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the H1

0(Ω) part of the solution (the solution u generally does
not belong to H1

0(Ω)), that allow to deduce symmetry and
monotonicity properties of solutions, via the Moving Plane Method.
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1. Introduction

In this paper we study symmetry and monotonicity properties of the solutions to the problem

{−�u = 1
uγ + f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1)

where γ > 0, Ω is a bounded smooth domain and u ∈ C(Ω) ∩ C2(Ω).
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Our main results will be proved under the following assumption

(H p) f (·) is locally Lipschitz continuous, non-decreasing, f (s) > 0 for s > 0 and f (0) � 0.

As a model problem we may consider solutions to −�u = 1
uγ + uq with q > 0.

Since the pioneer results in [11] and [24] singular semilinear elliptic equations have been consid-
ered by several authors. We refer to [2,3,5–7,12,15–18,23].

The variational characterization of problem (1) is not trivial. In fact, already in the case f ≡ 0, the
condition γ < 3 is necessary to have solutions in H1

0(Ω) and to have the associated energy functional
I �= +∞, see [18]. A first attempt in this direction can be found in [15] in the case γ � 1.

Later in [6] a general approach was developed for any γ > 0. The main idea in [6], that will be
a key ingredient in the present paper, is a translation of the energy functional and of the functions
space used, based on the decomposition of the solutions as

u = u0 + w (2)

where w ∈ H1
0(Ω) and u0 ∈ C(Ω) ∩ C2(Ω) is the solution to the problem:

⎧⎨
⎩

−�u0 = 1
u0

γ in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(3)

The solution u0 is unique (see Lemma 2.8 in [6]) and can be found via a sub- super-solution
method like in [6] or via a truncation argument as in [3]. It follows by the comparison argument used
in the proof of [6] that the solution u0 is continuous up to the boundary and is bounded away from
zero in the interior of Ω . This latter information also follows by [3] where the solution u0 is obtained
as the limit of an increasing sequence of positive solutions to a regularized problem.

The equation −�u0 = 1
u0

γ consequently can be understood in the weak distributional sense with
test functions with compact support in Ω , that is

∫
Ω

(Du0, Dϕ)dx =
∫
Ω

ϕ

u0
γ

dx ∀ϕ ∈ C1
c (Ω). (4)

Actually the solution is fulfilled in the classical sense in the interior of Ω by standard regularity
results, since u0 is strictly positive in the interior of the domain.

In any case, taking into account [18], for γ � 3 u0 does not belong to H1
0(Ω) and, consequently, u

does not belong to H1
0(Ω) too.

The proof of our symmetry result is based on the well known Moving Plane Method (see [22]), that
was used in a clever way in the celebrated paper [13] in the semilinear nondegenerate case. Actually
our proof is more similar to the one of [1] and is based on the weak comparison principle in small
domains.

Let us mention that the symmetry (and monotonicity) results in [13] hold also in the case when
the domain is the whole space R

N provided that some a-priori assumptions on the solutions are
imposed, or considering the case of nonlinearities decreasing at zero.

The same symmetry results in R
N have been obtained in [4,9] (see also the related paper [20])

without any a-priori assumptions.
We refer the reader to [8,19,21] for results in the case of fully nonlinear elliptic equations.
Finally, let us mention that symmetry results can be obtained in many other contexts, e.g. we refer

the reader to [10] for the case of equations in integral form.
In our case, because of the singular nature of our problem, we have to take care of two difficulties,

namely:
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– u does not belong to H1
0(Ω),

– 1
sγ + f (s) is not Lipschitz continuous at zero.

This causes that a straightforward modification of the moving plane technique is not possible in
our setting and for this reason we need a new technique based on the decomposition in (2).

Let us state our symmetry result:

Theorem 1. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to (1) with f (·) satisfying (H p). Assume that the domain Ω

is strictly convex w.r.t. the ν-direction (ν ∈ S N−1) and symmetric w.r.t. T ν
0 , where

T ν
0 = {

x ∈ R
N : x · ν = 0

}
.

