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AbstratWe prove a Harnak inequality for level sets of p-Laplae phase transitionminimizers. In partiular, if a level set is inluded in a at ylinder, then, in theinterior, it is inluded in a atter one. The extension of a result onjetured byDe Giorgi and reently proven by the third author for p = 2 follows.
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CHAPTER 1IntrodutionGiven a domain 
 � RN , we de�ne the following funtional on W 1;p(
):F
(u) = Z
 jru(x)jpp + h0(u(x)) dx :Here above and in the sequel, we suppose that 1 < p < 1 and that h0 2C0([�1; 1℄) \ C1;1((�1; 1)) an be extended to a funtion whih is C1 in a neigh-borhood of [�1; 1℄. We will also assume that, for some 0 <  < 1 < C and some�? 2 (0; 1), we havefor any � 2 [0; 1℄,  �p � h0(�1 + �) � C �p and �p � h0(1� �) � C �p,(1.1) for any � 2 [0; ��), h00(�1 + �) � �p�1 andh00(1� �) � ��p�1.(1.2)We also assume that h00 is monotone inreasing in (�1;�1 + �?) [ (1 � �?; 1).Quantities depending only on the onstants above will be referred to as \universalonstants". As a model example for a potential h0 satisfying the onditions statedhere above, one may onsider h0(�) := (1� �2)p :In the literature, h0 is often referred to as a \double-well" potential, and its deriv-ative as a \bi-stable nonlinearity".In the light of (1.1) and (1.2), we have that, with no loss of generality, possiblyreduing the size of �?, we may and do assume thatfor any � 2 [�1 + �?; 1� �?℄,h0(�) � max[�1;�1+�?℄[[1��?;1℄ h0,(1.3) 1



2 1. INTRODUCTIONNotie that, if u 2 W 1;p(
), juj � 1, is1 ritial for F
, then u satis�es in the weaksense the following singular/degenrate ellipti equation of p-Laplaian type:(1.5) �pu(x) = h00(u(x)) ;for any x 2 
. Here and in what follows, we make use of the standard notation�pu := div �jrujp�2ru� :In partiular, we will onsider loal minimizers for the funtional above. We saythat u is a loal minimizer for F in the domain 
 ifF
(u) � F
(u+ �) ;for any � 2 C10 (
). In the literature, it is also ustomary to say that u is a ClassA minimizer for F if FK(u) � FK(u+ �) ;for any ompat setK � RN and any � 2 C10 (K). That is, u is a Class A minimizerif it is a loal minimizer in any domain.The funtional F here above has been widely studied both for pure mathemat-ial reasons and for physial appliations. For instane, this funtional is a modelfor interfaes appearing in physial problems when two phases (the phase \loseto +1" and the one \lose to �1") oexist. On one side, the \potential" h0 tendsto drive the minima of the funtional towards the \pure states" �1; on the otherhand, the \kineti term" jrujp prevents the system from sudden phase hanges.The balane between these tendenies (or, in the physial language, the e�et ofthe surfae tension) leads interfaes of minimal solution to minimize area. Thephysial relevane of the interfaes and the mathematial interest arising from geo-metri measure theory thus motivated an extensive study of the transition layers,i.e., of the level sets of solutions of (1.5). We refer to [3℄, [7℄, [14℄, [23℄, [25℄, [26℄,[33℄, [27℄, [28℄, [29℄, [27℄, [28℄, [30℄ and [36℄ for more detailed disussions on thephysial relevane of the above funtional and for its relation with the theory ofminimal surfaes.The main result that will be proved in this paper is the following Harnakinequality for level sets of minimizers. Roughly speaking, suh results says that,one one knows that the zero level set of a minimizer is trapped in a retanglewhose height is small enough, then, in a smaller neighborhood, it an be trapped ina retangle with even smaller height. More preisely, we have the following result:Theorem 1.1. Let l > 0, � > 0. Let u be a loal minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that u(0) = 0 and thatfu = 0g � fjxN j < �g :1 Many results of this paper are obtained without assuming juj < 1, but assuming onlyjuj � 1. For future use, however, we reall that the ondition juj < 1 is ful�lled by any solutionu suh that juj � 1 with juj not identially equal to �1, under suitable assumptions on h0. Thisholds, for instane, if we suppose that(1.4) h00(�1 + �) � 0�p�1 and h00(1� �) � �0�p�1 ;for any � 2 [0; ��). For the proof of this observation, see, e.g., footnote 7 in [30℄. The ase p = 2was also dealt with in Theorem 1.1 of [17℄.



1. INTRODUCTION 3Then, there exists a universal onstant  2 (0; 1) so that, for any �0 > 0 there exists"0(�0) > 0 suh that, if �l � "0(�0) and � � �0 ;then fu = 0g \ fjx0j < lg � fjxN j < (1� ) �g :
O

{u=0}

2l

2θ

The Harnak-type result of Theorem 1.1Theorem 1.1 is an extension of a similar result obtained in [31℄ for p = 2. Also,some results from [7℄, [28℄ and [30℄ will be needed in the ourse of the proof.The proof of Theorem 1.1 is quite long, both beause we will need some �neanalysis on the measure estimates of the touhing points between u and someappropriate barriers, and beause some deliate details and tehnial points willappear in the ourse of the proof. Very roughly, we an say that the �nal target ofthe proof onsists in deduing a measure estimates on the above mentioned ontatpoints, whih, in ase the statement of Theorem 1.1 were false, would ontraditthe minimality of u. Suh estimates will be obtained by sliding suitable barriers,onstruted via the one-dimensional heterolini solution.The ideas of suh proof beome more transparent in the easier ase of a uni-formly ellipti equation involving prinipal urvatures (of the typePNi=1 ai�i = 0):see [32℄.Following the ideas of [31℄, several results may be dedued from Theorem 1.1.First, we dedue the following \atness improvement" result, stating that, one alevel set is trapped inside a at ylinder, then, possibly hanging oordinates, it istrapped in an even atter ylinder in the interior. More preisely, we have:



4 1. INTRODUCTIONTheorem 1.2. Let l > 0, � > 0. Let u be a loal minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that u(0) = 0 and thatfu = 0g � fjxN j < �g :Then, there exist universal onstants �1; �2 > 0, with 0 < �1 < �2 < 1, suh that,for any �0 > 0, there exists "1(�0) > 0 suh that, if�l � "1(�0) and � � �0 ;then fu = 0g \ �fj�� xj < �2lg � fj(x � �)j < �2lg� �� �fj��xj < �2lg � fj(x � �)j < �1�g�for some unit vetor �.
{u=0}

2l

2θ

ξ

The atness improvement of Theorem 1.2Several ideas related with Theorem 1.2 have been extensively used by De Giorgiand his shool in the minimal surfae setting (e.g., for proving smoothness andanalyti regularity): see, for instane, hapters 6{8 in [20℄.The extension of a result onjetured by De Giorgi in [14℄ for p = 2 also follows,namely we have the following two atness results:Theorem 1.3. Let N � 7. Then, level sets of Class A minimizers of F arehyperplanes.



1. INTRODUCTION 5Theorem 1.4. Let u 2 W 1;plo (RN ) be a solution of (1.5). Let h0 ful�ll theassumptions on page 1 and2 (1.4). Assume that juj � 1, �Nu > 0 andlimxN!�1u(�; xN ) = �1 :Assume also that either N � 8 or that fu = 0g has at most linear growth at in�nity.Then, level sets of u are hyperplanes.Results of these type have been proved in [21℄ for p = N = 2 and [2℄ for p = 2and N = 3 (and atually for any nonlinearity, see [1℄). Extensions of the results in[21℄ and [2℄ to p-Laplae equations have been onsidered in [11℄. See also [5, 13,12, 16, 4, 6, 22℄ for related results. Results analogous to Theorems 1.3 and 1.4for p = 2 have been reently given by the third author in [31℄. In x9 here below,we will see that Theorem 1.4 is a onsequene of the fat that monotone solutionsof (1.5) are minimizers (see, e.g., [24℄ or [31℄) under a �1-limit assumption.This paper is organized in the following way. In x2 we onstrut the barriersto be used in the ourse of the proofs of the main results. Roughly speaking, suhbarriers are obtained by modifying the heterolini one-dimensional solutions givenby the potential h0 and by taking at or rotational extensions. The study of thetouhing points between these barriers and our solution oupies x3. Partiularemphasis is given to the measure of the projetion of the set of \�rst time" touhes.In x4, some overing lemmas are presented, whose proof has been deferred to theAppendix. The results of x3 and x4 are then used in x5 to obtain an estimate on theprojetion of the touhing points between an appropriate barrier and our solution.The proofs of the main results oupy x6|x9. The Appendix ontains the proof ofthe overing lemmas and some elementary anillary results.

2In partiular, the result of Theorem 1.4 holds for h0(�) := (1 � �2)p.





CHAPTER 2Modi�ations of the potential and ofone-dimensional solutionsWe now onstrut some barriers, whih will be of use in the proof of the mainresults. Suh barriers will be obtained by appropriate modi�ations on the potentialh0, whih indue orresponding modi�ations on one-dimensional solutions.Here and below, we �x C0 > 0, to be onveniently hosen in the following(atually, during the proof of Proposition 2.13 here below). We will also �x R,to be assumed suitably large (with respet to C0 and some universal onstants).The �rst funtion needed in our onstrution is the following modi�ation of thepotential h0 in the interval [-3/4,3/4℄:Definition 2.1. Fix js0j � 1=4. For any jsj � 3=4, we de�ne1(2.1) 's0;R(s) = '(s) := h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip :Note that, by onstrution,(2.2) 1� pp�1'(s)� 1p = 1� pp�1h0(s)� 1p � C0R (s� s0) :Roughly speaking, for large R, ' is lose to h0: this is the reason for whih weonsider ' as a modi�ed potential in [�3=4; 3=4℄. We now onsider some propertiesenjoyed by '. First of all, we estimate ' in terms of h0 in [�3=4;�1=2℄[ [1=2; 3=4℄:Lemma 2.2. The following inequalities hold:(2.3) '(s) < h0(s)� 2 bC0R if s 2 ��34 ;�12�and(2.4) '(s) > h0(s) + 2 bC0R if s 2 �12 ; 34� ;provided that R and C0= bC0 are suitably large. Also, bC0 may be taken large if so isC0. Proof. To prove (2.3), note that for s 2 [� 34 ;� 12 ℄ we have C0(s � s0) 2[�C0; �C04 ℄. Also, from (1.1), there exists k > 0 suh that(2.5) 0 < k � inf�2[�3=4;�1=2℄[[1=2;3=4℄� pp� 1h0(�)� 1p :1Notie that R � C0(s� s0)( pp�1h0(s)) 1p > 0 for any jsj � 3=4 and js0j � 1=4, if R is largeenough, thus the de�nition of ' is well posed. 7



8 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSTherefore, '(s) = h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip �� h0(s)Rp(R + C04 k)p == h0(s) + h0(s)Rp � h0(s)(R + C04 k)p(R + C04 k)p �� h0(s)� onstR � (R+ onstC0)p �RpRp�1 :Using the fat that limx!+1 (x+ a)p � xpxp�1 = pa ;and taking R suitably large, we get'(s) � h0(s)� onstC0R � h0(s)� 2 bC0R ;for C0 > onst bC0, proving (2.3). Let us now prove (2.4). Realling (2.5) andarguing as above, for s 2 [1=2; 3=4℄, we get that C0(s� s0) 2 [C04 ; C0℄ and so'(s) = h0(s)RphR� C0(s� s0)( pp�1h0(s)) 1p ip �� h0(s)Rp(R � C04 k)p �� h0(s) + onstR � Rp � (R � onstC0)pRp�1 :Using the fat that limx!+1 xp � (x� a)pxp�1 = pa ;we thus gather that, for R large,'(s) � h0(s) + onstC0R � h0(s) + 2 bC0R ;for C0 > onst bC0, proving (2.4). �Now, for R large enough, we de�ne sR 2 (�1; ��) as the point suh that(2.6) h0(sR) = 1R :From (1.1), we have that(2.7) (1 + sR) � 1R1=p � C(1 + sR) :For further estimates, in the next two lemmas, we now point out some elementarybounds for sR:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 9Lemma 2.3. Let C a positive universal onstant. Then, for R large (with respetto C), we have that(2.8) (1 + �)p � (1 + sR)p � CR (� � sR) > 0 if sR < � < 0and(2.9) Z 0sR d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p � eC log R ;for a suitable onstant eC > 0.Proof. For � 2 [sR; 0℄, letg(�) := (1 + �)p � CR (1 + �) :Then, by (2.7), g0(�) = p(1 + �)p�1 � CR �� p(1 + sR)p�1 � CR �� onstR(p�1)=p � CR > 0 ;if R is large enough, thene g(�) > g(sR), proving (2.8).In order to estimate the integral in (2.9), we introdue the notation b = 1+ sR.Sine, for R large, sR is near �1, we may assume 1b > 2. We use the substitution� = 1 + �bobtaining a bound for the above integral given byZ 1=b1 d���p � 1� CRbp b(� � 1)�1=p � Z 1=b1 d�(�p � 1� C 0b(� � 1))1=p �� Z 21 d�(�p � 1� C 0b(� � 1))1=p + Z 1=b2 d�(�p � 1� C 0b(� � 1))1=p :where we used the fat that bp � 1R (see (2.7)).Notiing that �p � 1 � 2p � 12p �pif � � 2, and that �p � 1 � � � 1if � � 1, we bound the quantity here above byonst 0B�Z 21 d�((1� C 0b)(� � 1))1=p + Z 1=b2 d���p(1� C0b(��1)�p )� 1p 1CA :



10 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSNow, if R is large, then b is small, and therefore we may assume that (1�C 0b) 1p > 12 .Thus, �1� C 0b(� � 1)�p � 1p � �1� C 0b�p�1� 1p �� (1� C 0b) 1p > 12 :This yieldsZ 0sR d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p � onst �1 + log 12b� ;whih proves (2.9). �Let us now estimate how sR varies as a funtion of R:Lemma 2.4. There exists a suitable universal onstant C > 0 so that� CR(p+1)=p � �RsR < 0 :Proof. Di�erentiating (2.6),� 1R2 = h00(sR) �RsR ;thus �RsR < 0 thanks to (1.2), and so, by (2.7),1R2 = h00(sR) j�RsRj �� onst (1 + sR)p�1 j�RsRj �� onstR(p�1)=p j�RsRj : �We now de�ne a modi�ation of the potential h0 in the whole interval [�1; 1℄in the following way:Definition 2.5. We de�ne hs0;R : [sR; 1℄! R by
hs0;R(s) := 8>>>>>>>>>>><>>>>>>>>>>>:

h0(s)� h0(sR)� bC0R (s� sR)if sR � s � � 12'(s)if � 12 < s < 12h0(s) + h0(sR) + bC0R (1� s)if 12 � s � 1:Notie that hs0;R may be disontinuous at s = �1=2. Let us now point outsome easy properties enjoyed by the above potential:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 11Lemma 2.6. The following inequalities hold. If s 2 [�3=4; �1=2℄, thenhs0;R(s) > h0(s)� 2 bC0R > '(s) :If s 2 [1=2; 3=4℄, then hs0;R(s) < h0(s) + 2 bC0R < '(s) :Proof. Let s 2 [�3=4; �1=2℄. If bC0 is taken suitably large, then, reallingLemma 2.2, we have thaths0;R(s) = h0(s)� 1R � bC0R (s� sR) �� h0(s)� 2 bC0R > '(s)where we have used the fat that s� sR � 1.In the same way, if s 2 [1=2; 3=4℄, taking bC0 suitably large, and using Lemma 2.2,we gather that hs0;R < h0(s) + 1R + bC02R << h0(s) + 2 bC0R < '(s) : �Lemma 2.7. Let R1 � R2 be suitably large. Then,2(2.10) hs0;R1(s) � hs0;R2(s) if sR1 � s � s0and(2.11) hs0;R1(s) � hs0;R2(s) if s0 � s � 1 :Proof. Let us prove (2.10). For this purpose, let s � s0. Two ases arepossible: either s > �1=2 or s � �1=2. Let us �rst deal with the �rst ase.Notie that, by (2.1), 's0;R is inreasing in R, sine �1=2 < s � s0 � 1=4 < 1=2,thus, from De�nition 2.5 we gather thaths0;R1(s) = 's0;R1(s) �� 's0;R2(s) = hs0;R2(s) ;whih proves (2.10) if s > �1=2.Let us now deal with the ase s � �1=2. Fixed R1 large and s 2 [sR; �1=2℄,let us de�ne g(R) := 1R + bC0R (s� sR) :2Notie that, for R1 � R2 suitably large, using (1.2), (2.6) and (2.7), one hash0(sR1) = 1R1 � 1R2 = h0(sR2 ) ;so that sR1 � sR2 .



12 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSBy means of Lemma 2.4, g0(R) � � 1R2 + onst bC0R2+1=p < 0 ;thene 1R2 + bC0R2 (s� sR2) = g(R2) �� g(R1) = 1R1 + bC0R1 (s� sR1) :Therefore, if s � �1=2, from De�nition 2.5,hs0;R1(s) = h0(s)� 1R1 � bC0R1 (s� sR1) �� h0(s)� 1R2 � bC0R2 (s� sR2) == hs0;R2(s) ;thus proving (2.10).Having ompleted the proof of (2.10), we now deal with the proof of (2.11).Two ases are possible: either s < 1=2 or s � 1=2. Let us �rst deal with the �rstase. Notie that, by (2.1) and the fat that s0 � s < 1=2, 's0 ;R is dereasing inR. Hene, from De�nition 2.5, hs0;R1(s) = 's0;R1(s) �� 's0;R2(s) = hs0;R2(s) ;whih proves (2.11) if s < 1=2.Let us now deal with the ase s � 1=2. In this ase, by De�nition 2.5,hs0;R1(s)� hs0;R2(s) = 1R1 � 1R2 + bC0(1� s) � 1R1 � 1R2� � 0 ;proving (2.11) for s � 1=2 and thus ompleting the proof of Lemma 2.7. �Let now(2.12) H0(s) := Z s0 (p� 1) 1p(p h0(�)) 1p d� ; for any s 2 (�1; 1).Notie that the inverse of H0 is a \one-dimensional" solution of (1.5). Indeed, ifg0 := H�10 , by Lemma B.3, we obtain that�pg0 = (jg0jp�2g0)0 == (p� 1)jg0jp�2g00 == h00(g0) :We would like now to ompare g0 with all other solutions.To this aim, using De�nition 2.5 we now introdue suitable modi�ations of H0(and thus of g0), whih will be used in the ourse of the proof:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 13Definition 2.8. We de�ne, for s 2 [sR; 1℄,Hs0;R(s) := H0(s0) + Z ss0 (p� 1) 1p(p hs0;R(�)) 1p d� :We notie that, by Lemmas B.1 and 2.3, we get(2.13) hs0;R > 0 ;thene Hs0;R is well de�ned.Remark 2.9. By De�nition 2.8, exploiting Lemma 2.7, it follows that, if R1 �R2,(2.14) Hs0;R1(s) � Hs0;R2(s) if sR1 � s � 1 :Let us now analyze some properties of the above de�ned quantity:Lemma 2.10. Assuming R suitably large, there exists a positive onstant C1 sothat the following inequalities hold:Hs0;R(sR) � �C1 logR ;(2.15) Hs0;R(1) � C1 logR ;(2.16) dds (Hs0;R(s)) > 0 ; 8s 2 (sR; 1) :(2.17)Proof. Note that, if R is suitably big, De�nition 2.1 implies that(2.18) infjsj�1=2'(s) > 0 :Hene, realling Lemma B.1 and (2.7), we have thatHs0;R(sR) � H0(s0)� Z � 12sR onst d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p �� Z s0� 12 (p� 1) 1p(p'(�)) 1p d� �� � onst � Z 0sR onst d��(1 + �)p � (1 + sR)p � CR (� � sR)�1=p �� �C1 logR ;for a suitable C1, where we used Lemma 2.3 to estimate the integral above. Thisproves (2.15).We now prove (2.16). By De�nition 2.5, (1.1), (2.18) and (2.6), we have thatHs0;R(1) � H0(s0) + Z 12s0 (p� 1) 1p(p'(�)) 1p d� + Z 112 onst d��(1� �)p + 1R�1=p �� onst + Z 11=2 onst d�(1� �) + 1R1=p �� onst �1 + log R1=p + 22 � �� C1 logR ;



14 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSproving (2.16). Finally, (2.17) follows from De�nition 2.8 and (2.13). �Using (2.17), we may now give the following de�nition:Definition 2.11. We de�ne gs0;R(t) : (�1; Hs0;R(1)℄! R bygs0;R(t) := � sR if t � Hs0;R(sR) ;H�1s0;R(t) if Hs0;R(sR) < t < Hs0;R(1) :We now state some notation. GivenX 2 RN+1 we de�ne x 2 RN and xN+1 2 Rin suh a way X = (x; xN+1) 2 RN � R :Also, we will often denote x = (x0; xN ) 2 RN�1 � R :We now de�ne a hypersurfae in RN+1 , whih will provide a useful barrier:Definition 2.12. Given Y 2 RN+1 with jyN+1j � 14 and R large as above, let(2.19) S(Y;R) := nx 2 RN+1 ���xN+1 = gyN+1;R�H0(yN+1) + jx� yj �R�o :In the above de�nition, we will sometimes refer to Y as the \enter" and to Ras the \radius" of S. For short, we also denote(2.20) gS(Y;R)(x) := gyN+1;R(H0(yN+1) + jx� yj �R) ;so that (2.19) beomesS(Y;R) = nx 2 RN+1 ���xN+1 = gS(Y;R)(x)o :Let us now prove that gS(Y;R) is a strit supersolution in the visosity sense (for thede�nition of visosity super/sub/solutions, see, e.g., [30℄):Proposition 2.13. Let Y 2 RN+1 with jyN+1j � 14 . Then, gS(Y;R) is a stritsupersolution of (1.5) in the visosity sense at any x 2 RN for whih gS(Y;R)(x) 2[sR; �1=2℄\ [1=2; 1).Moreover, there are not smooth funtions touhing gS(Y;R) by below at x ifjgS(Y;R)(x)j = 12 .Proof. We use the notations = gyN+1;R(t) and t = H0(yN+1) + jx� yj �RIn this setting, we have to prove the desired supersolution property for sR � s ��1=2 and for 1=2 � s < 1.Let us �rst onsider the ase s = sR, that is t � HyN+1;R(sR). In this ase,gyN+1;R(t) is onstantly equal to sR, thus any paraboloid touhing from above musthave vanishing gradient at the ontat point and negative de�nite Hessian matrix.Thus, �p(gyN+1;R(t)) = 0 < h00(sR)in the visosity sense.



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 15Let us now onsider the ase HyN+1;R(sR) < t < HyN+1;R(� 12 ) (that is, sR <s < � 12 ): in this ase, gyN+1;R is smooth so that we an ompute all the derivativesin the lassi sense. As a matter of fat, by Lemma B.3,g0yN+1;R(t) = � pp� 1 hyN+1;R(gyN+1;R(t))�1=pg00yN+1;R(t) = �p hyN+1;R(gyN+1;R(t))�(2�p)=p(p� 1)2=p h0yN+1;R(gyN+1;R(t)) :Hene, exploiting Lemma B.2, we get�p(gyN+1;R(t)) = h0yN+1;R(s) + N � 1jx� yj� pp� 1 hyN+1;R(s)� p�1p :Notie that, from Lemma 2.10,�C1 logR � HyN+1;R(sR) < t == H0(yN+1) + jx� yj �R �� onst + jx� yj �R ;and therefore, if R is big enough,(2.21) jx� yj � R2 :Thus, we get�p(gyN+1;R(t)) � h00(s)� bC0R + 2(N � 1)R � pp� 1 h0(s)� p�1p << h00(s)provided that C0 (and so bC0) is hosen onveniently large. This proves the desiredresult for HyN+1;R(sR) < t < HyN+1;R(� 12 ).If, on the other hand, HyN+1;R( 12 ) < t < HyN+1;R(1) (that is, 12 < s < 1),arguing in the same way, we get�p(gyN+1;R(t)) � h00(s)� bC0R + 2(N � 1)R � pp� 1 hyN+1;R(s)� p�1p < h00(s) ;provided that bC0 is onveniently large. This ompletes the proof in the aseHyN+1;R( 12 ) < t < HyN+1;R(1).Up to now, we have therefore proved the desired result fort 2 ��1; HyN+1;R(�12)� [ �HyN+1;R(12); HyN+1;R(1)� ;that is, for s 2 hsR;�12� [ �12 ; 1� ;To omplete the proof of the laim, we have therefore to take now into aount thease jsj = 1=2.



16 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSLet us now deal with the ase jsj = 1=2. Realling Lemma 2.6, by (2.2), wehave lims!� 12�H 0yN+1;R(s) < lims!� 12+H 0yN+1;R(s) ;lims! 12�H 0yN+1;R(s) < lims! 12+H 0yN+1;R(s) ;so that limt!HyN+1;R(� 12 )�g0yN+1;R(t) > limt!HyN+1;R(� 12 )+g0yN+1;R(t) ;limt!HyN+1;R( 12 )�g0yN+1;R(t) > limt!HyN+1;R( 12 )+g0yN+1;R(t) :(2.22)Let now w be a smooth funtion whose graph touhes S(Y;R) by below at (x0; 1=2)(the ase of touhing at the �1=2-level is analogous). Let us onsider the radialdiretion �0 = x0�yjx0�yj and let us de�ne, for � 2 R,g(�) := gS(Y;R)(x0 + ��0)� w(x0 + ��0) :Then, by onstrution, g(0) = 0 � g(�), therefore0 � lim�!0+ g(�)� g(0)� == lim�!0+ gyN+1;R(t0 + �)� gyN+1;R(t0)� � ��0w(x0) == limt!HyN+1;R(1=2)+ g0yN+1;R(t)� ��0w(x0) ;where t0 := H0(yN+1) + jx0 � yj �R = HyN+1;R(1=2) :By arguing in the same way, we also get that0 � lim�!0� g(�)� g(0)� == limt!HyN+1;R(1=2)� g0yN+1;R(t)� ��0w(x0) :Thene, limt!HyN+1;R(1=2)� g0yN+1;R(t) � ��0w(x0) � limt!HyN+1;R(1=2)+ g0yN+1;R(t) ;whih is a ontradition with (2.22). Therefore, no smooth funtion may touhgS(Y;R) by below at �1=2-level sets, showing, in partiular, the laimed supersolu-tion property. This ompletes the proof of Proposition 2.13. �As a onsequene of the above result, we show now that touhing points betweenS(Y;R) and a subsolution of (1.5) may only our when jxN+1j < 1=2 (and thisfat will be of great help in future omputations, thanks to the expliit form of thebarrier in jxN+1j < 1=2):Corollary 2.14. Let U 2 C1(
) be a weak Sobolev subsolution of (1.5), withjU j � 1. Assume that U � gS(Y;R) and that U(x?) = gS(Y;R)(x?) for some x? in thelosure of 
. Then, either x? 2 �
 or jgS(Y;R)(x?)j < 1=2.



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 17Proof. Let us assume that x? 62 �
 We �rst prove that gS(Y;R)(x?) 6= 1. Weargue by ontradition, assuming gS(Y;R)(x?) = 1. Notie that, due to De�nition2.5, lims�!1� dHyN+1;Rds (s) = lims�!1� 1� pp�1hyN+1;R(s)�1=p == � (p� 1)Rp �1=p ;thus g0yN+1;R(t) > 0 if t = HyN+1;R(1). Then, if�? := x? � yjx? � yjis the radial diretion, this yields(2.23) �gS(Y;R)��? (x?) > 0 :However, sine U 2 C1(RN ), U(x?) = 1 and U � 1,(2.24) rU(x?) = 0 :Similarly, sine U � gS(Y;R) and U(x?) = gS(Y;R)(x?),(2.25) �gS(Y;R)��? (x?) � �U��? (x?) :Thus, a ontradition easily follows from (2.23), (2.24) and (2.25), showing thatgS(Y;R)(x?) 6= 1.Also we laim that gS(Y;R)(x?) 62 [sR; �1=2℄ [ [1=2; 1).Let us �rst show that gS(Y;R)(x?) 6= sR. We argue by ontradition and assumethat gS(Y;R)(x?) = sR. We reall that, by De�nitions 2.11 and 2.12, gS(Y;R) isonstantly equal to sR in Br(y), withr = r(R) := R+HyN+1;R(sR)�H0(yN+1)and3 that r > 0 by (2.15). Then, there would be � > 0 so that
? := Br(y) \ B�(x?) � ngS(Y;R) = sRo :Possibly taking � smaller, we may assume also that(2.26) 
? � nU < �1 + ��oand, sine x? 62 �
 by our assumption, that(2.27) 
? is ontained in the interior of 
.3 Proeeding as done here and exploiting (2.16), one may also prove that gS(Y;R) reahes thevalue 1 well inside the ball of radius R +R 13 =2 around y.



