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Abstract. In this work we deal with the existence and qualitative properties of the solutions to

a supercritical problem involving the −∆p(·) operator and the Hardy-Leray potential. Assuming

0 ∈ Ω, we study the regularizing effect due to the addition of a first order nonlinear term, which
provides the existence of solutions with a breaking of resonance. Once we have proved the

existence of a solution, we study the qualitative properties of the solutions such as regularity,

monotonicity and symmetry.

1. Introduction

In this paper we shall study the existence and qualitative properties of weak positive solutions
to the supercritical problem

(P)


−∆pu+ |∇u|p = ϑ

uq

|x|p
+ f in Ω

u ≥ 0 in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in RN such that 0 ∈ Ω, ϑ > 0, p− 1 < q < p, f ≥ 0, f ∈ L1(Ω) and
1 < p < N . The existence in the semilinear case p = 2 has been investigated in the recent work
[17]. We start giving the following definition.

Definition 1. We say that u is a weak solution to

−∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,

if u ∈W 1,p
0 (Ω) and∫
Ω

|∇u|p−2(∇u,∇φ) +

∫
Ω

|∇u|pφ = ϑ

∫
Ω

uq

|x|p
φ+

∫
Ω

fφ ∀φ ∈W 1,p
0 (Ω) ∩ L∞(Ω).
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The behavior of the supercritical problem with 0 ∈ ∂Ω is quite different. See details in [12]
and [17] for p = 2 and [18] for the p-laplacian case 1 < p < N .

In this work we consider 0 ∈ Ω and, because of the regularizing effect due to the presence of
the gradient term |∇u|p on the left hand side of problem (P), we are able to prove the existence
of a weak solution u (see Definition 1) to problem (P), remarkably for any ϑ > 0 and for each
f ∈ L1(Ω), f ≥ 0. As nowadays well understood, the solution obtained is called solutions obtained
as limits of approximations, or simply SOLA, see [7]. By using the results in [8] in this case SOLA
is equivalent to entropy solution or renormalized solution.

We have the following result

Theorem 1. Consider problem (P) with 1 < p < N , p− 1 < q < p and assume that f ∈ L1(Ω) is

a positive function. Then for all ϑ > 0 there exists a weak solution u ∈W 1,p
0 (Ω) to (P).

This result emphasizes the fact that the term |∇u|p on the left hand side of (P) is enough to
get a resonance breaking result. The scheme of the proof is the following:

(i) We prove the existence of a solution to the truncated problem

−∆puk + |∇uk|p = ϑTk(
uqk
|x|p

) + Tk(f) in Ω, uk ∈W 1,p
0 (Ω).

where Tk(s) = max{min{k, s},−k}, k > 0. This is done by solving the regularized pro-

blem (3) below and passing to the limit in W 1,p
0 (Ω).

(ii) We show that the sequence of solutions to the truncated problem converges weakly in

W 1,p
0 (Ω) and then we deduce the a.e. convergence of the gradients. Finally we exploit it

to deduce strong convergence in W 1,p
0 (Ω).

(iii) We pass to the limit in the truncated problem and we obtain the existence of a solution
to (P).

Let us remark that, because of the presence of the gradient term (which causes the existence of
solutions), to pass to the limit in the truncated problem it is necessary to deduce the convergence

of uk (solutions of the truncated problem) in W 1,p
0 (Ω). A convergence in W 1,q

0 (Ω) with q < p,
in the spirit of [5], would not be sufficient to pass to the limit and get a weak formulation of the
problem.

In the second part of this paper we deal with the study of the qualitative properties of weak
solutions to (P). First we point out some regularity properties of the solutions and then we prove
the following result

Theorem 2. Let u ∈ C1(Ω \ {0}) be a weak solution to (P). Consider the domain Ω strictly
convex w.r.t. the ν−direction (ν ∈ SN−1) and symmetric w.r.t. T ν0 , where

T ν0 = {x ∈ RN : x · ν = 0}.

Moreover, assume f ∈ C1(Ω \ {0}) to be non-decreasing w.r.t. the ν−direction in the set

Ων0 = {x ∈ Ω : x · ν < 0}

and even w.r.t. T ν0 . Then u is symmetric w.r.t. T ν0 and non-decreasing w.r.t. the ν−direction
in Ων0 . Moreover, if Ω is a ball, then u is radially symmetric with ∂u

∂r (r) < 0 for r 6= 0.
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Remark 1. Notice that the extra regularity hypothesis on f is sufficient to have the corresponding
regularity of a solution.

We point out that Theorem 2 will be a consequence of a more general result, see Proposition 3
below, which states a monotonicity property of the solutions in general domains near strictly convex
parts of the boundary. This can be useful for example in blow-up analysis.
Also, it will be clear from the proof, that the same technique could be applied to study the case
of more general nonlinearities. In particular, we note that the nonlinearity in problem (P) is in
general locally Lipschitz continuous only in (0 , ∞).

The main ingredient in the proof of the symmetry result is the well known Moving Plane
Method ([23]), that was used in a clever way in the celebrated paper [14] for the semilinear non-
degenerate case. Actually our proof is more similar to the one of [4] and is based on the weak
comparison principle in small domains. The Moving Plane Method was extended to the case of
p-laplace equations firstly in [12] for the case 1 < p < 2 and later in [11] for the case p ≥ 2. In the
case p ≥ 2 it is required the nonlinearity to be positive and as can be seen in some examples, this
assumption is in general necessary.

The first crucial step is the proof of a weak comparison principle in small domains that we carry
out in Proposition 2. This is based on some regularity results in the spirit of [11]. These results
hold only away from the origin due to the presence of the Hardy potential in our problem. This will
require more attention in the application of the moving plane procedure. Moreover, the presence
of the gradient term |∇u|p, leads to a proof of the weak comparison principle in small domains
which makes use of the right choice of test functions.

Notation. Generic fixed numerical constants will be denoted by C (with subscript in some case)
and will be allowed to vary within a single line or formula. Moreover f+ and f− will stand for the
positive and negative part of a function, i.e. f+ = max{f, 0} and f− = min{f, 0}. We also denote
|A| the Lebesgue measure of the set A.

2. Existence of an energy solution to the problem (P)

It will be useful to refer to the following result

Lemma 1. (Hardy-Sobolev Inequality) Suppose 1 < p < N and u ∈W 1,p(RN ). Then we have∫
RN

|u|p

|x|p
≤ CN,p

∫
RN
|∇u|p,

with CN,p = (
p

N − p
)p optimal and not achieved constant.

2.1. Existence of a solution to the truncated problem. First, we are going to study the
existence of a solution to the truncated problem

(1) −∆puk + |∇uk|p = ϑTk(
uqk
|x|p

) + Tk(f) in Ω, uk ∈W 1,p
0 (Ω),

where Tk(s) = max{min{k, s},−k}, k > 0.

Theorem 3. There exists a positive solution to problem (1).
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Notice that φ ≡ 0 is a subsolution to problem (1). Consider ψ the solution to

(2)

{
−∆pψ = ϑ · k + Tk(f) in Ω

ψ = 0 on ∂Ω.

In fact ψ turns to be a supersolution to (1).

To prove Theorem 3 we will consider a sequence of approximated problems that we solve by
iteration and by using some convenient comparison argument. We take as starting point w0 = 0
and consider iteratively the problem,

(3)

−∆pwn +
|∇wn|p

1 + 1
n |∇wn|p

= ϑTk(
wqn−1

|x|p ) + Tk(f) in Ω

wn = 0 on ∂Ω.

Notice that the subsolution φ ≡ 0 and the supersolution ψ to problem (1) are subsolution and
supersolution to the problem (3).

Next proposition follows using a comparison argument from [6].

