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Abstract. Consider the nonlinear heat equation

(NLH) vt −∆v = |v|p−1v

in the unit ball of R2, with Dirichlet boundary condition. Let
up,K be a radially symmetric, sign-changing stationary solution
having a fixed number K of nodal regions. We prove that the
solution of (NLH) with initial value λup,K blows up in finite time
if |λ− 1| > 0 is sufficiently small and if p is sufficiently large. The
proof is based on the analysis of the asymptotic behavior of up,K
and of the linearized operator L = −∆− p|up,K|p−1.

1. Introduction

Let us consider the nonlinear heat equation

(1.1)


vt −∆v = |v|p−1v, in Ω× (0, T )

v = 0, on ∂Ω× (0, T )

v(0) = v0, in Ω ,

where Ω ⊂ RN , N ∈ N, is a bounded domain, p > 1, T ∈ (0,+∞] and

v0 ∈ C0(Ω) = {w ∈ C(Ω), w = 0 on ∂Ω}.
It is well known that there exists a unique classical solution of (1.1)
which is defined over a maximal time interval [0, Tv0). It is also well
known that (1.1) admits both nontrivial global solutions and blowup
solutions for any p > 1. In fact, given φ ∈ C0(Ω) and λ ∈ R, let us
consider vλ(φ) the solution of (1.1) corresponding to v0 = λφ. For |λ|
small, using that the first eigenvalue of the Laplace-Dirichlet operator is
positive, it is easy to construct global sub and supersolutions of (1.1),
ensuring that vλ(φ) is globally defined. On the other hand, vλ(φ)
has negative energy for large |λ| and, as a consequence, it blows up,
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2 FLÁVIO DICKSTEIN, FILOMENA PACELLA, AND BERARDINO SCIUNZI

see [3] or [16]. An interesting question is to understand what happens
for intermediate values of λ. The case of positive functions Ψ ≥ 0,
Ψ ̸≡ 0, is better understood. It follows immediately from the maximum
principle for the heat equation that there exists λ∗ > 0 such that vλ(Ψ)
is global if 0 < λ < λ∗ and vλ(Ψ) blows up if λ > λ∗. (The borderline
case λ = λ∗ may correspond to either globality [9], [10], [21] or to
blowup [20].)

In other words, defining

G = {v0 ∈ C0(Ω), Tv0 = ∞},
it holds that G+ = {v0 ∈ G, v0 ≥ 0} is star-shaped with respect to 0.
(In fact, G+ is convex.) In general, however, G is not star-shaped. In
fact, consider the stationary problem

(1.2)

{
−∆u = |u|p−1u in Ω,

u = 0 on ∂Ω.

where p > 1 and Ω is the unit ball in RN , N > 2. In [5] the authors
showed that there exists p∗ < pS := (N+2)/(N−2) with the following
property. If u is a radial sign-changing solution of the Lane Emden
problem (1.2) (for subcritical p there are countable many), there exists
ε > 0 such that if p∗ < p < pS and if 0 < |1− λ| < ε then λu ̸∈ G, i.e.,
vλ(u) blows up in finite time for λ slightly greater or slightly smaller
then 1. Note that u ∈ G, so that G is not star-shaped. Let us point
out that an analogous result was proven for N = 3 and p close to 1,
see [8]. The results in [5] have been extended to case of general non
symmetric domains in [19]. Further analysis of the structure of the set
G and of its complementary set

(1.3) B = {v0 ∈ C0(Ω), Tv0 <∞}
can be found in [6] and [7].

The results of [5] and [8] do not apply in the case N = 1. In fact,
for N = 1 and p > 1 vλ(u) is global and converges uniformly to zero
if |λ| < 1, while vλ(u) blows up if |λ| > 1. This is due to the anti-
periodic structure of the one-dimensional problem, which implies that
vλ(u) does not change sign between two consecutive nodes of u. In
this way, in the one-dimensional case there is no essential difference in
considering u with or without a definite sign.

In this paper we treat the case N = 2, which was left open in [5].
We recall that for any p > 1 and K ∈ N there exists a unique (up to a
sign) radial solution up,K ∈ C2(Ω) of (1.2) with K nodal regions. The
main goal of this work is to establish the following result.

Theorem 1.1. Let up,K be a sign-changing radial stationary solution of
(1.1) (see (1.2)) with K nodal regions. Then there exists p∗ = p∗(K) > 1
and ε = ε(p,K) > 0 such that if p > p∗ and 0 < |1− λ| < ε, then

λup,K ∈ B.
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Our result is analogous in spirit to the one in [5] cited above. In fact,
the proofs are based on similar strategies. They are both consequences
of the following proposition, which is a particular case of Theorem 2.3
of [7].

