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Abstract. Stability properties for solutions of −∆m(u) = f(u) in RN are

investigated, where N ≥ 2 and m ≥ 2. The aim is to identify a critical
dimension N# so that every non-constant solution is linearly unstable when-

ever 2 ≤ N < N#. For positive, increasing and convex nonlinearities f(u),

global bounds on f f ′′

(f ′)2
allows us to find a dimension N#, which is optimal

for exponential and power nonlinearities. In the radial setting we can deal

more generally with C1−nonlinearities and the dimension N# we find is still

optimal.

1. Introduction and statement of the main results. Let us consider a solution
u of

−∆m(u) = f(u) in RN , (1)

where ∆m = div (|∇u|m−2∇u) denotes the m-Laplace operator, m ≥ 2 and N ≥ 2.

Due to the singular/degenerate nature of the elliptic operator ∆m, by [14, 26, 32] the
best and natural regularity for a weak-solution u of (1) is u ∈ C1,α

loc(RN ), for some
α ∈ (0, 1). Therefore equation (1) is to be understood with its weak formulation:∫

RN
|∇u|m−2(∇u,∇ϕ) dx =

∫
RN

f(u)ϕdx ∀ ϕ ∈ C1
c (RN ). (2)

In the paper, a solution u of (1) is always assumed to be in C1,α

loc(RN ), α ∈ (0, 1),
and to satisfy (2).

We are concerned with stability properties of solutions u of (1). Let us give the
following definition:
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Definition 1.1. A solution u of (1) is stable if∫
RN
|∇u|m−2|∇ϕ|2 dx+ (m− 2)

∫
RN
|∇u|m−4(∇u,∇ϕ)2 dx

−
∫

RN
f ′(u)ϕ2 dx ≥ 0

(3)

for every ϕ ∈ C1
c (RN ). In particular it follows∫

RN
f ′(u)ϕ2 dx ≤ (m− 1)

∫
RN
|∇u|m−2|∇ϕ|2 dx (4)

for every ϕ ∈ C1
c (RN ).

Roughly speaking, the stability condition (3) means that the first eigenvalue of the
linearized operator Lu at u is nonnegative. Formally, the linearized operator Lu is
defined by duality as

Lu(ϕ)[ψ] =
∫

RN
|∇u|m−2 (∇ϕ,∇ψ) dx+

+ (m− 2)
∫

RN
|∇u|m−4 (∇u,∇ϕ) (∇u,∇ψ) dx−

∫
RN

f ′(u)ϕψ dx ∀ ψ ∈ C1
c (RN ).

For ϕ ∈ C1
c (RN ) the operator Lu is well defined with values in

(
C1
c (RN )

)′. It is
possible to define the corresponding first eigenvalue as

λ1(Lu) := inf{Lu(ϕ)[ϕ] : ϕ ∈ C1
c (RN ) ,

∫
RN

ϕ2 dx = 1}.

Assumption (3) reads exactly as λ1(Lu) ≥ 0. For our purposes, the functional space
C1
c (RN ) is sufficiently large to choose good test functions and we won’t go deeper

into the description of Lu. Let us note that, for ϕ ∈ C1
c (RN ) it is not clear which is

the optimal space Lu(ϕ) belongs to and λ1(Lu) is only formally the first eigenvalue
of Lu.
However, on a bounded domain Ω with a Dirichlet condition on u this construction
has been made rigorous in [6]. In [9, 10] it is shown that ρ = |∇u|m−2 ∈ L∞(Ω)
with ρ−1 ∈ L1(Ω). Then, it is possible to define H1

0,ρ(Ω) as the completion of C1
c (Ω)

w.r.t. the weighted norm

‖ϕ‖2H1
0,ρ(Ω) =

∫
Ω

ρ|∇ϕ|2 dx+
∫

Ω

ϕ2 dx.

In this way Lu is well defined as an operator from the Hilbert space H1
0,ρ(Ω) into

itself. The first eigenvalue λ1(Lu) is attained in H1
0,ρ(Ω) and has the usual proper-

ties.