Proposition 1. There exists wn ∈W 1,p
0 (Ω) ∩ L∞(Ω) solution to (3).

Moreover, 0 ≤ wn ≤ ψ ∀n ∈ N.

Proof of Theorem 3: we proceed in two steps.

Step 1: weak convergence of wn in W 1,p
0 (Ω). By simplicity let us set

(4) Hn(∇wn) =
|∇wn|p

1 + 1
n |∇wn|p

.

Taking wn as a test function in the approximated problems (3), we obtain

∫
Ω

|∇wn|pdx+

∫
Ω

Hn(∇wn)wndx = ϑ

∫
Ω

Tk(
wqn−1

|x|p
)wndx+

∫
Ω

Tk(f)wndx

≤ ϑ

∫
Ω

kwndx+

∫
Ω

fwndx.

Since wn ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and f ∈ L1(Ω), there exists a positive constant C(k, f, ψ, ϑ,Ω)

such that ∫
Ω

|∇wn|pdx+

∫
Ω

Hn(∇wn)wndx ≤ C(k, f, ψ, ϑ,Ω).

Moreover, since
∫

Ω
Hn(∇wn)wndx ≥ 0, we have

(5)

∫
Ω

|∇wn|pdx ≤ C(k, f, ψ, ϑ,Ω).

Therefore, up to a subsequence, wn ⇀ uk weakly in W 1,p
0 (Ω) and wn ⇀ uk weakly-* in L∞(Ω),

getting

uk ∈W 1,p
0 (Ω) ∩ L∞(Ω).
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Step 2: strong convergence of wn in W 1,p
0 (Ω) and passing to the limit in (1). To get

the strong convergence in W 1,p
0 (Ω) first of all we notice that

(6) ||wn − uk||W 1,p
0 (Ω) ≤ ||(wn − uk)+||W 1,p

0 (Ω) + ||(wn − uk)−||W 1,p
0 (Ω).

Thus, we proceed estimating each term on the right-hand side of (6).

Asymptotic behaviour of ||(wn − uk)+||W 1,p
0 (Ω). Chosing (wn − uk)+ as a test function in

(3) we obtain ∫
Ω

|∇wn|p−2
(
∇wn,∇(wn − uk)+

)
dx+

∫
Ω

Hn(∇wn)(wn − uk)+dx(7)

= ϑ

∫
Ω

Tk(
wqn−1

|x|p
)(wn − uk)+dx+

∫
Ω

Tk(f)(wn − uk)+dx.

Since wn ⇀ uk in W 1,p
0 (Ω), one has wn → uk a.e. in Ω and thus (wn−uk)+ → 0 a.e. in Ω together

with (wn − uk)+ ⇀ 0 in W 1,p
0 (Ω) as well. Therefore, the right-hand side of (7) goes to zero when

n goes to infinity.
Then, since

∫
Ω
Hn(∇wn)(wn − uk)+dx ≥ 0, (7) becomes

(8)

∫
Ω

|∇wn|p−2
(
∇wn,∇(wn − uk)+

)
dx = o(1) as n→ +∞.

Since ∫
Ω

|∇uk|p−2
(
∇uk,∇(wn − uk)+

)
= o(1) as n→ +∞,

it follows

(9)

∫
Ω

(
|∇wn|p−2∇wn − |∇uk|p−2∇uk,∇(wn − uk)+

)
dx = o(1).

Then, from (9) we have

o(1) =


C1(p)

|∇(wn − uk)+|2

(|∇wn|+ |∇uk|)2−p if 1 < p < 2,

C1(p)|∇(wn − uk)+|p if p ≥ 2,

(10)

with C1(p) a positive constant depending on p. In any case, since for 1 < p < 2 using Hölder’s
inequality one has

(11)

∫
Ω

|∇(wn − uk)+|p ≤
(∫

Ω

|∇(wn − uk)+|2

(|∇wn|+ |∇uk|)(2−p)

) p
2
(∫

Ω

(|∇wn|+ |∇uk|)p
) 2−p

2

,

we obtain

(12) ||(wn − uk)+||W 1,p
0 (Ω) → 0 as n→ +∞.
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Asymptotic behaviour of ||(wn − uk)−||W 1,p
0 (Ω). Let us consider e−wn [(wn − uk)−] as a test

function in (3),

(13)∫
Ω

e−wn |∇wn|p−2
(
∇wn,∇(wn − uk)−

)
dx+

∫
Ω

e−wn
(

|∇wn|p

1 + 1
n |∇wn|p

− |∇wn|p
)

(wn − uk)−dx

= ϑ

∫
Ω

e−wnTk(
wqn−1

|x|p
)(wn − uk)−dx+

∫
Ω

e−wnTk(f)(wn − uk)−dx.

We point out that using this test function it follows

(14)

∫
Ω

e−wn
(

|∇wn|p

1 + 1
n |∇wn|p

− |∇wn|p
)

(wn − uk)− ≥ 0.

As above, since (wn − uk)− → 0 a.e. in Ω, the right-hand side of (13) tends to zero as n goes
to infinity. Being wn ≤ ψ (see Proposition 1), one has e−wn ≥ γ > 0 uniformly on n. Then
equation (13) states as

(15) γ

∫
Ω

|∇wn|p−2
(
∇wn,∇(wn − uk)−

)
dx = o(1).

Arguing in the same way as we have done from equation (8) to (12), we obtain

(16) ||(wn − uk)−||W 1,p
0 (Ω) → 0 as n→ +∞.

From equation (6), by using (12) and (16) we get

||(wn − uk)||W 1,p
0 (Ω) → 0 as n→ +∞

and consequently ∇wn → ∇uk a.e. in Ω. Then, by (4) follows Hn(∇wn)→ |∇uk|p a.e. in Ω and
by Vitali’s lemma,

Hn(∇wn)→ |∇uk|p in L1(Ω).

Hence, uk ∈W 1,p
0 (Ω) ∩ L∞(Ω) satisfies the problem in the following sense

(17)

∫
Ω

|∇uk|p−2(∇uk,∇φ)+

∫
Ω

|∇uk|pφ = ϑ

∫
Ω

Tk(
upk
|x|p

)φ+

∫
Ω

Tk(f)φ ∀φ ∈W 1,p
0 (Ω)∩L∞(Ω),

concluding the proof.

�

2.2. Passing to the limit and convergence to a solution u of (P). We want to show that

uk → u strongly in W 1,p
0 (Ω) in order to prove the existence of a solution u to problem (P).

Proof of Theorem 1: We perform the proof in different steps.

Step 1: Weak convergence of uk in W 1,p
0 (Ω). We start taking Tn(uk) as a test function in

the truncated problem (1), obtaining∫
Ω

|∇Tn(uk)|pdx+

∫
Ω

|∇uk|pTn(uk)dx = ϑ

∫
Ω

Tk(
uqk
|x|p

)Tn(uk)dx+

∫
Ω

Tk(f)Tn(uk)dx.
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Notice that, defining

(18) Ψn(s) =

∫ s

0

Tn(t)
1
p dt,

one has∫
Ω

|∇Tn(uk)|pdx+

∫
Ω

|∇Ψn(uk)|pdx = ϑ

∫
Ω

Tk(
uqk
|x|p

)Tn(uk)dx+

∫
Ω

Tk(f)Tn(uk)dx(19)

≤ ϑ

∫
Ω

uqk
|x|p

Tn(uk) + n||f ||L1(Ω).

By a straightforward calculation it is easy to check that for fixed q ∈ [p − 1, p), ∀ε > 0 and
∀n > 0, there exists Cε such that

(20) sqTn(s) ≤ εΨp
n(s) + Cε s ≥ 0.