Then u is symmetric w.r.t. T ν
0 and non-decreasing w.r.t. the ν-direction in Ων

0 , where

Ων
0 = {x ∈ Ω: x · ν < 0}.

Moreover, if Ω is a ball, then u is radially symmetric with ∂u
∂r (r) < 0 for r �= 0.

For the reader’s convenience, we describe here below the scheme of the proof.

(i) Since, by [3], u0 is the limit of a sequence un of solutions to a regularized problem (15), we de-
duce symmetry and monotonicity properties of un , and consequently of u0, applying the moving
plane procedure in a standard way to the regularized problem (15).

(ii) By (i), recalling the decomposition in (2): u = u0 + w , we are reduced to prove symmetry and
monotonicity properties of w . To do this, in Section 4, we prove some comparison principles
for w needed in the application of the moving plane procedure.

(iii) In Section 5, we carry out the adaptation of the moving plane procedure to the study of the
monotonicity and symmetry of w . It is worth emphasizing that the moving plane procedure is
applied in our approach only to the H1

0(Ω) part of u.
Note also that Theorem 1 is proved in Section 6, exploiting the more general result Proposition 9.

2. Notations

To state the next results we need some notations. Let ν be a direction in R
N with |ν| = 1. Given a

real number λ we set

T ν
λ = {

x ∈R
N : x · ν = λ

}
, (5)

Ων
λ = {x ∈ Ω: x · ν < λ} (6)

and

xν
λ = Rν

λ(x) = x + 2(λ − x · ν)ν, (7)

that is the reflection trough the hyperplane T ν
λ . Moreover we set

(
Ων

λ

)′ = Rν
λ

(
Ων

λ

)
(8)

and observe that (Ων
λ )′ may be not contained in Ω . Also we take

a(ν) = inf x · ν. (9)

x∈Ω



4440 A. Canino et al. / J. Differential Equations 255 (2013) 4437–4447
When λ > a(ν), since Ων
λ is nonempty, we set

Λ1(ν) = {
λ:

(
Ων

t

)′ ⊂ Ω for any a(ν) < t � λ
}
, (10)

and

λ1(ν) = sup Λ1(ν). (11)

Finally we set

uν
λ(x) = u

(
xν
λ

)
, (12)

for any a(ν) < λ � λ1(ν).

3. Symmetry properties of u0

Basing on the construction of the solution u0 of (3) we prove in this section some useful symmetry
and monotonicity result for u0.

Proposition 2. Let u0 ∈ C(Ω) ∩ C2(Ω) be the solution to (3). Then, for any

a(ν) < λ < λ1(ν)

we have

u0(x) < u0
ν
λ(x), ∀x ∈ Ων

λ (13)

and

∂u0

∂ν
(x) > 0, ∀x ∈ Ων

λ1(ν). (14)

Proof. Let un ∈ H1
0(Ω) ∩ C(Ω) be the unique solution to

⎧⎨
⎩

−�un = 1
(un+ 1

n )γ
for x ∈ Ω,

un > 0 for x ∈ Ω,

un = 0 for x ∈ ∂Ω.

(15)

The existence of un was proved in [3] and the uniqueness follows by [6]. Since the problem is no more
singular, by standard elliptic estimates it follows that un ∈ C2(Ω). Therefore we can use the moving
plane technique exactly as in [1,13,22] to deduce that the statement of our proposition holds true for
each un . By [3] un converges to u0 a.e. as n tends to infinity and therefore (13) follows passing to the
limit. Finally in the same way

∂u0

∂ν
(x) � 0, ∀x ∈ Ων

λ1(ν),

and therefore (14) follows via the strong maximum principle. �
As a consequence of Proposition 2, we get
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Proposition 3. Let u0 ∈ C(Ω)∩ C2(Ω) be the solution of (3) and assume that the domain Ω is strictly convex
w.r.t. the ν-direction (ν ∈ S N−1) and symmetric w.r.t. T ν

0 . Then u0 is symmetric w.r.t. T ν
0 and non-decreasing

w.r.t. the ν-direction in Ων
0 . Moreover, if Ω is a ball, then u0 is radially symmetric with ∂u0

∂r (r) < 0 for r �= 0.

