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Abstract The behavior of the “minimal branch” is investigated for quasilinear eigenvalue
problems involving the p-Laplace operator, considered in a smooth bounded domain of R

N ,
and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very
general class and the results we present are new even for p = 2. Due to the degeneracy of
p-Laplace operator, for p �= 2 it is crucial to define a suitable notion of semi-stability: the
functional space we introduce in the paper seems to be the natural one and yields to a spectral
theory for the linearized operator. For the case p = 2, compactness is also established along
unstable branches satisfying suitable spectral information. The analysis is based on a blow-up
argument and stronger assumptions on the nonlinearity f (u) are required.

Mathematics subject classification 35B35 · 35B45 · 35J70 · 35J60

1 Introduction and statement of main results

We deal with the analysis of solutions to the boundary value problem:
⎧
⎨

⎩

−�pu = −div
(|∇u|p−2∇u

) = λh(x) f (u) in �
0 < u < 1 in �
u = 0 on ∂�,

(1.1)
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280 D. Castorina et al.

where p > 1, � ⊂ R
N is a smooth bounded domain, λ ≥ 0 is a parameter and

h(x) : �̄ → (0,+∞) is an Hölder continuous function. Throughout the paper, the non-
linearity f (u) will be always assumed to be a non-decreasing, positive function defined on
[0, 1) with a singularity at u = 1:

lim
u→1− f (u) = +∞. (1.2)

Nonlinear eigenvalue problems as (1.1) with p = 2 and f (u) a smooth nonlinearity
unbounded at +∞: lim

u→+∞ f (u) = +∞, have been largely studied in last thirty years.

Since the pioneering work of Crandall and Rabinowitz [8] for f (u) = eu , there has been an
intensive investigation to recover general smooth f (u). Let us set up the problem in order to
explain the contributions already available in literature. Let f : [0,+∞) → (0,+∞) be a

smooth non-decreasing function so that lim inf
u→+∞

f (u)

u
> 0. By Implicit Function Theorem,

there is a unique curve of positive solutions uλ of (1.1) branching off u = 0, for λ small. It
is possible to define the extremal parameter in the following way:

λ∗ = sup{λ > 0 : (1.1) has a positive classical solution}, (1.3)

and show that λ∗ < +∞. Since f (0) > 0, u = 0 is a subsolution of (1.1). By the method
of sub/super solutions, the set of λ for which (1.1) is solvable coincides exactly with [0, λ∗),
and the associated iterative scheme provides a minimal solution uλ (i.e. the smallest positive
solution of (1.1) in a pointwise sense), for any λ ∈ [0, λ∗). Moreover, the family {uλ} is
non-decreasing in λ, and uλ is a semi-stable solution of (1.1) in the sense:

µ1(uλ) := inf

⎧
⎨

⎩

∫

�

|∇φ|2 − λh(x) ḟ (uλ)φ
2 : φ ∈ H1

0 (�),

∫

�

φ2 = 1

⎫
⎬

⎭
≥ 0. (1.4)

The main issues in such a topic are the following:
(1) compactness of the minimal branch uλ

sup
λ∈[0,λ∗)

‖uλ‖∞ < +∞ (1.5)

to guarantee that u∗ = lim
λ↑λ∗ uλ -the so-called extremal solution- is a classical solution of (1.1)

with λ = λ∗;
(2) study of u∗ when compactness (1.5) along the minimal branch fails.
In general, u∗ is a weak and still semi-stable solution: µ1(u∗) ≥ 0 (defined as in (1.4)). In
the non compact situation, u∗ can be also computed explicitly in some special cases (see
[3,4]). When compactness holds, let us stress that µ1(u∗) = 0 to prevent the continuation of
the branch uλ for λ > λ∗. In such a case (see [8]), by Implicit Function Theorem there is a
second curve Uλ, different from uλ, branching off u = u∗ for λ in a small left neighborhood
of λ∗. The solutions Uλ turn out to be unstable, with Morse index one.

The validity of (1.5) depends on the dimension N and the nonlinearity f (u): there is
a critical “dimension” N # ∈ R so that compactness holds when N < N # and fails when
N ≥ N # (for some h(x) and�). In [8,21], the critical dimension for the most typical examples
f (u) = eu and f (u) = (1 + u)m are computed explicitly: N # = 10 when f (u) = eu and
N # ≥ 11 when f (u) = (1 + u)m (the expression of N # in this case is rather involved). In
[19], a thorough ODE analysis of solutions is achieved when� is a ball, h(x) = 1 and f (u)
as above.
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Degenerate elliptic equations with singular nonlinearities 281

For convex nonlinearities f (u) so that lim
u→+∞

f (u)

u
= +∞, it is a long standing conjecture

that the critical dimension should satisfy N # > 9 no matter f (u) is. The first contribution is
due to Crandall and Rabinowitz in [8] who prove, under the additional assumption:

0 < γ = lim inf
u→+∞

f (u) f̈ (u)

ḟ 2(u)
≤ lim sup

u→+∞
f (u) f̈ (u)

ḟ 2(u)
= γ1 < ∞,

that (1.5) holds for any N < 4 + 2γ + 4
√
γ , provided γ1 < 2 + √

γ + γ . Recently, Ye
and Zhou in [28] have improved Crandall-Rabinowitz statement: compactness holds for any
N < 6 + 4

√
γ , where

γ = lim inf
u→+∞

f (u) f̈ (u)

ḟ 2(u)
> 0. (1.6)

Let us remark that the critical dimension found by Ye and Zhou is 10 when f (u) = eu .
While, for f (u) = (1 + u)m the dimension is not optimal but the optimal one can be easily
recasted by a bootstrap argument. Without additional assumption, Nedev in [22] shows the
validity of (1.5) for N = 2, 3 and Cabré in [5] has announced the result for N = 4. When
restricting the problem to radial solutions on the ball (with h(x) = 1 for example), in [6]
Cabré and Capella show compactness for any N < 10 and possibly non-convex f (u).

Problem (1.1) for a singular nonlinearity f (u) = (1 − u)−m , m > 0, has been firstly
considered by Joseph and Lundgreen in [19] in a radial setting. The analysis of the minimal
branch uλ has been pursued in [17,21] and the associated critical dimension has been com-
puted. In [12,14] compactness of any unstable branch of solutions to (1.1) with uniformly
bounded Morse indices is shown. The study in [12,14,17] is motivated by the theory of
so-called MEMS devices and is focussed on f (u) = (1 − u)−2.

A MEMS device (Micro-Electro Mechanical System) is composed by a thin dielectric
elastic membrane held fixed on ∂� (at level 0) placed below an upper plate (at level 1). An
external voltage is applied, whose strength is measured by λ. The membrane deflects toward
the upper plate, measured by u(x) at any point x ∈ �, and the deflection increases as λ
increases. For an extremal λ∗, the membrane could touch the upper plate: max

�
u = 1, and

the MEMS device would break down. The function h(x) -referred to as permittivity profile-
is directly related to the dielectricity of the membrane at the point x ∈ �. Problem (1.1) with
p = 2 and f (u) = (1 − u)−2 arises as a model equation to describe MEMS devices theory.
We investigate here problem (1.1) for general p > 1 and nonlinearities f (u), singular at
u = 1, with growth comparable to (1 − u)−m , m > 0. We refer the interested reader to [23]
for a complete account on this theory.

The difficulty is twofold. On one side, we allow more general functions f (u) and the
right assumption (in the spirit of [8,28]) has to be understood. On the other side, the
p-Laplace operator is a nonlinear degenerate operator. Problem (1.1) for general p > 1
has been considered in [15,16] for f (u) = eu and in [7] for f (u) of polinomial-type growth.
We will borrow some ideas and techniques from [7] to deal with singular nonlinearities, and
some of their arguments will be refined here.
According to [11,20,26], Hölder continuity of first derivatives holds for any weak solution
of (1.1) with ‖ f (u)‖∞ < +∞. Hence, we will say that u is a classical solution of (1.1) if u
has Hölder continuous first derivatives, 0 < u < 1 in �, u = 0 on ∂� and u solves (1.1) in
a weak sense:

∫

�

|∇u|p−2∇u∇φ = λ

∫

�

h(x) f (u)φ, ∀ φ ∈ W 1,p
0 (�). (1.7)
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282 D. Castorina et al.

Let u be a classical solution of (1.1). The linearization of (1.7) is not possible along every
direction in W 1,p

0 (�), when 1 < p < 2, while it is possible not only along directions in

W 1,p
0 (�), when p > 2. Then, the choice of a functional space Au , composed by admissible

directions for which the linearization makes sense, is crucial. The stability of a minimal
solution will be easier to establish as smaller the space Au is. However, the class Au should
allow the choice of suitable test functions in order to prove a-priori energy estimates for
semi-stable solutions.

In [7], the authors find a good candidate for Au , which however does not allow a spectral
theory for the “linearized operator”. We present here a different and more natural way to
overcome the problem, by taking a space Au larger than in [7].

Letting ρ = |∇u|p−2, we introduce a weighted L2-norm of the gradient:

|φ| = (∫

�
ρ|∇φ|2) 1

2 . For 1 < p ≤ 2, Au is the following subspace of H1
0 (�):

Au = {φ ∈ H1
0 (�) : |φ| < +∞}.

Since
∫

�
|∇φ|2 ≤ ‖∇u‖2−p∞ |φ|2, (Au, | · |) is an Hilbert space.

For p > 2, the weight ρ is in L∞(�) and satisfies ρ−1 ∈ L1(�), as shown in [9].
According to [27], the space

H1
ρ (�) = {φ ∈ L2(�) weakly differentiable : |φ| < +∞}

is an Hilbert space and is the completion of C∞(�) with respect to the | · |-norm. For p > 2,
the Hilbert space Au is the closure of C∞

0 (�) in H1
ρ (�).

For convenience, we replace the | · |-norm with the equivalent norm ‖φ‖ =< φ, φ >
1
2 ,

where

< φ,ψ >=
∫

�

|∇u|p−2∇φ∇ψ + (p − 2)|∇u|p−2
( ∇u

|∇u| · ∇φ
)( ∇u

|∇u| · ∇ψ
)

.