Proposition 1.2. Let u be a sign changing solution of (1.2) and let φ1

be a positive eigenvector of the self-adjoint operator L given by Lφ =
−∆φ− p|u|p−1φ, for φ ∈ H2(Ω) ∩H1

0 (Ω). Assume that

(1.4)

∫
Ω

uφ1 ̸= 0.

Then there exists ε > 0 such that if 0 < |1− λ| < ε, then the solution
vλ(u) of (1.1) with the initial value λu blows up in finite time.

Proposition 1.2 says that the linear instability of the stationary so-
lution expressed by (1.4) yields not only nonlinear instability, but also
blowup. A similar result for positive solutions of the nonlinear heat
equation and of the nonlinear wave equation may be found in [15]. In
view of Proposition 1.2, Theorem 1.1 holds if we prove the following:

Theorem 1.3. Given K ≥ 2, let u be a radial solution to (1.2) having
K nodal regions. Then there exists p∗ = p∗(K) such that for p > p∗∫

Ω

uφ1 > 0,

where φ1 is the first positive eigenfunction of the linearized operator L
at u.

The proof of Theorem 1.1 relies on the fact that, in an appropri-
ate sense, the limit problem of the Lane Emden problem (1.2) is the
Liouville problem

(1.5)

{
−∆u = eu, in R2

eu ∈ L1(R2),

see [1], [13], [14]. To be more precise, we consider a suitable scaling ũ
of u, which is defined on a ball Ω̃ of radius r(p) such that r(p) → ∞
as p → ∞. We define as well a rescaling L̃ of the linear operator
L, possessing a first eigenvector φ̃1 associated to a first eigenvalue λ̃1.
Extending ũ and φ̃1 identically equal to zero outside Ω̃, it turns out
that

(1.6) |ũ|p−1ũ −→
p→∞

ez
∗
,

uniformly over the compact sets of R2, where z∗ is the unique radial
solution of (1.5) such that z∗(0) = 0 and ∇z∗(0) = 0. Moreover, the
linearized limit operator L∗ = −∆− ez

∗
has a negative first eigenvalue

λ∗1 and a positive corresponding eigenfunction φ∗
1 and

(1.7) λ̃1 −→
p→∞

λ∗1 ,
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(1.8) φ̃1 −→
p→∞

φ∗
1 in L2(R2) .

Using (1.6) and (1.8) we show that

(1.9)

∫
Ω̃

|ũ|p−1ũ φ∗
1 −→

p→∞

∫
R2

ez
∗
φ∗
1 .

Since both ez
∗
and φ∗

1 are positive, the integral at the left hand side
of (1.9) is positive for large p. By a simple computation, this allows
to conclude that (1.4) holds. Then Theorem 1.1 follows from Proposi-
tion 1.2 and Theorem 1.3.

To obtain (1.6)-(1.9) we exploit the analysis of [14] concerning the
case of two nodal regions. For K = 2, the limit problem associated to
u+, the positive part of u, is a regular Liouville problem in the whole
space R2 (while the negative part u− is associated to a singular Liouville
problem). Using the results of [14], we have been able to prove that
(1.6) holds for solutions having any fixed number K of nodal regions.
There are two crucial steps in the proofs of (1.7)-(1.9) for general K,
the variational characterization (2.10) of u, which is a consequence of
the results of [4], and the energy estimate (2.1).

For N ≥ 3 and subcritical p < pS, it was shown in [8] that λu ∈ B
if |1 − λ| and pS − p are small enough (λ ̸= 1), independently of the
number K of oscillations of the stationary solution u. We were not
able to obtain here an analogous result, since p and λ depend on K
in Theorem 1.1. There is a distinguished difference between the two
cases. In the case N ≥ 3, the limit problem of (1.2) for p → pS
is still the same problem (1.2) for p = pS, which has a (unique, up
to dilations and translations) positive regular solution. However, in
the present case N = 2, there is qualitative, other than quantitative,
transformation when passing to the limit p → ∞. This explains why
the analysis here is more involved.

The rest of the paper is organized as follows. In Section 2 we obtain
some preliminary results that will be useful in the sequel. In particular,
we obtain the energy estimate in Proposition 2.1 and the variational
characterization in Proposition 2.4. In Section 3, we carry out an as-
ymptotic spectral analysis, proving (1.7) and (1.8). Finally, in Section 4
we show (1.9), which yields Theorem 1.3 and Theorem 1.1.