Thanks to Lemma 1 and (20), equation (19) states as∫
Ω

|∇Tn(uk)|pdx+

∫
Ω

|∇Ψn(uk)|pdx ≤ ε ϑ

CN,p

∫
Ω

|∇Ψn(uk)|p + ϑCε

∫
Ω

1

|x|p
+ n||f ||L1(Ω).

Then choosing ε > 0 such that 0 < ε
ϑ

CN,p
< 1, for some positive C we get∫

Ω

|∇Tn(uk)|pdx+ C

∫
Ω

|∇Ψn(uk)|pdx ≤ ϑCε

∫
Ω

1

|x|p
+ n||f ||L1(Ω)(21)

≤ C(ϑ, ε, f, p, n,Ω).

Fixed l ≥ 1, by definition (18) of Ψl and equation (21), one has

(22) ∫
Ω

|∇uk|pdx ≤
∫

Ω

|∇Tl(uk)|pdx+

∫
Ω∩{uk≥l}

|∇uk|pdx

≤
∫

Ω

|∇Tl(uk)|p +
1

l

∫
Ω

|∇Ψl(uk)|p ≤ C,

uniformly on k. Therefore, up to a subsequence it follows uk ⇀ u weakly in W 1,p
0 (Ω) and a.e. in Ω.

Step 2: Strong convergence in L1(Ω) of the singular term. By Hölder inequality we have∫
Ω

Tk(
uqk
|x|p

) ≤
∫

Ω

uqk
|x|p
≤
(∫

Ω

upk
|x|p

dx

) q
p
(∫

Ω

1

|x|p
dx

) p−q
p

(23)

≤ C

(∫
Ω

|∇uk|p
) q
p

≤ C,

with C a positive constant that does not depend on k. It follows that Tk(
uqk
|x|p

) is bounded in L1(Ω)

and converges almost everywhere to
uq

|x|p
. In particular Fatou’s Lemma implies

uq

|x|p
∈ L1(Ω).
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Moreover, let E ⊂ Ω be a measurable set, by Fatou’s Lemma we have∫
E

Tk(
uqk
|x|p

) ≤
∫
E

uqk
|x|p
≤ lim
n→+∞

∫
E

wqn
|x|p
≤
∫
E

ψq

|x|p
≤ δ(|E|),

uniformly in k where lim
s→0

δ(s) = 0, wn is as in the proof of Theorem 3 and ψ as in Proposition 1.

Thus, from Vitali’s Theorem it follows

(24) Tk(
uqk
|x|p

)→ uq

|x|p
in L1(Ω).

Step 3: Strong convergence of |∇uk|p → |∇u|p in L1(Ω). To show the strong convergence
of the gradients we need some preliminary results. We have the following

Lemma 2. Let uk be defined by (1). Then

(25) lim
n→∞

∫
{uk≥n}

|∇uk|p = 0

uniformly in k.

Proof. Let us consider the functions

Gn(s) = s− Tn(s), and ψn−1(s) = T1(Gn−1(s)).

Notice that, ψn−1(uk)|∇uk|p ≥ |∇uk|pχ{uk≥n}. Using ψn−1(uk) as a test function in (1) we get∫
{uk≥n}

|∇uk|p ≤
∫

Ω

|∇ψn−1(uk)|p +

∫
Ω

|∇uk|pψn−1(uk)(26)

=

∫
Ω

ϑTk(
uqk
|x|p

)ψn−1(uk) +

∫
Ω

Tk(f)ψn−1(uk).

Since {uk} is uniformly bounded in W 1,p
0 (Ω), then up to a subsequence, {uk} strongly converges

in Lp(Ω) for 1 ≤ p < p∗ = Np
N−p and a.e. in Ω. Thus we obtain that

|{x ∈ Ω : n− 1 < uk(x) < n}| → 0 if n→∞,

|{x ∈ Ω, : uk(x) > n}| → 0 if n→∞,

uniformly on k. Then, from (24) and (26) we have uniformly in k

(27) lim
n→∞

∫
{uk≥n}

|∇uk|p = 0.

�

Next lemma shows the strong convergence of the truncated terms.

Lemma 3. Consider uk ⇀ u as above. Then one has uniformly in m,

Tm(uk)→ Tm(u) in W 1,p
0 (Ω) for k → +∞.
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Proof. Notice that

(28) ||Tm(uk)− Tm(u)||W 1,p
0 (Ω) ≤ ||(Tm(uk)− Tm(u))+||W 1,p

0 (Ω) + ||(Tm(uk)− Tm(u))−||W 1,p
0 (Ω).

We are going to estimate each term on the right-hand side of (28).

Asymptotic behaviour of ||(Tm(uk) − Tm(u))+||W 1,p
0 (Ω). We take (Tm(uk) − Tm(u))+ as a

test function in (1), obtaining

(29) ∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx+

∫
Ω

|∇uk|p(Tm(uk)− Tm(u))+dx

=

∫
Ω

(
ϑTk(

uqk
|x|p

) + Tk(f)

)
(Tm(uk)− Tm(u))+dx.

Since Tm(uk) ⇀ Tm(u) and Tm(uk) → Tm(u) a.e. in Ω, we have (Tm(uk) − Tm(u))+ ⇀ 0 in

W 1,p
0 (Ω) and (Tm(uk) − Tm(u))+ → 0 a.e in Ω. Thus, the right-hand side of (29), by dominated

convergence, tends to zero as k goes to infinity. From (29) we have

(30)

∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx = o(1).

We estimate the left-hand side of (30) as

(31) ∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx

=

∫
Ω∩{|uk|≤m}

(
|∇Tm(uk)|p−2∇Tm(uk)− |∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+

)
dx

+

∫
Ω∩{|uk|≤m}

(
|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+

)
dx

+

∫
Ω∩{|uk|>m}

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx.

Since (Tm(uk)− Tm(u))+ ⇀ 0 weakly in W 1,p
0 (Ω), denoting χm the characteristic function of the

set {x ∈ Ω : |uk| > m}, the second term on the right-hand side of (31) becomes∫
Ω∩{|uk|≤m}

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

≤
∫

Ω

(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

+

∣∣∣∣∣
∫

Ω∩{|uk|>m}
(|∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+)dx

∣∣∣∣∣
≤ o(1) + C||u||p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0 as k → +∞,
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since, by dominate convergence again, χm∇Tm(u) → 0 strongly in (Lp(Ω))N . As above, the last
term in (31) can be estimated as

(32)

∣∣∣∣∫
Ω

(
|∇uk|p−2∇uk, χm∇Tm(u)

)
dx

∣∣∣∣ ≤ C||uk||p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0,

as k → +∞.
Considering that, by the dominated convergence theorem, we have∣∣∣∣ ∫

Ω∩{|uk|>m}

(
|∇Tm(uk)|p−2∇Tm(uk)− |∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+

)
dx

∣∣∣∣
≤
∫

Ω

χm|∇Tm(u)|p → 0 as k → +∞,

equation (30) becomes∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx

=

∫
Ω

(
|∇Tm(uk)|p−2∇Tm(uk)− |∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))+

)
dx+ o(1).

Finally we obtain ∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))+

)
dx(33)

≥


C1(p)

|∇(Tm(uk)− Tm(u))+|2

(|∇Tm(uk)|+ |∇Tm(u|)2−p + o(1) if 1 < p < 2,

C1(p)|∇(Tm(uk)− Tm(u))+|p + o(1) if p ≥ 2,

with C1(p) a positive constant depending on p, which implies (together with (11))

(34) ||(Tm(uk)− Tm(u))+||W 1,p
0 (Ω) → 0 as k → +∞.