For any p > 1, the Hilbert space Au is non-empty: u ∈ Au , and is compactly embedded in
L2(�), as we will derive in Appendix from the weighted Sobolev estimates of [10]. A first
eigenfunction for the “linearized operator” then exists in Au :

Theorem 1.1 Let u be a classical solution of (1.1). The infimum

µ1(u) := inf
φ∈Au\{0}

‖φ‖2 − λ
∫

�
h(x) ḟ (u)φ2

∫

�
φ2

is attained at some positive function φ1, and any other minimizer is proportional to φ1.

For our purposes, Theorem 1.1 is sufficient even if we guess a full spectral theory for the
“linearized operator” to be in order. Once a right stability notion has been introduced, we
show that the known results about the minimal branch are still available:

Theorem 1.2 Let p > 1. Let f (u) be a non-decreasing, positive function on [0, 1) so that
(1.2) holds. There exists λ∗ ∈ (0,+∞) so that, for any λ ∈ (0, λ∗), (1.1) has a unique
minimal (classical) solution uλ and, for any λ > λ∗ no classical solution of (1.1) exists. The
following upper bound holds:

λ∗ ≤ f (0)−1(inf
�

h)−1λ1, (1.8)

where λ1 > 0 is the first eigenvalue of −�p. Moreover, the family {uλ} is non-decreasing in
λ and composed by semi-stable solutions: µ1(uλ) ≥ 0.
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Degenerate elliptic equations with singular nonlinearities 283

We are now concerned with compactness issues and, in the spirit of (1.6), we assume on
f (u):

lim inf
u→1−

f (u) f̈ (u)

ḟ 2(u)
= γ >

p − 2

p − 1
, lim inf

u→1−
ln f (u)

ln 1
1−u

= m > 0. (1.9)

Set

N # =

⎧
⎪⎨

⎪⎩

mp
p+m−1

(
γ + 2

p−1 + 2
p−1

√
2 − p + γ (p − 1)+ (

γ − 1 − 1
m

)

−
)

if 1 < p ≤ 2

mp
p+m−1

(
γ + 2

p−1 + 2
p−1

√
2 − p + γ (p − 1)

)
if p > 2,

(1.10)

where u− = |u|−u
2 is the negative part of u. The result we have is:

Theorem 1.3 Let p > 1 and f (u) be a non-decreasing, positive function on [0, 1) so that
(1.9) holds. When 1 < p < 2 assume the convexity of f (u) near u = 1. Then

sup
λ∈[0,λ∗)

‖uλ‖∞ < 1, (1.11)

provided N < N #.

Remark 1.4 (1) Assumption γ > p−2
p−1 is necessary to obtain that (q−, q+)∩ (− min{γ, 1},

+∞) �= ∅ in the basic integral estimate (3.30). In analogy with [22] it could be interesting
to consider the case γ = p−2

p−1 when p ≥ 2 (as in [25] for regular nonlinearities f (u)).
However, when p = 2 Nedev result [22] applies for N = 2, 3 and can not be seen as
the limiting case of Ye-Zhou result [28] because lim

γ→0
(6 + 4

√
γ ) = 6. We are interested

here in obtaining the maximal regularity we can (depending on γ ) and we will consider
only the case γ > p−2

p−1 .

(2) Let us stress that the critical dimension N # given in (1.10) has a jump discontinuity at
p = 2 for γ < 1 + 1

m : the method we will use (inspired by [28]) leads to stronger
estimates when 1 < p ≤ 2 and is based on the convexity of f (u) near u = 1. The
case 1 < p < 2 and p−2

p−1 < γ ≤ 0 could also be considered (as in [24] for regular
nonlinearities f (u)) but this improved approach could not be used.

(3) Let us discuss assumption (1.9). Observe that, for singular polinomial nonlinearities
f (u) = (1 − u)−m , there is a relation among m and γ : γ = 1 + 1

m . In general, m and γ
are not related, as the following convex nonlinearity shows:

f (u) = (1 − u)−h(u), h(u) = m2−m1

2
sin

{

ε ln

[

1 + ln

(

1 + ln
1

1−u

)]}

+ m1+m2

2
,

where ε > 0 small and 0 < m1 < m2 < ∞. Observe that h(u) oscillates taking
all the values in [m1,m2]. Since |ḣ(u) ln 1

1−u | ≤ ε
2

m2−m1
1−u , for ε small there holds:

ḟ (u) = f (u)(ḣ(u) ln 1
1−u + h(u)

1−u ) > 0 for any u ∈ [0, 1) (note that f (u) = eh(u) ln 1
1−u ).

Since |ḧ(u) ln 1
1−u | + 2| ḣ(u)

1−u | ≤ 3ε m2−m1
(1−u)2

, for ε small we get:
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284 D. Castorina et al.

f̈ (u) = ḟ 2(u)
f (u) + f (u)(ḧ(u) ln 1

1−u + 2 ḣ(u)
1−u + h(u)

(1−u)2
) > 0 for any u ∈ [0, 1), and

γ = lim inf
u→1−

f (u) f̈ (u)

ḟ 2(u)
= 1 + lim inf

u→1−

ḧ(u) ln 1
1−u + 2 ḣ(u)

1−u + h(u)
(1−u)2

(
ḣ(u) ln 1

1−u + h(u)
1−u

)2

= 1 + lim inf
u→1−

1

h(u)
= 1 + 1

m2
.

Since lim inf
u→1−

ln f (u)

ln 1
1−u

= lim inf
u→1− h(u) = m1, the values of m and γ in (1.9) are indepen-

dent.
Moreover, this example features a general property (based on the validity of (1.2)):

(

lim inf
u→1−

ln f (u)

ln 1
1−u

)−1

≤ lim sup
u→1−

f (u) f̈ (u)

ḟ 2(u)
− 1,

(

lim sup
u→1−

ln f (u)

ln 1
1−u

)−1

≥ lim inf
u→1−

f (u) f̈ (u)

ḟ 2(u)
− 1. (1.12)

In strong analogy, let us remark that (1.6) on [0,+∞) implies:

(

lim inf
u→+∞

ln f (u)

ln u

)−1

≤ 1 − lim inf
u→+∞

f (u) f̈ (u)

ḟ 2(u)
.

Unfortunately, to establish energy estimates we need an assumption on lim inf
u→1−

f (u) f̈ (u)

ḟ 2(u)
,

which does not imply any control on lim inf
u→1−

ln f (u)

ln 1
1−u

. It explains somehow why we need

to strengthen assumption (1.6) on [0,∞) when considering nonlinearities on [0, 1).

When (1.11) holds, the extremal function u∗ = lim
λ↑λ∗ uλ is so that: max

�
u∗ < 1. Since

‖ f (u∗)‖∞ < ∞, by regularity theory u∗ is a classical solution of (1.1) with λ = λ∗. Since
u∗ is the minimal solution, µ1(u∗) ≥ 0. When p = 2, the Implicit Function Theorem
provides µ1(u∗) = 0 and, following the classical argument of [8], there is δ > 0 so that, for
any λ ∈ (λ∗ − δ, λ∗), a second solution Uλ of (1.1) exists so that lim

λ↑λ∗ Uλ = u∗ in C1(�̄).

For the analysis of the second branch Uλ, we will use a blowup approach developed in
[12,14]. In order to identify a limiting equation on R

N and to have some useful information
on such a limit problem, for p = 2 we will require:

lim
u→1−

f (u) f̈ (u)

ḟ 2(u)
= γ > 1 (1.13)

sup
0≤u<1

sup
0≤t≤u

(1 − t)
1

γ−1 f (t)

(1 − u)
1

γ−1 f (u)
= c0 < +∞ (1.14)

lim
u→1− sup

1−M(1−u)≤t≤u

∣
∣
∣
∣
∣

(1 − t)
1

γ−1 f (t)

(1 − u)
1

γ−1 f (u)
− 1

∣
∣
∣
∣
∣
= 0 , ∀ M > 1. (1.15)
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Degenerate elliptic equations with singular nonlinearities 285

By (1.12), the inequality γ ≥ 1 in (1.13) always holds and m = lim
u→1−

ln f (u)

ln 1
1−u

= 1

γ − 1
.

Hence, N # in (1.10) reduces to:

N # = 2(γ + 2 + 2
√
γ )

γ

(in case p = 2). The result we have is:

Theorem 1.5 Let p = 2 and f (u) be a convex, non-decreasing, positive function on [0, 1)
so that (1.13)–(1.15) hold. Let λn ∈ (0, λ∗) be a sequence and un be associated solutions
of (1.1). Assume that un has Morse index at most 1: µ2,n ≥ 0 for any n ∈ N, where
µ2,n = µ2(−�− λnh(x) ḟ (un)) is the 2nd eigenvalue of the linearized operator. Then

sup
n∈N

‖un‖∞ < 1,

provided N <
2(γ+2+2

√
γ )

γ
.

In [12], compactness of a solutions sequence un with uniformly bounded Morse indices
is shown to hold for f (u) = (1 − u)−2, where h(x) is allowed to vanish at pi as |x − pi |αi ,
αi > 0, for i = 1, . . . , k. This is still true in such a more general context but, for the sake of
shortness and simplicity, we will consider in Theorem 1.5 only the case of Morse index one
and h > 0 in �̄. Let us remark that assumptions (1.13)–(1.15) require that f (u) behaves at

main order like (1−u)−
1

γ−1 as u → 1−: an example is given by f (u) = (1−u)−
1

γ−1 ln e
1−u ,

γ > 1.
The paper is organized as follows. In Sect. 2 we illustrate how to adapt standard techniques

to p-Laplace operator. In Sect. 3, we prove energy estimates and see how assumption (1.9)
will allow us to prove Theorem 1.3. Let us stress that, by regularity theory, energy estimates
on uλ can provide useless L∞-bounds on uλ (in our context ‖uλ‖∞ ≤ 1). In particular, the
second assumption in (1.9) will be crucial in our argument. In Sect. 4, we describe the blow up
approach and, by an instability property of the limiting equation, we will derive Theorem 1.5.
Existence of first eigenfunctions as in Theorem 1.1 and some technical Lemmata of Sect. 4
will be proved in the Appendix.