18 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSNote that U annot oinide with gS(Y;R) in 
?, otherwise0 = � Z jrU jp�2rU � r'� Z h00(U)'= Z h00(sR)'> 0 ;for any non-negative smooth test-funtion ' supported in 
?. Then, there exists�x 2 
? and �0 > 0 so that U < gS(Y;R) in the interior of B�0(�x) � 
?, but thereexists �x 2 �B�0 for whih U(�x) = gS(Y;R)(�x). SettingU? = sR � Uit follows U? = gS(Y;R)� U > 0in B�0(�x) and U?(�x) = 0. Moreover,(2.28) ��pU? = �pU � h00(U) :Hene, h00(U) > 0 in the light of (1.2) and (2.26). Thene, from (2.28), ��pU? > 0.Therefore, by Theorem B.6 (applied with  = g = 0),(2.29) ��U(�x) = ���U?(�x) > 0 ;where � := �x� �xj�x� �xjis the outer normal of B�0(�x) at �x.On the ontrary, note that �x is in the interior of the domain of U thanks to(2.27), and so, sine U touhes gS(Y;R) at �x and rgS(Y;R) vanishes on fgS(Y;R) = sRg,we have that ��U(�x) = ��gS(Y;R)(�x) = 0 ;against (2.29). This ontradition shows that x? does not lie in fgS(Y;R) = sRg.Let us now prove that(2.30) gS(Y;R)(x?) 62 �sR ; �12� :First, we reall that gS(Y;R) is smooth with non-vanishing gradient in
0 := �gS(Y;R)(x) 2 �sR ; �12�� ;



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 19thene it is a lassial strit supersolution of (1.5) in 
0. This implies that U annotoinide with gS(Y;R) in fgS(Y;R)(x?) 2 (sR ; � 12 )g, otherwise,Z h00(gS(Y;R))' > � Z jrgS(Y;R)jp�2rgS(Y;R) � r' == � Z jrU jp�2rU � r' �� Z h00(U)'= Z h00(gS(Y;R))' ;for any non-negative smooth test-funtion ' supported in 
0, whih is an obviousontradition. Therefore, sine U and gS(Y;R) do not agree in 
0 and rgS(Y;R)never vanishes there, we an exploit Corollary B.5 and get that U < gS(Y;R) in 
0.Thene, no touhing point may our in fgS(Y;R)(x) 2 (sR ; � 12 )g, proving (2.30).Also, gS(Y;R)(x?) 6= � 12 by Proposition 2.13. The fat that gS(Y;R)(x?) 62[1=2 ; 1) follows with similar arguments. �We will now de�ne another hypersurfae in RN+1 , whih will be denoted byeS(Y;R) and we investigate its relation with S(Y;R). While S(Y;R) is ontinuousbut not smooth, eS(Y;R) will be smooth, and thus it will be easier to deal withduring the alulations. Also, the two surfaes will oinide in fjxN+1j � 12g andS(Y;R) will always stay below eS(Y;R). Therefore, eS(Y;R) will provide, in somesense, a sharp barrier for S(Y;R) whih will be more expliit to treat. Let us nowapproah the de�nition of the hypersurfae eS(Y;R).Setting(2.31) eHs0;R(s) := H0(s)� C02R (s� s0)2then, by (2.12), we have(2.32) dds � eHs0;R(s)� = 1( pp�1h0(s)) 1p � C0R (s� s0) > 0for jsj � 34 , provided that R is big enough. Therefore, for jsj � 34 we have thateHs0;R is stritly inreasing and we an give the followingDefinition 2.15. We de�ne�s0;R(t) : � eHs0;R(�34) ; eHs0;R(34)� �! ��34 ; 34�by(2.33) �s0;R(t) := eH�1s0;R(t) :Moreover, given Y 2 RN+1 with jyN+1j � 14 and R large as above, we de�ne(2.34) eS(Y;R) := fx 2 RN+1 jxN+1 = �yN+1;R(H0(yN+1) + jx� yj �R)g



20 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSAs done on page 14, it is onvenient to introdue the notation(2.35) geS(Y;R)(x) := �yN+1;R(H0(yN+1) + jx� yj � R) ;so that (2.34) beomeseS(Y;R) = nx 2 RN+1 ���xN+1 = geS(Y;R)(x)o :Notie also that, by onstrution, for any x for whih geS(Y;R) is de�ned4, we havethat(2.37) jgeS(Y;R)(x)j � 34 :Moreover, a straightforward omputation gives that(2.38) eHs0;R1(s)� eHs0;R2(s) = C02 (s� s0)2 � 1R2 � 1R1� ;for any jsj � 3=4. Also, if x is in the domain of geS(Y;R), then x and y must besuitably far from eah other, as next result points out:Lemma 2.16. Let x 2 RN be so that geS(Y;R) is well de�ned (that is, let x besuh that (2.36) holds). Then, jx� yj � R� C ;for a suitable universal onstant C > 0.Proof. From (2.37), we get thats := geS(Y;R)(x) 2 [�3=4; 3=4℄ :So, by means of (2.31) and (2.33),jx� yj = R�H0(yN+1) +H0(s)� C02R (s� yN+1)2 �� R� onst : �Let us now show that the surfae S(Y;R) oinides with eS(Y;R) in the setjxN+1j � 12 and that S(Y;R) stays below eS(Y;R) at all other points where eS(Y;R)is de�ned:Lemma 2.17. If jsj � 1=2, then(2.39) Hs0;R(s) = eHs0;R(s) :If 12 < jsj < 34 , then Hs0;R(s) > eHs0;R(s) :(2.40)Also, let x 2 RN be so that geS(Y;R) is well de�ned (that is, let x be suh that (2.36)holds). Then,(2.41) geS(Y;R)(x) � gS(Y;R)(x) :4 I.e., for any x so that(2.36) H0(yN+1) + jx� yj � R 2 h eHs0;R(�34 ) ; eHs0;R( 34 )i :



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 21Furthermore, if jgeS(Y;R)(x)j � 12 , then(2.42) geS(Y;R)(x) = gS(Y;R)(x) :Proof. We use the notation s := geS(Y;R). Let jsj � 1=2. By De�nitions 2.5and 2.8, realling also (2.2), we have thatHs0;R(s) = H0(s0) + Z ss0 d�( pp�1h0(s)) 1p � Z ss0 C0R (s� s0) == H0(s)� C02R (s� s0)2 == eHs0;R(s) :(2.43)This and (2.31) prove (2.39) and (2.42). We now prove (2.40) and (2.41). Let usonsider only the ase s 2 [�3=4; �1=2℄, the ase s 2 [1=2; 3=4℄ being analogous.In this ase, s < s0, and thus, exploiting Lemma 2.6, we getHs0;R(s) = H0(s0)� Z s0s 1� pp�1hs0;R�1=p >> H0(s0)� Z s0s 1� pp�1'�1=p == H0(s0)� Z s0s 1� pp�1h0�1=p � C02R (s� s0)2 == H0(s)� C02R (s� s0)2 ;proving (2.40) and (2.41). �Sine, by onstrution, the funtion geS(Y;R) de�ned above is smooth (and, dueto (2.32, its gradient never vanishes), we an ompute its derivatives (and its p-Laplaian) in the lassi sense. In partiular, we an sharply estimate how fargeS(Y;R) is from being a solution of (1.5), thanks to the following result:Proposition 2.18. Let Y 2 RN+1 with jyN+1j � 14 . Then, there exists apositive universal onstant C > 0 suh thath00�geS(Y;R)(x)�� CR � �pgeS(Y;R)(x) � h00�geS(Y;R)(x)�+ CR ;for any x for whih geS(Y;R) is de�ned (i.e., for any x so that (2.36) holds).Proof. We will use the notationt := H0(yN+1) + jx� yj �R and(2.44) s := �yN+1;R(t) = geS(Y;R)(x) :Let us note that, from (2.31) and (2.2),(2.45) ddt�yN+1;R(t) = 1H 00(s)� C0R (s� yN+1) = � pp� 1'(s)� 1p :



22 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSHene, di�erentiating again, a straightforward alulation leads to(2.46) d2dt2 �yN+1;R(t) = (p'(s)) 2�pp(p� 1) 2p '0(s) :Therefore, by Lemma B.2,(2.47) �p(�yN+1;R(t)) = '0(s) + N � 1jx� yj� pp� 1 '(s)� p�1p :Furthermore, note that, by di�erentiating (2.2), one obtains(2.48) �1p 0� pp�1'0(s)( pp�1'(s)) p+1p 1A = �1p 0� pp�1h00(s)( pp�1h0(s)) p+1p 1A� C0Rso that(2.49) '0(s) = � '(s)h0(s)� p+1p h00(s) + pC0R � pp� 1� 1p �'(s)� p+1p ;whene, from (2.1),'0(s) = h00(s)++ 1R (h00(s)R "� RR� a�p+1 � 1#+ pC0� pp� 1� 1p �'(s)� p+1p ) ;(2.50)with a = a(s) := C0 (s� s0)� pp� 1 h0(s)�1=p :Using now the fat thatlimx!0+ �������� 11�xa�p+1 � 1x ������� = j(p+ 1)aj < +1 ;we obtain, if R is suitably large, that�����h00(s)R "� RR� a�p+1 � 1#+ pC0� pp� 1� 1p �'(s)� p+1p ����� � onst ;(2.51)so that, from (2.47) and the fat that ' � 0,h00(s)� onstR � �p(�yN+1;R(t)) ;whih proves one side of the laimed inequality.The other side of the inequality is obtained by arguing in the same way, makinguse also of Lemma 2.16. �For further referene, we point out some easy alulations on the above barrier:Lemma 2.19. At any x for whih geS(Y;R) is de�ned, we have that�H 00 �geS(Y;R)(x)�� C0R �geS(Y;R)(x) � yN+1�� rgeS(Y;R)(x) == x� yjx� yj :(2.52)



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 23Also, there exists a universal onstant C > 0 so that(2.53) ���H 00 �geS(Y;R)(x)� ���rgeS(Y;R)(x)���� 1��� � CRand ���H 000 �geS(Y;R)(x)� �igeS(Y;R)(x)�jgeS(Y;R)(x) ++ H 00 �geS(Y;R)(x)� �ijgeS(Y;R)(x)��� �� CR ;(2.54)provided that R is large enough.Proof. Using the notation in (2.44) and the �rst equality in (2.45), the laimin (2.52) easily follows. From (2.52) and (2.37), one easily gets (2.53).Let us now prove (2.54). From (2.31) and (2.33), we have that� = H0��yN+1;R(�)�� C02R��yN+1;R(�)� yN+1�2 ;for any � for whih �yN+1;R is de�ned; then, di�erentiating twie and realling(2.37), ���H 000 (�yN+1;R(�)) ��0yN+1;R(�)�2++H 00(�yN+1;R(�)) �00yN+1;R(�)��� � onstR :(2.55)Furthermore, di�erentiating twie the relationgeS(Y;R)(x) = �yN+1;R�H0(yN+1) + jx� yj �R� ;a diret omputation gives�ijgeS(Y;R)(x) == Rij�00yN+1;R(t) +� Æijjx� yj � Rijjx� yj� �0yN+1;R(t) ;where we de�ne, for short, Rij := (xi � yi) (xj � yj)jx� yj2 :In other words,(2.56) �ijgeS(Y;R)(x) = Rij�00yN+1;R(t) + Sijfor a suitable Sij satisfying jSij j � onst =jx� yj. Therefore, using (2.56) and thefat that(2.57) �igeS(Y;R)(x) = �0yN+1;R(t) xi � yijx� yj ;



24 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSwe get that H 000 �geS(Y;R)(x)� �igeS(Y;R)(x)�jgeS(Y;R)(x) ++H 00 �geS(Y;R)(x)� �ijgeS(Y;R)(x) == H 000 (�yN+1;R(t)) ��yN+1;R(t)�2 Rij ++H 00(�yN+1;R(t)) �Rij�00yN+1;R(t) + Sij� == RijhH 000 ��yN+1;R(t)���yN+1;R(t)�2 ++H 00��yN+1;R(t)� �00yN+1;R(t)i+ Tij ;with jTij j � onst =jx� yj. Thus, from (2.55),���H 000 �geS(Y;R)(x)��igeS(Y;R)(x)�jgeS(Y;R)(x) ++H 00�geS(Y;R)(x)��ijgeS(Y;R)(x)��� �� onst � 1R + 1jx� yj� :Therefore, (2.54) is proved thanks to Lemma 2.16. �We now reall a result, proved in [30℄, onerning another barrier whih willbe used in the ourse of the proof of the main results:Lemma 2.20. There exist universal onstants �l > 1 and 0 < � � 1=2, so that,if l � �l, we an �nd Tl 2 [�l; l=2℄ and a nondereasing funtiongl 2 C0(�1; Tl) \ C1;1(�1; 0) \ C2((��l; Tl) n f0g)whih is onstant in (�1;�l=2℄, with g0l > 0 in [��l; Tl℄, satisfying gl(0) = 0,gl(Tl) = 1 and suh that, if we de�ne(2.58) 	y;l(x) := gl(jx� yj � l) ;then 	y;l(x) is a strit supersolution of (1.5) in the visosity sense, in BTl+l(y) n�Bl(y).More preisely, gl is onstruted as follows. There exists a suitable onstants0 < 1 < C1; C2 so that, if we de�nesl := e�1l ;hl(s) := 8>>>>><>>>>>: h0(s)� h0(sl � 1)� C2l ((1 + s)p � spl )if (sl � 1) < s < 0h0(s) + h0(1� sl) + C2l �(1� s)p + s(p�1)l (1� s)�if 0 � s < 1;Hl(s) := Z s0 (p� 1) 1p(p hl(�)) 1p d� ;H0(s) := Z s0 (p� 1) 1p(p h0(�)) 1p d� ; for any s 2 (�1; 1),then the following holds:



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 25(i) hl(s) > 0 in (sl � 1) < s < 1; in partiular, Hl is well de�ned and stritlyinreasing for (sl � 1) < s < 1 and thus we may de�ne gl(t) := H�1l (t)for t 2 Hl(sl � 1; 1);(ii) gl(t) is de�ned to be onstantly equal to sl � 1 for t � Hl(sl � 1);(iii) the following estimates on Hl hold:Hl(1) � l2 ;(2.59) Hl(sl � 1) � � l2 ;(2.60) H0(s) � Hl(s)� C1l log(1� jsj) 8jsj < 1� e� 1l2 ;(2.61) Hl(1� e� 1l2 ) � � l ;(2.62) Hl(e� 1l2 � 1) � �� l :(2.63)A detailed proof of Lemma 2.20 is ontained in [30℄ (see, in partiular, Lemma5.1 there).We now point out some properties of the touhing points between the barrier	y;l and a (sub)solution of (1.5). To this end, we notie that, by onstrution, theradially inreasing funtion 	y;l built in Lemma 2.20 is so that:� 	y;l is de�ned in BTl+l(y), and it is greater than sl � 1;� there exists �l 2 [�l; l=2℄ so that the only ritial points of 	y;l are inBl��l(y), where 	y;l is at;� 	y;l = 0 on �Bl(y).The geometry of suh spheres is related with possible touhing points, as next resultshows:Lemma 2.21. Fix y 2 RN and let l > 0 be suitably large. Let u be a weakSobolev subsolution of (1.5) in some domain 
. Suppose that u 2 C1(
) and thatjuj � 1. Then the following results hold:� If 	y;l touhes the graph of u from above at some point x? in the losureof 
 \ BTl+l(y), then, either x? 2 �
 or u(x?) = 	y;l(x?) = 0.� If Bl+Tl(y) � fx 2 
 j u(x) � �1 + ��g ;then, u(x) < 	y;l(x) ;for any x 2 Bl+Tl(y).For the proof of Lemma 2.21, we refer to [30℄ (see, in partiular, Lemma 6.2and Corollary 6.4 there). We now notie that a statement analogous to Lemma 2.20holds for a subsolution (instead of supersolution) property:Lemma 2.22. There exist universal onstants �l > 1 and 0 < � � 1=2, so that,if l � �l, we an �nd Tl 2 [�l; l=2℄ and a nondereasing funtionegl 2 C0(�Tl;+1) \ C1;1(0;+1) \ C2((�Tl; �l) n f0g)whih is onstant in [l=2;+1), with eg0l > 0 in [�Tl; �l℄, satisfying egl(0) = 0,egl(�Tl) = �1 and suh that, if we de�nee	y;l(x) := egl(l � jx� yj) ;



26 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSthen e	y;l(x) is a strit subsolution of (1.5) in the visosity sense, in BTl+l(y) n�Bl(y).Also, if we de�ne eh0(s) := h0(�s) andeH0(t) := Z t0 (p� 1)1=p d�(peh0(�))1=p ;then, there exists a stritly inreasing funtion eHl and a positive funtion hl, suhthat eH 0l(s) = (p� 1)1=p(pehl(s))1=p ;so that the following holds:(i) ehl(s) is de�ned and stritly positive in �1 < s < 1� sl; eHl is de�ned andstritly inreasing for �1 < s < 1�sl; egl(t) = eH�1l (t) for t 2 eHl(1; 1�sl);(ii) egl(t) is onstantly equal to 1� sl for t � eHl(1� sl);(iii) the following estimates on eHl hold:eHl(�1) � � l2 ;eHl(1� sl) � l2 ;eH0(s) � eHl(s) + C1l log(1� jsj) 8jsj < 1� e� 1l2 ;eHl(�1 + e� 1l2 ) � �� l ;Hl(1� e� 1l2 ) � � l :Proof. Notie that eh0 satis�es the same assumption as h0, thus, we an useLemma 2.20 with eh0 replaing h0: let us denote by h℄l , H℄l and g℄l the funtionsthus obtained via Lemma 2.20 with eh0 replaing h0. Then, de�neehl(s) := h℄l (�s) :Thus, eHl(s) := Z s0 (p� 1)1=p(pehl)1=p = �H℄l (�s)and therefore egl(t) = �g℄l (�t) :With this, let us show that e	y;l is a strit visosity subsolution of (1.5) outside�Bl(y). Indeed, if � is a smooth funtion touhing e	y;l from above at x? 62 �Bl(y),then '(x) := ��(x) touhes from below at the point x? the strit visosity super-solution �e	y;l(x) = g℄l (jx� yj � l) :Thus, by Lemma 2.20,�p� = ��p' > �(h℄l)0(') = eh0l(�') = eh0l(�)at the point x?, whih shows the desired subsolution property of e	y;l.It is easy to see that egl and eHl also enjoy the properties listed above. �



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 27We are now in the position of showing that minimizers are trapped in betweenthe funtions onstruted in Lemmata 2.20-2.22 (an exponential deay was alsopointed out in x9 of [30℄):Lemma 2.23. Let l > 0, � > 0. Let u be a loal minimizer for F inn(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that juj � 1, that �=l is suitably small, that u(0) = 0, that u(x) > 0if xN � � and that u(x) < 0 if xN � ��. Then, there exist suitable onstants�; e�; �̂ 2 (0; 1℄ so that ege�l(xN � �) � u(x) � g�l(xN + �) ;at any point x 2 [��̂l; �̂l℄N , provided that the funtions above are de�ned at x.
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Trapping a minimizer between two barriers, as in Lemma 2.23Proof. We proof the latter inequality, the �rst one being analogous. FromTheorem 1.1 of [28℄ and the fat that fu = 0g � fjxN j � �g, it easily follows that(2.64) u(x) < �1 + �? for any x 2 RN with xN � �? and jx0j � l=2,for some onstant �? (whih may depend on �? and other universal onstants).Then, from (2.64) and the seond item in Lemma 2.21,u(x) � 	y;�l(x) ;



28 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSwhere y := (0; : : : ; 0;�l=2). Let now e 2 SN�1, with eN > 0 and let us slide 	y;�lin the e-diretion until it touhes u. Notie indeed that there exists a suitableonstant � 2 (0; 1) so that if(2.65) eN � � ;then 	y+te;�l does touh u for some t = t(e) > 0 at some point x? = x?(e) 2 [�l; l℄N ,that is(2.66) u(x) � 	y+te;�l(x) = g�l(jx� (y + te)j � �l) ;for any x 2 BT�l+�l(y + te), being the latter the domain where 	y+te;�l is de�ned,and u(x?) = 	y+te;�l(x?) :In the light of the �rst item in Lemma 2.21, we have thatu(x?) = 	y+te;�l(x?) = 0and so, sine, by our hypotheses fx j u(x) = 0g � fjxN j � �g, we have thatjx?N j � � :Let us now onsider, for d � 0, the pointx = x(e) := x? + deN :Then, jx� (y + te)j � jx� x?j+ jx? � (y + te)j == d+ �l == xN � x?N + �l� xN + � + �l :Therefore, sine gl is inreasing, (2.66) implies that(2.67) u(x) � g�l(xN + �) ;provided x 2 BT�l+�l(y + te).With this inequality, we are now in the position of hoosing e here above in orderto infer the desired result. We proeed in the following way: take x = (x0; xN ) 2[��̂l; �̂l℄N�1 � [��̂l; �̂l℄ and onsider two ases.If(2.68) fx 2 [��̂l; �̂l℄N j xN � xNg \ fu = 0g 6= ; ;take x? so that (x?)0 = x0, u(x?) = 0 and x?N as low as possible (in partiular, from(2.68), x?N � xN ). Let also, as above, y := (0; : : : ; 0;�l=2). Then, hoosinge := x? � yjx? � yj ;we have that x and x? here agree with x(e) and x?(e) onstruted here above andthat (2.65) is ful�lled provided �̂ is small enough. Thus, the desired result follows,in this ase, from (2.67).If, on the other hand,(2.69) fx 2 [��̂l; �̂l℄N j xN � xNg \ fu = 0g = ; ;notie that xN + � + �l � � + (�� �̂)l > 0, provided that �̂ � � and de�ney? := x� (xN + � + �l)eN



2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONS 29and e := y? � yjy? � yj :Notie also that y?N + �l = ��, heneB�l(y?) � [��l; �l℄N�1 � (�1;��℄ � fu < 0g :Therefore, by the �rst item in Lemma 2.21, we have that 	y+te;�l does not touhu for t 2 [0; jy? � yj℄. In partiular, for t = jy? � yj,u(x) � 	y+te;�l(x) == 	y?;�l(x) == g�l(xN + �) :This proves the desired result also in ase (2.69) holds and it ompletes the proofof Lemma 2.23. �Corollary 2.24. Let l > 0, � > 0. Let u be a loal minimizer for F in
 := n(x0; xN ) 2 RN�1 � R ��� jx0j < l ; jxN j < lo :Assume that juj � 1, that �=l is suitably small, that u(0) = 0, that u(x) > 0 ifxN � � and that u(x) < 0 if xN � ��. Then, there exists a suitable onstant 2 (0; 1℄ so that (�1 + sl; 1� sl) � u(
) :Proof. By Lemma 2.23 and the fat that gl(t) = �1 + sl if t � �l=2 (reallLemma 2.20), we have that, if xN � �3�l=4,u(x) � g�l(xN + �) = �1 + s�l ;provided that �=l small enough. Analogously, by Lemma 2.23 and the fat thategl(t) = 1� sl if t � l=2 (reall Lemma 2.22), we get that, if xN � 3e�l=4,u(x) � ege�l(xN � �) = 1� se�l :The inequalities above and the ontinuity of u (see [15℄ or [34℄) imply the desiredresult. �In the following, we will often slide the barriers in a given diretion. More pre-isely, we will start from a on�guration in whih the barrier is above a subsolutionu and then we slide the barrier until it touhes the graph of u. With some poetry,we may think that the barrier is like a ship whih moves forward until it touhesthe land u: of ourse, the ship will touh the land with the fore, not with the aft.Next result gives a formal justi�ation of this fat:Lemma 2.25. Let u 2 C(
). Let � = (�1; : : : ; �N ) 2 RN with j�j = 1 andlet �̂ := (�; 0) 2 RN+1 . Assume that gS(Y�t�̂;R) > u in their ommon domain ofde�nition for any t 2 (0; 1℄. Assume also that gS(Y;R) touhes u from above at somepoint X = (x; xN+1), that is, assume that gS(Y;R) � u and gS(Y;R)(x) = u(x) =xN+1. Then, (x� y) � � � 0 :



30 2. MODIFICATIONS OF THE POTENTIAL AND OF ONE-DIMENSIONAL SOLUTIONSProof. By onstrution,gyN+1;R�jx� yj+H0(yN+1)�R� == gS(Y;R)(x) == u(x) �� gS(Y�t�̂;R)(x) == gyN+1;R�jx� y + t�j+H0(yN+1)�R�for any t 2 [0; 1℄, from whih jx� yj � jx� y + t�jfor any t 2 [0; 1℄. This says that the funtionf(t) := jx� y + t�j2attains its minimum in the domain [0; 1℄ at t = 0. Thus, f 0(0) � 0, whih gives thedesired estimate. �



CHAPTER 3Geometry of the touhing pointsThis setion, whih is very tehnial, follows many of the ideas in Chapter 4 of[31℄ (we provide full details for the reader's faility). The main result of this setionwill be Proposition 3.14, in whih we investigate the measure theoreti propertiesof (an N -dimensional projetion of) the set of possible touhing points betweena subsolution of (1.5) and the barrier S(Y;R) introdued here above. Roughlyspeaking, we will prove in Proposition 3.14 that the measure of the projetion ofthe \�rst ourrene" touhing points ontrols the measure of the projetion of theenters of the orresponding surfaes.For this sope, given(3.1) � := (�1; : : : ; �N ; 0) 2 RN+1 ;with j�j = 1, we de�ne P� as the hyperplane in RN+1 orthogonal to �, i.e.,P� := fX 2 RN+1 j � �X = 0gWe also denote by �� the projetion onto P�, i.e.,��(X) := X � (� �X)� ; 8X 2 RN+1 :With a slight abuse of notation, we will sometimes identify � with its N -dimensionalprojetion, impliitly dropping the zero in the last oordinate, that is, we will write� := (�1; : : : ; �N ) 2 RN ;instead of (3.1).Let now u 2 C1([�C℄l ; C℄l℄N ) be a weak Sobolev subsolution of (1.5), withjuj � 1. Here we will �x C℄ suitably large (also, l and R are �xed and suitablylarge, and l=R is assumed onveniently small). Let us now de�ne the set of �rstontat points as follows. Given a ompat set1 A � P� � RN , we de�neeA = eAA := fY 2 RN+1 s.t.9Ŷ 2 A; tŶ 2 R s.t. Y = Ŷ + tŶ � ;gS(Ŷ+t�;R) > u for any t < tŶ ,gS(Y;R) � uand 9x 2 RN+1 s.t. gS(Y;R)(x) = u(x)g :1The losure of A will be used to dedue losure and measurability properties of sets ofinterest: see, e.g., Lemma 3.2 and Proposition 3.14 here below.31



32 3. GEOMETRY OF THE TOUCHING POINTSWe refer to eA as the set of the \enters". Moreover, we de�neeB = eBA := fX = (x; xN+1) 2 RN+1 s.t. 9Y 2 eA s.t.gS(Y;R) � u andgS(Y;R)(x) = u(x) = xN+1gand we refer to eB as the set of \�rst ontat points". Roughly speaking, we aresliding our barriers until it touhes the graph of u for the �rst time: the set eBollets all suh �rst ourrene ontat points, while eA ollets the orrespondingenters. In this setion, we will assume that(3.2) A � [�C℄l=2; C℄l=2℄N � [�1=4; 1=4℄and thatnX = (x; xN+1) 2 RN+1 s:t: 9Y 2 RN+1 s:t: ��Y 2 A ; gS(Y;R) � u andgS(Y;R)(x) = u(x)o \ �[�C℄l; C℄l℄N = ; :(3.3)We also de�ne B := ��( eB) :We also denote the graph of u by G, that is we set(3.4) G := fxN+1 = u(x)g :We now show some properties of the above de�ned sets. First of all, from (3.3)and Corollary 2.14, we have that:Lemma 3.1. eB � fX 2 RN+1 j jxN+1j < 1=2g :We now show that the ompatness property of A is inherited by the other setsde�ned above:Lemma 3.2. If l=R is small enough, then eA, B and eB are ompat sets.Proof. Note that eB 2 [�C℄l; C℄l℄N� [�1; 1℄, hene eB is bounded. Therefore,B and eA are also bounded. Thene, we only need to show that the above sets arelosed. Let us �rst show that eA is losed. For this, let Yk 2 eA onverge to someY1. We need to show that Y1 2 eA.For this sope, note that, sine A is losed and ��Yk 2 ��(eA) � A, we have that��Y1 2 A. Also, sine Yk 2 eA, we have that there existsXk 2 [�C℄l; C℄l℄N�[�1; 1℄so that(3.5) 8<: gS(Yk;R)(xk) = u(xk)gS(Yk;R) � u andgS(Yk�t�;R) > u ;for any t > 0. Of ourse, up to subsequene, we may assume that Xk onverges tosome point X1. Thus, passing to the limit (3.5), we obtain that8<: gS(Y1;R)(x1) = u(x1)gS(Y1;R) � u andgS(Y1�t�;R) � u ;



3. GEOMETRY OF THE TOUCHING POINTS 33for any t > 0. Hene, to show that Y1 2 eA, we need to prove the strit inequalityin the last relation here above, i.e., we need to show that(3.6) gS(Y1�t�;R) > ufor any t > 0. We argue by ontradition: assume that there exists x℄ so thatjx℄j � onst l and t℄ > 0, suh thatgS(Y1�t℄�;R)(x℄) = u(x℄) :Note that, by (3.3) and Corollary 2.14, jgS(Y1;R)(x1)j � 1=2, thus(3.7) jx1 � y1j � onstR :Also, by (3.2), we get thatj��(x1 � y1)j � jx1j+ j��y1j == jx1j+ j�eN (��Y1)j �� onst l :Thus, from (3.7), we have that(3.8) \(x1 � y1; �) � onst l=R :Furthermore, from Lemma 2.25,(x1 � y1) � � � 0 :This, (3.8) and (3.7) say that(x1 � y1) � � = j(x1 � y1) � �j == jx1 � y1j os\(x1 � y1; �) �� onstR ;provided that l=R is small enough. For this reason,(x℄ � y1) � � � (x1 � y1) � � � jx1j � jx℄j �� onstR � onst l �� 0 ;(3.9)if l=R is small enough. Thus, from (3.9), we dedue thatjx℄ � y1 + t℄�j2 = jx℄ � y1j2 + t2℄ + 2t℄� � (x℄ � y1) >> jx℄ � y1j2 :As a result, we infer thatu(x℄) = gS(Y1�t℄�;R)(x℄) == gy1;N+1;R�jx℄ � y1 + t℄�j+H0(y1;N+1)�R� >> gy1;N+1;R�jx℄ � y1j+H0(y1;N+1)�R� == gS(Y1;R)(x℄) �� u(x℄) :This ontradition proves (3.6). Hene, Y1 2 eA and therefore eA is losed.