2. Preliminary results

It is well known that, for p > 1 and K ≥ 1 (1.2) admits a unique
radially symmetric solution up,K ∈ C2(Ω) having K nodal regions and
such that up,K(0) > 0, see e.g. [23]. In this section we establish bounds
on the energy of up,K and on its C0 norm which will be crucial for the
proof of our main result. These estimates extend those in [18] for the
case K = 2.
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Proposition 2.1. There exist p∗ = p∗(K) ∈ R and E = E(K) > 0 such
that

(2.1) p

∫
Ω

|up,K|p+1 dx = p

∫
Ω

|∇up,K|2 dx ≤ E

for p > p∗.

Proof. Consider the energy functional

Ep(u) =
1

2
∥∇u∥22 −

1

p+ 1
∥u∥p+1

p+1

for u ∈ H1
0,r(Ω), the space of radial functions of H

1
0 (Ω). Note that, if u

is a solution of (1.2), then

Ep(u) =
p− 1

2(p+ 1)

∫
Ω

|∇u|2.

In this way, Proposition 2.1 will be proven once we bound pEp(up,K)
uniformly in p. To do so, we first remark that the proofs of Theorem 1.2
and of Theorem 1.4 of [4] still hold when applied to the space H1

0,r(Ω).
As a consequence, we obtain a sequence of distinct solutions of (1.2)
±vp,j, j ∈ N, such that

a) ∥vp,j∥H1
0,r(Ω) → ∞ as j → ∞.

b) vp,1 is positive and vp,j changes sign for j ≥ 2. Moreover vp,j
has at most j nodal regions.

c) Ep(vp,j) ≤ βj, where

(2.2) βj = inf
V⊂H1

0,r(Ω)
dim(V )≥j

sup
v∈V

Ep(v),

We next observe that, by the uniqueness (up to a sign) of the radial
solution of (1.2) having j nodal regions, we may write that

(2.3) vp,j = up,j

for all j. We shall now use c) here above to estimate pEp(up,j) inde-
pendently of p. Our arguments extend those employed in [18] for the
case j = 2 of two nodal regions.

Given K ∈ N, fix α1, . . . , αK−1 positive numbers satisfying αj > αj+1

for j = 1, . . . ,K − 1 and set αK = 0. Consider the K-dimensional sub-
space V p

K of H1
0,r(Ω) spanned by the K linearly independent functions

gp,1, . . . , gp,K, defined in the following way.

1) gp,1 is the unique positive radial solution to (1.2) in the ball

Bp = {x ∈ R2 : |x| ≤ e−α1p}.

2) For 2 ≤ j ≤ K, gp,j is the unique radial positive solution to
(1.2) in the annulus

Ap,j = {x ∈ R2 : e−αj−1p ≤ |x| ≤ e−αjp}.
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Let us assume for the moment that there exist p > 1 and constants
c1, . . . , cK such that

(2.4) pEp(gp,j) ≤ cj ∀p > p, 1 ≤ j ≤ K.
Since gp,j belongs to the Nehari manifold

Np = {u ∈ H1
0,r(Ω) \ {0} : ∥∇u∥22 = ∥u∥p+1

p+1}

it is easy to see that Ep(tgp,j) ≤ Ep(gp,j) for all t ∈ R. By (2.4),

pEp

( K∑
j=1

tjgp,j
)
≤

K∑
j=1

pEp(gp,j) ≤
K∑

j=1

cj,

for all tj ∈ R and p > p. Hence, using (2.3) and c) here above, we get

pEp(up,K) ≤ sup
v∈V p

K

pEp(v) ≤
K∑

j=1

cj,

showing (2.1) for any p > p. To conclude the proof, it remains to show
(2.4).

We start by estimating pEp(gp,1). Note that

gp,1(|x|) = e
2α1p
p−1 wp(e

α1p|x|),
where wp is the unique positive solution to (1.2) in the unit ball. Thus,

(2.5)

∫
Bp

|∇gp,1|2 = e
4α1p
p−1

∫
B1

|∇wp|2.

Moreover, it follows from Lemma 2.1 of [1] that

p

∫
B1

|∇wp|2 −→
p→∞

8πe.

Therefore

pEp(gp,1) =
2p(p+ 1)

p− 1

∫
Bp

|∇gp,1|2 −→
p→∞

16πe4α1+1 ,

and this gives (2.4) for j = 1.