2 Minimal branch

In this section, we will establish Theorem 1.2 ( we refer to [7] for related results). Since the
Implicit Function Theorem does not produce solutions of (1.1) for λ > 0 small and p �= 2,
due to the degeneracy of p-Laplacian, we will use directly the sub/super solutions method.

Since f (0) > 0, u = 0 is a sub-solution of (1.1). In order to produce a positive super-
solution for λ small, let v be the solution of

{−�pv = h(x) f (0) in �
v = 0 on ∂�.

(2.16)

Problem (2.16) has a unique positive solution v ∈ C1(�̄). Let us fix β > 0 small so that
u := βv satisfies ‖u‖∞ < 1. By the monotonicity of f (u), there holds:

−�pu = β p−1h(x) f (0) ≥ λh(x) f (max
�

u) ≥ λh(x) f (u)

for any 0 < λ <
β p−1 f (0)
f (max� u) . Namely, for λ small u is a positive super-solution of (1.1).
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Fix λ > 0 so that (1.1) has a super-solution u: 0 < u < 1 in �. Let u1 ∈ C1(�̄)

be the unique, positive solution of: −�pu1 = λh(x) f (0) in �, u1 = 0 on ∂�. Since
−�pu1 ≤ λh(x) f (u) ≤ −�pu, by the weak comparison principle 0 = u ≤ u1 ≤ u.
Introduce now the following iteration scheme: let un , n ≥ 2, be the unique, positive solution
of {−�pun = λh(x) f (un−1) in �

un = 0 on ∂�.
(2.17)

We want to show that 0 = u ≤ un ≤ u for any n ≥ 1. If such a property holds for some un ,
by the weak comparison principle applied to: −�pun+1 = λh(x) f (un) ≤ λh(x) f (u) ≤
−�pu, we get un+1 ≤ u. Since u1 ≤ u, by induction 0 = u ≤ un ≤ u for any n ≥ 1.
In the same way, un is a non-decreasing sequence: un+1 ≥ un for any n ≥ 1. Set
uλ(x) := limn→+∞ un(x).
Since ‖u‖∞ < 1, for any n ≥ 1 there holds:

∫

�

|∇un |p = λ

∫

�

h(x) f (un−1)un ≤ λ

∫

�

h(x) f (u)u < +∞.

Up to a subsequence, we can assume that un ⇀ uλ weakly in W 1,p
0 (�) and by Lebesgue

Theorem f (un)→ f (uλ) in L1(�), as n → +∞. Since ∇un → ∇uλ in Lq(�), q < p,
as n → +∞ (see [1]), Eq. (2.17) passes to the limit yielding to a classical solution
0 = u ≤ uλ ≤ u of (1.1) (classical in the sense specified in the Introduction). Since
the scheme we defined is independent on u, we get that uλ ≤ u for any super-solution of
(1.1). In particular, uλ defines the unique, positive minimal solution of (1.1).

Resuming what we did, forλ > 0 small a minimal solution uλ exists. Then,λ∗ ∈ (0,+∞],
given as in (1.3), is a well defined number. To establish an upper bound on λ∗, let us compare
(1.1) and {−�pu = βu p−1 in �

u = 0 on ∂�.
(2.18)

Since h(x) f (u) ≥ h(x) f (0) ≥ δu p−1 for any 0 ≤ u < 1, δ = f (0) inf
�

h, a solution u of

(1.1) is a super-solution of (2.18) for β = δλ. Let λ1 be the first eigenvalue of −�p (λ1 is the
least value β > 0 so that (2.18) has a non trivial solution) and let ϕ1 be an associated positive
eigenfunction. For any β ≥ λ1, ϕ1 is a sub-solution of (2.18). By Hopf Lemma and weak
Harnack inequality, ∂νu < 0 on ∂� and u > 0 in �, where ν(x) is the unit outer normal of
∂� at x . Hence, for ε > 0 small, the function εϕ1 is still a first eigenfunction so that εϕ1 < u
in �.

If λ∗ > λ1
δ

, the sub/super solutions method explained above works as well yielding to a
positive eigenfunction ϕβ (ϕβ ≥ εϕ1) with associated eigenvalue β, for any δλ∗ > β > λ1.
Since it is well known that the only positive eigenfunction of −�p is the first one, we reach
a contradiction. Hence (1.8) holds.

Since any classical solution u of (1.1), for some λ = λ̄, is a super-solution of (1.1) for any
0 ≤ λ ≤ λ̄, a super-solution exists for any λ ∈ [0, λ∗). The iterative scheme provides the
existence of a (unique) classical, minimal solution uλ for any λ ∈ [0, λ∗) so that uλ ≤ uλ′
for any 0 ≤ λ ≤ λ′ < λ∗. Next Lemma shows the semi-stability of uλ and complete the
proof of Theorem 1.2:
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Lemma 2.1 Let λ ∈ [0, λ∗) and uλ be the minimal solution of (1.1). Then, uλ is semi-stable:

∫

�

(

|∇uλ|p−2|∇φ|2 + (p − 2)|∇uλ|p−2
( ∇uλ

|∇uλ| · ∇φ
)2

− λh(x) ḟ (uλ)φ
2

)

≥ 0 ∀ φ ∈ Auλ . (2.19)

Proof Let M = {u ∈ W 1,p
0 (�) : 0 ≤ u ≤ uλ a.e.} and F(u) = ∫ u

0 f (s)ds. Since
‖uλ‖∞ < 1, F(u) is uniformly bounded for any u ∈ M: 0 ≤ F(u) ≤ F(uλ) ≤ C < +∞
a.e. in �. Introduce the energy functional:

E(u) = 1

p

∫

�

|∇u|p − λ

∫

�

h(x)F(u), u ∈ M.

The functional E is well defined, bounded from below and weakly lower semi-continuous in
M. Then, it attains the minimum at some u ∈ M: E(u) = inf

v∈M
E(v).

The key idea is to prove: uλ = u. We need only to show that u is a classical positive
solution of (1.1). Indeed, since u ≤ uλ and uλ is the minimal solution, necessarily u = uλ.

Since u minimizes E(v) on the convex set M, the following inequality holds:
∫

�

|∇u|p−2∇u∇(ψ − u)− λ

∫

�

h(x) f (u)(ψ − u) ≥ 0 ∀ ψ ∈ M. (2.20)

Let us introduce the notation

E
′
(v)ϕ =

∫

�

|∇v|p−2∇v∇ϕ − λ

∫

�

h(x) f (v)ϕ

for any v ∈ M and ϕ ∈ W 1,p
0 (�).

Let now ϕ ∈ C∞
0 (�). We use ψε = u + εϕ− (u + εϕ− uλ)+ + (u + εϕ)− ∈ M, ε > 0,

as a test function in (2.20):

0 ≤ E
′
(u)(ψε − u) = εE

′
(u)ϕ − E

′
(u)(u + εϕ − uλ)

+ + E
′
(u)(u + εϕ)−,

and then

E
′
(u)ϕ ≥ 1

ε
E

′
(u)(u + εϕ − uλ)

+ − 1

ε
E

′
(u)(u + εϕ)− (2.21)

holds. Since uλ solves (1.1) and f (u) is non-decreasing, by Lebesgue Theorem we have:

1

ε
E

′
(u)(u + εϕ − uλ)

+ = 1

ε

(
E

′
(u)− E

′
(uλ)

)
(u + εϕ − uλ)+

≥
∫

{uλ≤u+εϕ}

(|∇u|p−2∇u − |∇uλ|p−2∇uλ
)∇ϕ

→
∫

{uλ=u}

(|∇u|p−2∇u − |∇uλ|p−2∇uλ
)∇ϕ (2.22)

as ε → 0+, in view of u ≤ uλ and

(|x |p−2x − |y|p−2 y) · (x − y) > 0 ∀ x, y ∈ R
N , x �= y. (2.23)

123



288 D. Castorina et al.

Recall now that, given u, u′ ∈ W 1,p
0 (�), by Stampacchia’s Theorem it follows that

∇u = ∇u′ a.e. in the set {u = u′}. Therefore ∇u = ∇uλ a.e. in {u = uλ}, and letting
ε → 0+ in (2.22) we get:

lim inf
ε→0+

1

ε
E

′
(u)(u + εϕ − uλ)

+ ≥
∫

{uλ=u}

(|∇u|p−2∇u − |∇uλ|p−2∇uλ
)∇ϕ = 0

for any ϕ ∈ C∞
0 (�). Since 0 is a sub-solution of (1.1), comparing E

′
(u)with E

′
(0), similarly

we have:

lim sup
ε→0+

1

ε
E

′
(u)(u + εϕ)− ≤ −

∫

{u=0}
|∇u|p−2∇u∇ϕ = 0.

Then, by (2.21) we get: E
′
(u)ϕ ≥ 0, for any ϕ ∈ C∞

0 (�). By density we get that u is a non-
negative weak bounded solution of (1.1). By regularity theory and weak Harnack inequality,
u is then a positive classical solution for 0 < λ < λ∗.

Once we have characterized uλ as the minimum point of E(u) in M, we are in a good
position to show semi-stability of uλ. We should differentiate two times E(u) at u = uλ but
a lot of care is needed because E(u) is not a C2-functional. Let 0 ≤ ϕ ∈ C∞

0 (�) ∩ Auλ .
Since uλ is a positive continuous function, uλ ≥ δ > 0 on Supp ϕ and uλ − tϕ ∈ M for
t > 0 small. Compute the first derivative of F(t) = E(uλ − tϕ), for t > 0 small:

Ḟ(t)=−E
′
(uλ − tϕ)ϕ =−

∫

�

(|∇uλ − t∇ϕ|p−2(∇uλ − t∇ϕ)∇ϕ − λh(x) f (uλ − tϕ)ϕ
)
.