34 3. GEOMETRY OF THE TOUCHING POINTSNote now that one we know that eB is losed, it easily follows that B is alsolosed. Thus, to end the proof of this result, we need to prove that eB is losed. Forthis, let us onsider a sequene Xk 2 eB so thatlimk!+1Xk = X1 :Our aim is to show that X1 2 eB. For this, observe that, sine Xk 2 eB, there existsYk 2 eA suh that gS(Yk;R) � u and gS(Yk;R)(xk) = u(xk) = xk;N+1. Sine we provedthat eA is ompat, possibly taking subsequenes, we may assume that Yk tends toY1 2 eA. Thus, passing to the limit here above we dedue that gS(Y1;R) � u andgS(Y1;R)(x1) = u(x1) = x1;N+1, with Y1 2 eA. This proves that X1 2 eB, theneeB is losed. �Lemma 3.3. For any X 2 RN+1 with X 2 eS(Y;R) and � 2 SN , let2�eS(Y;R)(X) := ��rgeS(Y;R)(x); 1�q1 + jrgeS(Y;R)(x)j2 2 RN+1 ;!(X; �) := RC0 � �N+1j(�1; : : : ; �N )j �H 00(xN+1)� 2 R ;�(X; �) := �C02R!2(X; �) +H0(xN+1)�H0(xN+1 + !(X; �)) +R 2 R ;F (X; �) := �x+ (�1; : : : ; �N )j(�1; : : : ; �N )j�(X; �); xN+1 + !(X; �)� 2 RN+1 :Then,(3.10) Y = F (X; �eS(Y;R)(X)) ;for any X 2 eS(Y;R).Proof. For short, we will set here eS := eS(Y;R). Realling Lemma B.11, wesee that there exists � 2 R so thatx� y = � (�eS1(X); : : : ; �eSN (X))j(�eS1(X); : : : ; �eSN (X))j :Using that xN+1 = geS(Y;R)(x), (2.31), (2.33) and (2.35), we also gather thatH0(yN+1) + jx� yj �R = H0(xN+1)� C02R (xN+1 � yN+1)2 :Hene, if ! := yN+1 � xN+1, we gather� = jx� yj = H0(xN+1)�H0(xN+1 + !) +R� C02R!2 :This determines �, as desired, we now need to determine !. Using (2.2) (withs0 := yN+1 and s := xN+1) and De�nition 2.5 (with the fat that jsj < 1=2 as2Of ourse, �eS(Y;R)(X) is normal to eS(Y;R) at the point X.



3. GEOMETRY OF THE TOUCHING POINTS 35pointed out above), we get! = �(xN+1 � yN+1) == RC0 0B� 1� pp�1'(xN+1)�1=p � 1� pp�1h0(xN+1)�1=p1CA == RC0 0B� 1� pp�1hs0;R(xN+1)�1=p � 1� pp�1h0(xN+1)�1=p1CA :Thus, from De�nition 2.12 and (2.42), we have that! = RC0 �H 0s0;R(xN+1)�H 00(xN+1)� == RC0 � 1jrgeS(Y;R)(x)j �H 00(xN+1)� ;and, therefore, ! = RC0 � �eSN+1(X)j(�eS1(X); : : : ; �eSN (X))j �H 00(xN+1)� ;whih determines !. �Corollary 3.4. Let the notation of Lemma 3.3 holds. For X = (x; xN+1) 2RN , with xN+1 = u(x), let3�u(X) := ��ru(x); 1�p1 + jru(x)j2 2 RN+1 ;(3.11)Let X;Y 2 RN be so that gS(Y;R)(z) � u(z) 8z 2 RN ;gS(Y;R)(x) = u(x) = xN+1 :(3.12)Then, Y = F (X; �u(X)).Proof. By (3.12), we have that the graph of u and the surfae S(Y;R) aretangent at the point X , therefore�u(X) = �S(Y;R)(X) ;hene the laim follows from Lemma 3.3. �Lemma 3.5. In the notation of Corollary 3.4, if X 2 eB, then there exists apositive onstant  so that  � �uN+1(X) � 1�  :3Note that �u(X) is a unit vetor, normal to the graph of u at the point X = (x; u(x)).



36 3. GEOMETRY OF THE TOUCHING POINTSProof. Sine, by Lemma 3.1, jxN+1j � 1=2,jru(x)j = jrgS(Y;R)(x)j = ������ pp� 1hs0;R(xN+1)�1=p����� 2 [1=C; C℄ ;for a suitable onstant C, whih implies the desired laim. �Lemma 3.6. Let the notation of Lemma 3.3 and Corollary 3.4 hold. LetY(X) := F (X; �u(X))and let DXY be the di�erential map. Then, there exists a positive onstant C suhthat jDXY(X)j � C ;for any X 2 eB.Proof. By diret inspetion,(3.13) DXY(X) = DXF (X; �u(X)) +D�F (X; �u(X))DX�u(X) :On the other hand, by di�erentiating (3.10),(3.14) 0 = DXF (X; �S(Y;R)(X)) +D�F (X; �S(Y;R)(X))DX�S(Y;R)(X) :Moreover, if X 2 eB, then(3.15) rgeS(Y;R)(x) = ru(x) ;and so �u(X) = �eS(Y;R)(X) :Thus, from (3.13) and (3.14), we gather thatDXY(X) = D�F (X; �eS(Y;R)(X))�DX�u(X)�DX�eS(Y;R)(X)� ;for any X 2 eB. By the de�nitions given in Lemma 3.3, one sees thatjD�F (X; �eS(Y;R)(X))j � onstR ;and so we get from the above relation thatjDXY(X)j � onstR ���DX�u(X)�DX�eS(Y;R)(X)��� :Therefore, in the light of (3.15), Lemma B.12, Remark B.13 and Lemma 3.5,jDXY(X)j � onstR ���D2u(x)�D2geS(Y;R)(x)��� :Also, sine geS(Y;R) touhes u from above at X , we have that(3.16) D2geS(Y;R)(x) �D2u(x) is a non-negative de�nite matrixand therefore onst ���D2u(x)�D2geS(Y;R)(x)��� � ��geS(Y;R) � u�(x) :Thene, we have obtained the following estimate:(3.17) jDXY(X)j � onstR��geS(Y;R) � u�(x) :



3. GEOMETRY OF THE TOUCHING POINTS 37Notie now that u is C2 near X by standard ellipti results, sine ru(x) 6= 0 thanksto (3.15). Thene, making use of (3.15), we get�pgeS(Y;R)(x)��pu(x) == jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� ++(p� 2) jrgeS(Y;R)(x)jp�4rgeS(Y;R)(x) �(3.18) � h�D2geS(Y;R)(x) �D2u(x)� � rgeS(Y;R)(x)i :We need now to distinguish two ases. If p � 2, we use Lemma 3.5 and (3.16) inorder to dedue from (3.18) that�pgeS(Y;R)(x)��pu(x) �� jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� �� onst��geS(Y;R)(x) ��u(x)� :(3.19)On the other hand, if 1 < p < 2, (3.18), Lemma 3.5 and (3.16) give that�pgeS(Y;R)(x)��pu(x) �� jrgeS(Y;R)(x)jp�2 ��geS(Y;R)(x) ��u(x)� �� (2� p) jrgeS(Y;R)(x)jp�2 jD2geS(Y;R)(x) �D2u(x)j �� jrgeS(Y;R)(x)jp�2 [1� (2� p)℄��geS(Y;R)(x) ��u(x)� �� onst (p� 1)��geS(Y;R)(x) ��u(x)� :(3.20)In any ase, for any p 2 (1;+1), (3.19) and (3.20) give that�pgeS(Y;R)(x)��pu(x) �� onst��geS(Y;R)(x) ��u(x)� :(3.21)Furthermore, exploiting Proposition 2.18 and the fat that u is a subsolution of(1.5), we have that(3.22) �pgeS(Y;R)(x) ��pu(x) � CR :The desired result now follows from (3.17), (3.21) and (3.22). �Realling (3.4), we de�ne S := Y(G) :The onstrution of eA and eB easily implies the following observation:Lemma 3.7. eA and eB belong to Lipshitz surfaes. More preisely, eB lies inG while eA lies in S.The next observation will say that eA and eB are graphs with respet to the�-diretion:Lemma 3.8. �� is injetive on eA and on eB.



38 3. GEOMETRY OF THE TOUCHING POINTSProof. �� in injetive on eA by onstrution. Let us show that is also injetiveon eB. Assume, by ontradition, that X(1) 2 B and X(2) = X(1) + �� 2 B, with� > 0. Let also Y (1) and Y (2) be the orresponding enters in eA, i.e., for i = 1; 2,let Y (i) 2 eA be so that gS(Y (i) ;R) touhes u for the �rst time at X(i).Sine �N+1 = 0, x(1)N+1 = x(2)N+1 ;therefore, gS(Y (1) ;R)(x(1)) = x(1)N+1 = u(x(1)) == x(2)N+1 = gS(Y (2);R)(x(2)) = u(x(2)) :(3.23)If now we onsider �Y := Y (2) � ��it follows that(3.24) gS(�Y;R)(x(1)) = gS(Y (2)���;R)(x(2) � ��) = gS(Y (2) ;R)(x(2)) = u(x(1)) :On the other hand, sine Y (2) 2 eA, gS(�Y ;R) > u, in ontradition with (3.24). �Given X 2 RN+1 , we now de�ne(3.25) �X := fZ j X 2 eS(Z;R)g :In other words, given a point X , �X is the surfae ontaining all the enters of thesurfaes eS(�; R) to whih X belongs. Let us now investigate the properties of �X :Lemma 3.9. Let Y be as in Lemma 3.6. Then, Y(X) 2 �X for any X 2 eB.Proof. Sine X 2 eB, there exists Y so that (3.12) holds. Then, by Corol-lary 3.4, �X 3 Y = F (X; �u(X)) = Y(X) : �We denote by ��X (Z) the unit normal vetor to the surfae �X at a pointZ 2 �X (in a �xed orientation). Suh de�nition is well posed, sine �X is aLipshitz surfae, as we show here below. Also, we an express ��X in terms of thenormal to eS(Y;R), aording to the following result:Lemma 3.10. Let Y be as in Lemma 3.6 and let X 2 eB. Then �X is aLipshitz rotation surfae with axis parallel to eN+1 and passing through X. Also,��X (Y(X)) belongs to the spae spanned by eN+1 and �eS(Y(X);R)(X).Proof. Let us �rst show that �X is a Lipshitz rotation surfae. By (2.35),we have that Z 2 �X if and only ifxN+1 = geS(Z;R)(x) = �zN+1;R(H0(zN+1) + jz � xj �R) ;that is, by (2.33) and (2.31), if and only ifH0(xN+1)� C02R (xN+1 � zN+1)2 = H0(zN+1) + jz � xj �R :We now de�ne HxN+1;R(�) := H0(�) + C02R (xN+1 � �)2 :



3. GEOMETRY OF THE TOUCHING POINTS 39Then, H is stritly inreasing in [�1=2; 1=2℄; thus Z 2 �X if and only ifzN+1 = H�1xN+1;R�H0(xN+1) +R� jz � xj� :This proves the rotational symmetry and the Lipshtiz properties of �X .Consequently, by Lemma B.10, we gather that ��X (Y(X)) is in the spaespanned by (�eN+1Y(X) � x) and eN+1. But �eS(Y(X);R)(X) is also in the spaespanned by (�eN+1Y(X) � x) and eN+1, as follows by the radial symmetry ofeS(Y(X); R) and Lemma B.10 again; moreover, �eS(Y(X);R)(X) is not parallel to eN+1(beause jxN+1j � 1=2 due to Lemma 3.1 and so rgS(Y(X);R)(x) 6= 0). Therefore,��X (Y(X)) belongs to the spae spanned by �eS(Y(X);R)(X) and eN+1. �Lemma 3.11. There exists a positive onstant C suh thatj��X (Y(X)) � �j � C j�u(X) � �j ;for any X 2 eB.Proof. From Lemma 3.10, for any X 2 eB, we have that(3.26) ��X (Y(X)) = ��̂ + �eN+1 ;for some � = �(X) and � = �(X) 2 R, where we denoted�̂ := ��eS(Y(X);R)1 (X); : : : ; �eS(Y(X);R)N (X); 0� :Obviously, sine X 2 eB, �̂ = ��u1 (X); : : : ; �uN (X); 0� :Thene, by exploiting Lemma 3.5, we see thatj�̂j2 = 1� j�eS(Y(X);R)N+1 (X)j2 � 1� (1� )2 �  :Thus, (3.26) implies that j�j � j��̂ � �̂j == ������X (Y(X))� �eN+1� � �̂��� == �����X (Y(X)) � �̂��� �� 1 ;that is j�j � onst :Hene, being �N+1 = 0, (3.26) gives thatj��X (Y(X)) � �j = j��̂ � �j � onst j�̂ � �j = onst j�u � �j : �Lemma 3.12. Let X 2 G, with jxN+1j � 1=2. Assume that geS(Y;R) � u. Then,Y is above �X (with respet to the eN+1-diretion).



40 3. GEOMETRY OF THE TOUCHING POINTSProof. Assume that (y; y�N+1) 2 �X . We need to show that y�N+1 � yN+1.For this purpose, note that, by onstrution, X 2 eS((y; y�N+1); R), whih says that(3.27) geS((y;y�N+1);R)(x) = xN+1 = u(x) � geS(Y;R)(x) :Fix now R, x and y. For j�j � 1=2, we de�nef(�) := geS((y;�);R)(x) :Realling (2.35) and (2.31), we have thatH0(f(�)) � C02R (� � f(�))2 = H0(�) + jx� yj �R :Di�erentiating with respet to �, we get thatH 00(f(�)) f 0(�) � H 00(�)� onstR :In partiular, sine by de�nition jf(�)j � 1=2, we get that f 0(�) > 0 if R is largeenough, thene f is inreasing. Sine, by (3.27), we have thatf(y�N+1) � f(yN+1) ;we dedue that y�N+1 � yN+1, as desired. �Lemma 3.13. Let X 2 eB. Then eA touhes �X from above at Y(X).Proof. First, note that Y(X) 2 Y( eB) � eA :On the other hand, Y(X) 2 �X by Lemma 3.9. Thus, to end the proof of thisresult we need to show that eA is above �X (with respet to the eN+1-diretion).For this purpose, take Y 2 eA. Then, by onstrution, geS(Y;R) � u (and equalityholds at some point). Thus, by Lemma 3.12, Y is above �X . �The following is the main result of this setion, in whih a measure estimatefor ontat points is given:Proposition 3.14. Let 1= � l � R, for a suitably small positive onstant .Assume (3.2) and (3.3). Assume also that A is the losure of an open set and thatfor any Y 2 A there exist t 2 R and x 2 RN , suh thatgS(Y+t�;R)(x) � u(x).(3.28)Then, denoting the N-dimensional Lebesgue measure by LN , we have thatLN (A) � C LN (B) ;for a suitable positive universal onstant C.Proof. Note that A is losed by hypothesis and so is B thanks to Lemma 3.2;in partiular, A and B are measurable sets. Also, by (3.28), A = ��(eA). What ismore, sine A is the losure of an open set, Lemma 3.7 and Lemma 3.8 say that eAis a Lipshitz surfae whih is also a ontinuous4 graph over A in the �-diretion.4 The ontinuity of (�����eA)�1 follows from the following elementary property: if f : K �!f(K) is ontinuous and injetive and K is ompat, then f�1 is ontinuous.



3. GEOMETRY OF THE TOUCHING POINTS 41In partiular, the normal �eA is well de�ned. Thanks to Lemma 3.13, we also havethat ��X (Y(X)) = �eA(Y(X))for anyX 2 eB, provided that ��(Y(X)) lies in the interior of A (up to an orientationhoie). Therefore, by Lemma 3.11,(3.29) j�eA(Y(X)) � �j � onst j�u(X) � �j ;where �u(X) is the normal to G at X , for any X 2 eB, provided that ��(Y(X)) liesin the interior of A. We denote by eB0 this set, that iseB0 := n X 2 eB, with ��(Y(X)) in the interior of A o :Also, applying the divergene theorem to (the interior of) eA, we have that(3.30) LN (A) � ZeA j�eA � �j ;where the above is a surfae integral.For " > 0, let us now de�neeB" := [X2eB0B"(Y ) \G ;where G, as in (3.4), denotes the graph of u. Then, eB" is a Lipshitz surfaeontained in G . By the divergene theorem,LN���( eB")� = ZeB" �eB" � � ;where �eB" is the external normal of the surfae eB". Obviously, up to the sign, �eB"agrees with �u. Sending " to zero, we thus get(3.31) LN (B) = LN���( eB)� � LN���( eB0)� = ZeB0 �eB" � � :Also, by Lemma 3.8, the exterior normal �eB" in eB has the signed assigned by theproperty that �eB" � � � 0. Therefore,j�u � �j = j�eB" � �j = �eB" � �in eB. Thus, by (3.31), we get that(3.32) LN (B) � ZeB0 j�u � �j :Also, by onstrution, Y sends eB into eA; hene, by (3.30), the hange of variablesformula (see, e.g., page 99 in [18℄) and Lemma 3.6, we get thatLN (A) � ZeA j�eA(Y ) � �j dY �� ZeB0 j�eA(Y(X)) � �j j detDY(X)j dX �� onst ZeB0 j�eA(Y(X)) � �j dX :(3.33)



42 3. GEOMETRY OF THE TOUCHING POINTSThene, from (3.32), (3.29) and (3.33), we have thatLN (A) � onst ZeB0 j�eA(Y(X)) � �j dX� onst ZeB0 j�u(X) � �j dX� LN (B) : �



CHAPTER 4Measure theoreti resultsThis setion ollets some measure theory lemmata, whih are extensions ofanalogous results in [31℄. These lemmata will be used in the sequel for estimatingthe measure of the projetion of the set in whih a suitable barrier touhes a minimalsolution of (1.5). For the reader's onveniene, the proofs of the lemmata of thissetion are deferred to the Appendix.Given two vetors v and w, we de�ne \(v; w) to be the angle1 between thesevetors, i.e., \(v; w) := aros v � wjvj jwj :By elementary geometri onsideration, if jvj = jwj = 1,(4.1) jv � wj � \(v; w) :We also de�ne, for l > 0,L := n(x0; 0; xN+1) 2 RN�1 � R � R j jxN+1j � 1=2o ;Ql := n(x0; 0; xN+1) 2 L j jx0j � lo :Of ourse, LN (Ql) = onst lN�1 :For X = (x1; : : : ; xN+1) 2 RN+1 , and 1 � i � N + 1, we de�ne�iX := (x1; : : : ; xi�1; 0; xi+1; xN+1) :Also, given X 2 RN+1 , we will often write X = (x0; xN ; xN+1) 2 RN+1 � R � R,i.e., the notation x0 will often denote the �rst (N � 1) entries of X .Then, with the above notation, we have the following results:Lemma 4.1. Let u be a solution of (1.5). Suppose that S(Y;R) touhes thegraph of u by above at X0 = (x0; u(x0)) = (x0; gS(Y;R)(x0)). Assume that(4.2) \� ru(x0)jru(x0)j ; eN� � �8 :Then, there exists a universal a0 > 1 so that, for any a � a0, there exist a universal� > 1 and a suitable C > 1, whih depends only on a and on universal onstants,suh that the following holds. For any point Z 2 L \ Ba(�NX0) there exists xsatisfying the following properties:� jx� x0j � �a,� Z = �N (x; u(x)),� (x� x0) � ru(x0)jru(x0)j � H0(u(x)) �H0(u(x0)) + CR ,1As usual, the angle of the aros ranges between 0 and �.43



44 4. MEASURE THEORETIC RESULTSprovided that R is large enough (possibly in dependene of a).Lemma 4.2. Let u be a C1-subsolution of (1:5) in fjx0j < lg � fjxN j < lg.Assume that S(Y0; R) is above the graph of u and that S(Y0; R) touhes the graphof u at the point (x0; u(x0)). Suppose that� ju(x0)j < 1=2, jx0N j < l=4, q := jx00j < l=4;� \� ru(x0)jru(x0)j ; eN� � �8 .Then, there exist universal onstants C1; C2 > 1 >  > 0 suh that, ifq � C1 and 4 3pR � l � R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� jx0j < q=15, ju(x)j < 1=2, jx� x0j < 2q;� there exists Y 2 RN � [�1=4; 1=4℄ suh that S(Y;R=C2) is above u and ittouhes u at (x; u(x));� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then, LN��N (�)� � qN�1 :Lemma 4.3. Let C � 2,  > 0. Let us onsider, for k 2 N, a family of setsDk � L, so that Dk � Dk+1 for any k 2 N. Assume that the following propertieshold, for some l > Ca � 2a >  > 0:(P1) D0 \Ql 6= ;;(P2) for any Z0 2 Dk \Q2l and any Z1 2 L, with a � jZ1 � Z0j � 2l, one hasthatLN�Dk+1 \ BjZ1�Z0j=10(Z1)� � LN�L \ BjZ1�Z0j(Z1)� :De�ne, for any k 2 N(4.3) Ek := nZ 2 L j dist (Z;Dk) � ao :Then, there exists a0 > 1 > 0 > 0 universal onstants and ? > 0, whih dependsonly on a,  and universal onstants, suh thatLN�Ql nEk� � (1� ?)LN (Ql) ;provided that a � a0 and ; C�1 2 (0; 0℄.
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The overing sets of Lemma 4.3Full details of the proofs of the above lemmata will be provided in the Appendix.





CHAPTER 5Estimates on the measure of the projetion of theontat setWe now show how to use Proposition 3.14 and the measure theoreti lemmatastated in x4 in order to dedue a measure estimate on the projetion of the ontatsets between barriers and minimal solutions of (1.5). To this aim, we �rst need anestimate on the ontat sets obtained by touhing u by above \for the �rst time",as dealt with by the following result.Lemma 5.1. Let C; C 0 > 1 be suitably large onstants. Let Kl := fjx0j <C lg � fjxN j < C lg. Let u 2 W 1;p(Kl) be a loal minimizer for F in Kl. Assumethat u(0) = 0 and that u(x) < 0 if xN < ��, for some � > 0. De�ne R0 := l2=(C�).Let � be the set of points (x; u(x)) 2 Kl satisfying:� jx0j � l, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ suh that S(Y;R0) is above the graph ofu in fjx0j < C 0 lg�fjxN j < C 0 lg and it touhes the graph of u at (x; u(x));� \� ru(x)jru(x)j ; eN� � 8lR0 ;� xN � �4 +H0(u(x)).Then, there exists a universal onstant  > 0 suh that, for any �0 > 0 there exists"0(�0) > 0 for whih, if �l � "0(�0) ; � � �0 ;one has that LN��N (�)� �  lN�1 :Proof. Exploiting Lemma 2.23, we have that, if C is large enough,(5.1) u(x) � gl(xN + �)for any x so that jx0j � C 0l and jxN j � C 0l, with C 0 large if so is C. Let us de�ne(5.2) R0 := l2=(C�)and, for C 00 > 0 onveniently large, let us onsider the seteO := nY = (y; yN+1) 2 RN+1 suh thatjy0j � l=C 00 ; jyN+1j � 1=4and so that, if (0; : : : ; 0; xN ; 0) 2 S(Y;R0) then xN � 0 o :47



48 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETWe laim that gS(Y;R0)(x) > gl(xN + �) for any Y 2 eO,provided that x 2 Kl and jx0j 2 (l; C 0l).(5.3)To prove this, let Y 2 eO and de�ne� := fgS(Y;R0) = 0g = S(Y;R0) \ fxN+1 = 0g :Then, the last ondition in the de�nition of eO reads(5.4) if (0; : : : ; 0; xN ) 2 �, then xN � 0.Realling the de�nitions on page 14 and (2.39), one sees that � is an (N � 1)-dimensional sphere, namely � = fjx� yj = rgwith(5.5) r := R0 �H0(yN+1)� C02R0 y2N+1 :Let us now estimate r by notiing that, if l (and therefore R0) is suitably large, wehave that 2l23C� = 23R0 � R0 � onst �� r �� R0 + onst � 32R0 = 3l22C� :(5.6)Notie also that x in (5.3) must lie in the intersetion between Kl and the domainof gS(Y;R0), otherwise there is nothing to prove; therefore,jx� yj � onst (C 0l +R0) � onstR0 ;and so, by (5.6),(5.7) jx� yj � onst r :We now point out that � is below the hyperplane xN = �=8, that is(5.8) xN � �=8, for any x 2 �.In order to prove (5.8), let�y := y � y1e1 � � � � � yN�1eN�1 = (0; : : : ; 0; yN) ;so that, by the de�nition of eO,(5.9) jy � �yj = jy0j � lC 00 ;whih is less than r due to (5.6), provided that �=l is small enough. Thus, let ~t > 0be so that ~y := �y + ~teN 2 � :
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The geometry related with ~yThen ~y = (0; : : : ; 0; yN + ~t), thus, from (5.4),(5.10) yN � �~t :Also, from (5.9), ~t2 = r2 � jy � �yj2 � r2 �� lC 00�2 ;therefore, in the light of (5.10) and (5.6),yN + r � r � ~t �� r �sr2 �� lC 00�2 �(5.11) � �8 ;provided that C 00 is large enough, ompleting the proof of (5.8).Let us now go bak to the proof of (5.3). For this, we introdue the followingnotation: de�ne d1(x) := jx� yj � r ;d2(x) := xN + � :Let now x be as requested in (5.3). From (5.7),(5.12) 0 � r + d1(x) � onst r :Also, jx0 � y0j � jx0j � jy0j � l2 � lC 0 � 25 l ;



50 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETif C 0 � 10, thus, �r + d1(x)�2 = jx� yj2 == jx0 � y0j2 + jxN � yN j2 �� 425 l2 + jxN � yN j2 ;(5.13)thus, from (5.13) and (5.11), we infer thatxN � yN +r�r + d1(x)�2 � 425 l2 �� �8 � r +r�r + d1(x)�2 � 425 l2 :This, (5.12) and (5.6) imply thatxN � �2� + d1(x)and, therefore, d1(x) � xN + 2� = d2(x) + � ;proving that(5.14) d1 � d2 + �in Kl \ fjx0j 2 (l; C 0l)g.We now observe that(5.15) HyN+1;R0(s)�HyN+1;R0(0) � H0(s) + 2C0R0 ;for any s 2 [sR0 ; 1℄. To prove this, reall De�nition 2.8 to getHyN+1;R0(s)�HyN+1;R0(0) = Z s0 (p� 1) 1p(p hs0;R(�)) 1p d� ;and use De�nition 2.5 and (2.2) to dedue (5.15).Therefore, from (5.15) and (5.2), if l is large enough, we get that(5.16) HyN+1;R0(s)�HyN+1;R0(0) < H0(s) + �2 :Notie now that, by (2.7), (5.2) and the de�nition of sl given in Lemma 2.20,we have that sR0 � �1 + onstR1=p0 = �1 + onst �1=pl2=p > �1 + sl :In partiular, the funtion hyN+1;R0(s)� hl(s)is de�ned for any s so thatsR0 = maxfsR0 ; �1 + slg � s � 1 :Also, if � > 0 is suitably small (possibly in dependene also of �0) andsR0 � s � �1 + �=l1=p ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 51we infer from (2.6), the de�nition of hl given in Lemma 2.20 and the one of hs0;Rgiven on page 10 that hyN+1;R0(s)� hl(s) == �h0(sR)� bC0R0 (s� sR0) ++h0(sl � 1) + C2l ((1 + s)p � spl ) �� � 1R0 + e� onst l + C2 p�l2 �� �C�0l2 + e� onst l + C2 p�l2 � 0 ;that is(5.17) hyN+1;R0(s) � hl(s) for any s 2 [sR0 ; �1 + �=l1=p℄,provided that � is small enough. Analogously, one an show that(5.18) hyN+1;R0(s) � hl(s) for any s 2 [1� �=l1=p; 1℄.From (5.17), (5.18) and the de�nitions of HyN+1;R0 and Hl (see pages 13 and 24),we dedue that the maximum of the funtion[sR0 ; 1℄ 3 s 7! HyN+1;R0(s)�Hl(s)ours for jsj � 1 � �=l1=p. For these values of s, estimate (2.61) in Lemma 2.20implies that H0(s) � Hl(s)� onstl log(1� jsj) �� Hl(s) + onstl log l1=p� �� Hl(s) + �02 ;provided that l is suitably large. Thus, summarizing the above observations andusing (5.16), we have thatmax[sR0 ; 1℄�HyN+1;R0 �Hl� == max[�1+�=l1=p; 1��=l1=p℄�HyN+1;R0 �Hl� << max[�1+�=l1=p; 1��=l1=p℄�H0 �Hl�+ �2 +HyN+1;R0(0) �� �02 + �2 +HyN+1;R0(0) :Hene,(5.19) HyN+1;R0(s)�HyN+1;R0(0) < Hl(s) + � ;for any s 2 (sR0 ; 1℄. From (5.19), by inverting HyN+1;R0 , we haves < gyN+1;R0�HyN+1;R0(0) +Hl(s) + �� ;



52 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETfor any s 2 (sR0 ; 1℄ and so, for s := gl(d1(x)� �), we getgl(d1(x)� �) < gyN+1;R0�d1(x) +HyN+1;R0(0)� :Therefore, realling also (5.14),gyN+1;R0�jx� yj � r +HyN+1;R0(0)� == gyN+1;R0�d1(x) +HyN+1;R0(0)� >> gl(d1(x)� �) �� gl(d2(x)) == gl(xN + �) :This ompletes the proof of (5.3).By (5.3) and (5.1), we have that(5.20)gS(Y;R0)(x) > u(x) for any Y 2 eO, provided that jx0j 2 (l; C 0l) and jxN j � C 0l.Let now e� be the set of (x; u(x))'s desribed in the statement of Lemma 5.1.Let us also de�ne � := �eN e� and O := �eN eO. Of ourse,O = nY = (y0; 0; yN+1) 2 RN+1 suh that jy0j � l=C 00 ; jyN+1j � 1=4o ;therefore(5.21) LN (O) � onst lN�1 :For any Y 2 O, from (5.1) and the fat that S(Y;R0) takes value 1 on the boundaryof its domain of de�nition, we know that S(Y � teN ; R0) is above the graph ofu in the intersetion between fjx0j � C 0lg � fjxN j � C 0lg and the domain ofde�nition of S(Y � teN ; R0), provided that t is large enough. Also, by looking atthe onstrution of �y on page 48, it follows easily, by dereasing t, that there willbe a suitable t� for whih S(Y � t�eN ; R0) touhes for the �rst time the graph of u,say at the point eX . We denote by eG the set of suh touhing points eX's and de�nealso G := �eN eG.We laim that(5.22) G � � :For proving this, take any eX 2 eG be a touhing point between S(Y � t�eN ; R0) andthe graph of u, as desribed above. Let us observe that, sine u(0) = 0, the �rsttouhing property of eX implies that if �X = (0; : : : ; �xN ; 0) 2 S(Y � t�eN ; R0), then�xN � 0, hene eO 3 Y � t�eN =: eY :From this and (5.20), we gather that(5.23) jex0j � l :We now show that(5.24) ex is in the interior of fjx0j � C 0lg � fjxN j � C 0lg .Note that, thanks to (5.23), this will be proved if we show that jexN j < C 0l.



