x, Cu,v) < ε

}
. Let us assume by contradiction that

there exists some x0 ∈ Ω such that u(x0) < v(x0). Arguing as in Section 2.2 of the
proof of Theorem 1.3, we can always find an ε such that 0 < ε < dist

(
x0, ∂Cu,v

)
and

∀x ∈ Cε
u,v \ Cu,v u(x) ∈ Ik and v(x) ∈ Ik .

Let us observe that
(
Ω \Cu,v

)
∩Cε

u,v is a nonempty open set and ∂Cε
u,v \∂Ω 	= ∅

by the assumption 0 < ε < dist
(
x0, ∂Cu,v

)
. Moreover at each x ∈ ∂Cε

u,v \ ∂Ω we
have u(x) < v(x). By compactness of ∂Cε

u,v \ ∂Ω and continuity of u and v, there
exists ρ > 0 such that u + ρ < v on ∂Cε

u,v \ ∂Ω. Let us define

wρ =

⎧⎨
⎩

(
u + ρ − v

)+ on Cε
u,v,

0 on Ω \ Cε
u,v .

We have that wρ ∈ W 1,p
(
Ω

)
and

∇wρ =

⎧⎨
⎩

∇u −∇v where wρ > 0,

0 elsewhere.

Let us observe that ∇wρ = ∇u −∇v = 0 on V . This allows us to use wρ “as a
test function” even if wρ 	∈ W 1,p

0 (Ω); in fact, we will see that the boundary terms
appearing in the Divergence Theorem for u and v coincide.

As pointed out in [5], a C1 solution of (1.2), with f as in our hypothesis, belongs
to the class C2(Ω \Z), where Z = {x ∈ Ω : ∇u(x) = 0}; therefore the generalized
derivatives of |∇u|p−2uxi

coincide with the classical ones on Ω \ Z. Moreover in
[5] it was proved that |∇u|p−2uxi

∈ W 1,2(Ω). Since wρ ∈ W 1,2(Ω) we have that
div

(
wρ|∇u|p−2∇u

)
∈ L1. The vector field wρ|∇u|p−2∇u belongs to

[
C0(Ω)

]N , so
we can apply the Divergence Theorem as stated in [2] pag.742, obtaining

∫
Ω

div
(
wρ|∇u|p−2∇u

)
dx =

∫
∂Ω

wρ|∇u|p−2 ∂u

∂ν
dσ.
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Since div
(
wρ|∇u|p−2∇u

)
= wρdiv

(
|∇u|p−2∇u

)
+ |∇u|p−2∇u · ∇wρ and also

−div
(
|∇u|p−2∇u

)
= f(u) almost everywhere, we obtain (exploiting as in Theo-

rem 1.3)∫
Ω

|∇u|p−2∇u · ∇wρ dx =
∫

Ω

f(u)wρ dx +
∫

∂Ω

wρ|∇u|p−2 ∂u

∂ν
dσ

=
∫

Ω

f(u)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

=
∫

Cε
u,v

f(u)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

=
∫

Cε
u,v∩Cu,v

f(u)wρ dx +
∫

Cε
u,v\Cu,v

f(u)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

=
∫

Cε
u,v∩Cu,v

f(v)wρ dx +
∫

Cε
u,v\Cu,v

f(u)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

≤
∫

Cε
u,v∩Cu,v

f(v)wρ dx +
∫

Cε
u,v\Cu,v

f(v)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

=
∫

Ω

f(v)wρ dx +
∫

∂Ω

wρ|∇v|p−2 ∂v

∂ν
dσ

=(∗)

∫
Ω

|∇v|p−2∇v · ∇wρ dx .

Arguing as in Theorem 1.3 we conclude the contradiction wρ = 0 (that is, u+ρ ≤
v) in Cε

u,v ⊃ Cu,v 	= ∅.

Remark 3.1. Further extensions are possible. For example, one may guess that in
Theorem 1.4 the thesis is still valid by assuming that u, v ∈ C1,α simply satisfy
(A)p, instead of both being solutions of (1.2). This is actually true if the function
that is not a solution of (1.2) (let us say v) shares the same regularity as the solution
u. In such a case the Divergence Theorem can still be applied to v giving, with
(A)p, the inequality ≤ instead of the equality at the final step (∗). However, we
skipped such a statement because here shortness and simplicity is our aim.
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