Asymptotic behaviour of ||(Tm(uk)−Tm(u))−||W 1,p
0 (Ω). We use e−Tm(uk)(Tm(uk)−Tm(u))−

as a test function in (1) (see Section 2.1) obtaining

(35) ∫
Ω

e−Tm(uk)
(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
dx

−
∫

Ω

e−Tm(uk)(Tm(uk)− Tm(u))−(|∇uk|p−2∇uk,∇Tm(uk))dx

+

∫
Ω

|∇uk|pe−Tm(uk)(Tm(uk)− Tm(u))−dx

=

∫
Ω

(
ϑTk(

uqk
|x|p

) + Tk(f)

)
e−Tm(uk)(Tm(uk)− Tm(u))−dx.

In this case as well, since (Tm(uk)−Tm(u))− ⇀ 0 weakly in W 1,p
0 (Ω) and (Tm(uk)−Tm(u))− → 0

a.e. in Ω, the right-hand side of (35) tends to zero as k goes to infinity.
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The first term on the left-hand side of (35), being (∇Tm(uk))χm = 0, states as∫
Ω

e−Tm(uk)
(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
dx(36)

+

∫
Ω∩{|uk|>m}

|∇uk|pe−Tm(uk)(Tm(uk)− Tm(u))−dx = o(1).

We point out that

(Tm(uk)− Tm(u))−χm = 0,

hence (36) becomes

(37)

∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
= Cm o(1) as k → +∞,

with Cm a positive constant depending on m.
The choice and use of e−Tm(uk)(Tm(uk) − Tm(u))− as a test function allows to simplify conve-

niently the equation (35) in order to obtain the desired result. In fact, we proceed writing the
left-hand side of (37) as∫

Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
dx(38)

=

∫
Ω∩{|uk|≤m}

(
|∇Tm(uk)|p−2∇Tm(uk)− |∇Tm(u)|p−2∇Tm(u),∇(Tm(uk)− Tm(u))−

)
dx

+

∫
Ω∩{|uk|≤m}

|∇Tm(u)|p−2
(
∇Tm(u),∇(Tm(uk)− Tm(u))−

)
dx

+

∫
Ω∩{|uk|>m}

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
dx.

The second term on the right-hand side of (38) can be estimated as follows∫
Ω∩{|uk|≤m}

|∇Tm(u)|p−2
(
∇Tm(u),∇(Tm(uk)− Tm(u))−

)
dx(39)

=

∫
Ω

|∇Tm(u)|p−2
(
∇Tm(u),∇(Tm(uk)− Tm(u))−

)
dx

−
∫

Ω∩{|uk|>m}
|∇Tm(u)|p−2

(
∇Tm(u),∇(Tm(uk)− Tm(u))−

)
≤ o(1) + C||u||p−1

W 1,p
0 (Ω)

||χm∇Tm(u)||Lp(Ω) → 0 as k → +∞,

since by weak convergence the first term on the right-hand side of (39) goes to zero, while the second
one goes to zero using (22) and the fact that, for dominated convergence, χm∇Tm(u)→ 0 strongly
in Lp(Ω). Moreover, we observe that the last term in (38) is zero since (Tm(uk)−Tm(u))−χm = 0.
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Finally as above, equation (38) becomes

o(1) =

∫
Ω

(
|∇uk|p−2∇uk,∇(Tm(uk)− Tm(u))−

)
dx(40)

≥


C1(p)

|∇(Tm(uk)− Tm(u))−|2

(|∇Tm(uk)|+ |∇Tm(u|)2−p + o(1) if 1 < p < 2,

C1(p)|∇(Tm(uk)− Tm(u))−|p + o(1) if p ≥ 2,

with C1(p) a positive constant depending on p. By (37) and (40) (using (11) again) we get

(41) ||(Tm(uk)− Tm(u))−||W 1,p
0 (Ω) → 0 as k → +∞.

From (28), (34) and (41) we have the desired result, i.e.

||(Tm(uk)− Tm(u))||W 1,p
0 (Ω) → 0 as k → +∞.

�

Now we prove that |∇uk|p → |∇u|p strongly in L1(Ω). By Lemma 3 the sequence of the gradients
converges a.e. In order to use again Vitali’s Theorem we need to prove the equi-integrability of
|∇uk|p. Let E ⊂ Ω be a measurable set, then∫

E

|∇uk|pdx ≤
∫
E

|∇Tm(uk)|pdx+

∫
{uk≥m}∩E

|∇uk|pdx.

By Lemma 3, Tm(uk) → Tm(u) in W 1,p
0 (Ω) ∀m > 0 and therefore

∫
E

|∇Tm(uk)|pdx is uniformly

small for |E| small enough. Moreover, by Lemma 2 we obtain∫
{uk≥m}∩E

|∇uk|pdx ≤
∫
{uk≥m}

|∇uk|pdx→ 0 as m→∞,

uniformly in k. Then Vitali’s Theorem implies that

(42) |∇uk|p → |∇u|p in L1(Ω).

Step 4: Passing to the limit in (1). Finally, since ||uk − u||W 1,p
0 (Ω) → 0 as k → +∞, we

conclude that u is a distributional solution to the problem
−∆pu+ |∇u|p = ϑ

uq

|x|p
+ f in Ω,

u ≥ 0 in ∂Ω, u = 0 on Ω.

In particular, we point out that the equation is verified even in a stronger way, that is∫
Ω

|∇u|p−2(∇u,∇φ) +

∫
Ω

|∇u|pφ = ϑ

∫
Ω

uq

|x|p
φ+

∫
Ω

fφ ∀φ ∈W 1,p
0 (Ω) ∩ L∞(Ω),

concluding the proof.

�
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3. Symmetry of solutions

To study the qualitative properties of the solutions u to the problem (P) we need some preli-
minary results about their regularity.

3.1. Local regularity of solutions of (P). Given any solution u ∈W 1,p(Ω), the C1,α
loc (Ω \ {0})

regularity of u follows by the results in [13, 20].
We will use the notation C1,α(Ω \ {0}) to refer the continuity in the local sense and outside the

origin. The reader will guess that the arguments in [13, 20] generally do not work up to the origin,
because of the lack of regularity of the nonlinearity.

Moreover, if one assumes (as in our case) that the domain is smooth, the C1,α(Ω\{0}) regularity
up to the boundary follows by [16].

The fact that solutions to p-Laplace equations are not in general C2(Ω), leads to the study of
the summability properties of the second derivatives of the solutions. This is important in some
issues such as the study of the qualitative properties of these solutions. The results in [11] (and
in [19] where a more general equation with a gradient term as in (P) appears) hold outside the
singularity and therefore we have the following theorem

Theorem 4. Assume 1 < p < N and consider u ∈ C1,α(Ω \ {0}) a solution of (P), with f ∈
C1(Ω \ {0}). Denoting ui = ∂u

∂xi
, we have∫

Ω̃

|∇u|p−2−β |∇ui|2

|x− y|γ
dx 6 C ∀ i = 1, . . . , N,(43)

for any Ω̃ ⊂⊂ Ω \ {0} and uniformly for any y ∈ Ω̃, with

C : = C
(
p , γ , β , f , q , ϑ , ‖u‖L∞(Ω̃) , ‖∇u‖L∞(Ω̃) , dist(Ω̃, {0})

)
,

for 0 6 β < 1 and γ < (N − 2) if N ≥ 3 (γ = 0 if N = 2).

If we also assume that f is nonnegative in Ω then it follows that actually ϑ
uq

|x|p
+ f is strictly

positive in the interior of Ω and for any Ω̃ ⊂⊂ Ω \ {0}, uniformly for any y ∈ Ω̃, we have that∫
Ω̃

1

|∇u|t
1

|x− y|γ
dx 6 C∗,(44)

with max{(p − 2) , 0} 6 t < p − 1 and γ < (N − 2) if N ≥ 3 (γ = 0 if N = 2). Moreover C∗
depends on C.