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 53Let us �rst show that exN > �C 0l. If, by ontradition, exN = �C 0l, we gatherfrom (2.7) and (5.1) that�1 + onst �1=p0l2=p � �1 + onstR1=p0 �� sR0 �� gS(eY;R0)(ex) == u(ex) �� gl(exN + �) �� gl�� C 0 l2 � == �1 + e� onst l ;whih is a ontradition for large l. This shows that exN > �C 0l and thus we nowshow that exN < C 0l, in order to omplete the proof of (5.24). That exN < C 0lwill be atually obtained from the fat that the domain of S(eY ;R0) is below thehyperplane fxN � l=2g. To prove this, �rst note that, by (5.11), we have that(5.25) eyN � �r + �8 ;Also, if x is in the domain of S(eY ;R0), we have thatxN � eyN +HeyN+1;R0(1)�H0(eyN+1) +R0 :Thus, (5.25), (5.5) and (2.16) yield thatxN � onst (1 + logR0) � l2 ;hene the domain of S(eY ;R0) is below fxN � l=2g and therefore exN < C 0l.This ends the proof of (5.24).Proposition 2.13 and (5.24) yield that(5.26) ju(ex)j � 1=2 :We now notie that, from (5.26) and (2.20),�12 � u(ex) == gS(eY;R0)(ex) == geyN+1;R0�H0(eyN+1) + jex� eyj �R0� ;and so, by De�nition 2.11,H0(eyN+1) + jex� eyj �R0 � HeyN+1;R0(�1=2) ;from whih we dedue that(5.27) jex� eyj � R0 � onst � R0=2 ;



54 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETprovided that l (and so R0) is large enough. On the other hand, exploiting (5.23)and the de�nition of eO given on page 47, we have thatjex0 � ey0j � jex0j+ jey0j � l+ lC 00 � 2l :Hene, from (5.27), jexN � eyN j2jex� eyj2 = 1 � jex0 � ey0j2jex� eyj2 �� 1� 16l2R20 ;and, therefore,1� 14 �\� ex� eyjex� eyj ; eN��2 � os2 �\� ex� eyjex� eyj ; eN�� == jexN � eyN j2jex� eyj2 �� 1� 16l2R20 ;that is(5.28) \� ex� eyjex� eyj ; eN� � 8lR0 :Moreover, from the touhing property of eX and (2.20), we have that\� ru(ex)jru(ex)j ; eN� = \ rgS(eY;R0)(ex)jrgS(eY;R0)(ex)j ; eN! == \� ex� eyjex� eyj ; eN� :Therefore, from (5.28),(5.29) \� ru(ex)jru(ex)j ; eN� � 8lR0 :Furthermore, realling (2.39),HeyN+1;R0(u(ex))�HeyN+1;R0(0) == HeyN+1;R0�gS(eY ;R0)(ex)��HeyN+1;R0(0) == HeyN+1;R0�gS(eY ;R0)(ex)�+ C02R0 ey2N+1 ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 55thus, from (2.33) and (2.35),HeyN+1;R0(u(ex))�HeyN+1;R0(0) == HeyN+1;R0��eyN+1;R0(H0(eyN+1) + jex� eyj �R0)�++ C02R0 ey2N+1 == H0(eyN+1) + jex� eyj � R0 + C02R0 ey2N+1 :Hene, by (5.5), HeyN+1;R0(u(ex))�HeyN+1;R0(0) == jex� eyj � r :(5.30)We now laim that(5.31) exN � H0(u(ex)) + �4 :For proving this, we denote by bx the intersetion point between the sphere fgS(eY;R0) =0g and the half-line from ey towards ex. Then, by (5.8),bxN � �=8 :We now distinguish two ases: either bx is inside or it is outside the sphere fgS(eY;R0) =0g. If it is inside, then jex� eyj � r = jbx� exj �� jbxN � exN j �� exN � bxN �� exN � �=8 :Thus, from the latter estimate, (5.30) and (5.15), we have thatexN � jex� eyj � r + �8 == HeyN+1(u(ex))�HeyN+1(0) + �8 �� H0(u(ex)) + 2C0R0 + �8 :Therefore, if l (and so R0) is large enough, (5.31) follows in this ase. Let us nowdeal with the ase in whih bx is outside the sphere fgS(eY;R0) = 0g. By (5.29), weinfer in this ase that bxN � exN and thatbxN � exN = jbxN � exN j == jbx� exj os�\(bx� ex; eN )� �� jbx� exj �1� onst l2R20 � :



56 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETTherefore, (5.30) and (5.15) yield thatH0(u(ex)) + 2C0R0 � jey � exj � r == �jbx� exj �� exN � bxN1� onst l2R20 �� exN � (�=8)1� onst l2R20 ;whih easily implies (5.31) in this ase. This ompletes the proof of (5.31).Thus, in the light of (5.23), (5.26), (5.29) and (5.31), we have that eX 2 e� and,therefore, that �eN eX 2 �, ending the proof of (5.22).Now we exploit Proposition 3.14, applied to G and O: from that, (5.22) and(5.21), LN (�) � LN (G) �� onstLN (O) �� onst lN�1 :This ompletes the proof of Lemma 5.1. �The next one is the main result of this setion:Proposition 5.2. Let C be a suitably large onstant. Let Kl := fjx0j < C lg�fjxN j < C lg. Let u 2 W 1;p(Kl) be a loal minimizer for F in Kl. Assume thatu(0) = 0 and that u(x) < 0 if xN < ��, for some � > 0. Fix �C > 0 and k 2 N. Let� be the set of points (x; u(x)) satisfying the following properties:� jx0j � l, jxN+1j � 1=2;� xN � �Ck � +H0(u(x)).Then, there exist positive universal onstants  and ̂ for whih the following holds.For any �0 > 0, there exists "0(�0) > 0, so that, if�l � "0(�0) ; � � �0 and �Ck �l � ̂ ;then LN��N (�)� � (1� (1� )k)LN (Ql) :Proof. Let R0 := l2=(C�), with C suitably large. For any k 2 N, let Rk :=R0 �C�k, where �C is a positive universal onstant, to be hosen suitably large in thesequel. We de�ne Dk � RN+1 as the set of points (x; u(x)) satisfying the followingproperties:� jx0j � C l=2, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ so that S(Y;Rk) is above the graphof u in fjx0j < C l=2g � fjxN j < C l=2g and it touhes the graph of u at(x; u(x));� \� ru(x)jru(x)j ; eN� � �Ck lR0 ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 57� xN � �Ck �4 +H0(u(x)).We also set Dk := �N (Dk). We would like to apply Lemma 4.3 to Dk, and wetherefore now prove that Dk ful�lls the assumption of Lemma 4.3. For this, �rst ofall, notie that, by Lemma 5.1,(5.32) D0 \Ql 6= ; :Let us now �x Zk 2 Dk \ Q2l. By onstrution, there exists (xk ; u(xk)) 2 Dk sothat Zk = �N (xk ; u(xk)). Take also ~Z 2 L, with a � j ~Z � Zkj =: q � 2l, andsuppose a suitably large. We laim that(5.33) LN�Dk+1 \Bq=10( ~Z)� � LN�L \ Bq( ~Z)� :In order to prove the above inequality, we denote by Ĉ > 0 a onstant, to be suitablyhosen in the sequel, and we de�ne ~� as the set of points (x; u(x)) satisfying thefollowing properties:� jx0 � ~z0j � q=15, jx� xkj < 4l, ju(x)j < 1=2;� there exists Y 2 RN � [�1=4; 1=4℄ so that S(Y;Rk+1) is above the graphof u in fjx0 � ~z0j < C l=2g� fjxN j < C l=2g and it touhes the graph of uat (x; u(x));� \� ru(x)jru(x)j ; ru(xk)jru(xk)j� � Ĉ �Ck lR0 ;� (x� xk) � ru(xk)jru(xk)j � Ĉ �Ck l24R0 +H0(u(x)) �H0(u(xk)).Notie that, by means1 of Lemma 4.2 (applied in fjx0 � ~z0j � 8lg � fjxN j � 8lg),(5.34) LN (�N (~�) \ Bq=10( ~Z)) � onst qN�1 � onstLN�L \ Bq( ~Z)� :Let us now dedue some easy properties of ~�. First of all, by the de�nitions of ~�and Dk, we have that, for any (x; u(x)) 2 ~�,\� ru(x)jru(x)j ; eN� � \� ru(x)jru(x)j ; ru(xk)jru(xk)j�+ \� ru(xk)jru(xk)j ; eN� �� Ĉ �Ck lR0 + �Ck lR0 �� �Ck+1 lR0 ;(5.35)1We apply here Lemma 4.2 with Rk replaing what there was denoted by R. Note also thatpj ~Z � Zkj2 � 4 � jx0k � ~z0kj � pj ~Z � Zkj2 + 4 ;thus jx0k � ~z0kj 2 � 910 q; 1110 q� ;if a is large enough. Finally, observe that, by onstrution,�N (~�) � Bq=10( ~Z) :



58 5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SETprovided that �C is big enough with respet to Ĉ . Furthermore, by (4.1) and thede�nition of Dk, ���� ru(xk)jru(xk)j � eN ���� � \� ru(xk)jru(xk)j ; eN� �� �Ck lR0 ;(5.36)and so(5.37) ����(x� xk) � � ru(xk)jru(xk)j � eN����� � 4 �Ck l2R0 ;provided that jx � xk j � 4l (and observe that this ondition is ful�lled by any(x; u(x)) 2 ~�). By using the latter inequality and the de�nition of ~�, it also followsthat(x� xk) � eN � (x� xk) � ru(xk)jru(xk)j + ����(x� xk) � � ru(xk)jru(xk)j � eN����� �� Ĉ �Ck l24R0 + 4 �Ck l2R0 +H0(u(x)) �H0(u(xk)) ;(5.38)for any (x; u(x)) 2 ~�; from (5.38), the de�nition of R0 and the assumptions ofProposition 5.2, we thus dedue thatxN � �Ck+1 �4 +H0(u(x)) ;(5.39)for any (x; u(x)) 2 ~�, if �C is large enough. Therefore, thanks to (5.35) and (5.39),we have that ~� � Dk+1. From this and (5.34), we gather (5.33), as desired. Thissays that the hypotheses of Lemma 4.3 are ful�lled by Dk, thus we will freely usesuh result in what follows.Let now Ek be as in (4.3). From Lemma 4.1, and taking Ĉ suitably large,we dedue that, for eah Z 2 Ek there exists x = x(Z) and xk = xk(Z) so that(xk; u(xk)) 2 Dk, jx� xkj � Ĉ, Z = �N (x; u(x)) and(5.40) (x� xk) � ru(xk)jru(xk)j � H0(u(x)) �H0(u(xk)) + onst ĈRk :Thus, from (5.37) and (5.40),(x� xk) � eN � (x� xk) � ru(xk)jru(xk)j + ����(x� xk) � � ru(xk)jru(xk)j � eN����� �� H0(u(x))�H0(u(xk)) + onst ĈRk + 4 �Ck l2R0 ;whih implies, thanks to the de�nition of R0 and the assumptions of Proposition 5.2,that xN � �Ck+1 � +H0(u(x)) :Hene, if � is as de�ned here above in the statement of Proposition 5.2,(5.41) Ek � � :Also, by Lemma 4.3,(5.42) LN�Ek \Ql� � (1� (1� )k)LN (Ql) ;



5. ESTIMATES ON THE MEASURE OF THE PROJECTION OF THE CONTACT SET 59for some  2 (0; 1). Thus, the laim in Proposition 5.2 follows from (5.41) and(5.42). �





CHAPTER 6Proof of Theorem 1.1First of all, note that u must attain both positive and negative values thanksto the density estimates in [28℄. Thus, possibly replaing l by C l, we may assumethat u is a loal minimizer for F in fjx0j < C lg � fjxN j < C lg, that u(0) = 0 andthat(6.1) u(x) > 0 if xN > � > 0 and u(x) < 0 if xN < ��.The strategy for proving Theorem 1.1 onsists in assuming, by ontradition, thatthere exists a point in fu = 0g \ fjx0j < l=4g lose to xN = ��. The ontraditionwill be, then, that the energy of u is larger than it should.The �rst step in proving Theorem 1.1 is thus the following: we assume, byontraditing Theorem 1.1, thatfu = 0g \ fjx0j < �C�k0 l=4g \ fxN < (�1 + �C�k0=4)�g 6= ; ;with k0 2 N large and �l small (possibly in dependene of k0). We also set�0 := n(x; u(x)) 2 RN � R s:t:xN � H0(u(x))� �=2 ; jx0 � (x�)0j � l=2 ; ju(x)j � 1=2o :Then, we laim that(6.2) LN��N (�0)� � (1� (1� 0)k0 )LN (Ql=2) ;for a suitable onstant 0 > 0. To prove this, letx� 2 fu = 0g \ fjx0j < �C�k0 l=4g \ fxN < (�1 + �C�k0=4)�gDe�ne �� := �=(4 �Ck0) and v(x) := u(x + x�). Notie that v(0) = 0 and v(x) < 0if xN < ���. Also v is a loal minimizer for F . Then, if we de�ne�� := n(z; v(z)) 2 RN � R s:t: jz0j � l=2zN � H0(v(z)) + �Ck0�� ; jv(z)j � 1=2o ;we dedue by Proposition 5.2 thatLN��N (��)� � (1� (1� 0)k0)LN (Ql=2) :By elementary omputations, one also sees that�� + (x�; 0) � �0 ;thus proving (6.2). 61



62 6. PROOF OF THEOREM 1.1Let now�1 := n(x; u(x)) 2 RN � R s:t:xN � H0(u(x)) � �=4 ; jx0j � l=2 ; ju(x)j � 1=2o :Then, we laim that(6.3) LN��N (�1)� � 1LN (Ql=2) ;for a suitable onstant 1 > 0, provided that �=l is suitably small. To prove (6.3),let eu(x) = eu(x0; xN ) := �u(x0;�xN ) ;eh0(s) : = h0(�s) :Then, eh0 satis�es the same assumptions as h0 and eu is a loal minimizer for thefuntional eF(v) := Z jrvjpp + eh0(v) :Hene, we may apply Lemma 5.1 with h0 replaed by eh0, and dedue that, ife�1 := n(x; eu(x)) 2 RN � R s:t:xN � eH0(eu(x)) + �=4 ; jx0j � l=2 ; ju(x)j � 1=2o ;then LN��N (e�1)� � onst lN�1 :From this, (6.3) easily follows.We now make some remarks on the measure properties of the above sets. Firstnote that, by onstrution, �N (�0) � Q l2+ l4 �Ck0 ;therefore LN��N (�0) nQl=2� � LN�Q l2+ l4 �Ck0 nQl=2� �� onst lN�1�C(N�1)k0 �� onst�C(N�1)k0 LN (Ql=2) :This and (6.2), by assuming k0 large enough, yield thatLN��N (�0) \Ql=2� ��1� (1� 0)k0 � onst�C(N�1)k0 �LN (Ql=2) ���1� 12 � LN (Ql=2) ;where 1 is the onstant introdued here above. Thus,LN�Ql=2 n ��N (�0) \Ql=2�� � 12 LN (Ql=2) :



6. PROOF OF THEOREM 1.1 63From this, (6.3) and the fat that �N (�1) � Ql=2, we gather that1LN (Ql=2) � LN��N (�1)� �� LN��N (�1) \ ��N (�0) \Ql=2��++ LN��N (�1) n ��N (�0) \Ql=2�� �� LN��N (�0) \ �N (�1)�++ LN�Ql=2 n ��N (�0) \Ql=2�� �� LN��N (�0) \ �N (�1)�+ 12 LN (Ql=2) ;that is(6.4) LN��N (�0) \ �N (�1)� � 12 LN (Ql=2) :On the other hand,(6.5) �0 \ �1 � ���4 � xN �H0(u(x)) � ��2� = ; :Let nowV := nZ 2 Ql=2 ��� 9~x 6= x̂ ; s:t: Z = �N�~x; u(~x)� = �N�x̂; u(x̂)�o :By (6.5), we have that V � �N (�0) \ �N (�1) ;thus, due to (6.4),(6.6) LN (V) � onst lN�1 :With these inequalities in hand, we now start to estimate the funtional, inorder to show that the energy of u is too large, and hene obtaining a ontradition.First of all, for any x0 2 RN with jx0j � l, let us de�neTx0(xN ) := u(x0; xN ) ;Cx0 := fxN 2 R j DTx0(xN ) = 0g :By standard regularity results (see [15℄ and [34℄), we have that Tx0 is C1. Hene,by Sard's Lemma,(6.7) LN�Tx0(Cx0)� = 0 :Thus, using that Tx0 is loally invertible on the omplement of Cx0 , we may writethe latter set as [a Ja;x0 ;



64 6. PROOF OF THEOREM 1.1in suh a way Tx0���Ja;x0 is a di�eomorphism. Therefore, by Young's inequality (writ-ing q for the dual exponent of p) and by hanging variable xN+1 := Tx0(xN ),ZJa;x0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN �� ZJa;x0 j�Nu(x0; xN )jpp + h0(u(x0; xN )) dxN == ZJa;x0 jDTx0(xN )jpp + h0(Tx0(xN )) dxN �� ZJa;x0 �q h0(Tx0(xN ))�1=q jDTx0(xN )j dxN == ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 ;therefore, Xa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Xa Zjx0j�l ZJa;x0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN dx0 == Zjx0j�l Z[�Cl;Cl℄nCx0 jru(x0; xN )jpp + h0(u(x0; xN )) dxN dx0 �� FAl(u) ;(6.8)where Al := fjx0j < lg � fjxN j < Clg. Now, we notie thatV � n(x0; 0; xN+1) ��� jx0j � l; xN+1 2 Tx0(Ja;x0) \ Tx0(Jâ;x0) for some a 6= âo ;and that V � Ql � fjxN+1j � 1=2g ;hene, realling also (6.6),Zjx0j�l ZxN+12Sa6=â Tx0 (Ja;x0 )\Tx0 (Jâ;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� ZV �q h0(xN+1)�1=q d(x0; xN+1) �� inf[�1=2; 1=2℄(q h0)1=q LN (V) �� ~1 lN�1 inf[�1=2; 1=2℄(q h0)1=q �� ~1 lN�1 inf[�1=2;1=2℄(q h0)1=q ;



6. PROOF OF THEOREM 1.1 65for a suitably small positive onstant ~1. Therefore, we gather from the aboveinequality thatXa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZSa Tx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 ++ Zjx0j�l ZxN+12Sa6=â Tx0 (Ja;x0 )\Tx0 (Jâ;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZxN+12u(x0;[�Cl;Cl℄nCx0) �q h0(xN+1)�1=q dxN+1 dx0 ++~1 lN�1 inf[�1=2;1=2℄(q h0)1=q :Thus, due to (6.7),Xa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l ZxN+12u(x0;[�l;l℄) �q h0(xN+1)�1=q dxN+1 dx0 ++~1 lN�1 inf[�1=2;1=2℄(q h0)1=q :(6.9)On the other hand, from Corollary 2.24, we get thatZjx0j�l ZxN+12u(x0;[�l;l℄) �q h0(xN+1)�1=q dxN+1 dx0 �� Zjx0j�l Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 dx0 == !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ;(6.10)where !N�1, as usual, denotes the volume of the (N � 1)-dimensional unit ball.From (6.9) and (6.10), we thus obtain thatXa Zjx0j�l ZTx0 (Ja;x0 ) �q h0(xN+1)�1=q dxN+1 dx0 �� !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ++~1 lN�1 inf[�1=2;1=2℄(q h0)1=q ;and, therefore, thanks to (6.8),FAl(u) �� !N�1 lN�1 Z 1�sl�1+sl �q h0(xN+1)�1=q dxN+1 ++~1 lN�1 inf[�1=2;1=2℄(q h0)1=q :(6.11)



66 6. PROOF OF THEOREM 1.1We now notie that, if 2 and 3 are positive onstants, suitably small with respetto ~1, one has !N�1 lN�1 Z[�1;�1+2℄[[1�2;1℄ �q h0(xN+1)�1=q dxN+1 �� 22!N�1 lN�1 sup[�1;1℄(q h0(xN+1))1=q �� ~12 lN�1 inf[�1=2;1=2℄(q h0)1=q(6.12)and(6.13) 3 lN�1 � ~12 lN�1 inf[�1=2;1=2℄(q h0)1=q :We now assume l big enough so that sl < 2: then, by means of (6.11), (6.12) and(6.13), FAl(u) � !N�1 lN�1 Z 1�1 �q h0(xN+1)�1=q dxN+1 ++3 lN�1 :(6.14)This estimate will say that the energy of u is too large (thanks to the term\3 lN�1" here above), and it will provide the desired ontradition. For this, letus de�ne the resaled funtionalF"
(v) := Z
 "p�1jrv(x)jpp + 1"h0(v(x)) dx :Then, if " := 1=l and u"(x) := u(x="), by saling (6.14), we dedue thatF"A1(u") = "N�1 FAl(u) �� !N�1 Z 1�1 �q h0(xN+1)�1=q dxN+1 + 3 :(6.15)On the other hand, by x3 of [7℄, up to subsequenes, we have that u" onvergesalmost everywhere and in L1lo to the step funtion �E � �RNnE , for a suitable setE � RN , and that(6.16) lim"!0+F"A1(u") = Per (E;A1) Z 1�1 �q h0�1=q ;where, given A � B, we denote the perimeter of A in B as Per (A;B) (see, for in-stane, [20℄ for full details on suh de�nition). As a matter of fat, in our situation,the set E may be better spei�ed, in the following way. From (6.1), there exists� > 0 so that u(x) � � if jx0j � l and xN � 2� and u(x) � �� if jx0j � l andxN � �2�.Therefore, u"(x) � � if jx0j � 1 and xN � 2"� and u(x) � �� if jx0j � 1 andxN � �2"�. In partiular, for almost any x 2 A1,lim"!0+ u"(x) � � if xN > 0 andlim"!0+ u"(x) � �� if xN > 0.



6. PROOF OF THEOREM 1.1 67This implies that E = A1 \ fxN > 0g. And so Per (E;A1) = !N�1. Therefore,from (6.16) lim"!0+F"A1(u") = !N�1 Z 1�1 �q h0�1=q :This ontradits (6.15) and �nishes the proof of Theorem 1.1.





CHAPTER 7Proof of Theorem 1.2The proof of Theorem 1.2 will be performed by ompatness, by using Theorem1.1 and a result of [30℄.We �x �0 > 0 and we assume by ontradition that there exist uk ; �k ; lk forwhih(C1) uk is a loal minimizer for F in fjx0j < lkg�fjxN j < lkg, with uk(0) = 0.(C2) fuk = 0g � fjx0j < lkg � fjxN j < �kg, with �k � �0 and �klk �!0 whenk !1 ,but the thesis of Theorem 1.2 does not hold. Let us onsider the following resaling:(7.1) y0 = x0lk ; yN = xN�ksay (y0; yN ) = T (x0; xN ). De�neAk := �(y0; yN) s:t: T�1(y0; yN ) 2 fuk = 0g	 = T�fuk = 0g� :STEP 1: There exists a H�older ontinuous funtion w : RN�1 ! R suh that:if we de�ne A1 := �(y0; w(y0)) ; jy0j � 12	then, for any " > 0, Ak \ fjy0j � 1=2g lies in a "-neighborhood of A1, for ksuÆiently large.Proof of step 1.Let us suppose thaty0 = (y00; y0N ) 2 Ak with jy00j � 1=2 :Then, uk(lky00; �ky0N ) = 0, and so, by means of (C2), j�ky0N j < �k; therefore,using again (C2), we infer thatfuk = 0g � fjxN � �ky0N j < 2�kg :Thene, we an exploit Theorem 1.1 in the ylinderfjx0 � lky00j < lk2 g � fjxN � �ky0N j < 2�kg �� fjx0j < lkg � fjxN j < lkg ;(7.2)and get that there exists a universal onstant �0 > 0 suh thatfuk = 0g \ fjx0 � lky00j < �0 lk2 g � fjxN � �ky0N j < 2(1� �0)�kg ;69



70 7. PROOF OF THEOREM 1.2provided 4�klk � "0(2�0) ;where "0(�) is the one given by Theorem 1.1. Resaling bak, we getAk \ fjy0 � y00j < �02 g � fjyN � y0N j < 2(1� �0)g :By iterating, we get(7.3) Ak \ fjy0 � y00j < �m02 g � fjyN � y0N j < 2(1� �0)mg ;provided(7.4) 4�klk � �m�10 "0�2(1� �0)m�1�0� :We now �x m0 2 N and onsider m � m0 (later on, during a limiting proedureperformed on page 71, we let m0 �! +1). Note that, in this setting, (7.4) (andtherefore (7.3)) is ful�lled for k suitably large, say k � k?(m0). We laim thatAk \ fjy0j � 1=2g is above the graph of(7.5) 	y0;k(y0) = y0N � 2(1� �0)m0 � �jy0 � y00j�where � and � > 0 depend only on �0.To prove this, let (y0; yN ) 2 Ak \ fjy0j � 1=2g. Sine jy00j � 12 we have thatjy0 � y00j � 1. Now, we onsider three di�erent ases: the ase jy0 � y00j � �m002 , thease �m002 � jy0 � y00j � 12 , and the ase 12 � jy0 � y00j � 1.In ase jy0 � y00j � �m002 , (7.5) follows immediately from (7.3), with m = m0. If, onthe other hand, �m002 � jy0 � y00j � 12 , then we argue as follows. We �rst note that,in this ase, there exists m with 0 � m � m0, suh that(7.6) �m+102 � jy0 � y00j � �m02 :Consequently, from (7.3), we have that(7.7) 2(1� �0)m � jyN � y0N jBy (7.6) and the fat that 0 < �0 < 1, we also getm � � ln(2jy0 � y00j)ln( 1�0 ) � m+ 1 :In partiular, it follows that(1� �0)m � (1� �0)�� ln(2jy0�y00j)ln( 1�0 ) �1� == 1(1� �0)e� ln(2jy0�y00j) = (2jy0 � y00j)�(1� �0) ;where � := � ln(1��0)ln( 1�0 ) .Therefore, realling (7.7), it followsjyN � y0N j � 2�+1(1� �0) jy0 � y00j�



7. PROOF OF THEOREM 1.2 71whih is the desired result, with � := 2�+1=(1� �0).Finally, eventually adding1 a onstant to �, the result also follows for the asejy0 � y00j 2 [1=2; 1℄. This ends the proof of (7.5).Note now that, as y0 varies, 	y0;k are H�older ontinuous funtions with H�oldermodulus of ontinuity bounded via the funtion �t� (reall that m0 is �xed for themoment, and that � and � depend only on �0). Therefore, if we set k(y0) := supjy00j� 12y02Ak 	y0;k(y0)then,  k is a H�older ontinuous funtion (with H�older modulus of ontinuity boundedvia the funtion �t�), and Ak \ fjy0j � 1=2g is above the graph of  k.Arguing in the same way, possibly taking � and � larger (depending only on�0), we also get that, if we de�ne�y0;k(y0) := y0N + 2(1� �0)m0 + �jy0 � y00j� ;then Ak \ fjy0j � 1=2g is below the graph of �y0;k. Arguing as above, we de�ne�k(y0) := infjy00j� 12y02Ak �y0;k(y0) ;so that �k is a H�older ontinuous funtion (with H�older modulus of ontinuitybounded via the funtion �t�), and Ak \ fjy0j � 1=2g is below the graph of �k.In partiular, Ak \ fjy0j � 1=2g lies between the graphs of  k(y0) and �k(y0)for any k � k?(m0) and, by onstrution,(7.8) 0 � �k(y0)�  k(y0) � 4(1� �0)m0 :Also, for m0 �xed, by Asoli-Arzel�a Theorem, letting k !1, it follows that  k(y0)uniformly onverges to a H�older ontinuous funtion whih depends on m0, saylimk�!+1 k(y0)! w�m0(y0) :Analogously, we �nd a H�older ontinuous funtion w+m0 , suh thatlimk�!+1�k(y0)! w+m0(y0)uniformly. Also, by onstrution, we have that w�m0 � w+m0 and thatAk \ fjy0j � 1=2g lies betweenthe graphs of w�m0 � "=2 and w+m0 + "=2,(7.9)for k large.Let now m0 ! 1. In this ase, by Asoli-Arzel�a Theorem2, we get that thereexists a H�older ontinuous funtion w suh that w�m0 uniformly onverges to w. By(7.8), also w+m0 uniformly onverges to w. The laim thus follows from (7.9).STEP 2: The funtion w onstruted in the �rst step is harmoni.1Notie indeed that, by (C2), we have thatjyN � y0N j � jyN j+ jy0N j � 2 :2We remark that, by the onstrution of � and � above, the H�older onstants of w�m0 dependon �0, but are independent of m0.