Since F(t) ≥ F(0), for t > 0 small, and Ḟ(0) = −E
′
(uλ)ϕ = 0, we have that F̈(0) ≥ 0, if

F̈(0) exists. Let �t = {x ∈ � : 2t |∇ϕ|(x) < |∇uλ|(x)}. Observe that:

I2 : = ∣
∣
∫

�\�t

|∇uλ − t∇ϕ|p−2(∇uλ − t∇ϕ)− |∇uλ|p−2∇uλ
t

∇ϕ∣∣

≤ C ′

⎛

⎜
⎝

∫

�\�t

|∇uλ|p−1

t
|∇ϕ| +

∫

�\�t

t p−2|∇ϕ|p

⎞

⎟
⎠

≤ C

⎛

⎜
⎝

∫

�\�t

|∇uλ|p−2|∇ϕ|2 +
∫

�\�t

|∇ϕ|p

⎞

⎟
⎠ ,

because 1
2 |∇uλ| ≤ t |∇ϕ| and t p−2|∇ϕ|p = (t |∇ϕ|)p−2|∇ϕ|2 ≤ 22−p|∇uλ|p−2|∇ϕ|2 +

|∇ϕ|p in�\�t . Also {|∇uλ| = 0} is a zero measure set (see [9]). Since�\�t → {|∇uλ| = 0}
in measure, as t → 0+, then we have:

�\�t → ∅, �t → � in measure, as t → 0+. (2.24)

Since |∇uλ|p−2|∇ϕ|2 +|∇ϕ|p ∈ L1(�) for any ϕ ∈ C∞
0 (�)∩Auλ , then I2 → 0 as t → 0+.

Compute now:
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I1 :=
∫

�t

|∇uλ − t∇ϕ|p−2(∇uλ − t∇ϕ)− |∇uλ|p−2∇uλ
t

∇ϕ

= −
∫

�t

dx

1∫

0

ds
(|∇uλ − st∇ϕ|p−2|∇ϕ|2

+ (p − 2)|∇uλ − st∇ϕ|p−4(∇uλ∇ϕ − st |∇ϕ|2)2) .

Since C ≥ |∇uλ − st∇ϕ| ≥ |∇uλ| − t |∇ϕ| > |∇uλ|
2 on �t , observe that

|∇uλ − st∇ϕ|p−2|∇ϕ|2 + (p − 2)|∇uλ − st∇ϕ|p−4(∇uλ∇ϕ − st |∇ϕ|2)2
≤ 22−p|∇uλ|p−2|∇ϕ|2 + (p − 1)C p−2|∇ϕ|2 ∈ L1(�)

for any ϕ ∈ C∞
0 (�) ∩ Auλ . By Lebesgue Theorem and (2.24) we get that

I1 → −
∫

�

(

|∇uλ|p−2|∇ϕ|2 + (p − 2)|∇uλ|p−2
( ∇uλ

|∇uλ| · ∇ϕ
)2

)

as t → 0+.
We are now ready to conclude. Since the termλ

∫

�
h(x) f (uλ−tϕ)ϕ in Ḟ(t) is clearly a C1-

function at t = 0, the only difficulty to compute F̈(0) is given by the term∫

�
|∇uλ − t∇ϕ|p−2(∇uλ − t∇ϕ)∇ϕ. The limit of I1, I2 as t → 0+ provides the existence

of F̈(0) and:

F̈(0) =
∫

�

(

|∇uλ|p−2|∇ϕ|2 + (p − 2)|∇uλ|p−2
( ∇uλ

|∇uλ| · ∇ϕ
)2

− λh(x) ḟ (uλ)ϕ
2

)

≥ 0,

(2.25)
for any 0 ≤ ϕ ∈ C∞

0 (�)∩Auλ . For p ≥ 2, by definition of Auλ , C∞
0 (�) is a dense subspace

of Auλ in the ‖ · ‖-norm. Then, inequality (2.25) holds for any 0 ≤ ϕ ∈ Auλ .
This is still true for 1 < p ≤ 2 but more care is needed in the density argument. For 1 < p ≤ 2,
let us observe that (2.25) still holds for any 0 ≤ ϕ ∈ L∞(�) ∩ Auλ with supp ϕ ⊂ �. The

argument to derive (2.25) works as well because Auλ ⊂ H1
0 (�) ⊂ W 1,p

0 (�) for 1 < p ≤ 2.
Finally, let us show that any function 0 ≤ ϕ ∈ Auλ can be approximated in ‖ · ‖-norm by
non-negative, essentially bounded functions ϕn with support in �. Indeed, let ψn ∈ C∞

0 (�)

be so that ψn → ϕ in H1
0 (�). By Hopf Lemma, there holds: |∇uλ| > 0 in �̄\�2δ for some

δ > 0 small, where �δ = {x ∈ � : dist (x, ∂�) > δ}. Let χ be a cut-off function so that
χ = 1 in �2δ and χ = 0 in �\�δ . Define now ϕn = min{χϕ + (1 − χ)ψn, n} ∈ L∞(�).
We have that

∫

�

|∇uλ|p−2|∇(ϕn − ϕ)|2

=
∫

{χϕ+(1−χ)ψn>n}
|∇uλ|p−2|∇ϕ|2 +

∫

{χϕ+(1−χ)ψn≤n}
|∇uλ|p−2|∇(1 − χ)(ψn − ϕ)|2

≤
∫

{χϕ+(1−χ)ψn>n}
|∇uλ|p−2|∇ϕ|2 + C

∫

�\�2δ

(ψn − ϕ)2 + C
∫

�\�2δ

(∇ψn − ∇ϕ)2 → 0
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as n → +∞, because ψn → ϕ in H1
0 (�) and L2(�), and

|{χϕ + (1 − χ)ψn > n}| ≤ 1

n2 sup
n∈N

∫

�

(χϕ + (1 − χ)ψn)
2 → 0

as n → +∞. Hence, 0 ≤ ϕn ∈ L∞(�) ∩ Auλ with supp ϕn ⊂ supp ψn ∩�δ ⊂ �.
Once (2.25) is established for any 0 ≤ ϕ ∈ Auλ , since F̈(0) is a quadratic form in ϕ and

ϕ± ∈ Auλ when ϕ ∈ Auλ , we get that(2.25) holds for any ϕ ∈ Auλ . The proof is done. ��

3 Compactness of minimal branch

In this section, we will prove Theorem 1.3. Let us assume

f (u) f̈ (u) ≥ γ ḟ 2(u) ∀ t ≤ u < 1, (3.26)

for some t = tγ ∈ (0, 1), where γ > p−2
p−1 if p ≥ 2 and γ ≥ 0 if 1 < p < 2. Observe that in

particular γ > p−2
p−1 .

For suitable test functions, semi-stability of uλ and assumption (3.26) will provide integral
bounds on the R.H.S. of (1.1).

Let q > − min{γ, 1}. Introduce the following function:

g(u) =
{

0 if 0 ≤ u < t
∫ u

t

√
q f q−1(s) ḟ 2(s)+ f q(s) f̈ (s)ds if t ≤ u < 1.

By (3.26), observe that q f q−1(s) ḟ 2(s) + f q(s) f̈ (s) ≥ (q + γ ) f q−1(s) ḟ 2(s) ≥ 0 for any
t ≤ s < 1. Then, g(u) is well defined and, for any t ≤ u < 1:

g(u) ≥ √
q + γ

u∫

t

f
q−1

2 (s) ḟ (s)ds = 2
√

q + γ

q + 1

(
f

q+1
2 (u)− f

q+1
2 (t)

)
. (3.27)

Let us now test (1.1) against
(

f q(uλ) ḟ (uλ)− f q(t) ḟ (t)
)
χ{uλ≥t} ∈ W 1,p

0 (�):

λ

∫

{uλ≥t}
h(x) f q+1(uλ) ḟ (uλ)

≥
∫

{uλ≥t}
|∇uλ|p (q f q−1(uλ) ḟ 2(uλ)+ f q(uλ) f̈ (uλ)

)

= 1

p − 1

∫

�

(

|∇uλ|p−2|∇g(uλ)|2 + (p − 2)|∇uλ|p−2
( ∇uλ

|∇uλ| · ∇g(uλ)

)2
)

. (3.28)

Since uλ ∈ C1(�̄) and ‖uλ‖∞ < 1, g(uλ) ∈ Auλ for any λ ∈ [0, λ∗). The semi-stability
(2.19) of uλ, inserted into (3.28), and estimate (3.27) yield to:
∫

{uλ≥t}
h(x) f q+1(uλ) ḟ (uλ) ≥ 1

p − 1

∫

�

h(x) ḟ (uλ)g
2(uλ) (3.29)

≥ 4(q + γ )

(p − 1)(q + 1)2

∫

{uλ≥t}
h(x) ḟ (uλ)

(
f

q+1
2 (uλ)− f

q+1
2 (t)

)2
.
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Setting q± = 2
p−1 − 1 ± 2

p−1

√
2 − p + γ (p − 1), note that assumption γ > p−2

p−1 ensures
q± ∈ R, (q−, q+) �= ∅ and q+ > − min{γ, 1}. For any q ∈ (q−, q+), there holds:

4(q+γ )
(p−1)(q+1)2

> 1, and then:

4(q + γ )(1 − ε)

(p − 1)(q + 1)2
> 1,

for some ε > 0 small. Since lim
u→1− f q+1(u) = +∞, there exists tε ∈ (t, 1) so that

ḟ (u)( f
q+1

2 (u)− f
q+1

2 (t))2 ≥ (1 − ε) ḟ (u) f q+1(u) ∀ tε ≤ u < 1.

Combined with (3.29), finally we get that:
∫

{uλ≥t}
h(x) f q+1(uλ) ḟ (uλ) ≤ C ∀ q ∈ (q−, q+) ∩ (− min{γ, 1},+∞). (3.30)

By integration, (3.26) gives that: ḟ (u) ≥ ḟ (t)
f γ (t) f γ (u) for any t ≤ u < 1. Write

ḟ (u) = ḟ η(u) ḟ 1−η(u) for 0 ≤ η ≤ 1 and

ḟ 1−η(u) ≥ ḟ 1−η(t)
f γ (1−η)(t)

f γ (1−η)(u)

for any t ≤ u < 1, we get the following result:

Theorem 3.1 Assume (3.26) for γ >
p−2
p−1 if p ≥ 2 and γ ≥ 0 if 1 < p < 2. Given

0 ≤ η ≤ 1, then

sup
λ∈[0,λ∗)

∫

�

h(x) f q(uλ) ḟ η(uλ) < +∞ (3.31)

for any 1 ≤ q < qη = γ (1 − η)+ 2
p−1 + 2

p−1

√
2 − p + γ (p − 1).