4. Comparison principles

Let us start with the following

Lemma 4. Let γ > 0 and consider the function

gγ (x, y, z,h) := xγ (x + y)γ (z + h)γ + xγ zγ (z + h)γ − zγ (x + y)γ (z + h)γ − xγ zγ (x + y)γ

and the domain D ⊂R
4 defined by

D := {
(x, y, z,h)

∣∣ 0 � x � z; 0 � h � y
}
.

Then it follows that gγ � 0 in D.

Proof. Since x � z, by a direct calculation we get

∂ gγ

∂ y
(x, y, z,h) = γ xγ (x + y)γ −1(z + h)γ − γ zγ (x + y)γ −1(z + h)γ − γ xγ zγ (x + y)γ −1 � 0.

Therefore we are reduced to prove that gγ � 0 in D ∩ {h = y}, that is

gγ (x, y, z, y) = xγ (x + y)γ (z + y)γ + xγ zγ (z + y)γ − zγ (x + y)γ (z + y)γ − xγ zγ (x + y)γ � 0.

For x = 0 the thesis follows at once. For x > 0 we note that

gγ (x, y, z, y) = −
(

1

xγ
− 1

zγ
+ 1

(z + y)γ
− 1

(x + y)γ

)(
xγ zγ (z + y)γ (x + y)γ

)

and the conclusion follows exploiting the fact that, for 0 < x � z fixed, the function

g̃γ (t) := x−γ − z−γ + (z + t)−γ − (x + t)−γ

is increasing in [0,∞) and g̃γ (0) = 0. �
Lemma 5. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to problem (1) with γ > 0. Assume that Ω is a bounded
smooth domain and that f (·) is locally Lipschitz continuous, f (s) > 0 for s > 0 and f (0) � 0. Let w be given
by (2).

Then it follows

w > 0 in Ω.

Proof. Since u ∈ C(Ω) ∩ C2(Ω) and u0 ∈ C(Ω) ∩ C2(Ω), then w ∈ H1
0(Ω) ∩ C(Ω) ∩ C2(Ω).

By hypothesis on f (·), it follows that u is a super-solution (following Definition 2.5 of [6]) to the
equation

−�v = 1
γ

.

v
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Therefore, by Lemma 2.8 in [6] we get that

u � u0 in Ω and therefore w � 0 in Ω.

Now let us show that w > 0 in the interior of Ω via the maximum principle exploited in regions
where the problem is not singular. More precisely let us assume by contradiction that there exists a
point x0 ∈ Ω such that w(x0) = 0 and let r = r(x0) > 0 such that Br(x0) � Ω . We have, in the classical
sense, in Br(x0)

−�w = −�u + �u0 = 1

(u0 + w)γ
+ f (u) − 1

uγ
0

� 1

(u0 + w)γ
− 1

uγ
0

.

Since u0(x0) > 0 we can assume that u0 is positive in Br(x0). Therefore we get that

1

(u0 + w)γ
− 1

uγ
0

= c(x)(u0 + w − u0) = c(x)w

for some bounded coefficient c(x). Thus there exists Λ > 0 such that 1
(u0+w)γ

− 1
u
γ
0

+ Λw � 0 in

Br(x0), so that

−�w + Λw � 0 in Br(x0).

By the strong maximum principle we get w ≡ 0 in Br(x0) and by a covering argument that w ≡ 0
in Ω . But w ≡ 0 in Ω implies f (·) = 0 and we get a contradiction. �
Proposition 6 (A strong maximum principle). Let a(ν) < λ < λ1(ν) and let Ω ′ be a sub-domain of Ων

λ .
Assume that u ∈ C(Ω) ∩ C2(Ω) is a solution to (1) with f (·) satisfying (H p).