72 7. PROOF OF THEOREM 1.2Proof of step 2.We prove that w is harmoni in the visosity sense. Then it follows that it isharmoni in the lassi sense (see, e.g., Theorem 6.6 in [8℄).For this, let P be the quadrati polynomialP (y0) := 12y0TMy0 + � � y0 :Assume, by ontradition, that �P > 0, that P touhes the graph of w, say at 0for simpliity and that P stays below it in jy0j < 2r, for some r 2 (0; 1). Let nowÆ0 > 0 be the universal onstant of Lemma 9.3 in [30℄ and let us de�neÆ := min���P2�0 � 12 ; 12�0 kMk ; 12�0 j�j ; � Æ02�0� 12 ; r� :Thus, Æ is suh that�P > 2Æ2�0 ; kMk � 12Æ�0 ; j�j � 12Æ�0 ;(7.10) Æ2�0 � Æ02 :Note that, eventually replaing Æ with 2Æ and P (y0) with P (y0) � Æjy0j2, wemay assume, with no lose of generality, that P touhes the graph of w at 0 andstays stritly below it in jy0j < 2Æ < 2. therefore, sine Ak \ fjy0j � 1=2g uniformlyonverges to the graph of w, it follows that, for k large, we �nd points yk = (y0k; ykN )lose to 0, suh that P (y0) � Kk touhes Ak at (y0k; ykN ) and stays below it injy0 � y0kj � Æ, for an appropriate Kk 2 R. In partiular, we have(7.11) ykN +Kk = 12y0Tk My0k + � � y0k :Let us now onsider the following translationz0 = y0 � y0k zN = yN � (ykN +Kk)Exploiting (7.11) we �nd a surfae�zN = 12z0TMz0 + �k � z0	 ;with �k := My0k + �that touhes Ak by below at the origin and stays below it in jz0j < Æ. Notie alsothat, by onstrution,(7.12) j�k j � 1Æ�0 :Resaling bak, we get that the surfaenxN = �kl2k 12x0TMx0 + �klk �k � x0otouhes fuk = 0g at the origin and stays below it, if jx0j < Ælk.We write now the above surfae in the formnxN = Æ2�k(Ælk)2 12x0TMx0 + Æ2�kÆlk 1Æ �k � x0o



7. PROOF OF THEOREM 1.2 73and we exploit3 Lemma 9.3 in [30℄, thus gathering that�P � Æ2�0 ;against the assumption. This ontradition shows that �P � 0. By arguing in thesame way, one may prove that �P � 0 if P touhes w by above, so that the laimof Step 2 on page 71 is proved.CONCLUSION: Sine w is harmoni, by standard ellipti estimates (see,e.g., Theorem 2.10 in [19℄), we �nd a positive universal onstant C, suh thatkD2wk � CTherefore, sine by onstrution w(0) = 0, by Taylor's formula, it follows thatjw(y0)�rw(0) � y0j < C 0�22 for jy0j < 2�2 :In partiular, for �2 suÆiently small, setting�0 := rw(0) ;we get that there exist positive onstants 0 < �1 < �2 < 1, for whih(7.13) jw(y0)� �0 � y0j < �12 for jy0j < 2�2 :Now, let us onsider(7.14) �k := ( �klk �0;�1)r �2kl2k j�0j2 + 1 :Considering the resaling given by (7.1), elementary geometri onsiderations showthat(7.15) fj��kxj < �2lkg � fjx � �k j < �2lkg � fjx0j < 2lk�2g � fjx0j < lk=2g :Sine Ak \ fjy0j � 1=2g uniformly onverges to the graph of w, for k suÆientlylarge (thanks to Step 1 on page 69), we may suppose that Ak \ fjy0j � 1=2g is ina �14 -neighborhood of the graph of w. Consequently, by (7.13), taking into aountthe resaling, it follows thatfuk = 0g \ fjx0j � lk=2g � �jxN � �klk �0 � x0j < 34�k�1	 :From (7.14), we thene get thatfuk = 0g \ fjx0j � lk=2g � �jx � �k j < 34�k�1	 ;whih, together with (7.15), is a ontradition with the fat that uk does not satis�esthe statement of Theorem 1.2. This ends the proof of Theorem 1.2.
3Notation remark: Lemma 9.3 in [30℄ is used here with M1 :=M , Æ := Æ2�0, � := Æ2�k (notethat Æ � � sine �0 � �k), l := Ælk , and � := 1Æ �k (therefore j�j � 1Æ2�0 , thanks to (7.12)). Inpartiular, with this setting, sine �klk ! 0, then �l ! 0. Also, sine � (Æ) > 0 (where � (Æ) is asin Lemma 9.3 in [30℄), then the ondition �l < � (Æ) (i.e. Æ�klk < � (Æ)) is ful�lled for k suÆientlylarge.





CHAPTER 8Proof of Theorem 1.3The following Lemma 8.1 is an intermediate step towards the proof of Theo-rem 1.3 and it is also useful for the proof of Theorem 1.4. The proof of Lemma 8.1is based on an iteration of Theorem 1.2.Lemma 8.1. Let u be a Class A minimizer for F in RN with u(0) = 0. Supposethat there exist sequenes of positive numbers �k ; lk and unit vetors �k, with(8.1) lk !1 and �klk ! 0 ;suh that(8.2) fu = 0g \ �fj��k xj < lkg � fjx � �kj < lkg� � fjx � �kj � �kg:Then, the 0 level set fu = 0g is a hyperplane in RN .Proof. Let �x �0 > 0 and " � "1(�0), with "1(�0) given by Theorem 1.2. Weonsider k so large in that(8.3) �klk � " � "1(�0) :Two ases are now possible: either, for in�nitely many k's �k � �0, or for in�nitelymany k's �k > �0.In the �rst ase, we take the subsequene of k's for whih �k � �0 and weassume, by possibly extrating a further subsequene, that �k onverges to a suitableunit vetor �. We onsider a y-frame of oordinates in whih yN is parallel to �.Consequently, by (8.1) and (8.2), we dedue that, in this system of oordinates,fu = 0g � fjyN j � �0g :Thene, sine �0 is arbitrary, fu = 0g � fyN = 0g ;whih proves the desired result.If, on the other hand, �k > �0 for in�nitely many k's, then we �x k largeenough to ful�ll (8.3) and we apply Theorem 1.2 repeatedly as muh as we an.More preisely, for h � 0, let l(h)k := �h2 lk and �(h)k := �h1 �k. Then, if �(h)k > �0, wean keep applying Theorem 1.2; we stop this proedure when h is so large that�(h)k � �0 :More preisely, we stop the iterative appliation of Theorem 1.2 when h � 1 is sothat �(h�1)k > �0 � �(h)k :75



76 8. PROOF OF THEOREM 1.3For suh h, we get, by onstrution, that�0 � �(h)k � �1�0 :Also, by onstrution, �(h)kl(h)k = ��1�2�h �klk � " :In partiular,(8.4) l(h)k � �1�0" :What is more, the repeated use of Theorem 1.2, has driven us to proving that, insome system of oordinates,fu = 0g \ �fjy0j < l(h)k g � fjyN j < l(h)k g� � fjyN j � �(h)k g ;that is, fu = 0g \ �njy0j < �1�0" o� njyN j < �1�0" o� � fjyN j � �0g ;thanks to to (8.4). Therefore, letting " �! 0, it follows thatfu = 0g � fjyN j � �0g:Sine �0 was arbitrary, the lemma is proved. �By means of Lemma 8.1, we are now in the position of ompleting the proof ofTheorem 1.3, by arguing as follows.Let us onsider the resaled funtionalF"
(v) := Z
 "p�1jrv(x)jpp + 1"h0(v(x)) dx :Then, for any 
 � RN , u"(x) := u(x=") is a loal minimizer for F"
.Therefore, by x3 of [7℄, up to subsequenes, we have that u" onverges almosteverywhere and in L1lo to the step funtion �E ��RNnE , for a suitable set E � RNwith minimal perimeter.We laim now thatfu"k = 0g uniformly onverges to �E on ompat sets.Assume that this is not true and note that in this ase there exist Æ > 0, and apoint z0 2 RN and points xk , suh thatxk 2 fu"k = 0g \ B(z0; Æ) with B(z0; 2Æ) \ �E = ;Assume e.g. B(z0; 2Æ) � E and note that in this ase, exploiting the densityestimate in [28℄, we get a ontradition with the fat that u" onverges almosteverywhere and in L1lo to the step funtion �E � �RNnE (in the same way we geta ontradition if B(z0; 2Æ) � RN nE).Sine �E is a minimal surfae in RN , and we assumed that N � 7, then �E isa hyperplane (see, for instane, Theorem 17.3 in [20℄). Also, sine u"k (0) = 0 andfu"k = 0g uniformly onverges to �E, it follows that 0 2 �E.This implies that, in some system of oordinates(8.5) fu"k = 0g \ B1 � fjxN j � Ækg



8. PROOF OF THEOREM 1.3 77with Æk ! 0. Resaling bak we get that(8.6) fu = 0g \ B 1"k � fjxN j � Æk"k gTwo ases are now possible: either Æk="k is bounded away from zero, or, up tosubsequenes, Æk="k �! 0. In the latter ase, we pass to the limit (8.5) by sendingk �! +1, getting that fu = 0g is a hyperplane. If, on the other hand, Æk="k � �0,for some �0 > 0, we de�ne lk := 12"k ; �k := Æk"kand we observe that �klk = Æk2 �! 0 ;then, it follows that the assumptions of Lemma 8.1 are ful�lled. Thus, the appli-ation of Lemma 8.1 proves that fu = 0g is a hyperplane, whih is the desiredresult.





CHAPTER 9Proof of Theorem 1.4First, we prove the minimality of u:Lemma 9.1. Let h0 satisfy (1.1), (1.2), (1.3) and (1.4). Let u be a weak Sobolevsolution of (1.5) in the whole RN , satisfying juj � 1, �Nu > 0 and limxN!+1 u =�1. Then, u is a lass A minimizer.Proof. Sine u is stritly inreasing, juj < 1. Let B � RN be a losed balland let v be a minimizer for FB with v = u on �B. Our aim is to show that u = vin B. Let us argue by ontradition and assume, say, that(9.1) v(x?) > u(x?) ;for some x? 2 B. Possibly utting v on the �1-levels (whih dereases FB), wemay and do assume that jvj � 1. More preisely, as mentioned in the footnote onpage 2, by (1.4) it follows that jvj < 1.Then, sine jruj � onst thanks to [15℄ or [34℄, and limxN!+1 u = �1, we deduethat(9.2) u(x+ teN ) � v(x)for any x 2 B, provided that t is large enough. Indeed, to prove (9.2), let us argueby ontradition and assume that u(xt + teN ) < v(xt) for some xt 2 B and adiverging sequene of t; let also � > 0 so that v � 1��. Then, up to subsequene,we may assume that xt onverges to x1 2 B; but then1 = limt!+1 u(x1 + teN) �� limt!+1 u(xt + teN ) + onst jxt � x1j == limt!+1 u(xt + teN ) �� limt!+1 v(xt) �� 1� � :This ontradition proves (9.2).Thanks to (9.2), we thus slide u(� + teN) towards the eN -diretion until wetouh v from above. Say this happen at �x 2 B for t = �t. In the light of (9.1), wehave that u(x? + �teN ) � v(x?) >> u(x?) ;thene, sine u is stritly inreasing in the eN -diretion,�t > 0 :79



80 9. PROOF OF THEOREM 1.4Sine now �Nu > 0 we have that ru(� + �teN) 6= 0. Therefore, it follows that theassumptions of the Strong Comparison Priniple for p-Laplae equations in [9℄ (seeCorollary B.5 here) applies to u(� + �teN ) and v and so this touhing point mustour on �B, that is �x 2 �B. Sine u = v on �B, it follows that v(�x) = u(�x).Consequently, sine u is stritly inreasing in the eN -diretion,u(�x) = v(�x) = u(�x+ �teN ) > u(�x) :This ontradition shows that (9.1) annot hold, hene v � u. Analogously, onesees that v � u, thene v = u. �By means of Lemma 9.1, we an omplete the proof of Theorem 1.4, by arguingas follows. With no loss of generality, we assume that u(0) = 0. Then, for " > 0,setting u"(x) := u(x="), we know from Lemma 9.1 and the results of [7℄ that u"L1lo-onverges (and thus a.e.-onverges), up to subsequene, to �E � �RNnE , for asuitable E with minimal perimeter.Sine �Nu > 0 and limxN!+1 u = �1, we have that the zero level set of u is agraph in the eN -diretion; more preisely, there exists  : RN�1 �! R so thatfu < 0g = fxN < (x0)g :By saling, we thus dedue that(9.3) fu" < 0g = fxN < "(x0)g ;with "(x0) := "(x0=") :We now laim that(9.4) �fxN<"(x0)g onverges in L1lo to �RNnE .Indeed: we know that u" onverges to �E � �RNnE in RN n Z, for a suitable set Zwith LN (Z) = 0; thus, if x 2 E n Z,lim"�!0+ u"(x) = �E(x)� �RNnE(x) = 1 ;therefore lim"�!0+ �fu"<0g(x) = 0 = �RNnE(x) ;while if x 2 (RN nE) n Z thenlim"�!0+ u"(x) = �E(x)� �RNnE(x) = �1 ;therefore lim"�!0+ �fu"<0g(x) = 1 = �RNnE(x) :This shows that �fu"<0g onverges almost everywhere to �RNnE . Thus, (9.4) followsfrom the Dominated Convergene Theorem and (9.3).In the light of (9.4) and Lemma 16.3 of [20℄, we have that RN nE is a subgraphof a measurable funtion whih is the a.e.-limit of " up to subsequenes, and whihmay attain the values �1; that is, there exists ? : RN�1 �! [�1;+1℄ in suh away that(9.5) ?(x) = lim"!0+ "(x)



9. PROOF OF THEOREM 1.4 81for almost any x, up to subsequene, andRN nE = fxN < ?(x0)g :Sine �E is a minimal perimeter, we have that ? is a quasi-solution of the minimalsurfae equation, aording to De�nition 16.1 of [20℄.We now prove that �E is a hyperplane. We distinguish two ases, aordingto our hypotheses. If N � 8, we have that � is an entire quasi-solution of theminimal surfae equation in a spae with dimension less or equal than 7; therefore,by Theorem 17.8 and Remark 17.9 of [20℄, we have that �E = fxN = ?(x0)g is ahyperplane. If, on the other hand, fu = 0g has at most linear growth, thenfu = 0g � fjxN j � K (jx0j+ 1)g ;for a suitable K > 0. This says thatfxN = "(x0)g = fu" = 0g �� fjxN j � K (jx0j+ ")g �� fjxN j � K (jx0j+ 1)g ;i.e., j"(x0)j � K (jx0j+ 1). Thus, by means of (9.5), we gather that(9.6) j?(x0)j � K (jx0j+ 1) ;thus ? is loally bounded. Hene, ? is a solution of the minimal surfae equation(see [20℄, page 183). Therefore, �E is a hyperplane thanks to (9.6) and Theorem17.6 of [20℄.In any ase, we have proved that �E is a hyperplane, thene�E = n� � x = 0o ;for a suitable � 2 RN with j�j = 1. Thanks to [28℄, we know that fu" = 0g L1lo-onverges �E, hene, for any k 2 N, there exists "k > 0 as small as we wish, sothat B2 \ fu"k = 0g � nj� � xj � 1=ko :By saling bak the variables, we thene obtain thatfu = 0g \ �fjx � �j � 1="kg � fj��xj � 1="kg� � nj� � xj � 1=(k"k)o :We now invoke Lemma 8.1, used here with �k := �, lk := 1="k, �k := 1=(k"k), andwe infer that fu = 0g is a hyperplane. This ompletes the proof of Theorem 1.4.





APPENDIX AProof of the measure theoreti resultsA.1. Proof of Lemma 4.1By the hypotheses of the lemma and (2.41), eS(Y;R) touhes the graph of uby above at X0. Notie also that, in the notation of Lemma 3.3, sine Y =F (X0; �eS(Y;R)(X0)),y = x0 + ��eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)������eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)���� �(X0; �eS(Y;R)(X0)) ;and thus j(x0 � y) � eN j =(A.1) = ����eS(Y;R)N (X0)��������eS(Y;R)1 (X0); : : : ; �eS(Y;R)N (X0)���� ����(X0; �eS(Y;R)(X0))��� == j�Nu(x0)jjru(x0)j hR++H0(x0 � eN+1)�H0�x0 � eN+1 ++!(X0; �eS(Y;R)(X0))�� C02R!2(X0; �eS(Y;R)(X0))i :Also, from Lemma 3.3,��14 ; 14� 3 yN+1 = xN+1 + !�X0; �eS(Y;R)(X0)�and so(A.2) ���!�X0; �eS(Y;R)(X0)���� � 14 + 12 < 1 :Therefore, from (A.1), (A.2) and (4.2),j(x0 � y) � eN j � onstR ;provided that C0 is large enough; more preisely, sine, from (4.2),x0 � yjx0 � yj � eN = ru(x0)jru(x0)j � eN > 0 ;we have that (x0 � y) � eN � onstR :Therefore,(A.3) xN � yN � onstR ;83



84 A. PROOF OF THE MEASURE THEORETIC RESULTSfor any X 2 B3a(X0), if R is large enough.We now point out that, if X 2 B3a(X0) \ eS(Y;R),(A.4) �NgeS(Y;R)(x) � onst > 0 :In order to prove the above inequality, �rst notie that, by a diret omputation,using (2.35), (2.33) and (2.37), one gets that(A.5) �NgeS(Y;R)(x) � onst xN � yNjx� yj :Also, if x is in the domain of geS(Y;R), thenjx� yj � onstR :The latter inequality, together with (A.5) and (A.3), ends the proof of (A.4).Let now R(x1; : : : ; xN�1; xN+1) :=:= h�H0(xN+1)� C02R (xN+1 � yN+1)2 +R�H0(yN+1)�2 ��N�1Xj=1 jxi � yij2i1=2 :Let also �N : RN+1 �! fxN = 0g be the natural projetion, i.e.,�N (x1; : : : ; xN+1) := (x1; : : : ; xN�1; 0; xN+1) :We now show that(A.6) �N ���eS(Y;R)\B3a(X0) is a di�eomorphism.For proving this, take anyX = �x; geS(Y;R)(x)� 2 eS(Y;R) \ B3a(X0) ;and onsider �N (X) = �x1; : : : ; xN�1; 0; geS(Y;R)(x)� :Then, by (2.31) and (2.33),��1N �x1; : : : ; xN�1; 0; geS(Y;R)(x)� = X ;with xN so that jxN � yN j = R(x1; : : : ; xN�1; xN+1) ;where R has been de�ned here above. From (A.3), we get that R � onstR > 0,thus R is smooth for X 2 B3a(X0). Also, using again (A.3), we see that xN > yNfor any X 2 eS(Y;R) \ B3a(X0): that is��1N �x1; : : : ; xN�1; 0; geS(Y;R)(x)� == �x1; : : : ; xN�1; yN +R(x1; : : : ; xN�1; xN+1); xN+1� ;thene (A.6) is proved.Let now �N+1 : RN+1 �! fxN+1 = 0g be the natural projetion, i.e.,�N+1(x1; : : : ; xN+1) := (x1; : : : ; xN ; 0) :



A.1. PROOF OF LEMMA 4.1 85Notie that, if X = (x; geS(Y;R)(x)) 2 eS(Y;R), then �N+1(X) = (x; 0) and so��1N+1(x; 0) = �x; geS(Y;R)(x)� ;showing that(A.7) �N+1���eS(Y;R)\B3a(X0) is a di�eomorphism.Thus, we de�neT := �N+1���eS(Y;R)\B3a(X0) Æ ��1N ���eS(Y;R)\B3a(X0)Let also introdue the following domains:O1 := T�fxN = 0g \ fjxN+1j < 3=4g \ Ba+2(�N (X0))�O2 := T�fxN = 0g \ fjxN+1j < 5=8g \ Ba+1(�N (X0))� :Of ourse, x0 2 O2 � O1 and, more preisely, by (A.6) and (A.7),(A.8) dist (O2; �O1) � onst :Let us now notie that, in the light of Proposition 2.18,�pgeS(Y;R) ��pu � �h00(geS(Y;R))� h00(u)�+ onstR �� ��(geS(Y;R) + 1R )� u� :Hene, if X 2 O1,��pu+�u � ��p�geS(Y;R) + 1R�+��geS(Y;R) + 1R� ;where � := sup[�3=4; 3=4℄ jh00j. Hene, from the Harnak-type omparison inequalityfor1 p-Laplaian (see, for instane [9℄, [35℄ or [10℄), we get that(A.9) supO2 (geS(Y;R) � u) � C 0R ;for a suitable C 0 > 1, whih may also depend on a.Fix now Z 2 L \ Ba(�NX0). Then, from (A.6), there existsX(1) = (x(1); x(1)N+1) 2 eS(Y;R) \ B3a(X0)so that �N ���eS(Y;R)\B3a(X0)(X(1)) = Z ;that is(A.10) X(1) = Z + t(1)eNfor some t(1) 2 R, and(A.11) X(1) 2 eS(Y;R) :1 We reall that the gradient of u does not vanish in the region we are onsidering, so thatthe assumptions needed in [9, 35, 10℄ are ful�lled.



86 A. PROOF OF THE MEASURE THEORETIC RESULTSAlso, by (A.6),jX(1) �X0j � �����N ���eS(Y;R)\B3a(X0)��1(Z � �NX0)��� �� onst jZ � �NX0j �� onsta :(A.12)Moreover, from (A.4), we have that, for any t � 0,geS(Y;R)(x(1) + teN) � onst t+ geS(Y;R)(x(1)) == onst t+ x(1)N+1 == onst t+ zN+1 :Therefore, from (A.9),(A.13) u(x(1) + teN ) > zN+1 ;provided that t � C 00=R, for a suitable C 00 > 1, whih may also depend on a.Analogously,(A.14) u(x(1) � teN ) < zN+1 ;provided that t � C 00=R. From (A.13) and (A.14), we dedue the existene oft(2) 2 [�C 00=R; C 00=R℄ so thatu(x(1) + t(2)eN ) = zN+1 :Let us de�ne X(2) := X(1) + t(2)eN . The point x(2) = x(2)(Z) will be the onesatisfying the thesis of Lemma 4.1, as we are now going to show. Notie that, byonstrution, ���X(1) �X(2)��� � C 00R and(A.15) x(2)N+1 = zN+1 = u(x(2)) :In partiular, �N�x(2); u(x(2))� = Zand jx(2) � x0j ��jx(1) � x0j+ C 00R �� onsta+ C 00R �� onsta ;(A.16)
thanks to (A.12).We now show that(A.17) �x(1) � x0� � ru(x0)jru(x0)j � H0(zN+1)�H0(u(x0)) + C 000R ;for some C 000 > 0 whih may depend on a. To prove (A.17), let us de�new(x) := H0(geS(Y;R)(x))



A.1. PROOF OF LEMMA 4.1 87and notie that, from (A.10) and (A.11),zN+1 = x(1)N+1 = geS(Y;R)(x(1))and so, sine X0 is a point where the graph of u and eS(Y;R) touhes,H0(zN+1)�H0(u(x0)) == H0�geS(Y;R)(x(1))��H0�geS(Y;R)(x0)� == w(x(1))� w(x0) �� rw(x0) � (x(1) � x0)� onst jD2w(�)jjx(1) � x0j2 ;for some � lying on the segment joining x(1) and x0. Notie now that, by thede�nition of w and the fat that X0 is a point of touhing between the graph of uand eS(Y;R), rw(x0) � (x(1) � x0) == H 00�geS(Y;R)(x0)�rgeS(Y;R)(x0) � (x(1) � x0) == H 00�geS(Y;R)(x0)� ���rgeS(Y;R)(x0)��� rgeS(Y;R)(x0)���rgeS(Y;R)(x0)��� � (x(1) � x0) == H 00�geS(Y;R)(x0)� ���rgeS(Y;R)(x0)��� ru(x0)jru(x0)j � (x(1) � x0) ;hene, from (2.53) and the fat that X(1) 2 B3a(X0),rw(x0) � (x(1) � x0) � ru(x0)jru(x0)j � (x(1) � x0)� onstR a :Also, a diret omputation and (2.54) imply that�ijw = H 000 �geS(Y;R)��igeS(Y;R)�jgeS(Y;R) ++H 00�geS(Y;R)��ijgeS(Y;R) �� onstR :Colleting the estimates above and realling that X(1) 2 B3a(X0), the laim in(A.17) now easily follows.Now, by means of (A.15) and (A.17),�x(2) � x0� � ru(x0)jru(x0)j �� �x(1) � x0� � ru(x0)jru(x0)j + ���x(1) � x(2)��� �� H0(zN+1)�H0(u(x0)) + C 0000R == H0(u(x(2)))�H0(u(x0)) + C 0000R ;for a suitable C 0000 > 1, whih may depend on a. This, together with (A.12) and(A.16), ompletes the proof of Lemma 4.1.



88 A. PROOF OF THE MEASURE THEORETIC RESULTSA.2. Proof of Lemma 4.2The proof of Lemma 4.2 relies on an auxiliary result, namely Lemma A.1 herebelow, whih may be seen as a rotation of the desired laim (see below (A.20)) plusa Lipshitz property on level sets2. For stating Lemma A.1, we need to introduethe following notation. Given R > 0 and Y = (y; yN+1) 2 RN � [�1=4; 1=4℄, wede�ne �(Y;R) as the zero level set of S(Y;R), that is:�(Y;R) := S(Y;R)\ fxN+1 = 0g = fgS(Y;R) = 0g :By the de�nitions on page 14 and (2.39), we have that �(Y;R) is an (N � 1)-dimensional sphere, namely�(Y;R) = fx 2 RN j jx� yj = rgwith3(A.18) r = r(Y;R) := R�H0(yN+1)� C02Ry2N+1 :The study of the geometry of suh spheres is indeed linked with the study of thelevel sets of S(Y;R), via the following observation. If s = gS(Y;R)(x) = geS(Y;R)(x) 2(�1=2; 1=2), then, by (2.31) and De�nition 2.15,H0(yN+1) + jx� yj �R = H0(s)� C02R (s� yN+1)2 ;hene, if jsj < 1=2, the signed distane between the s-level set of gS(Y;R) and �(Y;R)is given by(A.19) H0(s) + C0 s2R (2yN+1 � s) :Given x 2 RN , we now de�neTY;Rx = TY;R(x)as the intersetion point between �(Y;R) and the half-line from y going throughx. With this, we an now deal with the above mentioned auxiliary result:2The very rough idea underneath the proof of Lemma 4.2 goes as follows. First, Lemma A.1provides a result whih looks like a rotation of Lemma 4.2, and whih possesses a uniform Lipshitzgraph property for level sets. The proof of Lemma 4.2 will then ended by rotating bak to theon�guration in Lemma A.1: the Lipshitz property will take into aount the error done in suhrotation.The idea for proving Lemma A.1 is that we would like to replae the estimates on thetouhing point set � with estimates on a suitable �rst ourrene touhing point set ��, i.e., witha set obtained by translating in the eN diretion an appropriate barrier until it touhes the graphof u. This strategy will present two advantages. First, the �rst ourrene touhing property willeasily imply the Lipshitz property for level sets of �� (whih, as mentioned above, is needed fordeduing Lemma 4.2 from Lemma A.1). Seond, measure estimates for �� an be diretly deduedfrom Proposition 3.14. For performing this, however, a tehnial diÆulty arises: indeed, in orderto be able to replae � with ��, a \tiny" improvement of the assumptions of Lemma A.1 will beneeded, namely (A.29) here below. Unfortunately, the proof of this detail is non trivial, and itwill take several pages.3Obviously, r � R if R is large.



A.2. PROOF OF LEMMA 4.2 89Lemma A.1. Let �C > 1 be a suitably large onstant. Let u be a C1-subsolutionof (1:5) in fjx0j < lg � fjxN j < lg. Assume that S(Y;R) is above the graph of uin fjx0j � lg � fjxN j � l=2g and that S(Y;R) touhes the graph of u at the point(x0; u(x0)). Suppose that� ju(x0)j < 1=2, jx0N j < l=4, jx00j < l=4;� \� ru(x0)jru(x0)j ; eN� � �8 .Assume also that TY;Rx0 2 fjx0j = qg \ fxN = 0g andy = �eNpr2 � q2 withr = r(Y;R) = R�H0(yN+1)� C02Ry2N+1 :(A.20)Then, there exist universal onstants C1; C2 > 1 >  > 0 suh that, if(A.21) C1 � q � lC1 and 4 3pR � l � R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� jx0j < q=15, ju(x)j < 1=2, jx� x0j < �Cq;� there exists Ŷ 2 RN+1 suh that S(Ŷ ; R=C2) is above u and it touhes uat (x; u(x));� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then,(A.22) LN��N (�)� � qN�1 :More preisely, for any s 2 (�1=2; 1=2), there exists a set �s � � \ fxN+1 = sg,whih is ontained in a Lipshitz graph in the eN-diretion, with Lipshitz onstantless than 1, and so that, if �� := [s2(�1=2; 1=2)�s ;we have4(A.23) LN��N (��)� � qN�1 :
4Of ourse, (A.23) and the fat that �� � � imply (A.22).



90 A. PROOF OF THE MEASURE THEORETIC RESULTS
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The geometry of (A.20)Proof. For further referene, let us point out some geometri features linkingx0 with its projetion TY;Rx0. First of all, by (A.19),(A.24) ���TY;Rx0 � x0��� � onst :Also, by onstrution,(A.25) sin�\�x0 � y; eN)� = qr :Thus, (A.24) and (A.25) yield thatjx00j � ����TY;Rx0 � x0�0���+ ����TY;Rx0�0��� �� ���TY;Rx0 � x0��� sin�\�x0; eN)�+ q �� onst qR + q :(A.26)Let us also observe that, if jx0j � l=8 and xN 2 [�l=2; �l=4℄, thenjx� yj � r � l8 + onst � R� onst 3pR



A.2. PROOF OF LEMMA 4.2 91and thus, exploiting (2.15),u(x) � gS(Y;R)(x) �� gyN+1;R� onst (1� 3pR)� == sR :(A.27)More preisely, we have that(A.28) u(x) < sRfor any x so that jx0j � l=8 and xN 2 [�l=2; �l=4℄: indeed, if not, by (A.27) therewould be a point for whih the graph of u touhes the sR-level from below and thena ontradition follows by applying Theorem B.6 to the funtion sR � u (see, e.g.,the argument on page 18).We now �x C� > 1, to be hosen onveniently large. The �rst step of theproof of Lemma A.1 onsists in proving the existene of a suitable Y� 2 RN+1 andR� > R= onst, so that �eNY� = �eNY and S(Y�; R�) touhes the graph of u fromabove, in the region fjx0j � �Cqg, at the point (x�; u(x�)), with jx0�j � �Cq and(A.29) TY�;R�x� 2 nxN � onst q2R o� njx0j < qC�o :We will prove (A.29) by iteration. Namely, we will set Y0 := Y , R0 := R and,for any k 2 N, we will indutively �nd Yk+1 2 RN+1 and Rk+1 > Rk=4, so that�eNYk+1 = �eNYk and S(Yk+1; Rk+1) touhes the graph of u from above at thepoint (xk+1; u(xk+1)), with jx0k+1j � �Cq and(A.30) TYk+1;Rk+1xk+1 2 nxN � onst q2Rk o� njx0j < �qo ;for some � 2 (0; 1). Sine (A.29) follows by iterating (A.30) a �nite number oftimes, we fous now on the proof of (A.30). More preisely, we will proof the �rststep in (A.30), i.e., the step with k = 0, sine the others are analogous. The proofof (A.30) is atually quite non trivial, and it will take several pages (it will be endedon page 111).For proving (A.30), let us begin by notiing that, if jsj < 1=2, from De�nition2.5 and (2.1) we get thatjh0s0;R(s)� h00(s)j = j'0s0;R(s)� h00(s)j �� jh00(s)j 0B� jRp � (?)pj(?)p + C0 js� s0j (p=(p� 1))1=p�h0(s)�(p�1)=p (?)p+1 1CA ;where used the short hand notation? := R� C0(s� s0) � pp� 1h0(s)�1=p :Therefore,(A.31) jh0s0;R(s)� h00(s)j � onstR , for any jsj < 1=2.