The aim of the paper is to show that, in low dimensions, stable solutions of (1) are
necessarily trivial. A similar phenomenon has been already investigated in other
contexts and is strictly related to regularity and compactness issues via a blow up
procedure: minimal hypersurfaces in RN [31], minimizing harmonic maps from RN
into spheres/hemispheres [25, 30], De Giorgi’s conjecture [1, 12, 13, 21, 23, 28, 29].
Semilinear problems (1) (i.e. m = 2) with exponential/polynomial nonlinearities
have been considered in [2, 11, 17, 18, 19, 20] and with general nonlinearities in
[3]. The quasilinear case m > 2 with power nonlinearities has been studied in
[8]. Regularity of extremal solutions (or equivalently, compactness of the minimal
branch) for nonlinear eigenvalue problems with general nonlinearities have been
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considered in [2, 4, 7, 11, 18, 24, 27, 33] in the semilinear case and [5, 6] in the
quasilinear case (see also [16] for the compactness of higher branches).
We are interested in obtaining Liouville-type results for (1) both in the semilinear
and quasilinear situation, and for general nonlinearities f(u).

First, we focus on the model class composed by polynomial and exponential non-
linearities. Given γ > 0, define fγ(u) as

fγ(u) =

 (1 + u)
1

1−γ if γ < 1
eu if γ = 1
(1− u)−

1
γ−1 if γ > 1.

(5)

When f = fγ we will consider solutions u of (1) so that u ≥ −1 if γ < 1 and u < 1
if γ > 1. Our first main result is the following:

Theorem 1.2. Let m ≥ 2 and γ > m−2
m−1 . Assume

2 ≤ N < N# :=
m

m− 1
2 + 2

√
γ(m− 1)− (m− 2) + γ(m− 1)
γ(m− 1)− (m− 2)

.

Then, problem (1) with f = fγ does not possess any non-constant, stable solution
u with fγ(u) ∈ L∞(RN ).

For the nonlinearity fγ(u) in (5), the critical dimension N# is optimal. Indeed, for
N ≥ N# the associated nonlinear eigenvalue problem on the unit ball has a non-
compact minimal branch uλ: ‖fγ(uλ)‖∞ → +∞ as λ ↑ λ∗, λ∗ being the extremal
parameter. A suitable rescaling of uλ converges to a non-constant, stable radial
solution u of (1) with fγ(u) ∈ L∞(RN ). We skip the details of the argument which
is by now very well established. We refer to [5] for m > 1 and f(u) = (1 + u)p,
p > 1, and to [17] for m = 2 and general f(u) in the form (5).
Observe that, when fγ = (1 +u)p, we have that γ = p−1

p → 1− as p→ +∞ and the
corresponding critical dimension N# → m+ 4m

m−1 as p→ +∞. This means that for
any N > m+ 4m

m−1 we can find p large so that problem (1) with f = (1+u)p possesses
a non-constant, stable bounded solution u which is radial. This will provide the
optimality property stated in Theorem 1.4 part c). Moreover, for every p > 1 the
inequality N# > m + 4m

m−1 holds and explains somehow why in Theorem 1.4 part
c) the limiting situation N = m+ 4m

m−1 gives rise to instability.

Theorem 1.2 is a special case of a more general result. Let f ∈ C1[a0, a1]∩C2(a0, a1)
be a positive, increasing and convex function in (a0, a1), where −∞ ≤ a0 < a1 <
+∞ (here and in the sequel, we use the convention [a0, a1] = (a0, a1] whenever
a0 = −∞).
We will focus on solutions u of (1) so that a0 ≤ u ≤ a1 and we assume on f(u) the
following condition:

γ ≤ f(u)f ′′(u)
(f ′)2(u)

≤ Γ ∀ u ∈ (a0, a1) (6)

for 0 < γ ≤ Γ < +∞.

Observe that fγ(u) satisfies assumption (6) with γ = Γ. Viceversa, by a simple
integration it is easy to see that the limiting situation γ = Γ in (6) corresponds
exactly to the nonlinearities fγ(u) in (5) (up to a linear change in the variable u
and up to a positive factor in front of f(u)). Hence, the nonlinearities described by
assumption (6) form a class more general than {fγ : γ > 0}.