See [11, 19] for a detailed proof.

Remark 2. Let Zu = {x ∈ Ω : ∇u(x) = 0}. It is clear that Zu is a closed set in Ω and moreover,
by (44) it follows implicitly that the Lebesgue measure

|Zu| = 0,

provided that f is nonnegative.

Assume Ω̃ ⊂⊂ Ω \ {0} and recall the following:
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Definition 2. Let ρ ∈ L1(Ω̃) and 1 ≤ q < ∞. The space H1,q
ρ (Ω̃) is defined as the completion of

C1(Ω̃) (or C∞(Ω̃)) with the norm

(45) ‖v‖H1,q
ρ

= ‖v‖Lq(Ω̃) + ‖∇v‖Lq(Ω̃,ρ),

where

‖∇v‖q
Lp(Ω̃,ρ)

:=

∫
Ω̃

ρ(x)|∇v(x)|qdx.

We also recall that H1,q
ρ (Ω̃) may be equivalently defined as the space of functions with distribu-

tional derivatives represented by a function for which the norm defined in (45) is bounded. These
two definitions are equivalent if the domain has piecewise regular boundary.
The space H1,q

0,ρ(Ω̃) is consequently defined as the completion of C1
c (Ω̃) (or C∞c (Ω̃)), w.r.t. the

norm (45).
A short, but quite complete, reference for weighted Sobolev spaces in [15], Chapter 1, and the

references therein.
We have the following result (see [11]).

Theorem 5 (Weighted Poincaré Inequality). Let p ≥ 2 and u ∈ C1,α(Ω\{0}) be a solution of (P).

Setting ρ = |∇u|p−2 and Ω̃ ⊂⊂ Ω \ {0} as above, we have that H1,2
0 (Ω̃, ρ) is continuously embedded

in Lq(Ω̃) for 1 ≤ q < 2̂∗ where
1

2̂∗
=

1

2
− 1

N
+
p− 2

p− 1

1

N
.

Consequently, since 2̂∗ > 2, for w ∈ H1,2
0 (Ω̃, ρ) we have

(46) ‖w‖L2(Ω̃) 6 CS‖∇w‖L2(Ω̃,ρ) = CS
(∫

Ω̃

ρ |∇w|2
) 1

2

,

with CS = CS(Ω̃)→ 0 if |Ω̃| → 0.

Notice that Theorem 5 holds for p ≥ 2. If 1 < p < 2 and |∇u| is bounded, the weighted Poincaré
inequality (46) follows at once by the classic Poincaré inequality.

3.2. Some preliminaries and useful tools. To state the next results we need some notations.
Let ν be a direction in RN with |ν| = 1. As customary, for a real number λ we set

(47) T νλ = {x ∈ RN : x · ν = λ}
and observe that 0 ∈ T ν0 . Moreover, let us denote

(48) Ωνλ = {x ∈ Ω : x · ν < λ},

(49) xνλ = Rνλ(x) = x+ 2(λ− x · ν)ν,

(which is the reflection trough the hyperplane T νλ ),

(50) uνλ(x) = u(xνλ),

(51) a(ν) = inf
x∈Ω

x · ν.

When λ > a(ν), since Ωνλ is nonempty, we set

(52) (Ωνλ)′ := Rνλ(Ωνλ)
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and finally for λ > a(ν) we denote

(53) λ1(ν) = sup{λ : (Ωνλ)′ ⊂ Ω},

Here below we are going to prove a couple of useful results. We have

Lemma 4. Assume ϑ > 0 and f ≥ 0. Consider u ∈ W 1,p
0 (Ω) a nonnegative weak solution to

problem (P). Then

lim
|x|→0

u(x) = +∞.

Proof. We consider the test function ϕ = e−uψ, with ψ ∈W 1,p
0 (Ω)∩L∞(Ω) so that ϕ ∈W 1,p

0 (Ω)∩
L∞(Ω). Then putting ϕ as test function in (P) one has

(54)

∫
Ω

|e−
u
p−1∇u|p−2(e−

u
p−1∇u,∇ψ)dx ≥

∫
Ω

uq

|x|p
(
e−

u
p−1

)p−1

ψdx,

being f(·) nonnegative. Defining v = 1− e−
u
p−1 , from (54) we get

(55) Cp

∫
Ω

|∇v|p−2(∇v,∇ψ)dx ≥
∫

Ω

uq

|x|p
(1− v)p−1ψdx.

Let us consider uR the radial solution to the problem

(56)

{
−∆pu+ |∇u|p = C

|x|p in BR

u ≥ 0 in BR, u = 0 on ∂BR,

constructed as limit of the solutions, say uR,k, to the truncated problems, in the same way as we
did in Section 2 but setting here ϑ = 0, with C,R some positive constants to be chosen later.
Moreover since, for k fixed the solution uR,k is unique, it follows that uR,k must be radial for all k.

Finally the strong convergence in W 1,p
0 (Ω) (and thus pointwise uR(x) = limk→∞ uR,k(x)) implies

that uR(x) = uR(|x|).
Then, by setting ϕ = e−uRψ, vR = 1− e−

uR
p−1 (as in equations (54) and (55)), we have

(57) Cp

∫
BR

|∇vR|p−2(∇vR,∇ψ)dx =

∫
BR

C

|x|p
(1− vR)p−1ψdx.

We note that v (resp. vR) belongs to W 1,p
0 (Ω) ∩ L∞(Ω) (to W 1,p

0 (BR) ∩ L∞(BR)). Using (55)
and (57) with ψ = (vR − v)+, R small such that BR ⊂⊂ Ω and in particular, noting that since

vR < v on ∂BR one has that ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω), we have

Cp

∫
BR

|∇v|p−2(∇v,∇(vR − v)+)dx ≥
∫
BR

uq

|x|p
(1− v)p−1(vR − v)+dx(58)

≥
∫
BR

CR
|x|p

(1− v)p−1(vR − v)+dx,

with CR = infBR u(x) > 0 by the strong maximum principle and

(59) Cp

∫
BR

|∇vR|p−2(∇vR,∇(vR − v)+)dx =

∫
BR

CR
|x|p

(1− vR)p−1(vR − v)+dx,



16 SUSANA MERCHÁN, LUIGI MONTORO, IRENEO PERAL, BERARDINO SCIUNZI

where in (56) we choose C = CR. Thus subtracting (58) and (59) we obtain
(60)

Cp

∫
BR

(|∇vR|p−2∇vR−|∇v|p−2∇v,∇(vR−v)+)dx =

∫
BR

CR
|x|p

(
(1−vR)p−1−(1−v)p−1

)
(vR−v)+dx.

On the set BR ∩ {vR ≥ v} the right hand side of (60) is nonpositive and therefore, by∫
BR

(|∇vR|p−2∇vR − |∇v|p−2∇v,∇(vR − v)+)dx ≤ 0,

we have that v ≥ vR on BR, that is (using the definition of v and vR and the monotonicity of

s = 1− e−
s
p−1 ),

(61) u ≥ uR.

Let us now study the qualitative behaviour of uR and therefore consider the test function
ϕ = e−uRψ, with ψ = ψ(|x|) belonging to W 1,p

0 (BR) ∩ L∞(BR). Then by (56) we have∫ R

0

e−uR |u′R|p−2(u′R, ψ
′)ρN−1dρ =

∫ R

0

CRe
−uRψρN−1−pdρ,

with ρ = |x|. By classical regularity results and Hopf’s Lemma we have uR ∈ C2(BR \ {0}) and
thus (

e−uR |u′R|p−2(−u′R)ρN−1
)′

= CRe
−uRρN−1−p ∀ ρ 6= 0.