We now estimate pEp(gp,j) for j ≥ 2. Let zp,j be the positive (radial)
solution of

max
H1

0,r(Ap,j)
{
∫
Ap,j

|u|p+1,

∫
Ap,j

|∇u|2 = p−1 } =: Ip,j.

Then zp,j satisfies−∆zp,j = (pIp,j)
−1 zpp,j, so that gp,j = (pIp,j)

− 1
p−1 zp,j.

Hence,

(2.6) p

∫
Ap,j

|∇gp,j|2 = (pIp,j)
− 2

p−1 .
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Next, inspired by the results in [12] on the asymptotic behavior of the
radial positive solution in an annulus as p→ ∞, we set ∆j = αj−1−αj

and consider

wp,j(x) = (2π∆j)
− 1

2p−1

{
αj−1p+ log r, e−αj−1p ≤ r ≤ e−

(αj+αj−1)

2
p,

−αj p− log r, e−
(αj+αj−1)

2
p ≤ r ≤ e−αjp,

where r = |x|. Since wp,j ∈ H1
0.r(Ap,j) and ∥∇wp,j∥2L2(Ap,j)

= p−1 we get

(2.7)

∫
Ap,j

wp+1
p,j ≤ Ip,j.

Then,

∫
Ap,j

wp+1
p,j ≥ (2π)−

p−1
2 ∆

− p+1
2

j p−(p+1)

e−
(αj+αj−1)

2 p∫
e−αj−1p

(αj−1p+ log r)p+1r dr.

Through the change of variables s = e
αj−1+αj

2
p r, we get

(2.8)∫
Ap,j

wp+1
p,j ≥ (2π)−

p−1
2 ∆

− p+1
2

j e(αj−1+αj) p

1∫
e−

p∆j
2

(
∆j

2
+ p−1 log s

)p+1

s ds

= 2−
3p+1

2 π− p−1
2 ∆

p+1
2

j e(αj−1+αj) p

1∫
e−

p∆j
2

(
1 +

2

p∆j

log s

)p+1

s ds.

Using the Dominated Convergence Theorem, we obtain

(2.9)

1∫
e−

p∆j
2

(
1 +

2

p∆j

log s

)p+1

s ds −→
p→∞

∫ 1

0

s2(∆j)
−1+1 ds =

∆j

2 + 2∆j

.

It then follows from (2.6)-(2.9) that

pEp(gp,j) =
2p(p+ 1)

p− 1

∫
Ap,j

|∇gp,j|2 ≤ 5π(∆j)
−1e−2(αj−1+αj)

if p is large enough. This concludes the proof. �

Remark 2.2. Note that minj≤K ∆j → 0 as K → ∞. Thus, the energy
estimate (2.1) is not independent of K.

As a consequence of Proposition 2.1 and of Theorem 1.2 of [4] we
can show a nice variational characterization of the radial solutions up,K
of (1.2).
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Proposition 2.3. We have

(2.10) Ep(up,K) = inf
V⊂H1

0,r(Ω)
dim(V )≥K

sup
v∈V

Ep(v) .

Proof. Denoting by χ1, χ2, . . . , χK the K the characteristic functions
associated to the K disjoint nodal regions of up,K, set u

j
p,K = up,K χj and

define VK as the subspace generated by {ujp,K}j≤K. Since E(tujp,K) ≤
E(ujp,K) for all t ∈ R, we have that

Ep

( K∑
j=1

tju
j
p,K

)
≤

K∑
j=1

Ep(up,K) = Ep(up,K).

From (2.2) we get that βj ≤ Ep(uj). The reverse inequality was ob-
tained in the proof of Proposition 2.1 and so (2.10) holds. �

Since for general domains Ω there could be more solutions having
the same number of nodal regions but different energy, as it is the case
when Ω is a ball (see [2]), a characterization of type (2.10) does not
hold for general stationary solutions in H1

0 (Ω).
Let now εp,K be such that

(2.11) ε−2
p,K = pup,K(0)

p−1

and set

(2.12) 0 < rp,K,1 < rp,K,2 < · · · < rp,K,K−1 < 1

the nodal radii of up,K(|x|) = up,K(r), r = |x|, in the ball.

Proposition 2.4. We have the following.

i) ∥up,K∥L∞(Ω) = up,K(0).
ii) There exist c > 0 and C(K) > 0 such that c ≤ up,K(0) ≤ C(K)

for all p > 1.
iii)

rp,K,1

εp,K
−→
p→∞

∞.

iv)
∥up,K∥L∞({|x|≥rp,K,1})

up,K(0)
−→
p→∞

ϑ < 1
2
.