4 DANIELE CASTORINA, PIERPAOLO ESPOSITO AND BERARDINO SCIUNZI

As far as fγ(u), let us observe that a0 is −1 when γ < 1 and −∞ when γ ≥ 1, and
a1 ∈ (a0,+∞) for γ ≤ 1 and a1 ∈ (−∞, 1) for γ > 1. Theorem 1.2 is then just a
consequence of our second main result:

Theorem 1.3. Let m ≥ 2 and f be as above. Assume that (6) holds with γ > m−2
m−1

and let N# be defined as

N# =
m

m− 1
2 + 2

√
γ(m− 1)− (m− 2) + Γ(m− 1)

Γ(m− 1)− (m− 2)
. (7)

Then, for any 2 ≤ N < N# problem (1) does not possess any non-constant, stable
solution u with a0 ≤ u < a1.

In the radial situation, let us consider a general nonlinearity f ∈ C1[a2, a3], where
−∞ ≤ a2 < a3 < +∞. The approach in [3] for the semilinear case m = 2 and
bounded solutions u extends to the quasilinear case m ≥ 2 and to possibly one-side
bounded solutions u:

Theorem 1.4. Let m ≥ 2. Let f be as above and assume that f ∈ L1(a2, a3).
Either
a) N# is defined as

N# =
2m+ 2

√
m

m− 1
(8)

or
b) a2 > −∞ and N# is defined as

N# =
3m− 1 + 2

√
2m− 1

m− 1
(9)

or

c) a2 > −∞, lim
u→a0

|f ′(u)|
|u− a0|q

∈ (0,+∞) for every zero point a0 ∈ {a ∈ [a2, a3] :

f(a) = 0} and for some q = q(a0) ≥ 0 and N# is defined as

N# = m+
4m
m− 1

. (10)

Then, for any 2 ≤ N ≤ N# problem (1) does not possess any radial, non-constant,
stable solution u with a2 ≤ u ≤ a3. Moreover, the dimension N# in case (c) is
optimal.

The paper is organized as follows. In Section 2 a class of suitable test functions in
the stability assumption (3) yields to strong integrability conditions on f(u) which
are impossible in low dimensions for non-constant solutions u. Section 3 is devoted
to discuss the radial case contained in Theorem 1.4.

While submitting the paper, we learnt from L. Dupaigne that he and A. Farina
have obtained in [15] for the case m = 2 stronger results than ours. In particular,
a control on f f ′′

(f ′)2 near the zeroes of f(u) is sufficient.

2. Proof of Theorem 1.3. Our approach is inspired by the techniques developed
in [17, 18, 19, 20] for the semilinear case m = 2. Let us consider α > −min{γ, 1}
and set

g(u) =
∫ u

a0

fα−1(s)(f ′)2(s) ds.
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Observe that g(u) is well defined in (a0, a1] and satisfies the crucial estimate

g(u) ≤ 1
α+ γ

fα(u)f ′(u) ∀ u ∈ (a0, a1] (11)

by means of the lower bound in (6). Indeed, fix a ∈ (a0, a1] and compute for
a < u ≤ a1:

α

∫ u

a

fα−1(s)(f ′)2(s) ds = fα(u)f ′(u)− fα(a)f ′(a)−
∫ u

a

fα(s)f ′′(s) ds

≤ fα(u)f ′(u)− γ
∫ u

a

fα−1(s)(f ′)2(s) ds.

Hence, it follows that∫ u

a

fα−1(s)(f ′)2(s) ds ≤ 1
α+ γ

fα(u)f ′(u)

for every u ∈ (a, a1]. Letting a → a0, g(u) is well defined in (a0, a1] and satisfies
(11).
The upper bound in (6) implies that the function f ′/fΓ is non-increasing and

f ′(u)
fΓ(u)

≥ f ′(a1)
fΓ(a1)

> 0

for every a0 < u ≤ a1. Therefore, the estimate

fΓ(u) ≤ kf ′(u) (12)

does hold for any u ∈ (a0, a1], for some positive constant k.

Let us now explain the strategy. Given χ ∈ C∞c (RN ) so that 0 ≤ χ ≤ 1, we take
ϕ = χmg(u) as a test function in (2) to deduce by (4) some integrability condition
on f(u). In low dimensions, this will be a very strong condition and will imply the
“triviality” of u.