92 A. PROOF OF THE MEASURE THEORETIC RESULTSMoreover, from De�nition 2.5,(A.32) h0s0;R(s) = h00(s)� bC0R , for any s 2 (sR; �1=2) [ (1=2; 1).and, by onstrution, bC0 may be taken large if so is C0. We now �x a smallparameter � 2 (0; 1=2℄ and a large parameter  > 1 and we de�ne(A.33) ! := 2�1=(+2) and � := 1� �(1� !).By onstrution, ! 2 (0; 1) and � 2 (1=2; 1). Also, � > ! and, for  large, ! and �are lose to 1. For any t > 0, set also~ (t) := 1 � 1t � 1�and, for any z0 2 RN�1 n f0g,  (z0) := ~ (jz0j) :We now onsider the graphG := (X 2 RN j xN = q2pr2 � q2 (x0=q)) :Sine ~ is stritly onave, while �(�; �) is stritly onvex, one sees that G touhes�(Y;R) from above when jx0j = q. Analogously, ify! := �" q2pr2 � q2 �1� 1!� + !+2pr2 � q2# eN andr! := !+2pr2 + q2(!�2�2 � 1) ;one sees that G touhes the (N�1)-dimensional sphere �Br!(y!) from above whenjx0j = !q. Notie that, by onstrution,(A.34) r! � !+2r = r=2 ;and, more preisely, r! 2 [r=2; !r℄ and y!N � yN . Also, from the fat that(A.35) ���p1 + � � 1� �2 ��� � �2 ;provided that � 2 R with j� j suÆiently small, one sees that yN + r < y!N + r!, ifr=q and  are suitably large. Notie also that, by onstrution,jy! � yj = 12pr2 � q2 + q2pr2 � q2 � 1! � 1� 22 h12pr2 � q2 ; 12pr2 � q2 + 2q2r i ;(A.36)if  and r=q are large enough. Thus, we now onsider the surfae� := �1 [ �2 [ �3de�ned in this way: we take�1 := �(Y;R) \ fxN < 0g�2 := G \ fjx0j 2 [!q; q℄g and�3 := �Br!(y!) \ fjx0j < !qg \ fxN > 0g :
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The Barbapapa-like surfae �In the sequel, we will often speak about points \inside (or outside) �", with theobvious meaning of points \inside (or outside) the bounded region whose boundaryis �".Also, by the above mentioned touhing properties between G, �(Y;R) and�Br!(y!), we have that � is a C1;1 losed hypersurfae in RN . We denote by d�the signed distane to �, with the onvention that d� is positive in the exterior of� and negative in the interior.The rough idea for proving (A.30) onsists now in trying to �nd ontat pointswhose projetion on the zero level set of the orresponding barrier lies lose5 to �3,and then use the geometry �3, whih is quite transparent.We now de�ne the following hypersurfae in RN+1 :	 := nX 2 RN+1 j xN+1 = gyN+1;R�d�(x) +HyN+1;R(0)�o :For the sake of simpliity, we will setg	(x) := gyN+1;R�d�(x) +HyN+1;R(0)� ;5This is the reason also for introduing �(Y!; R1) later on (see page 98).



94 A. PROOF OF THE MEASURE THEORETIC RESULTSso6 that 	 = fxN+1 = g	(x)g. Note thatd�(x) � jx� yj � r ;thus, from (2.39) and (2.31),(A.37) g	 � gS(Y;R) :Let us now show some further properties of 	. First of all, 	 oinides withS(Y;R) at any points for whih d� is realized on �1; more preisely,(A.38) if d�(x) = d�1(x), then g	(x) = gS(Y;R)(x).Indeed, if d�(x) = d�1(x), by some geometri onsiderations and (2.39), we havethat g	(x) = gyN+1;R�d�1(x) +HyN+1;R(0)� == gyN+1;R�d�1(x) � C02R y2N+1� == gyN+1;R�jx� yj � r � C02R y2N+1� :This, (A.18) and (2.20) end the proof of (A.38).In the light of (A.38), (A.37) and Proposition 2.13, we dedue that�pg	(x) < h00(g	(x)) in the visosity senseat any x 2 RN for whihd�(x) is attained on �1 andg	(x) 2 [sR; �1=2℄ \ [1=2; 1).(A.39)Furthermore, in an appropriate system of oordinates (see x14.6 of [19℄ fordetails on the distane funtion),rg	(x) = g0yN+1;R(?) eNand D2g	(x) is the N �N diagonal matrix with the following entries on the diag-onal: �1�1d�(x) � 1 g0yN+1;R(?); : : : ; �N�1�N�1d�(x) � 1 g0yN+1;R(?); g00yN+1;R(?) :Here above, we denoted ? := d�(x) +HyN+1;R(0) ;6To have some further geometri insight, one may observe that the domain where g	 is de�nedand non-onstant is in a O(logR)-neighborhood of � (reall (2.39), (2.31) and Lemma 2.10). Theprinipal urvatures of � are of order R. This implies that if x is in the domain where g	 is de�nedand non-onstant, then the distane from x to � is realized at exatly one point. Furthermore,sine R is muh bigger than l (reall (A.21)), then it may be onvenient to look at �\ [�l; l℄N (thatis, � in the domain we are interested in) as a graph in the eN -diretion. By diret inspetion, theslope of suh graph at any point x is of order jx0j=R. In partiular, the angle between eN and thenormal of � at x is of order jx0j=R. The above slope bound and (A.21) also imply that � is quiteat in [�l; l℄N , namely, its slope is bounded by an order .



A.2. PROOF OF LEMMA 4.2 95while, as standard, �1; : : : ; �N�1 represent the prinipal urvatures of � at the pointwhere d�(x) is realized. Hene, from De�nitions 2.8 and 2.11 and Lemma B.3, weget that(A.40) rg	(x) = � pp� 1hyN+1;R(℄)�1=p eN ;where we denoted ℄ := gyN+1;R(?), and that D2g (x) may be represented as theN �N diagonal matrix with the following entries on the diagonal:�1�1d�(x) � 1 � pp� 1hyN+1;R(℄)�1=p... �N�1�N�1d�(x) � 1 � pp� 1hyN+1;R(℄)�1=p(phyN+1;R(℄))(2�p)=p(p� 1)2=p h0yN+1;R(℄) :(A.41)
From (A.40) and (A.41),�pg	 = h0yN+1;R ++ � pp� 1hyN+1;R� p�1p N�1Xi=1 �i�id� � 1 ;(A.42)outside fjg	j = 1=2g[frg	 = 0g, where we dropped the ℄-dependene for the sakeof simpliity. Let us now ompute the prinipal urvatures ��2i of the hypersurfae�2: exploiting Lemma B.14, we have that� ��21 = � � � = ���2N�2 = q+2jx0jp(r2 � q2)jx0j2+2 + q2+4 � 0��2N�1 = ( + 1) q+2 (r2 � q2) jx0j2+1�(r2 � q2) jx0j2+2 + q2+4�3=2 � 0 :(A.43)In partiular, sine jx0j � !q on �2, we infer from the above relations that(A.44) ���2i � 1r! ;for i = 1; : : : ; N � 2. Thus, we dedue from (A.34), (A.44) and (A.18) that(A.45) ���2i � 3R ;for i = 1; : : : ; N � 2, if R is large enough. Furthermore, sine q � jx0j � !q on �2,(A.43) gives ��2N�1 � ( + 1) (r2 � q2)!2+1r3 �� 910 ( + 1)!2+1r �� 940 ( + 1)r ;



96 A. PROOF OF THE MEASURE THEORETIC RESULTSthat is(A.46) ��2N�1 � onst ( + 1)R :Analogously, one sees that(A.47) ��2N�1 � onst ( + 1)R :We now laim that �pg	(x) � h00(g	(x))� onst Rat any x 2 RN for whih jg	(x)j 6= 1=2,rg	(x) 6= 0,jd�(x)j � 2pR and d� is attained on �2.(A.48)To prove this, take x as requested here above: then, thanks to (A.45), (A.47) andthe fat that jd�(x)j � 2pR, that�����2N�1d�(x)���+ N�2Xi=1 �����2i d�(x)��� � onstpRand so, if R is large enough,N�1Xi=1 ���2i1� ��2i d�(x) � �2N�2Xi=1 ��2i � ��2N�12 :(A.49)Hene, using the regularity of the funtions involved in our domain, (A.42), (A.49),(A.31) and (A.32),�pg	 = h0yN+1;R +� pp� 1hyN+1;R� p�1p N�1Xi=1 ��2i��2i d� � 1 �� h0yN+1;R +� pp� 1hyN+1;R� p�1p  �2N�2Xi=1 ��2i � ��2N�12 ! �� h00 + onstR ++� pp� 1hyN+1;R� p�1p  �2N�2Xi=1 ��2i � ��2N�12 ! :We thus dedue, by (A.45) and (A.46), that�pg	 � h00 + onstR ++� pp� 1hyN+1;R� p�1p �6(N � 2)R � onst ( + 1)2R � :Thus, if  is large enough,�pg	 � h00 + onstR � onst � pp� 1hyN+1;R� p�1p ( + 1)4R :



A.2. PROOF OF LEMMA 4.2 97Therefore, sine we are evaluating hyN+1;R at g	(x) 2 [�1=2; 1=2℄,�pg	 � h00 + onstR � onst ( + 1)R ;whih proves (A.48), if  is hosen to be onveniently large.We now show that�pg	(x) < h00(g	(x)) in the visosity senseat any x 2 RN for whihd� is attained on �2.(A.50)For proving this, we �rst point out that we may assume(A.51) g	(x) > sRIndeed, if g	(x) = sR, arguing as in Proposition 2.13�pg	(x) = 0 < h00(sR) = h00(g	(x)) ;in the visosity sense, giving the desired laim.For proving (A.50), we may also assume rg	(x) 6= 0, otherwise, we would haveg	(x) = sR and we go bak to (A.51). We may also assume that jd�(x)j � pR:indeed, if jd�(x)j � pR, we have thatjd�(x) +HyN+1;R(0)j � pR=2 > C1 logRand so, by Lemma 2.10, eitherd�(x) +HyN+1;R(0) > HyN+1;R(1) ;in whih ase, due to De�nition 2.11, g	(x) is not even de�ned, ord�(x) +HyN+1;R(0) < HyN+1;R(sR) ;in whih ase g	 is onstantly equal to sR in a neighborhood of x, whih has justbeen ruled out. Also, in the proof of (A.50), we an restrit ourselves to the asein whih jg	j 6= 1=2, sine, by Proposition 2.13, no smooth funtion an touh g	from below at level �1=2. With these further (non restritive) assumptions, it iseasy to dedue (A.50) from (A.48).We now prove that�pg	(x) < h00(g	(x)) in the visosity senseat any x 2 RN for whih jg	(x)j � 1=2 andd�(x) is attained on �3.(A.52)To prove the above laim, notie that, as remarked here above, we may restritourselves to the ase in whih jg	j 6= 1=2 and jd�(x)j � pR. Also, sine �3 is aportion of sphere, ��31 = � � � = ��3N�1 = � 1r! < 0 ;so, sine jd�(x)j � pR, we get that, for i = 1; : : : ; N � 1,�����3i d���� � onstpR



98 A. PROOF OF THE MEASURE THEORETIC RESULTSwhih is small; therefore, from (A.32),�pg	 == h0yN+1;R +� pp� 1hyN+1;R� p�1p N�1Xi=1 ��3i��3i d� � 1 �� h0yN+1;R + onst N�1Xi=1 j��3i j �� h0yN+1;R + onstR �� h00 � bC0R + onstR << h00 ;provided that bC0 is hosen suitably large, thus proving (A.52).In the light of (A.39), (A.50) and (A.52), we dedue thatg	 is a strit supersolution of (1.5) everywherepossibly exept the set fjg	j < 1=2g \ n d� realized on �1 [ �3o.(A.53)We now point out that(A.54) if jx0j � �Cq, then g	(x) = gS(Y;R)(x).Indeed, let x 2 � realize d�(x). Then, if � is the outer normal of � at x, we havethat \(�; eN ) � onst jx0j=R (see the footnote on page 94). Therefore,jx0 � x0j = jx� xj sin�\(�; eN)� � onst jx0j jx� xjR � onst jx0j lR � onst jx0j :Sine jx0 � x0j � �Cq � jx0j ;we thene dedue that �Cq � onst jx0j ;thus jx0j � 2q. In partiular, x 2 �1, therefore (A.54) follows from (A.38).We now de�ne Y! := (y!; yN+1) ;R1 := r! +H0(yN+1) + 5C0R ;r1 := R1 �H0(yN+1)� C02R1 y2N+1 ;�(Y! ; R1) := S(Y!; R1) \ fxN+1 = 0g :By de�nition, R1 � !r + onst ��!R+ onst < R(A.55)



A.2. PROOF OF LEMMA 4.2 99and(A.56) r1 � r! 2 �3C0R ; 5C0R � :Furthermore, arguing as done on page 88, we have that(A.57) �(Y! ; R1) = �Br1(y!) ;thus, by (A.56), we infer that�(Y! ; R1) stays at distane greaterthan 3C0=R outside �Br!(y!) � �3.(A.58)Realling the de�nition of � given in (A.33), we now show that(A.59) �Br!(y!) \ fjx0j � �qg is at distane at least onst q2R inside �.For the proof of this, it is onvenient, to think � and �Br!(y!) (in [�l; l℄N) as graphsin the eN -diretion (see the footnote on page 94): we then expliitly ompute the\vertial distane" from �Br!(y!) to � (with the sign onvention that suh vertialdistane is positive at points where �Br!(y!) is below � in the eN -diretion) andompare it to the \true" distane by using the atness of these graphs (in [�l; l℄N).To formalize suh idea, we proeed as follows. We write � and �Br!(y!) (in [�l; l℄N)as graphs in the diretion eN , that is, we onsider G1, G2 2 C1;1([0; l℄) so that� \ [�l; l℄N = nxN = G1(jx0j)oand �Br! (y!) \ [�l; l℄N = nxN = G2(jx0j)o :Then, we de�ne the vertial distane between � and �Br!(y!) asG1(jx0j)�G2(jx0j) :To evaluate it, note that, by onstrution, G1(t) = G2(t) if t 2 [0; !q℄ and G01(!q) =G02(!q). What is more, sine G2(t) = y!;N +pr2! � t2, one has thatG002(t) � �1� onst r! � �43 � 1� onst r :Analogously, sine G1(t) = yN +pr � t2 for any t � q, one has thatG001(t) � �1 + onst r ;for any t � q. Also, by onstrution,G001 (t) � 0for t 2 [!q; q℄. Let us de�ne G := G1 �G2. By means of the above omputations,we have that G(!q) = G0(!q) = 0, that G00(t) � onst =r for t 2 [!q; �q℄ and



100 A. PROOF OF THE MEASURE THEORETIC RESULTSG00(t) � 0 for t � �q. Therefore, if t � �q, thenG(t) = Z t!q Z s!q G00(�) d� ds == Z t!q(t� �)G00(�) d� �� onst Z �q!q (�q � �)r � onst q2R :This says that, if x 2 �Br!(y!) with jx0j � �q, then x is inside �, with vertialdistane greater than onst q2=R. Thene, if x 2 �Br! (y!) with jx0j � �q and zrealizes d�(x), denoting by w the point in � so that w0 = x0, we have that(A.60) �d�(x) = jz � xjand that(A.61) jx� wj � onst q2R :Elementary trigonometry and the atness of � and Br! (y!) in [�l; l℄N (reall thefootnote on page 94) also implies that(A.62) jx� wj � 2 jx� zj :Then, (A.59) follows from (A.60), (A.61) and (A.62).A �rst onsequene of (A.59) is that, for any a 2 �Br!(y!) and any b 2 �1,(A.63) ja� bj � onst q2R :We also infer from (A.57), (A.59) and (A.56) that(A.64) �(Y! ; R1) \ fjx0j � �qg is at distane at least 3C0R inside �.Notie also that, by onstrution and realling (A.35), one hasy!N + r1 � �12pr2 � q2 + onst q2r + r! + onstC0R == 12 �pr2 + (4!2 � 1) q2 �pr2 � q2�++ onst q2r + onstC0R �� onst q2r + onstC0R �� onst q2R ;thene,(A.65) �(Y! ; R1) � �xN � onst q2R � :



A.2. PROOF OF LEMMA 4.2 101We now investigate the mutual position of 	 and S(Y!; R1). For this, we startby laiming thatThe region nX 2 	 where jxN+1j < 1=2 andd�(x) is realized on �3o is above S(Y!; R1)(where above means with respet to the eN+1-diretion).(A.66)To prove (A.66), note that, if d�(x) is realized on �3, then x� y! is orthogonal to�3 � �Br! (y!), therefore, realling (A.56) and (2.39),d�(x) = d�3(x) = d�(Y! ;R1)(x) + r1 � r! �� d�(Y! ;R1)(x) + 3C0R == jx� y!j � r1 + 3C0R == jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R == jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R ��HyN+1;R(0)� C02Ry2N+1 :This, realling (2.39) and (2.38), gives thatHyN+1;R1�g	(x)�� C02 �g	(x)� yN+1�2 � 1R � 1R1� == eHyN+1;R1�g	(x)�� C02 �g	(x)� yN+1�2 � 1R � 1R1� == eHyN+1;R�g	(x)� == HyN+1;R�g	(x)� == HyN+1;R �gyN+1;R�d�(x) +HyN+1;R(0)�� == d�(x) +HyN+1;R(0) �� jx� y!j �R1 +H0(yN+1) + C02R1 y2N+1 + 3C0R � C02Ry2N+1 :Therefore, HyN+1;R1�g	(x)� � jx� y!j �R1 +H0(yN+1)++ 3C0R � C02Ry2N+1 � C02R1 �g	(x) � yN+1�2 :(A.67)



102 A. PROOF OF THE MEASURE THEORETIC RESULTSNote however that R1 � R=2 for large R, and so, in partiular, we may assumethat R1 � R=3. Thene,3C0R � C02Ry2N+1 � C02R1 �g	(x)� yN+1�2 �� 3C0R � C02R �14�2 � 3C02R �34�2 >> 0 :This and (A.67) yield thatHyN+1;R1�g	(x)� > jx� y!j �R1 +H0(yN+1) ;and so g	(x) > gyN+1;R1�jx� y!j �R1 +H0(yN+1)� = gS(Y!;R1)(x) ;whih proves (A.66).We now show thatThe region nX 2 S(Y!; R1) whered�(Y!;R1)(x) is realized at a point z with jz0j � �qois stritly above 	 (in the eN+1-diretion).(A.68)In order to prove (A.68), take X 2 S(Y!; R1) and assume that� := dist�x;�(Y! ; R1)�is attained at z 2 �(Y!; R1) and jz0j � �q. Then, by onstrution,xN+1 = gS(Y!;R1)(x) ;thus from (2.20) and De�nition 2.11,jx� y!j = H0(xN+1)� C02R1 (xN+1 � yN+1)2 +R1 �H0(yN+1) :Therefore, dist�x;�(Y!; R1)� = jx� y!j � r1 == H0(xN+1)� C02R1 (xN+1 � yN+1)2 +R1 �H0(yN+1)� r1 ;whih implies that � � HyN+1;R(xN+1) + C02 � 1R + 1R1� :Hene,(A.69) gS(Y!;R1)(x) = xN+1 � gyN+1;R�� � C02 � 1R + 1R1�� :



A.2. PROOF OF LEMMA 4.2 103We onsider �y 2 � on the half-line from y! towards z. Note that, by onstrution,y!, z, x and �y lie on the same half-line. Let also ~y 2 � be the point realizing d�(x).By means of (A.64), we have that(A.70) jz � �yj ; jz � ~yj � 3C0R :We laim that this implies that(A.71) � � d�(x) + 3C0R :To prove this, we distingush three ases, aording to the mutual position of x, zand �y. Namely, if x is outside � and outside �(Y!; R1), we have that� � d�(x) = jx� zj � jd�(x)j �� jx� zj � jx� �yj == j�y � zj ;and so (A.71) follows from (A.70) in this ase; if, on the other hand, x is inside �but outside �(Y! ; R1), � � d�(x) = jx� zj+ jd�(x)j == jx� zj+ jx� ~yj �� j~y � zj ;whih gives (A.71) via (A.70) in this ase. The ase in whih x is outside � andinside �(Y! ; R1) does not hold: indeed, if x is inside �(Y! ; R1), sine, due to (A.64),z is inside �, then x lies, in this ase, on the segment between y! and a point inside� (that is, z itself): thus, sine � is star-shaped with respet to y!, x is inside �.Let us �nally onsider the ase in whih x is inside �(Y!; R1) and inside �. In thisase, note that ~y annot lie on �(Y! ; R!) (that is, ~y 62 �3), otherwise ~y would beon the radius from y! to z and so~y = y! + r!r1 (z � y!)whih gives that j~y0j = r!r1 jz0j � r!r1 �q > !q ;if R is large, thanks to (A.56), in ontrast with the fat that ~y 2 �3.Also, if x is inside �(Y!; R1) and inside � and ~y lies on �1, then note that it mustbe outside �(Y!; R1), thanks to (A.63) and (A.56). Thus, we take ~z 2 �(Y! ; R1)on the segment joining x and ~y and we de�ne~w := y! + r!r1 (~z � y!) :Note that ~w 2 �(Y! ; R!) and therefore, by (A.63),j ~w � ~yj � onst (1� !) q2r :



104 A. PROOF OF THE MEASURE THEORETIC RESULTSFurthermore, by (A.56),j ~w � ~zj = ���r!r1 (~z � y!)� (~z � y!)��� == ���r!r1 � 1��� r1 == jr! � r1j � 5C0R :Therefore, � � d�(x) = �jx� zj+ jd�(x)j �� �jx� ~zj � jx� ~yj == j~y � ~zj �� j~y � ~wj � 5C0R �� onst (1� !) q2R � 5C0R ;whih proves (A.71) also in this ase, by taking q onveniently large (possibly independene of 1=(1� !) and C0).Then, to end the proof of (A.71), we only need to onsider the ase in whih xis inside �(Y!; R1) and inside � and ~y lies on �2. For this, let us de�ne~x = x� 6C0R x� y!jx� y!jand observe that r1 sin�\(z � y!; eN)� = jz0j � �q ;thus, realling (A.56),\(~x� y!; eN) = \(x� y!; eN ) == \(z � y!; eN) �� �qr1 � onst q2r2 �� �qr! � onst q2r2 :Also, by the minimality property of ~y, x � ~y is orthogonal to � at ~y and so, byLemma B.10, we have that y!, x, ~x, z and ~y lie on the same plane. Let us denotethis plane by �0. Let also �0 be the point on the ommon boundary of �2 and �3on the side where ~y lies and let ` be the straight line lying in �0 and tangent to �at �0. By onstrution, j�00j = !q, thusr! sin�\(�0 � y!; eN )� = !qand thene\(~x� y!; �0 � y!) � (� � !)qr! � onst q2r2 = (1� �) (1� !) qr! � onst q2r2 ;from whih \(~x� y!; �0 � y!) � onst (1� !) qr :



A.2. PROOF OF LEMMA 4.2 105We now estimate min�2` j� � ~xj :For this, note that the point �� 2 ` attaining suh minimum must be so that ~x� ��is orthogonal to ` at �� and so the points �0, ��, ~x and y! form a right trapezoidlying on the plane �0. Elementary trigonometry on this right trapezoid gives thatmin�2` j� � ~xj = j�� � ~xj == j�0 � y!j � j~x� y!j os�\(x� y!; eN )� == r! � j~x� y!j os�\(x� y!; eN )� �� r! � j~x� y!j �1� onst (1� !)2 q2r2 � �� r! � jx� y!j �1� onst (1� !)2 q2r2 �� 7C0R :With this estimate, we now omplete the proof of (A.71) in the ase in whih xis inside �(Y!; R1) and inside � and ~y lies on �2 by arguing as follows. Sine~x 2 �(Y!; R!) thanks to (A.56), we an take � 2 ` on the segment joining ~y to ~x.Then, � � d�(x) = �jx� zj+ jx� ~yj == jx� y!j � r1 + jx� ~yj �� jx� y!j � r1 + j~x� ~yj � 6C0R �� jx� y!j � r1 + j~x� �j � 6C0R �� jx� y!j � r! + j~x� �j � 11C0R �� jx� y!j onst (1� !)2q2r2 � 18C0R :Sine x 2 [�l; l℄N , jx� y!j � onst r, therefore the above estimate yields the proofof (A.71) in the ase in whih x is inside �(Y!; R1) and inside � and ~y lies on �2.This ends the proof of (A.71).