Proof. Considering up,K as a function of r = |x|, it satisfies

u′′p,K +
N − 1

r
u′p,K + |up,K|p−1up,K = 0.

Multiplying the equation by u′p,K, we get that F ′(r) ≤ 0, where

(2.13) F (r) =
1

2
|u′p,K|2 +

1

p+ 1
|up,K|p+1.

Thus F is nonincreasing. In particular, F (0) ≥ F (r) for all r ≥ 0,
which implies that ∥up,K∥L∞(Ω) = up,K(0). This also implies that the
absolute values Mj, j = 1, 2, . . . ,K, of the local maxima of each nodal
region of up,K decrease with j.
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We next prove the lower bound in ii). Let us recall that this was
shown to be true in Lemma 2.3 of [14] for the case K = 2 of two nodal
regions. This yields the result for general K, since up,K(0) > up,2(0).
Indeed, for j < K

(2.14) up,j(r) = r
2

p−1

p,K,jup,K(rp,K,jr).

Taking j = 2, we get up,K(0) = r
− 2

p−1

p,K,2 up,2(0) > up,2(0).
To obtain the upper bound, we see from (2.14) for j = 1 and from

Proposition 2.1 that

(2.15) p

∫ 1

0

up+1
p,1 (r)r dr = pr

2(p+1)
p−1

p,K,1

∫ 1

0

up+1
p,K (rp,K,1r)r dr =

pr
4

p−1

p,K,1

∫ rp,K,1

0

up+1
p,K (s)s ds < pr

4
p−1

p,K,1

∫ 1

0

up+1
p,K (s)s ds ≤ Cr

4
p−1

p,K,1.

for some C = C(K). We next recall that

(2.16) lim
p→∞

p

∫ 1

0

up+1
p,1 (r)r dr =

1

2π
lim
p→∞

p

∫
Ω

up+1
p,1 dx = 4e,

see [1]. Using (2.15) and (2.16) we conclude that r
2

p−1

p,K,1 is uniformly
bounded from below. Finally, we note from (2.14) that

(2.17) r
2

p−1

p,K,1 =
up,1(0)

up,K(0)
.

Since up,1(0) →
√
e, see [1], we conclude that up,K(0) is uniformly

bounded from above. This completes the proof of ii).
To show iii), we use once again (2.14) to write that

(2.18) rp,K,1 = rp,K,2rp,2,1

and that

(2.19) u
p−1
2

p,K = u
p−1
2

p,2 r
−1
p,K,2.

From (2.18) and (2.19) we get

(2.20)
rp,K,1

εp,K
=

√
p rp,K,1u

p−1
2

p,K (0) =
√
p rp,2,1u

p−1
2

p,2 (0) =
rp,2,1
εp,2

.

Thus the result for general K follows from the one for K = 2, which
was proven in Proposition 2.7 of [14].

It remains to show iv). Since the absolute values of the local maxima
of each nodal region of up,K decrease, it follows easily from (2.14) that
the quotient in iv) does not depend on K. For K = 2, iv) was proven
in Theorem 2 of [14]. This closes the proof. �

The next proposition gives a meaning to the statement that the Lane
Emden problem has the Liouville problem as a limit.
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Proposition 2.5. Define the rescaled function

zp,K =
p

up,K(0)
(up,K(εp,K x)− up,K(0)),

over the rescaled domain Ωεp,K = ε−1
p,KΩ and set zp,K = 0 outside Ωεp,K.

Then

(2.21) zp,K −→
C1

loc(R2)
z∗ ,

where

(2.22) z∗ = log
(
(1 +

1

8
|x|2)−2

)
.

is the unique regular solution to the Liouville problem

(2.23)

{
−∆ z = ez in R2∫
R2 e

z < +∞, z(0) = |∇z(0)| = 0.

Proof. The proof is similar to that of Theorem 2 in [13]. We outline
the main steps for the reader’s convenience. Using (2.11) it is easy to
see that zp,K solves

−∆zp,K =
∣∣∣1 + zp,K

p

∣∣∣p−1(
1 +

zp,K
p

)
in Ωεp,K ,

with |1 +
zp,K
p
| ≤ 1. By standard regularity theory it follows that

zp,K is uniformly bounded in C2
loc(R2) and hence (2.21) holds with z∗

satisfying (2.23). Note that the uniform estimate of the energy obtained
in Proposition 2.1 yields that

∫
R2 e

z < +∞ (see the proof of Theorem 2
in [13] for details) and (2.22) follows by the classification of the solutions
to (2.23). �
Remark 2.6. Here is another argument for the proof of Proposition 2.5.
It follows from (2.14), (2.17) and (2.11) that zp,K = zp,1 in Ωεp,1. This
yields (2.21) for general K, since the case of positive solutions K = 1
was shown to be true in [1].