For η = 0, Theorem 3.1 gives:

sup
λ∈[0,λ∗)

∫

�

h(x) f q(uλ) < +∞, ∀1 ≤ q < q0 = γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1).

(3.32)
When 1 < p ≤ 2, estimate (3.32) can be improved with the following argument. Let us
replace f (u) with f̃ (u) = f (u) + u + Cu2, C > 0 large in order to have f̃ convex and
strictly increasing on [0, 1) (we use here the property of convexity of f (u) near u = 1).
Given s ≥ 1, by (1.1) let us compute (in a weak sense):
{

−�p

(
f̃ s(uλ)− f̃ s(0)

)
≤ λs p−1h(x) f̃ (p−1)(s−1)+1(uλ)

˙̃f p−1(uλ) in �

f̃ s(uλ)− f̃ s(0) = 0 on ∂�.
(3.33)

Since 0 ≤ uλ < 1, by (3.31) the R.H.S. in (3.33) is uniformly bounded in L
η

p−1 (�), for any
p − 1 ≤ η ≤ 1 and for any 1 ≤ s < qη

η
− 2−p

p−1 (note that qη
η
> 2

p−1 implies qη
η

− 2−p
p−1 > 1

for any 0 ≤ η ≤ 1). Since it is possible to find hλ ∈ W 1,p
0 (�) so that

−�phλ = λs p−1h(x) f̃ (p−1)(s−1)+1(uλ)
˙̃f p−1(uλ), (3.34)
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by weak comparison principle 0 ≤ f̃ s(uλ) − f̃ s(0) ≤ hλ. Elliptic regularity theory for

p-Laplace operator (see [18]) applies to (3.34): L
η

p−1 (�)-bounds on the R.H.S. of (3.34)
gives estimates on hλ and in turn, on f s(uλ) for any 1 ≤ s <

qη
η

− 2−p
p−1 .

Let 1 < p ≤ 2. If N <
p

p−1 , then η
p−1 >

N
p for η = 1 and elliptic regularity theory

provides:

sup
λ∈[0,λ∗)

‖ f (uλ)‖∞ < ∞.

In particular, compactness (1.11) holds for N <
p

p−1 . When N = p
p−1 , by elliptic regularity

theory we get:

sup
λ∈[0,λ∗)

‖ f (uλ)‖Lq (�) < ∞,

for any q ≥ 1. When N >
p

p−1 , for any p − 1 ≤ η ≤ 1 we have that η
p−1 < N

p and

(
η

p−1 )
∗∗ = Nη(p−1)

N (p−1)−ηp is well defined. Fix now p − 1 ≤ η ≤ 1. Elliptic regularity theory
gives that:

sup
λ∈[0,λ∗)

‖ f (uλ)‖Lq (�) < ∞, ∀ 1 ≤ q < q̃η =
(

qη
η

− 2 − p

p − 1

)(
η

p − 1

)∗∗
. (3.35)

We need now to maximize q̃η for p − 1 ≤ η ≤ 1 in order to achieve the better integrability.
It is a tedious but straightforward computation to see that:

q̃η = N
p − 1

p

(

γ + 2 − p

p − 1

)

+ N (p − 1)

N (p − 1)− ηp

×
(

−N
p − 1

p

(

γ + 2 − p

p − 1

)

+ γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1)

)

.

Then, the function q̃η is monotone in η. Define

Np = p

p − 1

2 + γ (p − 1)+ 2
√

2 − p + γ (p − 1)

2 − p + γ (p − 1)
.

Observe that Np >
p

p−1 . If p
p−1 < N ≤ Np , the function q̃η is non-decreasing and achieves

the maximum at η = 1. If N > Np , q̃η decreases and achieves the maximum at η = p − 1.
We can compute now:

q̃ := sup
p−1≤η≤1

q̃η

=
{ N

N (p−1)−p

(
p + 2

√
2 − p + γ (p − 1)

)
if p

p−1 < N ≤ Np

N
N−p

(
(2 − p)(γ − 1)+ 2

p−1 + 2
p−1

√
2 − p + γ (p − 1)

)
if N > Np.

When 1 < p ≤ 2, observe that q̃ ≥ q0 if and only if N ≤ Np . Let us define

qp =

⎧
⎪⎨

⎪⎩

+∞ if N = p
p−1 , 1 < p ≤ 2

N
N (p−1)−p

(
p + 2

√
2 − p + γ (p − 1)

)
if p

p−1 < N ≤ Np, 1 < p ≤ 2

γ + 2
p−1 + 2

p−1

√
2 − p + γ (p − 1) if either N > Np, 1 < p ≤ 2 or p > 2.

Resuming (3.32), (3.35), the following result has been established:
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Theorem 3.2 Assume (3.26) for γ >
p−2
p−1 if p ≥ 2 and γ ≥ 0 if 1 < p < 2. When

1 ≤ N <
p

p−1 and 1 < p ≤ 2, there holds:

sup
λ∈[0,λ∗)

‖uλ‖∞ < 1.

When either N ≥ p
p−1 , 1 < p ≤ 2 or p > 2, we have that:

sup
λ∈[0,λ∗)

‖ f (uλ)‖Lq (�) < +∞ (3.36)

for any 1 ≤ q < qp.

Let p > 1, and assume N ≥ p
p−1 if 1 < p ≤ 2. We want to understand when compactness

(1.11) of uλ holds. We will use now the following assumption:

f (u) ≥ C0

(1 − u)m
∀ 0 ≤ u < 1, (3.37)

for some m > 0 and C0 > 0. By (1.1) we have that (in a weak sense):
{

−�p(ln 1
1−uλ

) ≤ λh(x) f (uλ)
(1−uλ)p−1 in �

ln 1
1−uλ

= 0 on ∂�.
(3.38)

By (3.37) we get that

0 ≤ λh(x)
f (uλ)

(1 − uλ)p−1 ≤ λC
− p−1

m
0 f (uλ)

m+p−1
m in �,

and then by (3.36)

sup
λ∈[0,λ∗)

‖λh(x)
f (uλ)

(1 − uλ)p−1 ‖Lq (�) < +∞ ∀ 1 ≤ q <
mqp

m + p − 1
.

If mqp
m+p−1 >

N
p , arguing as before, by elliptic regularity theory [18] on (3.38) we get that

sup
λ∈[0,λ∗)

‖ ln
1

1 − uλ
‖∞ < +∞,

or equivalently (1.11) on uλ holds.
We need to discuss the validity of

mpqp > N (p − 1 + m). (3.39)

Assume first 1< p≤2. If p
p−1 < N ≤ Np , then qp = N

N (p−1)−p

(
p+2

√
2 − p + γ (p − 1)

)

and (3.39) is satisfied when

N < N 1
p = p

p − 1

(

1 + m

m + p − 1
(p + 2

√
2 − p + γ (p − 1))

)

.

Compute:

Np − N 1
p = − mp

m + p − 1

p + 2
√

2 − p + γ (p − 1)

2 − p + γ (p − 1)

(

γ − 1 − 1

m

)

.

If γ ≤ 1 + 1
m , then N 1

p ≤ Np and (3.39) holds when

N < Np − mp

m + p − 1

p + 2
√

2 − p + γ (p − 1)

2 − p + γ (p − 1)

(

γ − 1 − 1

m

)

− .
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Observing that

Np = mp

m + p − 1

(

γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1)

)

− mp

m + p − 1

(

1 + p + 2
√

2 − p + γ (p − 1)

2 − p + γ (p − 1)

)(

γ − 1 − 1

m

)

,

we get that, for γ ≤ 1 + 1
m , (3.39) holds when

N < N # = mp

p + m − 1

(

γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1)+

(

γ − 1 − 1

m

)

−
)

,

where N # is defined in (1.10). When γ > 1 + 1
m , for N ≤ Np (3.39) is automatically

satisfied holds for any N ≤ Np . If γ > 1 + 1
m and N > Np , we have that qp = γ + 2

p−1 +
2

p−1

√
2 − p + γ (p − 1) and (3.39) holds when

Np < N < N # = mp

p + m − 1

(

γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1)

)

.

Hence (3.39) holds for any N < N # also when γ > 1 + 1
m and the case 1 < p ≤ 2 has been

completely discussed.
Assume now p > 2. Then, qp = γ + 2

p−1 + 2
p−1

√
2 − p + γ (p − 1) and (3.39) holds when

N < N # = mp

p + m − 1

(

γ + 2

p − 1
+ 2

p − 1

√
2 − p + γ (p − 1)

)

.

Finally, we can conclude. Let N # be defined by (1.10), where γ and m are given in (1.9),
and let N < N #. For any ε > 0, assumption (1.9) implies that (3.26) and (3.37) are valid for
γ − ε >

p−2
p−1 and m − ε > 0, respectively. When 1 < p < 2 the convexity of f (u) near

u = 1 ensures that we can also assume γ − ε ≥ 0. For ε > 0 small, N is less than the critical
dimension N # associated through (1.10) to γ − ε, m − ε. Hence, (1.11) holds and Theorem
1.3 is established. ��

4 Compactness of the unstable branch

In this section we will give the proof of Theorem 1.5, namely the compactness of the
first unstable branch (with Morse index one) for the problem (1.1) under the assumptions
(1.13)–(1.15). The proof, adapted from the arguments in [12,14], will make use of two
Lemmata which will be proved in the Appendix for the sake of simplicity.