Let w be given by (2) and assume that

∂ w

∂ν
� 0 in Ω ′.

Then it holds the alternative

∂ w

∂ν
> 0 in Ω ′ or

∂ w

∂ν
= 0 in Ω ′.

Proof. Let us use the short hand notation wν := ∂ w
∂ν and u0ν := ∂u0

∂ν . Since f ′(·) � 0 a.e.1 by as-
sumption (H p), u0ν � 0 in Ω ′ by Proposition 2, u � u0 by Lemma 5 and finally wν � 0 in Ω ′ by
assumption, differentiating the equation in (1) we get that wν solves

−�wν = − γ

uγ +1
wν + f ′(u)(wν + u0ν) + γ

(
1

uγ +1
0

− 1

uγ +1

)
u0ν

� − γ

uγ +1
wν .

1 Note that, even if f ′ exists a.e., the term f ′(u)(wν + u0ν ) makes sense in the weak Sobolev meaning thanks to Stampac-
chia’s theorem.
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We recall now that u is bounded away from zero in Ω ′ , and therefore we find Λ > 0 such that

−�wν � − γ

uγ +1
wν � −Λwν,

so that the conclusion follows by the standard strong maximum principle [14]. �
Proposition 7 (Weak Comparison Principle in small domains). Let a(ν) < λ < λ1(ν) and Ω ′ ⊆ Ων

λ . Assume
that u ∈ C(Ω) ∩ C2(Ω) is a solution to (1) with f (·) satisfying (H p).

Let w be given by (2) and assume that

w � wν
λ on ∂Ω ′.

Then there exists a positive constant δ = δ(u, f ) such that, if L (Ω ′) � δ, then

w � wν
λ in Ω ′.

Proof. We have

−�(u0 + w) = 1

(u0 + w)γ
+ f (u0 + w) in Ω, (16)

−�
(
u0

ν
λ + wν

λ

) = 1

(u0
ν
λ + wν

λ)γ
+ f

(
u0

ν
λ + wν

λ

)
in Ω. (17)

Since (w − wν
λ)+ ∈ H1

0(Ω ′) we can consider a sequence of positive functions ψn such that

ψn ∈ C∞
c

(
Ω ′) and ψn

H1
0(Ω ′)−−−−→ (

w − wν
λ

)+
.

We can also assume that suppψn ⊆ supp(w − wν
λ)+ . We plug ψn into the weak formulation of (16)

and (17) and subtracting we get

∫
Ω ′

(
D(u0 + w) − D

(
u0

ν
λ + wν

λ

)
, Dψn

)
dx

=
∫
Ω ′

(
1

(u0 + w)γ
+ f (u0 + w) − 1

(u0
ν
λ + wν

λ)γ
− f

(
u0

ν
λ + wν

λ

))
ψn dx. (18)

Since u0 and u0
ν
λ solve (3) we deduce

∫
Ω ′

(
D

(
w − wν

λ

)
, Dψn

)
dx =

∫
Ω ′

(
1

(u0
ν
λ)γ

− 1

(u0)γ
+ 1

(u0 + w)γ
− 1

(u0
ν
λ + wν

λ)γ

)
ψn dx

+
∫
Ω ′

(
f (u0 + w) − f

(
u0

ν
λ + wν

λ

))
ψn dx. (19)

Since u0 � u0
ν
λ in Ων

λ and w � wν
λ on the support of ψn , by applying Lemma 4 with u0 = x, w = y,

u0
ν
λ = z and wν

λ = h we get
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(u0)
γ (u0 + w)γ

(
u0

ν
λ + wν

λ

)γ + (u0)
γ
(
u0

ν
λ

)γ (
u0

ν
λ + wν

λ

)γ
−(

u0
ν
λ

)γ
(u0 + w)γ

(
u0

ν
λ + wν

λ

)γ − (u0)
γ
(
u0

ν
λ

)γ
(u0 + w)γ � 0

and then
( 1

(u0
ν
λ)γ

− 1
(u0)γ

+ 1
(u0+w)γ

− 1
(u0

ν
λ+wν

λ)γ

)
� 0.