3. Asymptotic spectral analysis

As discussed in Section 2, an appropriate rescaling of up,K converges
to the solution of the Liouville problem (2.23). In this section we
consider the corresponding linearizations of the Lane Emden and of
the Liouville problems and study their connections.

We first discuss the linearization of the limit problem. For v ∈
H2(R2) define

L∗(v) = −∆v − ez
∗
v.

Consider the Rayleigh functional

R(w) =

∫
R2

(
|∇w|2 − ez

∗
w2

)
dx
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for w ∈ H1(R2) and define

(3.1) λ∗1 = inf
∥w∥L2(R2)=1

R(w) .

We remark that λ∗1 > −∞, since ez
∗
is bounded.

Proposition 3.1. We have the following.

i) λ∗1 < 0.
ii) Every minimizing sequence of (3.1) has a subsequence which

strongly converges in L2(R2) to a minimizer.
iii) There exists a unique positive minimizer φ∗

1 to (3.1) which is ra-
dial and radially nonincreasing. Moreover, λ∗1 is an eigenvalue
of L and φ∗

1 is an eigenvector associated to λ∗1.

Proof. A direct computation gives that ez
∗ ∈ H1(R2) and that

R(ez
∗
) = −1

2

∫
R2

e3z
∗
= −4π

5
,

so that λ∗1 is negative. This gives i).
To prove ii) let wn be a minimizing sequence of (3.1). Clearly, wn

is bounded in H1(R2). Therefore, up to a subsequence, it converges
weakly to some w ∈ H1(R2), and strongly in L2({|x| ≤ R}) for every
R > 0. The weak lower semicontinuity of the norm gives∫

R2

|∇w|2 ≤ lim inf
n→∞

∫
R2

|∇wn|2 and ∥w∥L2(R2) ≤ 1 .

Moreover, exploiting the decay properties of ez
∗
, we get∣∣∣ ∫

R2

ez
∗
(w2

n − w2)
∣∣∣ ≤ ∫

R2

ez
∗ |w2

n − w2| =∫
{|x|≤R}

ez
∗|w2

n − w2| +
∫
{|x≥R|}

ez
∗ |w2

n − w2|

≤ C ∥wn − w∥L2(|x|≤R) +
C

R4
,

yielding ∫
R2

ez
∗
w2

n →
∫
R2

ez
∗
w2 .

Therefore R(w) ≤ λ∗1, so that w ̸= 0. Letting

ŵ =
w

∥w∥L2(R2)

,

we have

λ∗1 ≤ R(ŵ) =
R(w)

∥w∥2L2(R2)

≤ λ∗1
∥w∥2L2(R2)

≤ λ∗1.

Hence ∥w∥L2(R2) = 1 and w is a minimizer. This also allows us to
deduce that wn converges to w in L2(R2) so that ii) holds.

The proof of iii) now uses standard arguments, including a rearrange-
ment procedure (see [17]). �
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We next consider the linearization of the Lane Emden problem. In
the rest of this paper we fix K ≥ 2 and we denote for simplicity up,K,
εp,K, etc. by up, εp, etc. Define for v ∈ H2(Ω)

Lp(v) = −∆v − p|up|p−1v.

We denote by λ1(p) the first eigenvalue of Lp in Ω and by φ1,p the
corresponding positive eigenfunction normalized such that φ1,p > 0
and ∥φ1,p∥L2(Ω) = 1. In particular, we have

(3.2) −∆φ1,p − p|up|p−1φ1,p = λ1(p)φ1,p.

Moreover, λ1(p) < 0 for any p > 1, as it is easy to verify. Let us define
φ̃1,p by

φ̃1,p = εp φ1,p(εp x) in Ωεp ,

φ̃1,p = 0 outside Ωεp , εp being given by (2.11). Then φ̃1,p satisfies

−∆φ̃1,p = Ṽp φ̃1,p + λ̃1(p)φ̃1,p in Ωεp ,

where

(3.3) Ṽp(x) =
|up(εp x)|p−1

up(0)p−1
=

∣∣∣∣1 + zp
p

∣∣∣∣p−1

and

(3.4) λ̃1(p) = ε2pλ1(p).