106 A. PROOF OF THE MEASURE THEORETIC RESULTSThen, (A.71), the fat that R1 � R=4, (2.39) and (A.69) imply thatgS(Y!;R1)(x) �� gyN+1;R�d�(x) + 3C0R � C02 � 1R + 1R1�� == gyN+1;R�d�(x) +HyN+1;R(0) + C02Ry2N+1 ++3C0R � C02 � 1R + 1R1�� �� gyN+1;R�d�(x) +HyN+1;R(0) + C02Ry2N+1 + 3C0R � 5C02R � >> gyN+1;R �d�(x) +HyN+1;R(0)� == g	(x) :This ends the proof of (A.68).We now observe thatS(Y!; R1) \ fjx0j � �Cqgis stritly above 	 (in the eN+1-diretion).(A.72)To prove this, take x with jx0j � �Cq and let z 2 �(Y! ; R1) be realizing d�(Y!;R1)(x).Then, by a triangle similarity argument, one sees thatjz0j = r1 jx0jjx� y!j �� onst r1 �C ql +R �� onst �Cq � �q ;if �C is hosen appropriately large. Then, (A.72) follows from (A.68).We now onsider the domainfjx0j � �Cqg � fjxN j � l=2gand we slide 	 from �1 in the eN diretion, until we touh u for the �rst time insuh domain (this must happen sine ju(x0)j < 1=2): say, for �xing the notations,that for some � 2 R, 	��eN touhes for the �rst time the graph of u by above ata point Z. Notie that, by the hypotheses of Lemma A.1 and (A.38), we have that(A.73) u(x0) = gS(Y;R)(x0) = g	(x0) ;therefore we have that � � 0. More preisely, it holds that(A.74) � > 0 :Indeed, if, by ontradition, � = 0, (A.73) says that 	 touhes the graph of ufrom above at x0 (whih is, by onstrution, an interior point): thene, by (A.53),d�(x0) must be realized on �1 [ �3. But, by onstrution, d�(x0) is realized atTY;R(x0) 2 �2: this ontradition proves (A.74).Note now that, if x is in the domain of 	, then, by (2.16), we have thatd�(x) � HyN+1;R(1)�HyN+1;R(0) � onst (1 + logR) � onst (1 + log l) :



A.2. PROOF OF LEMMA 4.2 107So, if xN � 1, the fat that � is below fxN = 1g implies thatd�(x) � xN � 1and so xN � onst (1 + log l) :This says that the domain of 	 is below the hyperplanenxN = onst (1 + log l)owith respet to the eN -diretion. Sine � � 0, also the domain of 	��eN is belowthe hyperplane(A.75) nxN = onst (1 + log l)o :What is more, sine jzN j � l, by (A.21), we gather that(A.76) zN � �l � �R � yN ;provided that  in (A.21) is small enough. Thene, from (A.74) and (A.76),jz + �eN � yj2 = jz � yj2 + �2 + 2� (zN � yN) >> jz � yj2 ;that is(A.77) jz � yj < jz + �eN � yj :We now prove that(A.78) jz0j < �Cq :Indeed, if (A.78) were false, then (A.54) and (A.77) would yield thatu(z) = g	(z + �eN ) == gS(Y;R)(z + �eN ) == gyN+1;R�jz + �eN � yj �R+HyN+1;R(0)� >> gyN+1;R�jz � yj �R+HyN+1;R(0)� == gS(Y;R)(z) �� u(z) :This ontradition proves (A.78).By means of (A.78), (A.75) and (A.28), we have that z lies in the interior offjx0j � �Cqg � fjxN j � l=2g.We now laim that(A.79) jzN+1j < 1=2 and d�(z + �eN ) is realized on �3.Indeed, sine 	 touhes by above u+ �eN at z := z + �eN , (A.53) implies that1=2 > jzN+1j = jzN+1j



108 A. PROOF OF THE MEASURE THEORETIC RESULTSand that d�(z) is realized on �1 [ �3. To prove (A.79), we thus have to show thatd�(z) is not realized on �1. If, by ontradition, d�(z) were realized on �1, from(A.38) and (A.77), we would have thatu(z) = g	(z + �eN ) == gS(Y;R)(z + �eN ) == gyN+1;R�jz + �eN � yj �R+HyN+1;R(0)� >> gyN+1;R�jz � yj �R+HyN+1;R(0)� == gS(Y;R)(z) �� u(z) :This ontradition ompletes the proof of (A.79).We now laim that(A.80) jY � Y!j � � � 0 :In order to get this, �rst observe that if � � 5l, then (A.80) follows by notiingthat jY � Y!j � onst r and by taking l=R suitably small. Therefore, we restritourselves to the proof of (A.80) under the additional assumption that(A.81) � � 5l :For this sope, note that (A.81) implies that(z + �eN)N � � � l � 4l ;hene, realling (A.79),(A.82) d�3(z + �eN ) = d�(z + �eN ) > 0 :Let us observe now that, by (A.79),gyN+1;R�H0(yN+1) + jz � yj �R� == gS(Y;R)(z) �� u(z) == g	(z + �eN ) == gyN+1;R�H0(yN+1) + d�(z + �eN )� == gyN+1;R�H0(yN+1) + d�3(z + �eN )� ;thene(A.83) jz � yj �R � d�3(z + �eN ) :If we now take any x 2 �3, we have that xN � l and thus(z + �eN � x)N � � � 2l :This and (A.82) imply that d�3(z + �eN ) � � � 2l :



A.2. PROOF OF LEMMA 4.2 109For this reason, realling (A.83), we dedue that� � 2l + d�3(z + �eN ) �� 2l + jz � yj �R == 2l + dist(z; �Br(y)) + r �R �� 2l + jz � Ty;Rx0j+ r �R �� 5l :This ends the proof of (A.80), by taking l=R suitably small.Let us now onsider, for t � 0, the surfae S(Y + teN ; R1). For t = 0, thissurfae is above S(Y;R) sine, thanks to (A.55) and (2.14),gS(Y;R)(x) = gyN+1;R�H0(yN+1) + jx� yj �R� �� gyN+1;R�H0(yN+1) + jx� yj �R1� �� gyN+1;R1�H0(yN+1) + jx� yj �R1� == gS(Y;R1)(x) :Sine S(Y;R) is above the graph of u by our hypotheses in fjx0j � �Cqg � fjxN j �l=2g, we thus dedue that S(Y + teN ; R1) is, for t = 0, above the graph of u infjx0j � �Cqg � fjxN j � l=2g. Hene, we may inrease t till we touh the graph ofu in fjx0j � �Cqg � fjxN j � l=2g. In order to �x the notation, say this happen fort = t1 � 0 and let X1 be the above mentioned touhing point. Set alsoY1 := Y + t1eN :Let also(A.84) ~r1 := R1 +HyN+1;R1(�1=2)�H0(yN+1) ;so that ngS(Y1;R1) = �12o = �B~r1(y1) :Then, sine u(x0) > �1=2 by assumption, the �rst touhing property of X1 impliesthat x0 is above �B~r1(y1). In partiular, realling (A.26), siney1 + (x00; 0) +q~r21 � jx00j2eN 2 �B~r1(y1) ;we have, using (A.24), thaty1;N +q~r21 � 4q2 � y1;N +q~r21 � jx00j2 �� x0;N �� onst :(A.85)By onstrution, the domain of S(Y1; R1) lies below the hyperplanenxN = y1;N +R1 �H0(yN+1) +HyN+1;R1(1)o ;thus, (A.84), (A.85) and (2.16) imply that the domain of S(Y1; R1) lies below thehyperplane nxN = onst (1 + logR1)o and therefore below the hyperplane(A.86) nxN = onst (1 + log l)o :



110 A. PROOF OF THE MEASURE THEORETIC RESULTSNotie also that, when Y + teN = Y! � �eN , (A.66) and (A.79) imply thatgS(Y+teN ;R1)(z) = gS(Y!��eN ;R1)(z) == gS(Y!;R1)(z + �eN ) �� g	(z + �eN ) == u(z) :This and (A.80) say that(A.87) 0 � t1 � jY � Y!j � � :We also have that(A.88) X1 2 fjx0j < �Cqg :Indeed, if (A.88) were false, then jx0℄j � �Cq, where(A.89) x℄ := x1 + jY! � Y1j eN :Thus, in the light of (A.72), we would get thatgS(Y!;R1)(x℄) > g	(x℄) :Therefore, u(x1) = gS(Y1;R1)(x1) == gS(Y!�jY!�Y1jeN ;R1)(x1) == gS(Y!��̂eN ;R1)(x1) == gS(Y!;R1)(x1 + �̂eN) =(A.90) = gS(Y!;R1)(x℄) >> g	(x℄) == g	(x1 + �̂eN ) �� u(x1) :This ontradition proves (A.88).Notie also that x1;N > �l=4, otherwise, from (A.88), (A.27), (A.55) andLemma 2.4, we would getsR1 > sR = u(x1) = gS(Y1;R1)(x1) � sR1 ;whih is, of ourse, a ontradition.Therefore, realling also (A.88) and (A.86), we have that x1 is in the interiorof the domain fjx0j � �Cqg � fjxN j � l=2g, thene, by means of Proposition 2.13,ju(x1)j < 1=2.We now laim that(A.91) TY1;R1(x1) 2 fjx0j < �qg \ fxN < onst q2=Rg ;where T�;� was introdued on page 88 and � in (A.33). To prove (A.91), �rst observethat, by (A.87), y1 is below y!��eN in the eN -diretion, and so �(Y1; R1) is below�(Y!��eN ; R1) (and, a fortiori, below �(Y! ; R1)) in the eN -diretion. Thene, by(A.65),(A.92) TY1;R1(x1) 2 �(Y1; R1) � fxN < onst q2=Rg :



A.2. PROOF OF LEMMA 4.2 111This gives a �rst step towards the proof of (A.91); we now show that(A.93) TY1;R1(x1) 2 fjx0j < �qg :Assume, by ontradition, that (A.93) is false. Then, by translating in the eN -diretion, we have that(A.94) TY!;R1(x℄) 2 fjx0j � �qg ;where x℄ is the one de�ned in (A.89). Let now�̂ := jY � Y!j � t1 == jY! � Y1j :Then, x℄ = x1 + �̂eN and, in the light of (A.87), �̂ � �. The latter inequality andthe �rst touhing property of � imply that 	� �̂eN is above the graph of u, thatis(A.95) g	(x+ �̂eN ) � u(x) ;for any x in the domains of de�nition of the above funtions. With this information,we now derive the desired ontradition. Indeed, from (A.94) and (A.68), we getthat gS(Y!;R1)(x℄) > g	(x℄) :Thene, using also the touhing property of X1 and (A.95), repeating the argumentin (A.90) verbatim, one obtains the ontradition whih ends the proof of (A.93).Thus, (A.93) and (A.92) end the proof of (A.91).The fat that R1 � R0=4, (A.88) and (A.91) end the proof of (A.30) (in asek = 0, the other steps being analogous) and, therefore, the proof of (A.29).With (A.29) in hand, we now omplete the proof of Lemma A.1 (and this willstill take some e�ort, the proof ending on page 123). For this, let us make someestimates on the point x� found in (A.29).Sine x� is a touhing point between the barrier and u, we have that ju(x�)j �1=2 thanks to Corollary 2.14 and, therefore,jru(x�)j = jrgS(Y�;R�)(x�)j 6= 0 :We now show that(A.96) ���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� � onstR :Note that (A.96) is obviously ful�lled if TY�;R�x� = x�, sine, in this aseH0(u(x�)) = H0(geS(Y�;R�)(x�)) = H0(geS(Y�;R�)(TY�;R�x�)) = H0(0) = 0 :Hene, we fous on the proof of (A.96) under the assumption TY�;R�x� 6= x�. Forthis sope, �rst notie that x� � y� is, by onstrution, parallel to x� � TY�;R�x�,that is(A.97) x� � y�jx� � y�j = � x� � TY�;R�x�jx� � TY�;R�x�j ;where the sign +=� takes into aount the ase in whih x� is outside/inside�(Y�; R�). Also, from (A.19),(A.98) ���x� � TY�;R�x���� � onst :



112 A. PROOF OF THE MEASURE THEORETIC RESULTSIn the light of (2.57) and (A.97),(A.99) rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j = x� � y�jx� � y�j = � x� � TY�;R�x�jx� � TY�;R�x�j :Let us now de�ne W (x) := H0(geS(Y�;R�)(x)). By the touhing property of x�, thefat that TY�;R�x� 2 �(Y�; R�) and (A.99), we have that���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� == ���TY�;R�x� � x� + rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j W (x�)��� == ��� rgeS(Y�;R�)(x�)jrgeS(Y�;R�)(x�)j h� jTY�;R�x� � x�j+W (x�)i��� == ���� jTY�;R�x� � x�j+W (x�)��� == ���� jTY�;R�x� � x�j+W (x�)�W (TY�;R�x�)��� :Therefore, a seond order Taylor expansion of W , (2.54), (A.98), (A.99) and (2.53)give ���TY�;R�x� � x� + ru(x�)jru(x�)j H0(u(x�))��� �� ���� jTY�;R�x� � x�j ��rW (x�)(TY�;R�x� � x�)���++onst jD2W j jTY�;R�x� � x�j2 �� ���� jTY�;R�x� � x�j ��H 00(geS(Y�;R�)(x�))rgeS(Y�;R�)(x�) � (TY�;R�x� � x�)���++onstR �� ��� TY�;R�x� � x�jTY�;R�x� � x�j hTY�;R�x� � x� ��H 00(geS(Y�;R�)(x�)) jrgeS(Y�;R�)(x�)j � (TY�;R�x� � x�)i���++onstR == ���TY�;R�x� � x� ��H 00(geS(Y�;R�)(x�)) jrgeS(Y�;R�)(x�)j � (TY�;R�x� � x�)���++onstR �� ���TY�;R�x� � x� � (TY�;R�x� � x�)���+ onstR ;that is (A.96).



A.2. PROOF OF LEMMA 4.2 113We now show that(A.100) \� ru(x�)jru(x�)j ; eN� � onst qR :For proving this, let us note thatjTY�;R�x� � y�j = r(Y�; R�) == R� �H0(yN+1)� C02R y2N+1 �� onstR� ;(A.101)hene, sin [\(TY�;R�x� � y�; eN )℄ == j(TY�;R�x� � y�)0jjTY�;R�x� � y�j == j(TY�;R�x�)0jjTY�;R�x� � y�j �� onst qR :(A.102)Also, in analogy with (A.99), we have thatru(x�)jru(x�)j = geS(Y�;R�)(x�)jgeS(Y�;R�)(x�)j = TY�;R�x� � y�jTY�;R�x� � y�j ;whih, together with (A.102), proves (A.100).We now observe that, thanks to (A.96) and (A.100), we havex� � eN �� (TY�;R�x�) � eN + ru(x�)jru(x�)j � eN H0(u(x�)) + onstR �� (TY�;R�x�) � eN +H0(u(x�)) + onst q2R2 + onstR :(A.103)Let us now onsider the set�� := n�Y = (�y0; 0; �yN+1) 2 RN+1 s:t:(A.104) j(�y � TY�;R�x�)0j �  q ; j�yN+1j � 1=4oand let(A.105) �R := Rwith  > 0 suitably small. Realling the de�nition of r(�; �) given in (A.18), we alsodenote �r := r( �Y ; �R).For any �Y 2 ��, let us slide S( �Y ; �R) from �1 in the eN diretion, until ittouhes the graph of u by above for the �rst time, and let �Y denote the enterof the orresponding barrier: more expliitly, �Y = �Y � teN , for some t 2 R andS( �Y ; �R) touhes the graph of u from above for the �rst time oming from �1 inthe eN diretion. Say, also, to �x notations, that suh touhing ours at some



114 A. PROOF OF THE MEASURE THEORETIC RESULTSpoint �X . We will denote by �� the set olleting all the points �X whih lie in theinterior of the domain of u, when �Y varies in ��.We know from (A.29) that(A.106) �TY�;R�x��N � C℄ q2Rfor some suitably large onstant C℄. We now laim that, if �Y 2 ��, then(A.107) ��TY�;R�x��0; 2C℄ q2R� is outside �( �Y ; �R).The proof of (A.107) (whih is pretty long and will be ompleted only on page 117)is by ontradition. If (A.107) were false, Lemma B.7 would imply that�( �Y ; �R) \ fj(x� TY�;R�x�)0j � qg \ fxN � �yNgis above the hyperplane fxN = 3C℄q2=(2R)g,(A.108)provided that  is small enough7. We now show thatd�( �Y ; �R)(x�) �� H0(u(x�)) + onst qR � C℄ q22R :(A.109)To prove this (and some e�ort will be needed), we distinguish two ases: either x�is in the exterior or it is in the interior of �( �Y ; �R).Let us �rst assume that x� is not in the interior of �( �Y ; �R). We �rst point outthat(A.110) x� � eN � 3C℄q22R :For this, note that, by (A.98),����x� � TY�;R�x��0��� � qif q is large enough. This, (A.108) and the assumption that x� is not in the interiorof �( �Y ; �R) would imply that either (A.110) holds or x� is below �( �Y ; �R). Thus, toomplete the proof of (A.110), we show now that the latter possibility annot hold.Indeed, note that the �rst touhing property of S( �Y ; �R) and Lemma 2.25 implythat �y � eN � �x � eNwhile (A.19) says that j�x� �yj � onst �R :Furthermore, in analogy with (A.100), we have that(A.111) \��x� �y; eN� � onst qR7The reader will indeed notie that, due to (A.104),�y + reN 2 �(�Y ; �R) \ fj(x� TY�;R�x�)0j � qg \ fxN � yNg 6= ; :



A.2. PROOF OF LEMMA 4.2 115Then, the above estimates yield that(x� � �y) � eN � (�x � �y) � eN � onst l == ��(�x� �y) � eN ��� onst l �� 12 ���x� �y��� onst l �� onst �R� onst l ;(A.112)thus showing that (x� � �y) � eN > 0 and thus that x� is not below �( �Y ; �R). Thisends the proof of (A.110).With this, we now go bak to the proof of (A.109) when x� is not in the interiorof �( �Y ; �R). By means of (A.108), we have that the point �(TY�;R�x�)0; 3C℄q2=(2R)�lies inside �( �Y ; �R), thusd�(�Y ; �R)(x�) � ����x� � ��TY�;R�x��0; 3C℄q22R ����� ;and therefore, realling (A.110),d�(�Y ; �R)(x�) � j(x� � TY�;R�x�)0j+ x� � eN � 3C℄ q22R :We reall that, by (A.100),\ ((x� � TY�;R�); eN) = \� ru(x�)jru(x�)j ; eN� � onst qR ;and so, by means of (A.98), we have that(A.113) ����(TY�;R�x�)� x��0��� � onst qR :Therefore, realling (A.98) and taking into aount (A.103),d�(�Y ; �R)(x�) � onst q2R + TY�;R�x� � eN +H0(u(x�))� 3C℄ q22R :Thene, if x� is not in the interior of �( �Y ; �R), (A.109) follows by (A.106) and bytaking C℄ suitably large.If otherwise x� is in the interior of �( �Y ; �R), that is, if(A.114) d�(�Y ; �R)(x�) < 0 ;in order to prove (A.109), we argue as follows. We �rst note that, in this ase,u(x�) � geS( �Y ; �R)(x�) < 0and onsequently geS(Y�;R�)(x�) = u(x�) < 0 ;so that x� is also in the interior of �(Y�; R�). Therefore, realling (A.100), it followsthat(A.115) x� � eN < (TY�;R�x�) � eN :We now dedue that, when x� is in the interior of �( �Y ; �R), one has that(A.116) �d�(�Y ; �R)(x�) � min� q4 ; 3C℄ q22R � x� � eN � :



116 A. PROOF OF THE MEASURE THEORETIC RESULTSTo prove (A.116), take x 2 �(�Y ; �R). Obviously, we may and do assume that(A.117) jxj � onst l ;otherwise jx� � xj � onst land so (A.116) trivially follows from (A.114). There are now two possibilities:either x is above the hyperplane fxN = 3C℄q2=(2R)g or the onverse. If x is abovethe hyperplane fxN = 3C℄q2=(2R)g, thenjx� x�j � xN � x� � eN � 3C℄q22R � x� � eN ;whih, together with (A.114), proves (A.116) in ase x is above the hyperplanefxN = 3C℄q2=(2R)g. If, on the other hand, x is not above the hyperplane fxN =3C℄q2=(2R)g, by (A.108), we have that either j(x � TY�;R�x�)0j � q or xN ��yN . However, the latter annot hold, sine, by Lemma 2.16, (A.117), (A.111)and (A.112), we have thatxN � �yN = j�xN � �yN j+ xN � �xN �� 12 j�x� �yj+ xN � �xN �� onstR� onst l > 0 :Therefore, from these onsiderations, we have that if x is not above the hyperplanefxN = 3C℄q2=(2R)g, then j(x�TY�;R�x�)0j � q. For this reason, realling (A.113),��(x� x�)0�� � ����x� (TY�;R�x�)�0���� ����(TY�;R�x�)� x��0��� �� q � onst qR � q2 ;whih, together with (A.115) and (A.106), yields the proof of (A.116) also when xis not above the hyperplane fxN = 3C℄q2=(2R)g. This ends the proof of (A.116).We now exploit (A.103), (A.106) and (A.116) to get that�d�(�Y ; �R)(x�) � �H0(u(x�))� onst qR + C℄ q22R :This ends the proof of (A.109) also in the ase in whih x� is in the interior of�( �Y ; �R).Having ompleted the proof of (A.109), we now dedue the ontradition thatwill �nish the proof of (A.107). To this end, note that, by (A.19), letting s� :=u(x�), we have that the signed distane between the s�-level set of gS(�Y; �R) and�( �Y ; �R) is bigger than H0(u(x�))� onstR :Thus, from (A.109), by taking q and C℄ suitably large, we have thatd�( �Y ; �R)(x) > d�( �Y ; �R)(x�) ;for any x so that gS(�Y; �R)(x) = s�. Therefore, x� is stritly in the interior of thes�-level set of gS(�Y ; �R), that isgS(�Y; �R)(x�) < s� = u(x�) :



A.2. PROOF OF LEMMA 4.2 117This ontradits the fat that gS(�Y; �R) touhes u by above and, thus, yields the proofof (A.107).In the light of (A.107), some elementary trigonometry implies that y + �reN isbelow the hyperplane fxN = 4C℄q2=Rg and therefore(A.118) �( �Y ; �R) is below fxN = 4C℄q2=Rg.Let us now �x a small onstant � > 0. If q=R is assumed to be small enough(possibly in dependene of �=C℄), then (A.107) and Corollary B.9 imply that(A.119) �( �Y ; �R) \ fjx0j � �qg is below fxN = 0g.We now show that the above geometri onsiderations imply thatoutside fjx0j � �qg � fxN > 0g,�( �Y ; �R) is at distane greater than q2=(4R)in the interior of �(Y;R).(A.120)For the proof of (A.120), �rst notie that(A.121) �yN � �r � �onst �r � yNif  in (A.105) is hosen suitably small. Let us now onsider the surfae�t( �Y ; �R) := �( �Y ; �R) + teNwith t � 0. By (A.121), it follows that, given x 2 �(�Y ; �R), then xN � yN and soj(x+ teN )� yj � jx� yj :Hene,(A.122) d�(Y;R)(x) � d�(Y;R)(x+ teN) :Realling (A.119), we now selet the �rst t � 0 for whih(A.123) S := �t( �Y ; �R) \ fjx0j = �qg \ fxN = 0g 6= ; :We also denote by S� the portion of �t( �Y ; �R) whih is below fxN = 0g (withrespet to the eN -diretion), that is the portion of �t( �Y ; �R) whih is below S. Thehoie in (A.123) implies that(A.124) �yN + t+ �r � 0and, by (A.104) and (A.29), thatj(�y + teN )0j = j�y0j �� ��(�y � TY�;R�x�)0��+ ��(TY�;R�x�)0�� �� q + qC� =(A.125) = ~�q ;where(A.126) ~� := + 1C�is a positive onstant, whih is small if  and 1=C� are small.



118 A. PROOF OF THE MEASURE THEORETIC RESULTSWe now show that, with this onstrution and taking ~� small enough, we havethat �y + teN is above the one C� de�ned asC� := (x 2 RN s:t: jx0j = �qpr2 � q2 jxN +pr2 � q2j) :
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The proof of (A.120)Indeed, by (A.124) and (A.125),�qpr2 � q2 ��yN + t+pr2 � q2� �� �qpr2 � q2 �pr2 � q2 � �r� == �q �1� �rpr2 � q2� �� �q2> ~�q � ��(�y + teN)0��if q=R, �r=r,  and 1=C� (and thus ~�) are small enough (reall (A.105) and (A.126)).This fat, (A.123) and some elementary geometri onsiderations yield that ifx 2 S�, and x℄ 2 S, then(A.127) ��d�(Y;R)(x)�� � ��d�(Y;R)(x℄)�� :



A.2. PROOF OF LEMMA 4.2 119By onstrution, sine � < 1, if x℄ 2 S, then x℄ lies inside �(Y;R) (see the �gureon page 89); thus,(A.128) d�(Y;R)(x℄) < 0 :Also, from (A.123) and the fat that �r < r, if x 2 S�, then x is also inside �(Y;R)and therefore(A.129) d�(Y;R)(x) < 0 :Thus, from (A.127), (A.128) and (A.129),(A.130) d�(Y;R)(x) � d�(Y;R)(x℄) ;for x 2 S� and x℄ 2 S.Also, sine y0 = 0 by its de�nition, we gather that, if x℄ 2 S, thenjx℄ � yj2 = jyN j2 + jx0℄j2 = r2 � q2 + 2�q2and therefore(A.131) d�(Y;R)(x℄) = jx℄ � yj � r =pr2 � q2 + 2�q2 � r :Thus, taking x 2 S� and x℄ 2 S, making use of (A.130) and (A.131), and reallingalso (A.35), we have that�d�(Y;R)(x) �� d�(Y;R)(x℄) ==r � rr1� q2r2 + 2�q2r2 ��r � r �1� q22r2 + 2�q22r2 + �� q2r2 + 2�q2r2 �2� ��q22r�1� 2� � onst q2R2� >> q24R ;(A.132)
provided that � and q=R are suÆiently small.To omplete the proof of (A.120), take now x 2 �(�Y ; �R) outside fjx0j � �qg�fxN > 0g and let x := x + teN . Then, x 2 S� by the hoie in (A.123), thus,from (A.122) and (A.132), we gather that�d�(Y;R)(x) � �d�(Y;R)(x) > q24R :This ends the proof of (A.120).Let us now prove thatthe s-level surfae of gS(Y;R) is at distanegreater than HyN+1; �R(s) from �(Y;R).(A.133)In order to prove this, take any x̂ in the s-level surfae of gS(Y;R), that is assumethat gyN+1;R(H0(yN+1) + jx̂� yj �R) = s :Let also �x 2 �(Y;R), that isgyN+1;R(H0(yN+1) + j�x� yj �R) = 0 ;



120 A. PROOF OF THE MEASURE THEORETIC RESULTSand assume that �x lies on the half-line from y towards x̂. Then,d�(Y;R)(x̂) = jx̂� yj � j�x� yj == (H0(yN+1) + jx̂� yj �R) � (H0(yN+1) + j�x� yj �R) == HyN+1;R(s)�HyN+1;R(0) :Hene, by the fat that �R � R, (2.14) and (2.39), we get thatd�(Y;R)(x̂) � HyN+1; �R(s)�HyN+1;R(0) == HyN+1; �R(s) + C02R y2N+1 �� HyN+1; �R(s) ;and this ends the proof of (A.133).We now show thatif jsj � 1=2, the s-level surfae of gS(�Y ; �R) is at distaneless than HyN+1; �R(s) + onstC0=(2R) from �( �Y ; �R).(A.134)Indeed, we argue as in the proof of (A.133), by taking now x̂ in the s-level surfaeof gS(�Y ; �R) and �x 2 �(�Y ; �R), with �x lying on the half-line from y towards x̂, and byarguing as above, we have thatd�( �Y ; �R)(x̂) = jx̂� �yj � j�x� �yj == (H0(yN+1) + jx̂� �yj � �R) � (H0(yN+1) + j�x� �yj � �R) == H�yN+1; �R(s)�H�yN+1; �R(0) == H�yN+1; �R(s) + C02 �R �y2N+1 �� H�yN+1; �R(s) + onst C02R :By the assumption that jsj � 1=2 and (2.39), we may now estimate the quantityH�yN+1; �R(s) here below with HyN+1; �R(s)+C0=R, and this ends the proof of (A.134).We now dedue from the above estimates thatat any x for whihjgS(�Y ; �R)(x)j � 1=2 andd�( �Y ; �R)(x) � d�(Y;R)(x) � onstC0=R ;we have thatgS(�Y; �R)(x) > gS(Y;R)(x) :(A.135)To prove this, take x as in (A.135) here above and let�s := gS(�Y; �R)(x) 2 [�1=2; 1=2℄s := gS(Y;R)(x) :(A.136)Then, by (A.133) and (A.134),d�(�Y ; �R)(x) < HyN+1;R(�s) + onstC0=R andd�(Y;R)(x) > HyN+1;R(s)� onstC0=R ;(A.137)



A.2. PROOF OF LEMMA 4.2 121hene, for the assumption in (A.135),HyN+1;R(s) < HyN+1;R(�s) ;whih proves (A.135) via the monotoniity of HyN+1;R and (A.136).Next, notie that, thanks to (A.120) and (A.135), we have thatS( �Y ; �R) \ fjx0j > �qgis stritly above S(Y;R),(A.138)provided that q is large enough. Hene, sine u � gS(Y;R), (A.138) implies thatS( �Y ; �R) \ fjx0j > �qgis stritly above the graph of u.(A.139)This also implies that �x is an interior ontat point.We now apply the previous onsiderations to dedue some properties of theontat points �X and of the ontat point set �� (reall the notation on page 114).First of all,(A.140) ju(�x)j < 1=2 ;thanks to Corollary 2.14. This and (A.139) imply that(A.141) j�xj � �q ;while (A.118) yields(A.142) T �Y ; �R�x 2 �(�Y ; �R) � fxN < 4C℄q2=Rg :Also, from (A.19) and (A.140), we get that���j�x� �yj � r��� � onst ;and, onsequently, j�x� �yj � r=2, if r is large. From this irumstane, realling thetouhing properties of �x, (2.57), and (A.141), we gather thatsin�\� ru(�x)jru(�x)j ; eN�� = sin \� rgS(�Y ; �R)(�x)jrgS(�Y ; �R)(�x)j ; eN�! == sin�\� �x� �yj�x� �yj ; eN�� == j�x0 � �y0jj�x� �yj �� onst qr :Thene,(A.143) \� ru(�x)jru(�x)j ; eN� � onst qR :Analogously, if x0 is the point in the statement of Lemma A.1, one sees that(A.144) \� ru(x0)jru(x0)j ; eN� � onst qR :



122 A. PROOF OF THE MEASURE THEORETIC RESULTSIn partiular, from (A.143) and (A.144) it follows that(A.145) \� ru(�x)jru(�x)j ; ru(x0)jru(x0)j� � onst qR :In addition, from Proposition 3.14,LN��N (��)� � onstLN (��) � onst(q)N�1 :(A.146)What is more, arguing as in the proof of (A.96), one an see that���T �Y ; �R�x� �x+ ru(�x)jru(�x)j H0(u(�x))��� � onstR and���TY;Rx0 � x0 + ru(x0)jru(x0)j H0(u(x0))��� � onstR :(A.147)Hene, from (A.147), (A.142) and the fat that TY;Rx0 � eN = 0 (reall theassumptions in Lemma A.1), we have that(�x� x0) � eN � �T �Y ; �R�x� TY;Rx0++ ru(�x)jru(�x)j H0(u(�x))� ru(x0)jru(x0)j H0(u(x0))� � eN++ onstR �� � ru(�x)jru(�x)j H0(u(�x))� ru(x0)jru(x0)j H0(u(x0))� � eN++ 4C℄ q2R + onstR ;and so, thanks to (A.140), (A.143) and (A.144),(�x� x0) � eN �� H0(u(�x))�H0(u(x0)) + onst q2R2 + 4C℄ q2R + onstR �� H0(u(�x))�H0(u(x0)) + 5C℄ q2R ;(A.148)by assuming C℄, q and R=q suitably large.Moreover, in the light of (A.26), (A.141) and (A.148), and realling that ju(�x)j <1=2 and ju(x0)j < 1=2, we have(A.149) j�x� x0j � j(�x � x0)0j+ j(�x� x0)N j � (1 + 2�)q + j(�x� x0)N j � �Cq ;where �C is a onveniently large onstant as in the statement of the Lemma. Bymeans of (A.148) and (A.144), we onlude that(A.150) (�x� x0) � ru(x0)jru(x0)j � H0(u(�x))�H0(u(x0)) + 6C℄ q2R :Let us now onsider the set � de�ned in the statement of Lemma A.1 and take �onveniently small: then, thanks to (A.141), (A.140), (A.149), (A.145) and (A.150),we have that � � �� ;the proof of (A.22){(A.23) is thus ended by means of (A.146).