Therefore, by assumption (H p), we find a constant C > 0 such that

∫
Ω ′

(
D

(
w − wν

λ

)
, Dψn

)
dx �

∫
Ω ′

(
f (u0 + w) − f

(
u0

ν
λ + wν

λ

))
ψn dx

�
∫
Ω ′

(
f
(
u0

ν
λ + w

) − f
(
u0

ν
λ + wν

λ

))
ψn dx � C

∫
Ω ′

(
w − wν

λ

)
ψn dx. (20)

We now pass to the limit for n → ∞ and get

∫
Ω ′

∣∣D
(

w − wν
λ

)+∣∣2
dx � C

∫
Ω ′

∣∣(w − wν
λ

)+∣∣2
dx

and by the Poincaré inequality

∫
Ω ′

∣∣D
(

w − wν
λ

)+∣∣2
dx � CC p

(
Ω ′)∫

Ω ′

∣∣D
(

w − wν
λ

)+∣∣2
dx.

For δ small it follows that CC p(Ω ′) < 1 which shows that actually (w − wν
λ)+ = 0 and the thesis

follows. �
Lemma 8 (Strong Comparison Principle). Let u ∈ C(Ω) ∩ C2(Ω) be a solution to problem (1), with f (·) satis-
fying (H p). Let w be given by (2) and assume that, for some a(ν) < λ � λ1(Ω), we have

w � wν
λ in Ων

λ .

Then w < wν
λ in Ων

λ unless w ≡ wν
λ in Ων

λ .

Proof. Let us assume that there exists a point x0 ∈ Ων
λ such that w(x0) = wν

λ(x0) and let r = r(x0) > 0
such that Br(x0) � Ων

λ . We have, in the classical sense, in Br(x0)

−�
(

wν
λ − w

) = −�
(
uν

λ − u0
ν
λ

) + �(u − u0)

=
(

1

uγ
0

− 1

(u0
ν
λ)γ

+ 1

(u0
ν
λ + w)γ

− 1

(u0 + w)γ

)
+ (

f
(
u0

ν
λ + wν

λ

) − f (u0 + w)
)

+ 1

(u0
ν
λ + wν

λ)γ
− 1

(u0
ν
λ + w)γ

. (21)

Since f (·) is non-decreasing by assumption, u0 � u0
ν
λ in Ων

λ by Proposition 2 and w � wν
λ in Ων

λ , we
get

f
(
u0

ν
λ + wν

λ

) − f (u0 + w) � 0.
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Moreover, since for 0 < a � b the function g(t) := a−γ − b−γ + (b + t)−γ − (a + t)−γ is increasing in
[0,∞), we also have

(
1

uγ
0

− 1

(u0
ν
λ)γ

+ 1

(u0
ν
λ + w)γ

− 1

(u0 + w)γ

)
� 0

and by (21) we get

−�
(

wν
λ − w

)
� 1

(u0
ν
λ + wν

λ)γ
− 1

(u0
ν
λ + w)γ

.

Since u0
ν
λ(x0) > 0, arguing as in Lemma 5, we find Λ > 0 such that, eventually reducing r, it results

1
(u0

ν
λ+wν

λ)γ
− 1

(u0
ν
λ+w)γ

+ Λ(wν
λ − w) � 0 in Br(x0), so that

−�
(

wν
λ − w

) + Λ
(

wν
λ − w

)
� 0 in Br(x0).