Since uR(ρ) is positive and monotone decreasing w.r.t. ρ, we have the two following cases:

(i) either lim
ρ→0

uR(ρ) = C > 0;

(ii) or lim
ρ→0

uR(ρ) = +∞.

If we assume the case (i) we have
(
e−uR |u′R|p−2(−u′R)ρN−1

)′
/(ρN−p)′ → C as ρ → 0, for some

positive constant C. It is standard to see that −u′R ≥ C/ρ+o(1) for ρ→ 0, getting a contradiction
with the case (i). Then the case (ii) holds and together with (61) it concludes the proof. �

From now on we shall assume the following hypotheses:

(hp.1) f(x) ∈ C1(Ω \ {0}) and f(x) ≥ 0;

(hp.2) Monotonicity of f(·) in the ν−direction: f(x) ≤ f(xνλ), ∀λ ∈ (a(ν) , λ1(ν)) .

Define φρ(x) ∈ C∞c (Ω), φ ≥ 0 such that

(62)


φ ≡ 1 in Ω \B2ρ

φ ≡ 0 in Bρ

|∇φ| ≤ C
ρ in B2ρ \Bρ,

where Bρ denotes the open ball with center 0 and radius ρ > 0.
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Lemma 5. Let u ∈ C1(Ω \ {0}) a solution to (P) and let us define the critical set

Zu = {x ∈ Ω : ∇u(x) = 0}.
Then, the set Ω \ Zu does not contain any connected component C such that C ⊂ Ω. Moreover, if
we assume that Ω is a smooth bounded domain with connected boundary, it follows that Ω \ Zu is
connected.

Proof. We proceed by contradiction. Let us assume that such component exists, namely

C ⊂ Ω such that ∂C ⊂ Zu.
By Remark 2, we have

|Zu| = 0.

Thus

(63) −∆pu+ |∇u|p = ϑ
uq

|x|p
+ f(x) a.e. in Ω.

For all ε > 0, let us define Jε : R+ ∪ {0} → R by setting

(64) Jε(t) =


t if t ≥ 2ε

2t− 2ε if ε ≤ t ≤ 2ε

0 if 0 ≤ t ≤ ε.
We shall use

(65) Ψ = e−uφρ(x)
Jε(|∇u|)
|∇u|

χC

as a test function in (63), where φρ(x) as in (62). We point out that the suppΨ ⊂ C, which implies

Ψ ∈W 1,p
0 (C). Integrating by parts we get∫

C
e−u

(
|∇u|p−2∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρdx+

∫
C
e−u(|∇u|p−2∇u,∇φρ)

Jε(|∇u|)
|∇u|

dx(66)

−
∫
C
e−u|∇u|pφρ

Jε(|∇u|)
|∇u|

dx+

∫
C
e−u|∇u|pφρ

Jε(|∇u|)
|∇u|

dx

= ϑ

∫
C

uq

|x|p
e−uφρ

Jε(|∇u|)
|∇u|

dx+

∫
C
fe−uφρ

Jε(|∇u|)
|∇u|

dx,

notice that we have used the fact that the boundary term in the integration is zero since ∂C ⊂ Zu.
Remarkably, using the test function Ψ defined in (65), we are able to integrate on the boundary ∂C
which could be not regular. We estimate the first term on the left-hand side of (66), denoting

hε(t) =
Jε(t)

t
. So we have∣∣∣∣∫
C
e−u

(
|∇u|p−2∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρdx

∣∣∣∣ ≤ C ∫
C
|∇u|p−1|h′ε(|∇u|)||∇(|∇u|)|φρdx(67)

≤ C

∫
C
|∇u|p−2

(
|∇u|h′ε(|∇u|)

)
||D2u||φρdx.

We show now the following

Claim: One has
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(i) |∇u|p−2||D2u||φρ ∈ L1(C) ∀ρ > 0;

(ii) |∇u|h′ε(|∇u|)→ 0 a.e. in C as ε→ 0 and |∇u|h′ε(|∇u|) ≤ C with C not depending on ε.

Let us prove (i). By Hölder’s inequality it follows∫
C
|∇u|p−2||D2u||φρdx ≤ C(C)

(∫
C
|∇u|2(p−2)||D2u||2φ2

ρdx

) 1
2

(68)

≤ C

(∫
C
|∇u|p−2−β ||D2u||2φ2

ρ|∇u|p−2+βdx

) 1
2

≤ C||∇u||(p−2+β)/2
L∞

(∫
C\Bρ

|∇u|p−2−β ||D2u||2dx

) 1
2

≤ C,

where we have used Theorem 4 and the fact that φ2
ρ|∇u|p−2+β is bounded since β can be any value

with 0 ≤ β < 1.
Let us prove (ii). Exploiting the definition (64), by straightforward calculation we obtain

h′ε(t) =


0 if t ≥ 2ε
2ε
t2 if ε ≤ t ≤ 2ε

0 if 0 ≤ t ≤ ε,

and then we have |∇u|h′ε(|∇u|)→ 0 a.e. for ε→ 0 in C and |∇u|h′ε(|∇u|) ≤ 2.

Then, by Claim (using dominated convergence) and equation (67) we have∫
C
e−u

(
|∇u|p−2∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρdx→ 0 as ε→ 0, ∀ρ > 0.

Exploiting (64) and passing to the limit in (66), by the dominated convergence theorem, it follows∫
C
e−u(|∇u|p−2∇u,∇φρ)dx = ϑ

∫
C

uq

|x|p
e−uφρdx+

∫
C
fe−uφρdx ∀ρ > 0.

Then

(69)

∫
B2ρ\Bρ

e−u(|∇u|p−2∇u,∇φρ)dx = ϑ

∫
C

uq

|x|p
e−uφρdx+

∫
C
fe−uφρdx.

Letting ρ→ 0 in (69), by Hölder’s inequality we estimate the left-hand side as∣∣∣∣∣
∫
B2ρ\Bρ

e−u(|∇u|p−2∇u,∇φρ)dx

∣∣∣∣∣
≤ C

(∫
B2ρ\Bρ

|∇u|p
) p−1

p
(∫

B2ρ\Bρ
|∇φρ|p

) 1
p

≤ C
(
ρN

ρp

) 1
p

→ 0,
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where we have used that |∇φρ| ≤
C

ρ
and p < N . On the other hand, for ρ → 0, the right-hand

side of (69), by dominated convergence theorem, becomes

ϑ

∫
C

uq

|x|p
e−udx+

∫
C
fe−u > 0,

which is a contradiction.

If Ω is smooth, since the right-hand side of (63) is positive, by Hopf’s Lemma (see [21]), a
neighborhood of the boundary belongs to a component C of Ω \ Zu. By what we have just proved
above, a second component C′ can not be contained compactly in Ω. Thus Ω\Zu is connected. �

3.3. Comparison principles to problem (P). We shall prove the following

Proposition 2 (Weak Comparison Principle). Let λ < 0 and Ω̃ be a bounded domain such that

Ω̃ ⊂⊂ Ωνλ. Assume that u ∈ C1(Ω \ {0}) is a solution to (P) such that u ≤ uνλ on ∂Ω̃. Then there

exists a positive constant δ = δ
(
λ, dist(Ω̃, ∂Ω)

)
such that if we assume |Ω̃| ≤ δ, then it holds

u ≤ uνλ in Ω̃.

Proof. We have (in the weak sense)

− ∆pu+ |∇u|p = ϑ
uq

|x|p
+ f in Ω,(70)

− ∆pu
ν
λ + |∇uνλ|p = ϑ

(uνλ)q

|xνλ|p
+ fνλ in Ω,(71)

where fνλ (x) = f(xνλ).