A.2. PROOF OF LEMMA 4.2 123To �nish the proof of Lemma A.1, we need now to hek the Lipshitz graphproperty of �s := �� \ fxN+1 = sg, for any jsj < 1=2. The graph property is astraightforward onsequene of the �rst ourrene touhing point property, henewe fous on the Lipshitz estimate. For this, take �X; �X 2 �s; then,s = u(�x) = gS(�Y; �R)(�x) = gS(�Y; �R)(�x) = u(�x) ;for suitable �Y ; �Y 2 RN+1 , so that �N �Y ; �N �Y 2 ��. We will prove that(A.151) j�xN � �xN j � onst qR j(�x� �x)0j ;whih implies the desired Lipshitz estimate (with onstant onst q=R < 1). Withno loss of generality, we may and do assume that(A.152) �xN > �xN :Let us de�ne �r := �R +H�yN+1; �R(s)�H0(�yN+1) ;so that fgS(�Y ; �R) = sg = �B�r(�y) :By (2.57) and (A.143), we have that(A.153) j�x0 � �y0j � onst q ;and therefore, from (A.153), we get thatj�x0 � �y0j � j�x0 � x00j+ jx00 � �x0j+ j�x0 � �y0j �� onst q ;(A.154)whih is less then �r, if q=R is small enough. Thus, by the �rst ourrene touhingproperty of gS(�Y; �R), �x must be above fgS(�Y; �R) = sg (with respet to the eN dire-tion). This, (A.154) and (A.152) imply that �x is trapped inside a one with vertexin �x and slope bounded by onst q=�r, whih gives (A.151). This ends the proof ofLemma A.1. �



124 A. PROOF OF THE MEASURE THEORETIC RESULTS
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constqThe one trapping �xBy a rotation/translation argument, we dedue from Lemma A.1 the followingLemma A.2. Fix o 2 RN , � 2 RN , with j�j = 1. Let u be a C1-subsolution of(1:5) in fx 2 RN s.t. j(x� o) � �j < l and j(x � o)� ((x� o) � �)�j < lg :Assume that S(Y;R) is above u and that S(Y;R) touhes the graph of u at the point(x0; u(x0)).Suppose that ju(x0)j < 1=2, j(x0� o) � �j < l=4, j(x0� o)� ((x0� o) � �)�j < l=4.Assume also thatTY;Rx0 2 fj(x� o)� ((x � o) � �)�j = qg \ f(x� o) � � = 0g andy = o�pr2 � q2 � withr = r(Y;R) = R�H0(yN+1)� C02Ry2N+1 :Then, there exist universal onstants C1; C2 > 1 >  > 0 suh that, ifC1 � q � lC1 and 4 3pR � l � R ;the following holds. Let � be the set of points (x; u(x)) 2 RN � R satisfying thefollowing properties:� j(x� o) � �j < q=15, ju(x)j < 1=2, jx� x0j < �Cq;� there exists Ŷ 2 RN+1 suh that S(Ŷ ; R=C2) is above u and it touhes uat (x; u(x));



A.2. PROOF OF LEMMA 4.2 125� \� ru(x)jru(x)j ; ru(x0)jru(x0)j� � C1 qR ;� (x� x0) � ru(x0)jru(x0)j � C1 q2R +H0(u(x))�H0(u(x0)).Then, LN���(�)� � qN�1 :More preisely, for any s 2 (�1=2; 1=2), there exists a set �s � � \ fxN+1 = sg,whih is ontained in a Lipshitz graph in the �-diretion, with Lipshitz onstantless than 1, and so that, if �� := [s2(�1=2; 1=2)�s ;we have that LN���(��)� � qN�1 :With Lemma A.2 in hand, we an now omplete the proof of Lemma 4.2, byarguing as follows.Let us now onsider a vetor � 2 RN so that j�j = 1 and# := \(�; TY0;Rx0 � y0) = arsin qr ;being x0, Y0 and R the ones in the statement of Lemma 4.2. We also denoter = r(Y0; R), aording to the de�nition of r(�; �) given in (A.18).Observe that, by the assumptions of Lemma 4.2 and (2.57),\(�; eN) � \(�; TY0;Rx0 � y0) + \(TY0;Rx0 � y0; eN ) == #+ \� ru(x0)jru(x0)j ; eN� �� onst qR + �8 � �6 :(A.155)De�ne o := y0 +pr2 � q2 � :We will think o as the origin. Then,(A.156) jTY0;Rx0 � oj = jy0 � TY0;Rx0j sin# = r � qr = qand so jTY0;Rx0 � y0j2 = r2 == jo� y0j2 + q2 == jo� y0j2 + jTY0;Rx0 � oj2 :(A.157)Then, (A.157) says that the triangle with verties in y0, o and TY0;Rx0 is a righttriangle in o, that is(A.158) (TY0;Rx0 � o) � � = 0 :Also, if �q := j(TY0;Rx0 � o)� ((TY0;Rx0 � o) � �)�j ;



126 A. PROOF OF THE MEASURE THEORETIC RESULTSthen (A.155) and (A.19) give that q � �q. Then, the hypotheses of Lemma A.2being ful�lled (with �q replaing q, possibly saling l to onst l) thanks to (A.155),(A.156) and (A.158). Thene, we dedue that,(A.159) LN (��(�)) � onst qN�1 :Also, in the light of the Lipshitz graph property in Lemma A.2, we have that� � ��, for an appropriate set ��, with�� \ fxN+1 = sg = �s = Fs(�℄s) ;for any jsj < 1=2, for some�℄s � fx � � = 0g \ fxN+1 = sgand jFsjLip � 1. Note that the �℄s's are all disjoint (N � 1)-dimensional sets, lyingon fxN+1 = sg.Given a; b 2 �℄s, let now a0 := Fs(a) and b0 := Fs(b). Then, the fat that Fsgives a Lipshitz graph in the �-diretion with jFsjLip � 1 implies that\�a0 � b0; �� � �4 :Therefore, by means of (A.155),\�a0 � b0; eN� � �4 � �6 = �12 :This says that �N ����s is invertible and that its inverse is a Lipshitz funtion, withLipshitz onstant bounded by 1= tan(�=12). Therefore, ifGs := �� Æ ��N ����s��1 ;we have that Gs is a Lipshitz funtion whose range is �℄s, withjGsjLip � 1tan(�=12) � onst :



A.3. PROOF OF LEMMA 4.3 127Hene, using the hange of variables formula (see, e.g., page 99 in [18℄), we deduethat onst qN�1 � LN���(��)� == LN� [s2(�1=2;1=2)�℄s� == Z 1=2�1=2 LN�1(�℄s) ds == Z 1=2�1=2 Z�℄s dy ds �� Z 1=2�1=2 ZG�1s (�℄s) j detG0s(x)j dx ds �� onst Z 1=2�1=2 ZG�1s (�℄s) dx ds == onst Z 1=2�1=2 LN�1�G�1s (�℄s)� ds == onstLN� [s2(�1=2;1=2)G�1s (�℄s)� == onstLN� [s2(�1=2;1=2)�N�Fs(�℄s)�� == onstLN� [s2(�1=2;1=2)�N (�s)� �� onstLN��N (�)� ;ompleting the proof of Lemma 4.2.A.3. Proof of Lemma 4.3Let Fk � Ek be the losed set de�ned asFk := fZ 2 L j dist (Z;Dk \Ql+a) � ag :If Ql n Fk = ;, LN (Ql nEk) � LN (Ql n Fk) = 0 ;proving the laim, hene we may and do assume that Ql n Fk 6= ;. Let nowZ 2 Ql n Fk and take Z� 2 Fk be so that(A.160) dist (Z; Fk) = jZ � Z�j =: r :We use the notation Z = (z0; 0; zN+1) 2 L and we laim that(A.161) r � l + jz0j � a2 :To prove this, we may assume that r � a, otherwise the laim is proved, andwe proeed as follows. First of all, notie that, from (P1) in the statement of



128 A. PROOF OF THE MEASURE THEORETIC RESULTSLemma 4.3, we have that there exists �Z 2 Dk \ Ql. Let Z℄ lie on the segmentjoining Z and �Z, at distane a from �Z. Then,jZ � Z℄j = jZ � �Zj � aand, therefore, sine �Z 2 Ql,jZ � Z℄j � p(z0 � �z0)2 + 1� a �� p(jz0j+ j�z0j)2 + 1� a �� p(jz0j+ l)2 + 1� a :(A.162)Also, by onstrution, Z℄ 2 Fk and thus(A.163) r � jZ � Z℄j :The proof of (A.161) now follows from (A.162) and (A.163) by taking a > 2.Notie now that, sine Z 2 Ql, (A.161) implies that(A.164) r � 2l � a2 :We now laim that(A.165) LN�Fk+1 \Ql \ Br(Z)� � �LN�Ql \ Br(Z)� ;for a suitable � 2 (0; 1), whih may depend on the quantity  introdued in (P2)during the statement of Lemma 4.3.We now begin with the proof of (A.165), whih will be ompleted on page 131.Sine Z� 2 Fk, there exists Z0 2 Dk \Ql+a be so that jZ��Z0j � a. We pointout that, in fat,(A.166) jZ� � Z0j = a :Indeed, if, by ontradition, jZ� � Z0j < a, we have that Bd(Z�) \ L � Fk forsome d > 0, from whih it would exists Ẑ 2 Fk so that jẐ � Zj < jZ� � Zj, thatontradits the de�nition of Z� and proves (A.166).Also, from (A.160) and (A.166),(A.167) jZ � Z0j � jZ � Z�j+ jZ� � Z0j = r + a :We notie that, in fat,(A.168) jZ � Z0j = r + a :Indeed, if it holded that jZ�Z0j < r+a, take ~Z 2 �Ba(Z0) on the segment joiningZ and Z0: then ~Z 2 Fk , sine Z0 2 Dk \Ql+a, andjZ � ~Zj = jZ � Z0j � a < r ;whih ontradits the de�nition of r and proves (A.168).Notie that, thanks to (A.167) and (A.168), we have that Z� belongs to thesegment joining Z and Z0.
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The proof of Lemma 4.3To ontinue with the proof of (A.165), we need now to distinguish two ases:either a � 2r or a > 2r. Let us �rst deal with the ase a � 2r. We laim that thereexists Z1 2 Ql so that(A.169) jZ � Z1j = r2 and Br=2(Z1) \ L � Ql :To prove (A.169), we need to distinguish two sub-ases. If z0 = 0, take Z1 :=Z + re1=2. Then, jz1;N+1j = jzN+1j � 12and, realling (A.164), jz01j = r2 < l ;showing that Z1 2 Ql in this ase. Also, exploiting (A.161), if W = (w0; 0; wN+1) 2Br=2(Z1), jw0j � r � l ;proving (A.169) in this sub-ase. If, on the other hand, z0 6= 0, takeZ1 := Z � r z02 jz0j ;thus, jz1;N+1j = jzN+1j � 12



130 A. PROOF OF THE MEASURE THEORETIC RESULTSand, sine Z 2 Ql, realling also (A.161), we have thatjz01j = ���� z0jz0j�jz0j � r2����� == ���jz0j � r2 ��� == maxnjz0j � r2 ; r2 � jz0jo �� max�l � r2 ; l2� << l ;whih shows that Z1 2 Ql in this ase.Let also W = (w0; 0; wN+1) 2 Br=2(Z1) \ L; then, we have thatjw0j � jz01j+ r2 == ��� z0jz0j �jz0j � r2����+ r2 == ���jz0j � r2 ���+ r2 == maxnjz0j � r2 ; r2 � jz0jo + r2 == max fjz0j ; r � jz0jg :Hene, using that Z 2 Ql and (A.161), we dedue from the above thatjw0j � l ;proving (A.169) in this sub-ase.This ompletes the proof of (A.169).As a onsequene of (A.169), we immediately infer from the fat that Br=2(Z1)\L � Ql that Ŵ := Z1 + z01jz01j r2 2 Qland therefore l � jŵ0j = ���jz01j+ r2 ��� = jz01j+ r2 ;that is(A.170) jz01j � l � r2 :We show that this yields that(A.171) jz01 � z00j � 2l� 2a :Indeed, if r > 2(l � 3a)=3, (A.170) and the fat that Z0 2 Ql+a imply thatjz01 � z00j � jz01j+ jz00j � 2l� r2 + a � 5l3 + 2a ;whih proves (A.171) in this ase; if, on the other hand, r � 2(l � 3a)=3, we have,by (A.168) and (A.169), thatjz01 � z00j � jz01 � z0j+ jz0 � z00j � jZ1 � Zj+ jZ � Z0j = r2 + r + a � l � 2ain this ase. This ends the proof of (A.171).



A.3. PROOF OF LEMMA 4.3 131We now omplete the proof of (A.165) in the ase a � 2r, by arguing as follows.We notie that, by onstrution, and realling (A.168) and (A.169),a+ r2 = jZ � Z0j � jZ1 � Zj �� jZ1 � Z0j �� jZ1 � Zj+ jZ � Z0j == r2 + r + a �� 5r :(A.172)Furthermore,8 using (A.171), we have thatjZ1 � Z0j �qjz01 � z00j2 + 1 ��p(2l � 2a)2 + 1 �� 2l :(A.173)Now notie that, from (A.172),(A.174) LN�Dk+1 \ Br=2(Z1)� � LN�Dk+1 \BjZ1�Z0j=10(Z1)� :Furthermore, by (A.169), Br=2(Z1) \ L ontains a irular setor of height 1 of aball of radius r=2, while, on the other hand, Br(Z) \ Ql is ontained in a irularsetor of height 1 of a ball of radius r. Therefore,LN�Br=2(Z1) \ L� � onst rN�1 �� LN�Br(Z) \Ql� :(A.175)Also, by onstrution, Br=2(Z1) � Br(Z), Dk+1 � Fk+1\Ql+a and L\Br=2(Z1) �Ql, therefore,(A.176) LN�Fk+1 \Ql \ Br(Z)� � LN�Dk+1 \Br=2(Z1)� :Finally, from (P2) of Lemma 4.3 (whih may be used thanks to (A.173) and (A.172)),we have thatLN�Dk+1 \ BjZ1�Z0j=10(Z1)� � LN�L \ BjZ1�Z0j(Z1)� �� LN�L \ Br=2(Z1)� ;(A.177)where, in the latter estimate, we used again (A.172). Then, (A.165) easily followsin this ase from (A.176), (A.174), (A.177) and (A.175).Let us now deal with the ase in whih a > 2r. In this ase,(A.178) r + a10 < a :Sine Z 2 L and a � onst > 0,LN�Br+a(Z) \ L� � onst > 0 :8The reader will notie that (A.173) is needed in order to use property (P2) of Lemma 4.3here in the sequel.



132 A. PROOF OF THE MEASURE THEORETIC RESULTSIn partiular, by (P2) of Lemma 4.3, (A.168) and (A.178), we infer from this thatLN�B(r+a)=10(Z) \Dk+1� = LN�BjZ�Z0j=10(Z) \Dk+1� �� onstLN�BjZ�Z0j(Z) \ L� == onstLN�Br+a(Z) \ L� �� onst > 0thene, there exists Z℄ 2 Dk+1 \ B(r+a)=10(Z) :Also, the fat that Z 2 Ql and (A.178) give thatDk+1 \ B(r+a)=10(Z) � Ql+a ;thene Z℄ 2 Ql+a. Hene, the fat that Z℄ 2 B(r+a)=10(Z) implies that(A.179) Ql \ Br(Z) � Ql \ Ba(Z℄) ;while the fat that Z℄ 2 Dk+1 implies that(A.180) Ql \ Ba(Z℄) � Fk+1 :Then, from (A.179) and (A.180),Ql \ Br(Z) � Fk+1and, therefore, Fk+1 \Ql \ Br(Z) = Ql \ Br(Z) :This proves (A.165) in this ase (with � = 1).Having ompleted the proof of (A.165) we now take a �nite overlapping overC of Ql n Fk with balls of radius r, in order to end the proof of Lemma 4.3. Thus,using suh over,LN�Fk+1 \ (Ql n Fk)� = LN�Fk+1 \Ql \ (Ql n Fk)� �� onst XBr(Z)2CLN�Fk+1 \Ql \ Br(Z)� :Then, using (A.165), we dedue from the above thatonst ��1 LN�Fk+1 \ (Ql n Fk)� � XBr(Z)2CLN�Ql \ Br(Z)� �� LN�Ql \ � [Br(Z)2CBr(Z)�� �� LN�Ql \ (Ql n Fk)� == LN (Ql n Fk) :(A.181)Furthermore, sine Dk � Dk+1, we have that Fk � Fk+1 and so(A.182) Ql n Fk+1 � �Ql n Fk� n �Fk+1 \ (Ql n Fk)� :



A.3. PROOF OF LEMMA 4.3 133Hene, by using (A.182) and (A.181),LN (Ql n Fk+1) � LN (Ql n Fk)� LN�Fk+1 \ (Ql n Fk)� �� (1� ̂)LN (Ql n Fk) ;for a suitable ̂. Therefore, iterating the above estimate,LN (Ql n Fk) � (1� ̂)k LN (Ql) :This ompletes the proof of Lemma 4.3 sine Ek � Fk by onstrution.





APPENDIX BSummary of elementary lemmataWe ollet here some lemmata that are in use during the proofs of the mainresults. We will skip the proofs of most of these lemmata, sine they are quiteelementary (a detailed proof of them, however, may be found in [30℄).Lemma B.1. For any 0 � s � t � �?,h0(�1 + t)� h0(�1 + s) � (tp � sp) ;for a suitable universal onstant  > 0.Lemma B.2. Let U be an open subset of R. Let g 2 C2(U) and assume that ghas no ritial points. De�ne(B.1) 	y;l(x) := g(jx� yj � l)Then, for t = jx� yj � l 2 U and x 6= y, we have(B.2) �p(	y;l(x)) = (p� 1)g00(t)g0(p�2)(t) + g0(p�1)(t) N � 1jx � yjLemma B.3. Let I 3 0 be an interval of R and let h 2 C1(I) satisfy h(s) > 0for any s 2 I. Let H(s) := Z s0 (p� 1)1=p d�(p h(�))1=p ; 8s 2 I :De�ne also g as the inverse of H, that is g(t) := H�1(t) for any t 2 H(I). Then,g 2 C2 (H(I)) and g0(t) = � pp� 1 h(g(t))�1=pg00(t) = �p h(g(t))�(2�p)=p(p� 1)2=p h0(g(t)) ;for any t 2 H(I).We reall now the maximum and omparison priniples needed for our purposes.First of all, in [9℄ (see in partiular Theorem 1.4 there) the following result wasobtained:Theorem B.4 (Strong Comparison Priniple I). Let 
 be an open (not ne-essarily bounded nor onneted) subset of RN , � 2 R and u; v 2 C1(
) satisfy(B.3) ��pu+�u � ��p(v) + �v; u � v in 
:De�ne Zu;v = fx 2 
 : jDu(x)j + jDv(x)j = 0g if p 6= 2, Zu;v = ; if p = 2. Ifx0 2 
nZu;v and u(x0) = v(x0), then u = v in the onneted omponent of 
nZu;vontaining x0. 135



136 B. SUMMARY OF ELEMENTARY LEMMATAAn easy onsequene of the above result is the following one (see x3 in [30℄ forfurther details):Corollary B.5 (Strong Comparison Priniple II). Let 
 be an open (notneessarily bounded nor onneted) subset of RN , and u; v 2 C1(
) satisfy(B.4) ��pu+ f(u) � ��p(v) + f(v); u � v in 
 ;with f loally Lipshitz ontinuous. De�ne Zu;v = fx 2 
 : jDu(x)j+ jDv(x)j = 0gif p 6= 2, Zu;v = ; if p = 2. If x0 2 
 n Zu;v and u(x0) = v(x0), then u = v in theonneted omponent of 
 n Zu;v ontaining x0.As well known, the \dangerous" points in dealing with p-Laplae operators arethe ones in whih the gradient vanishes, due to lak of elliptiity. Next result, provedin [37℄ (see also [30℄ for details), will help us in dealing with this irumstane.Theorem B.6 (Strong Maximum Priniple and Hopf's Lemma). Let 
 be anopen onneted (not neessarily) bounded set in RN and suppose that u 2 C1(
),u � 0 in 
, weakly solves ��pu+ uq = g � 0 in 
with q � p� 1,  � 0 and g 2 L1lo(
). If u is not identially zero, then u > 0 in 
.Moreover, for any point x0 2 �
 where the interior sphere ondition is satis�ed,and suh that u is C1 in a neighborhood of 
 [ fx0g and u(x0) = 0, we have that�u�s > 0 for any inward diretional derivative.Following are some easy result on the geometry of Eulidean spheres. Thoughelementary, we give full details of their proofs, in order to take are of the onstantsinvolved.Lemma B.7. Let r > q � 0. Fix � > 0 and let 1 and 2 be non-negative andso that(B.5) maxf1; 2g � minfp�=3; 1=2g :Suppose1 that z 2 Br(y) � RN , with jz0 � y0j � 1q. Then,�Br(y) \ njx0 � z0j � 2qo \ nxN � yNo ��nxN � zN � � q2r o :(B.6)Proof. Take w 2 �Br(y) \ njx0 � z0j � 2qo \ nxN � yNo. For any x 2 RN ,let x̂ := x� yr :Then, by onstrution, ẑ 2 B1(0) ;jẑ0j � 1 qr andŵ 2 �B1(0) \ njx̂0 � ẑ0j � 2qr o \ nx̂N � 0o :Let also t � 0 so that b̂ := ẑ + teN 2 �B1(0) :1 Notation remark: in Lemma B.7, for de�niteness, the balls are assumed to be losed.



B. SUMMARY OF ELEMENTARY LEMMATA 137We laim that(B.7) ŵN � b̂N � � q2r2 :To prove this, �rst note that, if ŵN � b̂N , (B.7) is obvious; hene, we may assumethat(B.8) ŵN < b̂N :Also, if b̂N � 0, (B.7) would follow from the fat that ŵN � 0, thus we may alsosuppose that(B.9) b̂N > 0 :Also, 1 = jb̂0j2 + jb̂N j2 == jẑ0j2 + jb̂N j2 �� 21q2r2 + jb̂N j2 �� 21 + jb̂N j2 ;whih, together with (B.9), implies that(B.10) b̂N � 12 ;thanks to (B.5). Furthermore,jẑ0j2 + jb̂N j2 = jb̂0j2 + jb̂N j2 == jb̂j2 == 1 == jŵj2 == jŵ0j2 + jŵN j2 �� �jẑ0j+ jŵ0 � ẑ0j�2 + jwN j2 ;and so, by (B.5) jb̂N j2 � jŵN j2 � jŵ0 � ẑ0j2 + 2 jẑ0j jŵ0 � ẑ0j �� (22 + 212) q2r2 �� � q22r2 :From this, the fat that ŵN � 0, (B.8) and (B.10), we onlude that� q22r2 � (b̂N + ŵN ) (b̂N � ŵN ) � 12 (b̂N � ŵN ) ;whih proves (B.7).



138 B. SUMMARY OF ELEMENTARY LEMMATABy using (B.7), we gather thatwN � zN = r (ŵN � ẑN ) == r (ŵN � b̂N + t) �� r (ŵN � b̂N ) � �� q2r ;whih gives (B.6). �Corollary B.8. Let r > q � 0 and �x(B.11) � 2 �0 ; r10q� :Let us suppose that v = (v0; �q2=r) 2 RN is above Br(y) with respet to the eNdiretion. Let us assume also that jv0 � y0j � q, with(B.12)  � minnp�3 ; 12o :Then, �Br(y) \ njx0 � y0j � 4�qo � fxN < 0g :Proof. Take w 2 �Br(y) \ njx0 � y0j � 4�qo. Let also t � 0 be so that(B.13) p := v � teN 2 �Br(y) with pN � yN .Note that(B.14) jp0 � y0j = jv0 � y0j � q :Also, by our assumptions,wN � yN + jwN � yN j == yN +pr2 � jw0 � y0j2 �� yN +pr2 � 16�2q2 :(B.15)Let z := y+reN . We now apply Lemma B.7 with � := � and 1 := 2 := , realling(B.12). Indeed, by (B.13), (B.14) and Lemma B.7,p 2�Br(y) \ njx0 � z0j � 2qo \ nxN � yNo �� nxN � zN � � q2r o == nxN � yN + r � � q2r o :(B.16)Exploiting (B.15) and (B.16), we getwN � pN � r + �q2r +pr2 � 16�2q2 �� vN � r + �q2r +pr2 � 16�2q2 == 2�q2r � r +pr2 � 16�2q2 �� 2�q2r � r + r � 8�2q2r < 0 ;



B. SUMMARY OF ELEMENTARY LEMMATA 139whih is the desired result. �Corollary B.9. Let a > 0, r > q � 0 so that(B.17) qr � Ka2and(B.18) qr � a8K :Let us suppose that v = (v0;Kq2=r) 2 RN is above Br(y) with respet to the eNdiretion. Let us assume also that jv0 � y0j � ̂q, with(B.19) ̂ � minnpK3 ; 2Ka o :Then,(B.20) �Br(y) \ njx0 � y0j � aqo � fxN < 0g :Proof. Let �q := 4Kq=a, � := a2=(16K),  := â=(4K). Note that �q < r dueto (B.18). What is more, v = (v0; ��q2=r) and jv0�y0j � �q. Also, (B.11) and (B.12)are ful�lled thanks to (B.17) and (B.19). Thus, by Corollary B.8 (applied with �qinstead of q), �Br(y) \ njx0 � y0j � 4��qo � fxN < 0g ;whih is (B.20). �We now point out some observations on rotation hypersurfaes in RN+1 . First,the normal of a rotation surfae is in the spae2 generated by the radial diretionand eN+1, as showed by the next result:Lemma B.10. Fix y 2 RN . Let f 2 C1(R;R) and de�ne�(x) := f(jx� yj) :Let �(x) be a normal vetor to the surfae fxN+1 = �(x)g at the point (x;�(x)).Then, if x 6= y, �(x) belongs to the spae spanned by x� y and eN+1. If x = y andf 0(0) = 0, the same result holds.Proof. Assume x 6= y. By onstrution,�(x) = ��r�(x); �1� ;for some � 2 R. Therefore,�(x) = �f 0(jx� yj)jx� yj (x� y)� �eN+1 ;thus proving the laim if x 6= y.If, on the other hand, x = y and f 0(0) = 0, then �(x) = � eN+1, for some� 2 R, hene ompleting the proof of the laim. �The next result will relate the \enter" of a rotation hypersurfae with thenormal at any point:2And, in fat, this property haraterizes the rotation surfaes, as pointed out to us by RajkoQuarta Maron, an undergraduate in Tor Vergata.



140 B. SUMMARY OF ELEMENTARY LEMMATALemma B.11. Fix y 2 RN . Let f 2 C1(R;R) and de�ne�(x) := f(jx� yj) :Let us de�ne the following hypersurfae in RN+1 :� := n�x;�(x)� ��� x 2 RNo :Let us onsider the normal �(x) at a point �x;�(x)� 2 �, given by�(x) = ��1(x); : : : ; �N+1(x)� := ��r�(x); 1�p1 + jr�(x)j2 :Then, for any x 2 RN n fyg, the vetorsx� y and ��1(x); : : : ; �N (x)�are parallel.Proof. If (�1(x); : : : ; �N (x)) = 0, there is nothing to prove, so we may assume(�1(x); : : : ; �N (x)) 6= 0. For this reason,r�(x) = f 0�jx� yj� x� yjx� yj ;thus f 0�jx� yj� 6= 0 :Let a(x) := jx� yjp1 + jr�(x)j2f 0�jx� yj� 2 R :Then, a(x)��1(x); : : : ; �N (x)� = x� y ;proving the laim. �Next result is an expliit omputation on the di�erential of the unit normalof a hypersurfae (up to a sign, suh quantity is sometimes referred to as SeondFundamental Form or Shape Operator):Lemma B.12. Let 	 2 C1(RN ;R). Let � be the hypersurfae de�ned by� := n�x;	(x)� ��� x 2 RNo :Let X = X(x) := (x;	(x)) and onsider the unit normal to � at the point X, givenby �̂(x) := ��r	(x); 1�p1 + jr	(x)j2 2 SN :For X = (x;	(x)), let also �(X) = �(x;	(x)) := �̂(x) :



B. SUMMARY OF ELEMENTARY LEMMATA 141Let3 DX� : TX� �! RN+1 be the di�erential map. Then, for anyW = (w;wN+1) 2TX�, DX�(X)[W ℄ =(B.21)
= 0BBBBBBBBBBB�

�(1 + jr	(x)j2)�1j	(X)wj + �1	(X) �k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2...�(1 + jr	(x)j2)�Nj	(X)wj + �N	(X) �k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2��k	(X) �kj	(X)wj(1 + jr	(x)j2)3=2
1CCCCCCCCCCCA :

Proof. Let W 2 TX�. Then, for some v 2 RN ,W = ddt�x+ tv; 	(x+ tv)�����t=0 = �v; r	(x) � v� ;that is wN+1 = r	(x) � w, or, equivalently(B.22) TX� = f(w;r	(x) � w) j w 2 RN g :Beause of this,DX�(X)[W ℄ = ddt��x+ tw; 	(x+ tw)�����t=0 == ddt �̂(x+ tw)����t=0 ;from whih a straightforward alulation gives the laim. �Remark B.13. In relation with Lemma B.12 above, we notie that, sine�(�) � SN and T�(X)SN = TX�, we may think DX� as a linear map from TX� toitself. Using (B.21) and (B.22), one dedues that DX� : TX� �! TX� may thusbe represented in matrix form as(B.23) �DX��ij = �(1 + jr	j2)�ij	+ �i	�k	�kj	(1 + jr	j2)3=2for 1 � i; j � N (where, of ourse, the summation over the index k is understoodhere above).With this, we now point out an expliit omputation of the urvatures of therotation surfaes:Lemma B.14. Let � 2 C2((0;+1); R) and� := n�x; �(jxj)� j x 2 RNo :3As standard, given a manifoldM and a point X 2M , we denote by TXM the tangent spaeat X. Also, as usual, SN := fX 2 RN+1 j jXj = 1g.



142 B. SUMMARY OF ELEMENTARY LEMMATAThen, the prinipal urvatures4 of � are given by�1 = : : : = �N�1 = �0jxjp1 + (�0)2�N = �00(1 + j�0j2)3=2 :Proof. We set 	(x) := �(jxj) and, after some easy omputation, we inferfrom (B.23) that �DX��ij = (1 + (�0)2)�3=2h� (1 + (�0)2)�0 Æijjxj ++(1 + (�0)2)�0 � jxj�00jxj3 xixji :(B.24)Notie now that, up to rotation, we may assume that the point X = (x;�(jxj)), inwhih we ompute the prinipal urvatures, is of the form x = jxj eN ; hene, from(B.24) �DX��ij = (1 + (�0)2)�3=2h� (1 + (�0)2)�0 Æijjxj ++(1 + (�0)2)�0 � jxj�00jxj ÆiNÆjNi ;and so the desired laim easily follows. �

4As standard, the prinipal urvature of a surfae � at the point �X are here de�ned as theeigenvalues of �DX�( �X) : T �X� �! T �X�.
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