By the strong maximum principle [14] it follows (wν
λ − w) ≡ 0 in Br(x0), and by a covering argument

(wν
λ − w) ≡ 0 in Ων

λ , proving the result. �
5. Symmetry

Proposition 9. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to (1). Let w be given by (2).
Then, for any

a(ν) < λ < λ1(ν)

we have

w(x) < wν
λ(x), ∀x ∈ Ων

λ . (22)

Moreover

∂ w

∂ν
(x) > 0, ∀x ∈ Ων

λ1(ν). (23)

Finally, (22) and (23) hold true replacing w by u.

Proof. Let λ > a(ν). Since w > 0 in Ω by Lemma 5 we have:

w � wν
λ on ∂Ων

λ .

Therefore, assuming that L (Ων
λ ) is sufficiently small (say for λ − a(ν) sufficiently small) so that

Proposition 7 applies, we get

w � wν
λ in Ων

λ , (24)

and actually w < wν
λ in Ων

λ by the Strong Comparison Principle (Lemma 8).
Let us define

Λ0 = {
λ > a(ν): w � wν

t in Ων
t for all t ∈ (a(ν),λ]}
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which is not empty thanks to (24). Also set

λ0 = sup Λ0.

By the definition of λ1(ν), to prove our result we have to show that actually λ0 = λ1(ν).
Assume otherwise that λ0 < λ1(ν) and note that, by continuity, we obtain w � wν

λ0
in Ων

λ0
. By the

Strong Comparison Principle (Lemma 8), it follows w < wν
λ0

in Ων
λ0

unless w = wν
λ0

in Ων
λ0

. Because
of the zero Dirichlet boundary condition and the fact that w > 0 in the interior of the domain, the
case w ≡ wν

λ0
in Ων

λ0
is not possible. Thus w < wν

λ0
in Ων

λ0
.

We can now consider δ given by Proposition 7, so that the Weak Comparison Principle holds true
in any sub-domain Ω ′ if L (Ω ′) � δ. Fix a compact set K ⊂ Ων

λ0
so that L (Ων

λ0
\ K ) � δ

2 . By
compactness we find σ > 0 such that

wν
λ0

− w � 2σ > 0 in K .

Take now ε̄ > 0 sufficiently small so that λ0 + ε̄ < λ1(ν) and, for any 0 < ε � ε̄

a) wν
λ0+ε − w � σ > 0 in K ,

b) L (Ων
λ0+ε \ K ) � δ.

Taking into account a) it is now easy to check that, for any 0 < ε � ε̄, we have that w � wν
λ0+ε

on the boundary of Ων
λ0+ε \ K . Consequently, by b), we can apply the Weak Comparison Principle

(Proposition 7) and deduce that

w � wν
λ0+ε in Ων

λ0+ε \ K .

Thus w � wν
λ0+ε in Ων

λ0+ε and by applying the Strong Comparison Principle (Lemma 8) we have
w < wν

λ0+ε in Ων
λ0+ε . We get a contradiction with the definition of λ0 and conclude that actually

λ0 = λ1(ν). Then (22) is proved.
It follows now directly from simple geometric considerations and by (22) that w is monotone

non-decreasing in Ων
λ1(ν)

in the ν-direction. This gives

∂ w

∂ν
(x) � 0 in Ων

λ1(ν),

so it is standard to deduce (23) from Proposition 6.
To prove that (22) and (23) hold true replacing w with u, just recall that

u = u0 + w,

and exploit Proposition 2. �
6. Proof of Theorem 1

The proof of Theorem 1 is now a direct consequence of Proposition 9. Observing that by assump-
tion

λ1(ν) = 0,

we can apply Proposition 9 in the ν-direction to get

u(x) � uν
λ (ν)(x), ∀x ∈ Ων

0
1
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and in the (−ν)-direction to get

u(x) � uν
λ1(ν)(x), ∀x ∈ Ων

0 .

Therefore u(x) ≡ uν
λ1(ν)(x) in Ω . The monotonicity of u follows by (23).
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