Let p = 2. Let λn ∈ (0, λ∗) be a sequence and let un be associated solutions of (1.1) of
Morse index at most one, i.e.µ2,n ≥ 0 for any n ∈ N, whereµ2,n = µ2(−�−λnh(x) ḟ (un))

is the second eigenvalue of the linearized operator at un . We want to prove that any such

sequence is compact in the sense that sup
n∈N

‖un‖∞ < 1 for N < N # = 2(γ+2+2
√
γ )

γ
.

Let us argue by contradiction and assume that this sequence is not compact, i.e. there
exists xn ∈ � such that un(xn) = max

�
un(x) −→

n→∞ 1. Suppose xn → p ∈ � and set

εn = 1 − un(xn) −→
n→∞ 0.

Notice that

λn
f (1 − εn)

εn
−→
n→∞ ∞. (4.40)
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Indeed, if it were bounded we would have λn → 0 since f (1−εn)
εn

−→
n→∞ ∞ by (1.2). Then,

being f nondecreasing, we would have

0 ≤ λnh(x) f (un(x)) ≤ λn‖h‖∞ f (1 − εn) ≤ Cεn

From elliptic regularity, up to a subsequence, we would have un → u in C1(�̄), where u is
a weak harmonic function such that u = 0 on ∂� and max

�
u = 1, which is a contradiction.

Let us introduce the following rescaled function:

Un(y) ≡
1 − un

(

xn +
(

εn
λn f (1−εn)

) 1
2

y

)

εn
, y ∈ �n = �− xn

(
εn

λn f (1−εn)

) 1
2

.

The following Lemma holds:

Lemma 4.1 We have that�n → R
N and there exists a subsequence Un → U in C1

loc(R
N ),

where U is a solution of the problem
{
�U = h(p)

U
1

γ−1
in R

N

U (y) ≥ U (0) = 1 in R
N .

Moreover, there exists φn ∈ C∞
0 (�) such that supp φn ⊂ B

M
(

εn
λn f (1−εn )

) 1
2
(xn) for some

M > 0 and ∫

�

|∇φn |2 − λnh(x) ḟ (un)φ
2
n < 0 (4.41)

From this lemma (whose proof is in the Appendix) we get the existence of φn ∈ C∞
0 (�)

which is identically zero outside a small ball Brn (xn), with rn → 0 as n → +∞, and the
linearized operator is negative at φn . To conclude the proof we need the following estimate
for Morse index one solutions, which says that the blow-up can essentially occur only along
the maximum sequence xn :

Lemma 4.2 Given 0 < δ < γ − 1, there exist C > 0 and n0 ∈ N such that

f (un(x)) ≤ Cλ
− 1
γ−δ

n |x − xn |− 2
γ−δ (4.42)

for all x ∈ � and n ≥ n0.

From this lemma, thanks to estimate (4.42), we deduce that

0 ≤ λnh(x) f (un(x)) ≤ Cλ
γ−δ−1
γ−δ

n ‖h‖∞|x − xn |− 2
γ−δ

for any 0 < δ < γ − 1. Hence, λnh(x) f (un(x)) is uniformly bounded in Ls(�) for any
1 < s < γ N

2 . From standard elliptic regularity theory we have that un is uniformly bounded
in W 2,s(�) for any 1 < s < γ N

2 . By the Sobolev embedding Theorem un is uniformly
bounded also in C0,β(�̄) for any β ∈ (0, 2 − 2

γ
). Then, up to a subsequence, we have that

un ⇀ u0 weakly in H1
0 (�) and un → u0 strongly in C0,β(�̄) for any β ∈ (0, 2 − 2

γ
).

In case λn → 0, u0 is a H1
0 (�)-weak harmonic function and, by the Maximum Principle,

has to vanish in �. By uniform convergence, it holds that
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u0(p) = max
�

u0 = lim
n→∞ max

�
un = 1, p = lim

n→∞ xn (4.43)

and a contradiction arises.
Hence, λn → λ > 0 and (4.43) implies p ∈ �, since u0 = 0 on ∂�. By (4.42), it

follows that f (u0) ≤ C |x − p|− 2
γ−δ in �\{p} and f (un) → f (u0) in Cloc(�̄\{p}). Since

H1
0 (�\{p}) = H1

0 (�) and f (u0) ∈ L
2N

N+2 (�), then u0 is an Hölderian H1
0 (�)-weak solution

of: ⎧
⎨

⎩

−�u0 = λh(x) f (u0) in �
0 ≤ u0 ≤ 1 in �
u0 = 0 on ∂�.

Now, consider the first eigenvalue of the linearized operator at u0, namely

µ1,λ(u0) ≡ µ1(−�− λh(x) ḟ (u0)) = inf
φ∈C∞

0 (�):∫ φ2=1

⎛

⎝

∫

�

|∇φ|2 − λh(x) ḟ (u0(x))φ
2

⎞

⎠ .

For convex nonlinearities f (u), uniqueness holds in the class of semi-stable H1
0 (�)-weak

solutions of (1.1) (see [14]). If µ1,λ(u0) ≥ 0, we deduce from Theorem 1.2 that u0 ≡ uλ,
for some λ ∈ [0, λ∗]. But from Theorem 1.3 we know that max

�
uλ < 1 for any λ ∈ [0, λ∗],

and this contradicts max
�

u0 = 1.

So, we are left with the case µ1,λ(u0) < 0, which means that there exists φ0 ∈ C∞
0 (�)

such that
∫

�

|∇φ0|2 − λh(x) ḟ (u0)φ
2
0 < 0

But from (4.41) we already had the existence of φn ∈ C∞
0 (�) such that supp φn ⊂ Brn (xn)

with rn −→
n→∞ 0 and

∫

�

|∇φn |2 − λnh(x) ḟ (un)φ
2
n < 0.

We want to replace φ0 with a truncated function φδ with δ > 0 small enough so that
∫

�

|∇φδ|2 − λh(x) ḟ (u0)φ
2
δ < 0

and φδ ≡ 0 in Bδ2(p) ∩�. So, for n large by Fatou’s Lemma it holds
∫

�

|∇φδ|2 − λnh(x) ḟ (un)φ
2
δ < 0.

Since φn and φδ have disjoint compact supports, from the variational characterization of the
second eigenvalue we would have a contradiction: µ2,n < 0. This ends the proof.

Take δ > 0 and set φδ = χδφ0 with

χδ(x) ≡

⎧
⎪⎨

⎪⎩

0 if |x − p| ≤ δ2

2 − log |x−p|
log δ if δ2 ≤ |x − p| ≤ δ

1 if |x − p| ≥ δ
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By Fatou’s Lemma we have

lim inf
δ→0

∫

�

λh(x) ḟ (u0)φ
2
δ ≥

∫

�

λh(x) ḟ (u0)φ
2
0 ,

whereas for the gradient term we have
∫

�

|∇φδ|2 =
∫

�

φ2
0 |∇χδ|2 +

∫

�

χ2
δ |∇φ0|2 + 2

∫

�

χδφ0∇χδ∇φ0.

We have the following estimates:

0 ≤
∫

�

φ2
0 |∇χδ|2 ≤ ‖φ0‖2∞

∫

δ2≤|x−p|≤δ

1

|x − p|2 log2 δ
≤ C

log 1
δ

and
∣
∣
∣
∣
∣
∣
2
∫

�

χδφ0∇χδ∇φ0

∣
∣
∣
∣
∣
∣
≤ 2‖φ0‖∞‖∇φ0‖∞

log 1
δ

∫

B1(0)

1

|x | ,

which give
∫

�

|∇φδ|2 −→
δ→0

∫

�

|∇φ0|2.

In conclusion,

lim sup
δ→0

∫

�

|∇φδ|2 − λh(x) ḟ (u0)φ
2
δ ≤

∫

�

|∇φ0|2 − λh(x) ḟ (u0)φ
2
0 < 0.

For δ > 0 small enough, φδ is what we were searching for and this concludes the proof. ��

5 Appendix

5.1 Embedding of the space Au

For p ≥ 2, we will show below that the space Au is compactly embedded in L2(�), as it will
follow by the weighted Sobolev estimates proved in [9]. The proof follows closely Theorem
9.16 in [2]. For the reader’s convenience we give the details:

Lemma 5.1 Let p ≥ 2 and u be a solution of (1.1). For any 1 ≤ q < 2N (p−1)
(N−2)(p−1)+2(p−2)

there exists C > 0 so that

‖φ‖2
Lq (�) � C

∫

�

|∇u|p−2|∇φ|2, ∀ φ ∈ Au . (5.44)

Moreover, the embedding Au ⊂ Lq(�) is compact for any 1 ≤ q < 2N (p−1)
(N−2)(p−1)+2(p−2) .

Proof Since q̄ = 2N (p−1)
(N−2)(p−1)+2(p−2) > 2, for 2 < q < q̄ (5.44) follows by Theorem 2.2 in

[10]. Then, by Hölder inequality (5.44) follows also for 1 ≤ q ≤ 2.
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Since q < q̄ , fix δ > 0 so that q + δ < q̄, and set

1

q
= α + (1 − α)

q + δ
, for 0 < α � 1.

Now, let ω ⊂⊂ � and consider h such that

|h| < dist(ω,�c).

By interpolation we have for φ ∈ L2(�)

‖φ(x + h)− φ(x)‖Lq (ω) = ‖τh(φ)− φ‖Lq (ω) � ‖τh(φ)− φ‖αL1(ω)
‖τh(φ)− φ‖1−α

Lq+δ(ω).

Now we have that (see [9]) 1
|∇u|p−2 ∈ L1(�) and consequently

Au ⊂ W 1,1,

with

∫

�

|∇φ| �

⎛

⎝

∫

�

|∇u|p−2|∇φ|2
⎞

⎠

1
2

·
⎛

⎝

∫

�

1

|∇u|p−2

⎞

⎠

1
2

.

Recall that the | · |-norm and the ‖ · ‖-norm, as defined in the Introduction, are equivalent.
Therefore, for every φ ∈ Au with ‖φ‖ ≤ 1 we have

‖τh(φ)− φ‖L1(ω) � |h|‖∇φ‖L1(�) � C0|h|
so that, exploiting (5.44) we get

‖τh(φ)− φ‖Lq (ω) � Cα
0 |h|α (

2‖φ‖Lq+δ(�)
)1−α � C |h|α.