Since ∇ϕ = χmfα−1(u)(f ′)2(u)∇u+mχm−1g(u)∇χ, by (2) we have∫
RN

χmfα−1(u)(f ′)2(u)|∇u|m dx

=
∫

RN
|∇u|m−2(∇u,∇ϕ) dx−m

∫
RN

χm−1g(u)|∇u|m−2(∇u,∇χ) dx

=
∫

RN
χmf(u)g(u) dx−m

∫
RN

χm−1g(u)|∇u|m−2(∇u,∇χ) dx.

(13)

As a consequence of the stability condition on u, we have the validity of (4) which,
applied to ϕ = 2

α+1χ
m
2 f

α+1
2 (u), leads to

4
(m− 1)(α+ 1)2

∫
RN

χmfα+1(u)f ′(u) dx

≤ 4
(α+ 1)2

∫
RN
|∇u|m−2

∣∣∇(χ
m
2 f

α+1
2 (u))

∣∣2 dx
=
∫

RN
χmfα−1(u)(f ′)2(u)|∇u|m dx (14)

+
m2

(α+ 1)2

∫
RN

χm−2|∇χ|2fα+1(u)|∇u|m−2 dx

+
2m
α+ 1

∫
RN

χm−1fα(u)f ′(u)|∇u|m−2(∇u,∇χ) dx.
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Formula (13) into (14) yields to∫
RN

χmf(u)
(

4
(m− 1)(α+ 1)2

fα(u)f ′(u)− g(u)
)
dx

≤ m2

(α+ 1)2

∫
RN

χm−2|∇χ|2fα+1(u)|∇u|m−2 dx

+
∫

RN
χm−1

(
2m
α+ 1

fα(u)f ′(u)−mg(u)
)
|∇u|m−2(∇u,∇χ) dx.

(15)

Set G(u) =
∫ u
a0
g(u) and observe that by (11) we get 0 ≤ G(u) ≤ Cfα+1(u) in view

of α > −1. We are now in position to show:

Proof. (of Theorem 1.3) First, observe that the estimate∫
RN

χmfα−1(u)(f ′)2(u)|∇u|mdx

≤ 1
1− ε

∫
RN

χmf(u)g(u) dx+Dε

∫
RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

(16)

does hold for every ε > 0 small and Dε a suitable large constant. Estimate (16)
will be the main tool to control the gradient terms in (15) as we will see.

As far as (16), inserting (11) into (13) we get∫
RN

χmfα−1(u)(f ′)2(u)|∇u|mdx

≤
∫

RN
χmf(u)g(u) dx+

m

α+ γ

∫
RN

χm−1|∇χ|fα(u)f ′(u)|∇u|m−1 dx.

(17)

Split now

fα(u) = f (α−1)m−1
m (u)f

α−1+m
m −Γm−2

m (u)fΓm−2
m (u)

and by (12) obtain that

fα(u) ≤ k
m−2
m f (α−1)m−1

m (u)f
α−1+m
m −Γm−2

m (u)(f ′)
m−2
m (u).

Exploiting Young inequality with exponents m
m−1 and m, we get that

m

α+ γ
χm−1|∇χ|fα(u)f ′(u)|∇u|m−1

≤ m

α+ γ
k
m−2
m χm−1f (α−1)m−1

m (u)(f ′)
2(m−1)
m (u)|∇u|m−1 × |∇χ|f

α−1+m
m −Γm−2

m (u)

≤ εχmfα−1(u)(f ′)2(u)|∇u|m + Cε|∇χ|mfα+2Γ−1+m(1−Γ)(u)

for any ε > 0 small, where Cε is a suitable large constant. This estimate, inserted
in (17), yields to the validity of (16).