In other words, φ̃1,p is a first eigenfunction of the operator

(3.5) L̃p = −∆− Ṽp I

in L2(Ωεp) with D(L̃p) = H2(Ωεp) ∩ H1
0 (Ωεp), λ̃1(p) being the corre-

sponding first eigenvalue.
Extending φ̃1,p ≡ 0 outside Ωεp , we have the following.

Lemma 3.2. The set {φ̃1,p, p > 1} is bounded in H1
r (R2).

Proof. We have that ∥φ̃1,p∥L2(R2) = 1. In addition, since λ̃1(p) is nega-
tive and ∥up∥L∞(Ω) = up(0),∫

R2

|∇φ̃1,p|2 = ε4p

∫
Ωεp

|∇φ1,p|2(εp x) = ε2p

∫
Ω

|∇φ1,p|2 =

= ε2p p

∫
Ω

|up|p−1φ2
1,p + ε2p λ1(p)

∫
Ω

φ2
1,p

≤ ε2p p

∫
Ω

|up|p−1φ2
1,p =

1

up(0)p−1

∫
Ω

|up|p−1φ2
1,p ≤ 1 .

�
Remark 3.3. Applying Strauss Lemma [22] for radial functions of
H1

r (R2), we see from Lemma 3.2 that φ̃1,p(x) → 0 as |x| → ∞ uni-
formly in p and r = |x|.

We are now ready to discuss the convergence of the eigenvalues λ̃1(p).
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Theorem 3.4. We have

(3.6) λ̃1(p) −→
p→+∞

λ∗1 .

Proof. We divide the proof in two steps.

Step 1 : For ϵ > 0 we have

λ∗1 ≤ λ̃1(p) + ϵ for p sufficiently large.

To prove this, we see that λ∗1 ≤ R(φ̃1,p), since ∥φ̃1,p∥L2(R2) = 1. Thus,

λ∗1 ≤
∫
R2

|∇φ̃1,p|2 − ez
∗
φ̃2
1,p =

∫
Ωεp

|∇φ̃1,p|2 − Ṽp φ̃
2
1,p −

∫
Ωεp

(
ez

∗ − Ṽp
)
φ̃2
1,p

= λ̃1(p)−
∫
Ωεp

(
ez

∗ − Ṽp
)
φ̃2
1,p

= λ̃1(p)−
∫
|x|<R

(
ez

∗ − Ṽp
)
φ̃2
1,p −

∫
R<|x|<ε−1

p

(
ez

∗ − Ṽp
)
φ̃2
1,p

(3.7)

where R > 0. Using Hölder’s inequality, (2.1), (2.11) and (2.22) we get∫
R<|x|<ε−1

p

|ez∗ − Ṽp|φ̃2
1,p ≤ ∥ez∗∥L∞({|x|≥R})+

C∥φ̃1,p∥2L∞({|x|≥R}) (up(0))
−(p−1)

{∫
R<|x|<ε−1

p

up(εpx)
p+1

} p−1
p+1

ε
− 4

p+1
p

≤ 64R−4 + C∥φ̃1,p∥2L∞({|x|≥R}) (up(0))
−(p−1)

(E
p

) p−1
p+1
ε−2
p

= 64R−4 + C∥φ̃1,p∥2L∞({|x|≥R}) E
p−1
p+1 p

2
p+1 .

Using that ∥φ̃2
1,p∥L∞({|x|≥R}) → 0 as R → ∞ uniformly in p, see Re-

mark 3.3, and ii) of Proposition 2.4, we may fix R large enough so
that

(3.8)

∫
R<|x|<ε−1

p

|ez∗ − Ṽp|φ̃2
1,p ≤ ϵ/2

for all p > 1. By (2.21) we get that Ṽp = (1 + zp
p
)p−1 converges uni-

formly to ez
∗
on compact sets. In this way, for R fixed as above and p

sufficiently large

(3.9)

∫
|x|≤R

|ez∗ − Ṽp|φ̃2
1,p ≤ ϵ/2.

Step 1 then follows from (3.7), (3.8) and (3.9).

Step 2: Given ϵ > 0, we have that

λ̃1(p) ≤ λ∗1 + ϵ for p sufficiently large.
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To prove this, let us consider for R > 0 a cut-off regular function
ψR(x) = ψR(r) such that

- 0 ≤ ψR ≤ 1 with ψR = 1 for r ≤ R and ψR = 0 for r ≥ 2R,
- |∇ψR| ≤ 2/R

and set

wR =
ψR φ

∗
1

∥ψR φ∗
1∥L2(R2)

.