Since

‖φ‖Lq (�\ω) � ‖φ‖Lq+δ(�\ω)|�\ω| 1
q − 1

q+δ � C |�\ω| 1
q − 1

q+δ � ε

for �\ω sufficiently small, by Corollary 4.27 in [2] we deduce that the unit ball of Au is a
compact set in Lq(�). Then, the embedding Au ⊂ Lq(�) is compact for any 1 ≤ q < q̄.

��
For 1 < p < 2, as already remarked in the Introduction, Au ⊂ H1

0 (�). Since H1
0 (�) ⊂

Lq(�) compactly for any 1 ≤ q < 2N
N−2 , by Lemma 5.1 we deduce

Lemma 5.2 Let u be a solution of (1.1). The embedding Au ⊂ L2(�) is compact.

5.2 Proof of Theorem 1.1

• Step 1. Existence of a first eigenfunction
Let us first note that ḟ (u) ∈ L∞(�), so that

‖φ‖2 − λ

∫

�

h(x) ḟ (u)φ2

is bounded from below, for any φ ∈ Au with
∫

�
φ2 = 1. Therefore, µ1(u) is well defined:

µ1(u) = inf
φ∈Au\{0}Ru(φ) > −∞, Ru(φ) = ‖φ‖2 − λ

∫

�
h(x) ḟ (u)φ2

∫

�
φ2

.
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Consider now a minimizing sequence φn ∈ Au ,
∫

�
φ2

n = 1, with

Ru(φn) → µ1(u) as n → +∞.

Since ḟ (u) ∈ L∞(�), we have that

sup
n∈N

‖φn‖ < +∞.

Therefore, up to a subsequence, we get that

φn ⇀ φ1 weakly in Au

and by Lemma 5.2

φn → φ1 strongly in L2(�).

Now, the term λ
∫

�
h(x) ḟ (u)φ2 is continuous in L2(�) and ‖ · ‖ is weakly lower semi-

continuous in Au . Therefore, φ1 ∈ Au is so that
∫

�
φ2

1 = 1 and Ru(φ1) ≤ µ1(u). Hence,
µ1(u) is attained at φ1.

• Step 2. Every minimizer is positive (or negative) almost everywhere
We show that φ1 > 0 (or φ1 < 0) in �\Zu , where Zu = {∇u = 0} is a zero measure set
(see [9]).
Assume

µ1(u) = ‖φ1‖2 − λ
∫

�
h(x) ḟ (u)φ2

1∫

�
φ2

1

so that for ψ ∈ Au it follows

< φ1, ψ > −λ
∫

�

h(x) ḟ (u)φ1ψ = µ1(u)
∫

�

φ1ψ. (5.45)

Taking φ±
1 as a test function in (5.45), we get that

‖φ±
1 ‖2 − λ

∫

�

h(x) ḟ (u)(φ±
1 )

2 = µ1(u)
∫

�

(φ±
1 )

2,

showing that φ±
1 also minimizes Ru(φ). Then, there holds

< φ±
1 , ψ > −λ

∫

�

h(x) ḟ (u)φ±
1 ψ = µ1(u)

∫

�

φ±
1 ψ, ∀ ψ ∈ Au . (5.46)

The differential operator in (5.46) is nondegenerate in �\Zu . Moreover, by [9] �\Zu is
connected and |Zu | = 0, as already recalled. Therefore, the Strong Maximum Principle
holds in �\Zu , and φ±

1 is smooth in �\Zu by standard regularity results.
We have that eitherφ±

1 > 0 in�\Zu orφ±
1 = 0 in�\Zu . Indeed, C = {x ∈ �\Zu : φ±

1 > 0}
is clearly an open set. By the classic Strong Maximum Principle exploited in �\Zu , we
have

∂C ⊂ Zu ∪ ∂�,
and then, C = C̄ ∩ (�\Zu) is a closed set in the relative toplogy of �\Zu . Since �\Zu

is connected, the set C either is empty or coincides with �\Zu .
Since φ1 �= 0 a.e. in �, then either φ1 > 0 or φ1 < 0 in �\Zu .
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• Step 3. The first eigenspace is one-dimensional
Let φ1 be a first eigenfunction which can be assumed positive a.e. in �: φ1 > 0 in �\Zu ,
by means of Step 2. Let now φ any other first eigenfunction. Since by Step 2 φ has constant
sign, let us consider for example the case φ > 0 in �\Zu . Set

β̄ = sup{β ≥ 0 : φ − βφ1 ≥ 0 a.e. in �} < +∞.

Since by linearity φ − β̄φ1 is still a minimizer for Ru , by Step 2 we have that

either φ − β̄φ1 > 0 or φ − β̄φ1 = 0 a.e. in �.

If φ − β̄φ1 > 0, we have that φ − (β̄ + ε)φ1 is still positive on a subset of positive
measure, for small ε > 0. As a minimizer, φ − (β̄ + ε)φ1 has constant sign and then,
φ − (β̄ + ε)φ1 > 0 a.e. in �, against the definition of β̄. Therefore, φ = β̄φ1 a.e. in �.

5.3 Proof of Lemma 4.1

The proof follows the arguments in [12,14], where similar results are proved for the nonlin-
earity f (u) = 1

(1−u)2
. Suppose that xn → p ∈ �̄ and consider the rescaled function around

xn :

Un(y) ≡ 1 − un(xn + βn y)

εn
, y ∈ �n = �− xn

βn
,

where βn =
(

εn
λn f (1−εn)

) 1
2 −→

n→∞ 0 by means of (4.40). The function Un verifies

{
�Un = h(xn+βn y)

f (1−εn)
f (1 − εnUn(y)) in �n

U (y) ≥ U (0) = 1 in �n .
(5.47)

First of all, we need to prove that �n −→
n→∞ R

N . It will be sufficient to prove that

βnd−1
n −→

n→∞ 0,

where dn = dist (xn, ∂�). Indeed, arguing by contradiction and up to a subsequence, assume
that β2

n d−2
n → δ > 0. Obviously this implies that dn → 0 for n → ∞.

Introduce the following rescaling

Wn(y) ≡ 1 − un (xn + dn y)

εn
, y ∈ An = �− xn

dn
.

Since dn → 0 we have that An → T , where T is a hyperspace containing 0 so that
d(0, ∂T ) = 1. The function Wn satisfies the following equation

�Wn(y) = λnd2
n

εn
h(xn + dn y) f (1 − εn Wn(y))

=
(
λn f (1 − εn)d2

n

εn

)

h(xn + dn y)
f (1 − εn Wn(y))

f (1 − εn)

=
(
λn f (1 − εn)d2

n

εn

)
⎛

⎝
f (1 − εn Wn(y))ε

1
γ−1
n W

1
γ−1

n

f (1 − εn)ε
1

γ−1
n

⎞

⎠
h(xn + dn y)

W
1

γ−1
n

.
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From the hypothesis and condition (1.14), for any sufficiently large n we get

0 ≤
(
λn f (1 − εn)d2

n

εn

)
⎛

⎝
f (1 − εn Wn(y))ε

1
γ−1
n W

1
γ−1

n

f (1 − εn)ε
1

γ−1
n

⎞

⎠ h(xn + dn y) ≤ 2

δ
c0‖h‖∞ < ∞.

This means that the function Wn satisfies
⎧
⎨

⎩

�Wn = hn

W
1

γ−1
n

in An

Wn(y) ≥ C > 0 in An

with sup
n∈N

‖hn‖∞ < ∞ and C = Wn(0) = 1.

Recall Lemma 4.1 in [14] (written there for the case γ = 3
2 ):

Lemma 5.3 Let hn be a function on a smooth bounded domain An in R
N . Let Wn be a

solution of:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�Wn = hn(x)

W
1

γ−1
n

in An,

Wn(y) ≥ C > 0 in An,

Wn(0) = 1,

for some C > 0. Assume that sup
n∈N

‖ hn ‖∞< +∞ and An → Tµ as n → +∞ for some

µ ∈ (0,+∞), where Tµ is an hyperspace so that 0 ∈ Tµ and dist (0, ∂Tµ) = µ. Then, either
inf

∂An∩B2µ(0)
Wn ≤ C or inf

∂An∩B2µ(0)
∂νWn ≤ 0, where ν is the unit outward normal of An.

Since Wn |∂An ≡ 1
εn

−→
n→∞ ∞ and Hopf Lemma provides ∂νWn > 0 on ∂An , a contradiction

arises by means of Lemma 5.3. Hence, we have shown that βnd−1
n −→

n→∞ 0, i.e. �n → R
N .

We now want to prove that there exists a subsequence {Un}n∈N such that Un → U in
C1

loc(R
N ), where U is a solution of the problem

⎧
⎨

⎩

�U = h(p)

U
1

γ−1
in R

N

U (y) ≥ U (0) = 1 in R
N .

(5.48)

Fix R > 0 and, for n large, decompose Un = U 1
n + U 2

n , where U 2
n satisfies

{
�U 2

n = �Un in BR(0)

U 2
n = 0 in ∂BR(0).

By the Eq. (5.47) and the condition (1.14) we get that on BR(0):

0 ≤ �Un(y) ≤ ‖h‖∞
∣
∣
∣
∣

f (1 − εnUn)

f (1 − εn)

∣
∣
∣
∣ ≤ c0‖h‖∞ < ∞,

and then, standard elliptic regularity theory gives that U 2
n is uniformly bounded in

C1,β(BR(0)), β ∈ (0, 1). Up to a subsequence, we have that U 2
n → U 2 in C1(BR(0)).