Let us set φνρ,λ(x) = φρ(x
ν
λ), with φρ(·) as in (62). By contradiction, we assume the statement

false and we consider

(i) e−u(u− uνλ)+(φνρ,λ)2χΩ̃ ∈W
1,p
0 (Ω̃), as a test function in (70);

(ii) e−u
ν
λ(u− uνλ)+(φνρ,λ)2χΩ̃ ∈W

1,p
0 (Ω̃), as a test function in (71).

Notice that, by Lemma 4 we have that lim
|x|→0

u(x) = +∞. This, together with the fact that

u ∈ L∞(Ω̃), implies that (see equation (49))

(72) 0νλ = Rνλ(0) 6∈ supp(u− uνλ)+.
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Then, if we subtract (in the weak formulation) (70) and (71), we get∫
Ω̃

e−u
ν
λ(|∇u|p−2∇u− |∇uνλ|p−2∇uνλ,∇(u− uνλ)+)(φνρ,λ)2dx(73)

≤
∫

Ω̃

∣∣∣(e−u − e−uνλ)(|∇u|p−2∇u,∇(u− uνλ)+)
∣∣∣ (φνρ,λ)2

+ C

∫
Ω̃

∣∣∣(e−u|∇u|p−2∇u− e−u
ν
λ |∇uνλ|p−2∇uνλ,∇φνρ,λ)

∣∣∣ (u− uνλ)+φνρ,λdx

+ ϑ

∫
Ω̃

e−u
uq

|x|p
(u− uνλ)+(φνρ,λ)2dx− ϑ

∫
Ω̃

e−u
ν
λ

(uνλ)q

|xνλ|p
(u− uνλ)+(φνρ,λ)2dx

+

∫
Ω̃

e−uf(x)(u− uνλ)+(φνρ,λ)2dx−
∫

Ω̃

e−u
ν
λf(xνλ)(u− uνλ)+(φνρ,λ)2dx.

The term in the third line of (73) can be estimated by Hölder’s inequality and since p < N ,

C

∫
Ω̃

∣∣∣(e−u|∇u|p−2∇u− e−u
ν
λ |∇uνλ|p−2∇uνλ,∇φνρ,λ)

∣∣∣ (u− uνλ)+φνρ,λdx(74)

≤ C(||u||L∞(Ωνλ))

∫
Ω̃

∣∣|∇u|p−1 + |∇uνλ|p−1
∣∣ |∇φνρ,λ|φνρ,λdx

≤ C(||u||L∞(Ωνλ))

(∫
Ω̃

(|∇u|p + |∇uνλ|p)dx
) p−1

p

(∫
B2ρ\Bρ

|∇φνρ,λ|pdx

) 1
p

→ 0 as ρ→ 0.

Notice that we are considering the set Ω̃∩{u ≥ uλ} and therefore |x| ≥ |xνλ|. Using (74), equation
(73) becomes ∫

Ω̃

e−u
ν
λ(|∇u|p−2∇u− |∇uνλ|p−2∇uνλ,∇(u− uνλ)+)(φνρ,λ)2dx

≤
∫

Ω̃

∣∣∣(e−u − e−uνλ)(|∇u|p−2∇u,∇(u− uνλ)+)
∣∣∣ (φνρ,λ)2dx

+ ϑ

∫
Ω̃

e−u
(
uq − (uνλ)q

|x|p

)
(u− uνλ)+(φνρ,λ)2dx

+

∫
Ω̃

e−u (f(x)− f(xνλ)) (u− uνλ)+(φνρ,λ)2dx+ o(1).

By (hp.2) of Section 3.2 and taking into account that for λ < 0 one has |x| ≥ C in Ωνλ for some
positive constant C, one has∫

Ω̃

e−u
ν
λ(|∇u|p−2∇u− |∇uνλ|p−2∇uνλ,∇(u− uνλ)+)(φνρ,λ)2dx(75)

≤
∫

Ω̃

∣∣∣(e−u − e−uνλ)(|∇u|p−2∇u,∇(u− uνλ)+)
∣∣∣ (φνρ,λ)2dx

+ C3

∫
Ω̃

[(u− uνλ)+]2(φνρ,λ)2dx+ o(1),
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with C3 = C3

(
λ, ϑ, ||u||L∞(Ωνλ), dist(Ω̃, ∂Ω)

)
. We note that, in the last inequality, we have used

the fact that the term uq − (uνλ)q is locally Liptschitz continuous in (0,+∞) and that, by strong

maximum principle (see [21]), the solution u is strictly positive in Ω̃.
Thus, since the term (e−u − e−uνλ) is locally Lipschitz continuous, from (75) we get

C1

∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uνλ)+|2(φνρ,λ)2dx(76)

≤ C2

∫
Ω̃

|∇u|p−1|∇(u− uνλ)+|(u− uνλ)+(φνρ,λ)2dx

+ C3

∫
Ω̃

[(u− uνλ)+]2(φνρ,λ)2dx+ o(1),

with C1 = C1(p, ||u||L∞(Ωνλ)) and C2 = C2(||u||L∞(Ωνλ)) positive constants.

Let us now consider

Case: p ≥ 2. Let us evaluate the terms on the right hand side of the inequality (76). Exploiting
the weighted Young’s inequality we get

C2

∫
Ω̃

|∇u|p−1|∇(u− uνλ)+|(u− uνλ)+(φνρ,λ)2dx(77)

≤ εC2

∫
Ω̃

|∇u|p−2|∇(u− uνλ)+|2(φνρ,λ)2dx+
C2

ε

∫
Ω̃

|∇u|p[(u− uνλ)+]2(φνρ,λ)2dx

≤ εC2

∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uνλ)+|2(φνρ,λ)2dx+ C̃2

∫
Ω̃

[(u− uνλ)+]2(φνρ,λ)2dx,

with C̃2 = C̃2(ε, ||u||L∞(Ωνλ), ||∇u||L∞(Ωνλ)) a positive constant. Since p > 2, we used |∇u|p−2 ≤
(|∇u| + |∇uνλ|)p−2. Thus, choosing ε sufficiently small such that C1 − εC2 ≥ C̃1 > 0, using (77),
equation (76) becomes

(78)

∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uνλ)+|2(φνρ,λ)2dx ≤ C
∫

Ω̃

[(u− uνλ)+]2(φνρ,λ)2dx+ o(1),

for some positive constant C = C̃2+C3

C̃1
. By weighted Poincaré’s (Theorem 5), we get

C

∫
Ω̃

[(u− uνλ)+]2(φνρ,λ)2dx(79)

≤ C̃C2
p(Ω̃)

∫
Ω̃

|∇u|p−2|∇(u− uλ)+|2(φνρ,λ)2dx

+ C∗(||u||L∞(Ωνλ), ||∇u||L∞(Ωνλ))

∫
B2ρ\Bρ

|∇φνρ,λ|2 + o(1)

≤ C̃C2
p(Ω̃)

∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uλ)+|2(φνρ,λ)2 + o(1),

where as before, since N > p > 2, we have |∇u|p−2 ≤ (|∇u|+ |∇uνλ|)p−2 and∫
B2ρ\Bρ

|∇φνρ,λ|2 → 0 as ρ→ 0.
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Concluding, collecting the estimates (78) and (79) we get∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uνλ)+|2(φνρ,λ)2dx(80)

≤ C̃C2
p(Ω̃)

∫
Ω̃

(|∇u|+ |∇uνλ|)p−2|∇(u− uλ)+|2(φνρ,λ)2 + o(1),

Since (see Theorem 5) Cp(Ω̃) goes to zero provided the Lebesgue measure of Ω̃ goes to 0, if |Ω̃| ≤ δ,
with δ (depending on λ) sufficiently small, we may assume Cp(Ω̃) so small such that

C̃C2
p(Ω̃) < 1.