We take R such that the ball of radius 2R is contained in Ωεp . Since
Ωεp converges to the whole space as p tends to infinity, we can assume
that R is arbitrarily large for p large enough.
From the variational characterization of λ̃1(p) we deduce that

λ̃1(p) ≤
∫
R2

|∇wR|2 − Ṽpw
2
R

=

∫
R2

|∇wR|2 − ez
∗
w2

R +

∫
R2

(ez
∗ − Ṽp)w

2
R

(3.10)

for all p > 1. It is easy to see that wR → φ∗
1 in H1(R2) as R → ∞.

Therefore, given ϵ > 0 we can fix R > 0 such that

(3.11)

∫
R2

|∇wR|2 − ez
∗
w2

R ≤ λ∗1 + ϵ .

For such a fixed value of R, we can argue as in Step 1 to obtain that

(3.12)

∫
R2

(ez
∗ − Ṽp)w

2
R ≤ ϵ

for p large enough. Now (3.10), (3.11) and (3.12) yield Step 2.
Assertion (3.6) follows from Step 1 and Step 2.

�
We may now prove the convergence of the eigenfunctions φ̃1,p.

Corollary 3.5. φ̃1,p strongly converges to φ∗
1 in L2(R2).

Proof. Theorem 3.4 shows that φ̃1,p is a minimizing sequence for (3.1),
and so the result follows by ii) and iii) of Proposition 3.1. �

4. Proof of Theorem 1.1

We start with the

Proof of Theorem 1.3. Using φ1,p ∈ H1
0 (Ω) as a test function in (1.2)

gives ∫
Ω

∇up · ∇φ1,p =

∫
Ω

|up|p−1up φ1,p ,

while using up as a test function in (3.2) yields∫
Ω

∇up · ∇φ1,p =

∫
Ω

p|up|p−1up φ1,p + λ1(p)

∫
Ω

up φ1,p .
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Subtracting the first equation from the second we obtain

p− 1

−λ1(p)

∫
Ω

|up|p−1up φ1,p =

∫
Ω

up φ1,p .

We may therefore study the sign of
∫
Ω
|up|p−1up φ1,p which is equivalent

to studying the sign of

1

up(0)p εp

∫
Ω

|up|p−1up φ1,p .

In order to prove the result, we will show that

(4.1)
1

up(0)p εp

∫
Ω

|up|p−1up φ1,p −→
p→∞

∫
R2

ez
∗
φ∗
1 > 0 as p→ ∞.

To do so, we take ϵ > 0 and choose R > 0 such that

(4.2)

∫
|x|≥R

ez
∗
φ∗
1 ≤ ϵ .

We then write

1

up(0)p εp

∫
Ω

|up|p−1up φ1,p =
1

up(0)p

∫
Ωεp

|up(εp x)|p−1up(εp x) φ̃1,p(x)

=
1

up(0)p

∫
|x|<R

|up(εp x)|p−1up(εp x) φ̃1,p(x)

+
1

up(0)p

∫
R<|x|<ε−1

p

|up(εp x)|p−1up(εp x) φ̃1,p(x).

(4.3)

Using the decay properties of φ̃1,p, see Remark 3.3, we may take R
eventually larger so that

1

up(0)p

∫
R<|x|<ε−1

p

|up(εp x)|p φ̃1,p

≤ C∥φ̃1,p∥L∞({|x|≥R})
1

up(0)p

(∫
R<|x|<ε−1

p

|up(εp x)|p+1
) p

p+1
ε
− 2

p+1
p

≤ C∥φ̃1,p∥L∞({|x|≥R})
1

up(0)p

(∫
Ω

|up|p+1
) p

p+1
ε−2
p

≤ C∥φ̃1,p∥L∞({|x|≥R})
1

up(0)
p

1
p+1E

p
p+1 ≤ ϵ

(4.4)

for all p > 1, where we have used (2.1), ii) of Proposition 2.4, (2.11),
Hölder’s inequality and a change of variables for the integration.

Moreover, (3.3), (2.21) and Corollary 3.5 yield∣∣∣ ∫
|x|≤R

(up(εp x)
up(0)

)p

φ̃1,p −
∫
|x|≤R

ez
∗
φ∗
1

∣∣∣
=

∣∣∣ ∫
|x|≤R

(
1 +

zp
p

)p

φ̃1,p −
∫
|x|≤R

ez
∗
φ∗
1

∣∣∣ ≤ ϵ

(4.5)
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for p eventually larger. Thus (4.1) is a consequence of (4.2)-(4.5). �

We finish by proving our main result.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theo-
rem 1.3 and Proposition 1.2. �
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