Since U 1
n = Un ≥ 1 on ∂BR(0), by harmonicity U 1

n ≥ 1 in BR(0). Through Harnack
inequality, we have:

sup
B R

2
(0)

U 1
n ≤ CR inf

B R
2
(0)

U 1
n ≤ CRU 1

n (0) = CR(1 − U 2
n (0)) ≤ CR

(

1 + sup
n

|U 2
n (0)|

)

< ∞.
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Hence, U 1
n is uniformly bounded in C1,β(B R

4
(0)), β ∈ (0, 1). Up to a subsequence, we get

that U 1
n → U 1 in C1,β(B R

4
(0)) for any R > 0. Up to a diagonal process and a further

subsequence, we can assume that Un → U := U1 + U2 in C1
loc(R

N ).
Notice that, by the condition (1.15) we have:

h(xn + βn y)
f (1 − εnUn))

f (1 − εn)
= h(xn + βn y)

f (1 − εnUn)U
1

γ−1
n

f (1 − εn)

1

U
1

γ−1
n

−→
n→∞

h(p)

U
1

γ−1

in C0
loc(R

N ). This means that U is a solution of (5.48).
The following unstability property, a special case of a more general result in [13], will be

crucial:

Theorem 5.4 Let U be a solution of (5.48). Then, U is linearly unstable:

µ1(U ) = inf

{∫

|∇φ|2 − 1

γ − 1

∫
h(p)

U
γ
γ−1

φ2 : φ ∈ C∞
0 (R

N ),

∫

φ2 = 1

}

< 0,

provided 2 ≤ N < N # = 2(γ+2+2
√
γ )

γ
.

Theorem 5.4 provides the existence of φ ∈ C∞
0 (R

N ) such that
∫

RN

|∇φ|2 − 1

γ − 1

h(p)

U
γ
γ−1

φ2 < 0.

Define

φn(x) ≡ β
− N−2

2
n φ

(
x − xn

βn

)

∈ C∞
0 (�).

Condition (1.13) rewrites as:

lim
u→1−

f (u) f̈ (u)

( ḟ (u))2
= lim

u→1−
(ln ḟ )′(u)
(ln f )′(u)

= γ,

which implies by (1.2) and L’Höpital rule:

lim
u→1−

ln ḟ (u)

ln f (u)
= γ.

Hence, since γ > 1 we have that

lim
u→1−

ḟ (u)

f (u)
= lim

u→1− f (u)γ−1+o(1) = +∞,

where o(1) → 0 as u → 1−. This means that by L’Höpital rule:

lim
u→1−

(1 − u) ḟ (u)

f (u)
= lim

u→1−
1 − u

f (u)
ḟ (u)

= lim
u→1−

1
f (u) f̈ (u)
( ḟ (u))2

− 1
= 1

γ − 1
. (5.49)

Observe that by (1.15) and (5.49) it follows that

εn ḟ (1 − εnUn)

f (1 − εn)
= εnUn ḟ (1 − εnUn)

f (1 − εnUn)

f (1 − εnUn)ε
1

γ−1
n U

1
γ−1

n

ε
1

γ−1
n f (1 − εn)

1

U
γ
γ−1

n

→ 1

γ − 1

1

U
γ
γ−1

(5.50)
in Cloc(R

N ) as n → +∞, in view of Un → U locally uniformly.
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Let us now evaluate the linearized operator at un on φn :
∫

�

|∇φn |2 − λnh(x) ḟ (un)φ
2
n =

∫

�n

|∇φ|2 − h(xn + βn y)
εn ḟ (1 − εnUn)

f (1 − εn)
φ2

→
∫

RN

|∇φ|2 − 1

γ − 1

∫

RN

h(p)

U
γ
γ−1

φ2 < 0 as n → +∞

by means of φ ∈ C∞
0 (R

N ) and (5.50). Hence, for any sufficiently large n we have:
∫

�

|∇φn |2 − λnh(x) ḟ (un)φ
2
n < 0

with supp φn ⊂ BMβn (xn), for some M > 0. This concludes the proof. ��
5.4 Proof of Lemma 4.2

Fix 0 < δ < γ − 1. Let us prove estimate (4.42): there exist C > 0 and n0 ∈ N such that

f (un(x)) ≤ Cλ
− 1
γ−δ

n |x − xn |− 2
γ−δ

for any x ∈ � and for any n ≥ n0.
Let us argue by contradiction and assume that (4.42) does not hold. Up to a subsequence,

we get the existence of a minimizing sequence yn ∈ � such that:

λ
− 1
γ−δ

n f (un(yn))
−1|xn − yn |− 2

γ−δ = λ
− 1
γ−δ

n min
y∈�

[
f (un(x))

−1|x − xn |− 2
γ−δ

]
−→
n→∞ 0.

(5.51)
This means that f (un(yn)) → +∞ as n → +∞, so that we have blow-up along the sequence
yn , i.e.

µn ≡ 1 − un(yn) −→
n→∞ 0.

By (5.49) and L’Höpital rule we get that

lim
u→1−

ln f (u)

ln 1
1−u

= 1

γ − 1
,

and then, we have:

f γ−δ−1(u) ≤ C

1 − u
in [0, 1)

for some C = Cδ > 0. Hence, this yields to:

µn f (1 − µn)
γ−1−δ ≤ C. (5.52)

From (5.51)–(5.52), we have that

β̂n := λn
f (1 − µn)

µn
= (λ

1
γ−δ
n f (1 − µn))

γ−δ 1

µn f (1 − µn)γ−1−δ → ∞ as n → +∞.

Assume that yn → q ∈ �̄ as n → +∞. Consider the following rescaled function

Ûn(y) ≡ 1 − un(yn + β̂n y)

µn
, y ∈ �̂n = �− yn

β̂n
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We want to prove the following crucial convergence:

lim
n→∞

β̂n

|xn − yn | = lim
n→∞

µ
1
2
n

λ
1
2
n f (1 − µn)

1
2 |xn − yn |

= 0. (5.53)

From (5.51) and (5.52), we have that

β̂2
n

|xn −yn |2 = µn

λn f (1−µn)|xn −yn |2 = (
µn f (1−µn)

γ−1−δ) 1

λn f (1−µn)γ−δ|xn − yn |2
≤ C

λn f (1 − µn)γ−δ|xn − yn |2 −→
n→∞ 0.

Namely, (5.53) holds. We enumerate now several properties of the crucial choice

Rn := β̂
− 1

2
n |xn − yn | 1

2 :

(a) Rn −→
n→∞ ∞ from (5.53);

(b) Rnβn = β
1
2

n |xn − yn | 1
2 ≤ β

1
2

n (diam�)
1
2 −→

n→∞ 0;

(c) Rnβn
|xn−yn | = β

1
2

n |xn − yn |− 1
2 =

( |xn−yn |
βn

)− 1
2 −→

n→∞ 0.

Let us now focus our attention on the function Ûn . If y ∈ �̂n ∩ BRn (0) we have that:

either un(yn + β̂n y) ≤ un(yn), which implies 1−un(yn+β̂n y)
1−un(yn)

≥ 1; or un(yn) < un(yn + β̂n y)
and assumption (1.15) implies

(1 − un(yn + β̂n y))
1

γ−1 f (un(yn + β̂n y))

(1 − un(yn))
1

γ−1 f (un(yn))

≥ 1

c0
,

or equivalently

1 − un(yn + β̂n y)

1 − un(yn)
≥ 1

cγ−1
0

(
f (un(yn)

f (un(yn + β̂n y))

)γ−1

.

In the latter situation, from the definition of yn we have:

f (un(yn))|xn − yn | 2
γ−δ ≥ f (un(yn + β̂n y))|yn + β̂n y − xn | 2

γ−δ

and, since (b) and (c) imply that for any n ≥ n0:

|yn + β̂n y − xn |
|yn − xn | ≥ 1 − β̂n |y|

|xn − yn | ≥ 1 − β̂n Rn

|xn − yn | ≥ 1

2
, |y| ≤ Rn,

we get that

1 − un(yn + β̂n y)

1 − un(yn)
≥ 1

cγ−1
0

(
f (un(yn))

f (un(yn + β̂n y))

)γ−1

≥ 1

cγ−1
0

(
|yn + β̂n y − xn |

|yn − xn |

)2 γ−1
γ−δ

≥ 1

cγ−1
0

(
1

2
)
2 γ−1
γ−δ .

We finally get that for any n ≥ n0 and any y ∈ �̂n ∩ BRn (0):

Ûn(y) = 1 − un(yn + β̂n y)

1 − un(yn)
≥ D0 = min

{

1,
1

cγ−1
0

(
1

2
)
2 γ−1
γ−δ

}
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Setting d̂n = dist (yn, ∂�), consider the rescaled function

Ŵn(y) ≡
1 − un

(
yn + d̂n y

)

µn
, y ∈ Ân = β̂nd̂−1

n

(
�̂n ∩ BRn (0)

)
.

Since Ŵn(y) ≥ D0 in Ân , we can apply again Lemma 5.3 to get: β̂nd̂−1
n −→

n→∞ 0, i.e.

�̂n ∩ BRn (0) → R
N as n → ∞. Now, proceeding as in the proof of Lemma 4.1, we get that

Ûn → Û in C1
loc(R

N ), where Û solves

{
�Û = h(q)

Û
1

γ−1
in R

N

Û (y) ≥ D0 in R
N .

Moreover, there exists ψn ∈ C∞
0 (R

N ) such that
∫

�

|∇ψn |2 − λnh(x) f (un)ψ
2
n < 0

with suppψn ⊂ BM β̂n
(yn) for some M > 0. But from Lemma 4.1 we already had

φn ∈ C∞
0 (R

N )with the same property and such that supp φn ⊂ BM ′βn (xn) for some M ′ > 0.
Since the nonlinearity f (u) in non-decreasing and 1 − εn = un(xn) ≥ un(yn) = 1 −µn ,

by (5.53) we get that:

ε
1
2
n

λ
1
2
n f (1 − εn)

1
2 |xn − yn |

=
(
εn

µn

) 1
2
(

f (1 − µn)

f (1 − εn)

) 1
2 µ

1
2
n

λ
1
2
n f (1 − µn)

1
2 |xn − yn |

≤ µ
1
2
n

λ
1
2
n f (1 − µn)

1
2 |xn − yn |

−→
n→∞ 0.

This means that φn and ψn have disjoint compact support for n large, which contradicts the
Morse index-one property of the solutions un and concludes ths proof. ��
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