Thus, letting ρ → 0 in (80), by the dominated convergence theorem we get the contradiction,
showing that, actually, (u−uνλ)+ = 0 and then the thesis for p ≥ 2. We point out that here (p ≥ 2)
we do not need to assume that |∇u| is bounded.

Let us consider now the
Case: 1 < p < 2. From (72) we infer that |∇u|, |∇uνλ| ∈ L∞(Ω̃ ∩ {u ≥ uνλ}) and therefore

we have that (u − uνλ)+ ∈ W 1,2(Ω̃ ∩ {u ≥ uνλ}). Then the conclusion follows using the classical
Poincaré inequality: in fact, since p < 2, the term (|∇u| + |∇uνλ|)p−2 is bounded below being

|∇u|, |∇uνλ| ∈ L∞(Ω̃ ∩ {u ≥ uνλ}). Then, equation (76) gives

C1

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|2(φνρ,λ)2dx(81)

≤ C2

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|(u− uνλ)+(φνρ,λ)2dx

+ C3

∫
Ω̃∩{u≥uνλ}

[(u− uνλ)+]2(φνρ,λ)2dx+ o(1).

By dominated convergence theorem, (81) states as

C1

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|2dx

≤ C2

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|(u− uνλ)+dx+ C3

∫
Ω̃∩{u≥uνλ}

[(u− uνλ)+]2dx+ o(1)

and by weighted Young inequality, arguing as above (see equation (77)), for fixed small ε such that

C1 − εC2 ≥ C̃1 > 0,

we have

(82)

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|2dx ≤ C
∫

Ω̃∩{u≥uνλ}
[(u− uνλ)+]2dx,

with C =
C2 + εC3

εC̃1

. The conclusion follows using classical Poincaré inequality in (82), i.e.∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|2dx ≤ CC2
p(Ω̃)

∫
Ω̃∩{u≥uνλ}

|∇(u− uνλ)+|2dx,
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by choosing δ = δ(λ) small such that CC2
p(Ω̃) < 1 and then getting (u− uνλ)+ = 0. �

3.4. The moving plane method. We refer to the notations and definitions of Section (3.2),
(equations (47) - (53)). To prove Theorem 2, we need first the following result

Proposition 3. Let u ∈ C1,α(Ω \ {0}) be a solution to problem (P). Set

λ0
1(ν) := min{0 , λ1(ν)},

where λ1(ν) is defined in (53). Then, for any a(ν) ≤ λ ≤ λ0
1(ν), we have

(83) u(x) ≤ uνλ(x), ∀x ∈ Ωνλ.

Moreover, for any λ with a(ν) < λ < λ0
1(ν) we have

(84) u(x) < uνλ(x), ∀x ∈ Ωνλ \ Zu,λ,
where Zu,λ ≡ {x ∈ Ωνλ : ∇u(x) = ∇uνλ(x) = 0}. Finally

(85)
∂u

∂ν
(x) ≥ 0, ∀x ∈ Ωνλ1(ν).

Proof. Let a(ν) < λ < λ0
1(ν) with λ sufficiently close to a(ν). By Hopf’s Lemma, it follows that

u− uνλ ≤ 0 in Ωνλ.

We define

(86) Λ0 = {λ > a(ν) : u ≤ ut in Ωνt for all t ∈ (a(ν), λ]}
and

(87) λ0 = sup Λ0.

Notice that by continuity we obtain u ≤ uνλ0
in Ωνλ0

. We have to show that λ0 = λ0
1(ν). Assume by

contradiction λ0 < λ0
1(ν) ≤ 0 and let Aλ0

⊂ Ωνλ0
be an open set such that Zu,λ0

∩Ωνλ0
⊂ Aλ0

⊂⊂ Ω.
Such set exists by Hopf’s Lemma. Notice that, since |Zu,λ0

| = 0 as remarked above, we can take
Aλ0 with measure arbitrarily small. Since we are working in Ωνλ0

, we have that the weight 1/|x|p is
not singular there. Moreover, in a neighborhood of the reflected point of the origin 0νλ, we know, by
Lemma 4, that u < uνλ0

. Since elsewhere 1/|xνλ|p is not singular and u,∇u, uνλ,∇uνλ are bounded,
we can exploit the strong comparison principle, see e.g. [21, Theorem 2.5.2], to get that

u < uνλ0
or u ≡ uνλ0

in any connected component of Ωνλ0
\ Zu. It follows now that

• the case u ≡ uνλ0
in some connected component C of Ωλ0

\ Zu,λ0
is not possible, since by

symmetry, it would imply the existence of a local symmetry phenomenon and consequently
that Ω \ Zu,λ0 would be not connected, in spite of what stated in Lemma 5.

Note also that, since the domain is strictly convex, by Hopf’s Lemma and the Dirichlet condition
(see e.g. [10]), we get that there exists a neighborhood Nλ0

of ∂Ωνλ0
∩ ∂Ω where u < uνλ0

in Nλ0
.

We deduce that there exists a compact set K in Ωνλ0
such that

- |Ωνλ0
\
(

(K \Aλ0
) ∪Nλ0

)
| is sufficiently small so that Proposition 2 applies.

- uνλ0
− u is positive in (K \Aλ0) ∪Nλ0 .

Therefore by continuity (and redefining Aλ0+ε as small as we want and Nλ0+ε, exploiting Hopf’s
Lemma) we find ε > 0 such that
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- |Ωνλ0+ε \
(

(K \Aλ0+ε) ∪Nλ0+ε

)
| is sufficiently small so that Proposition 2 applies.

- uνλ0+ε − u is positive in (K \Aλ0+ε) ∪Nλ0+ε.

Since now uνλ0+ε − u ≥ 0 on ∂
(

(K \ Aλ0+ε) ∪ Nλ0+ε

)
it follows u ≤ uνλ0+ε on ∂

(
Ωνλ0+ε \

(
(K \

Aλ0+ε) ∪ Nλ0+ε

))
. By Proposition 2 it follows u ≤ uνλ0+ε in Ωνλ0+ε \

(
(K \Aλ0+ε) ∪ Nλ0+ε

)
and

consequently in Ωνλ0+ε, what contradicts the assumption λ0 < λ0
1(ν). Therefore, λ0 ≡ λ0

1(ν) and
the thesis is proved.

We point out that we are exploiting Proposition 2 in the set Ωνλ0+ε\
(

(K\Aλ0+ε)∪Nλ0+ε

)
which

is bounded away from the boundary ∂Ω and then the constant δ in the statement is uniformly
bounded.

The proof of (84) follows by the strong comparison theorem applied as above.

Finally (85) follows by the monotonicity of the solution that is implicit in the arguments above. �

We can now give the

Proof of Theorem 2: Since by hypothesis Ω is strictly convex w.r.t. the ν−direction and symmetric
w.r.t. to (see equation (47))

T ν0 = {x ∈ RN : x · ν = 0},
it follows by Proposition 3, being λ1(ν) = 0 = λ0

1(ν) in this case, that

u(x) ≤ uνλ(x) for x ∈ Ων0 ,

see equation (50). In the same way, performing the moving plane method in the direction −ν we
obtain

u(x) ≥ uνλ(x) for x ∈ Ων0 ,

that is, u is symmetric and non decreasing w.r.t. the ν−direction, since monotonicity follows
by (85).

Finally, if Ω is a ball, repeating this argument along any direction, it follows that u s radially

symmetric. The fact that
∂u

∂r
(r) < 0 for r 6= 0, follows by the Hopf’s boundary Lemma which

works in this case since the level sets are balls and therefore fulfill the interior sphere condition.

�
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