As far as the first term in the R.H.S. of (15), let us write

fα+1(u) = f
2
m [α+2Γ−1+m(1−Γ)]+m−2

m (α+2Γ−1)(u)

≤ k2m−2
m f

2
m [α+2Γ−1+m(1−Γ)]+m−2

m (α−1)(u)(f ′)2m−2
m (u)
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in view of (12). Exploiting now Young inequality with exponents m
m−2 and m

2 , for
m > 2 we have that

m2

(α+ 1)2
χm−2|∇χ|2fα+1(u)|∇u|m−2

≤ m2

(α+ 1)2
k2m−2

m χm−2f
m−2
m (α−1)(u)(f ′)2m−2

m (u)|∇u|m−2

×|∇χ|2f 2
m [α+2Γ−1+m(1−Γ)](u)

≤ εχmfα−1(u)(f ′)2(u)|∇u|m + Cε|∇χ|mfα+2Γ−1+m(1−Γ)(u),

for every ε > 0 small and Cε a large constant. Let us note that, when m = 2,
the above estimate is automatically true with ε = 0 and Cε = 4

(α+1)2 . By (16) the
following estimate does hold:

m2

(α+ 1)2

∫
RN

χm−2|∇χ|2fα+1(u)|∇u|m−2 dx

≤ ε
∫

RN
χmfα−1(u)(f ′)2(u)|∇u|m dx+ Cε

∫
RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

≤ ε

1− ε

∫
RN

χmf(u)g(u) dx+Dε

∫
RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx,

(18)

for every ε > 0 small and Dε a suitable large constant.

As far as the second term in the R.H.S. of (15), let us observe that∫
RN

χm−1

(
2m
α+ 1

fα(u)f ′(u)−mg(u)
)
|∇u|m−2(∇u,∇χ) dx

≤ C0

∫
RN

χm−1|∇χ|fα(u)f ′(u)|∇u|m−1 dx

in view of (11). By (12) and Young inequality with exponents m
m−1 and m, we can

write

C0χ
m−1|∇χ|fα(u)f ′(u)|∇u|m−1

= C0χ
m−1f (α−1)m−1

m +m−2
m Γf ′(u)|∇u|m−1 × |∇χ|f 1

m [α+2Γ−1+m(1−Γ)](u)

≤ C0k
m−2
m χm−1f (α−1)m−1

m (f ′)2m−1
m (u)|∇u|m−1 × |∇χ|f 1

m [α+2Γ−1+m(1−Γ)](u)

≤ εχmfα−1(f ′)2(u)|∇u|m + Cε|∇χ|mfα+2Γ−1+m(1−Γ)(u)

for ε > 0 small and Cε large. By (16) finally we get∫
RN

χm−1

(
2m
α+ 1

fα(u)f ′(u)−mg(u)
)
|∇u|m−2(∇u,∇χ) dx

≤ ε
∫

RN
χmfα−1(f ′)2(u)|∇u|m dx+ Cε

∫
RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

≤ ε

1− ε

∫
RN

χmf(u)g(u) dx+Dε

∫
RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

(19)

for ε > 0 small and Dε large.
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Set δε = 2ε
1−ε . Inserting (18)-(19) into (15) we get∫

RN
χmf(u)

(
4

(m− 1)(α+ 1)2
fα(u)f ′(u)− (1 + δε)g(u)

)
dx

≤ Cε
∫

RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

(20)

for ε > 0 small and Cε large. By (11) we have that

4
(m− 1)(α+ 1)2

fα(u)f ′(u)− (1 + δε)g(u)

≥
(

4
(m− 1)(α+ 1)2

− 1 + δε
α+ γ

)
fα(u)f ′(u).

The constant 4
(m−1)(α+1)2 −

1
α+γ is positive whenever α ∈ (α−, α+), where

α± =
1

m− 1
[
3−m± 2

√
γ(m− 1)− (m− 2)

]
are well defined by the assumption γ > m−2

m−1 . Moreover, observe that the interval

I0 = (−min{γ, 1},+∞) ∩ (α−, α+)

is not empty in view of α+ > −min{γ, 1}. Fix now α ∈ I0 and take ε sufficiently
small so that 4

(m−1)(α+1)2 −
1+δε
α+γ is still a positive number. By (20) we finally get

the estimate∫
RN

χmfα+1(u)f ′(u) dx ≤ C
∫

RN
|∇χ|mfα+2Γ−1+m(1−Γ)(u) dx

for every α ∈ I0.

Let us now consider χ in the form χ = φk (k ≥ 1, φ ∈ C∞0 (RN ) and 0 ≤ φ ≤ 1) to
obtain ∫

RN
φmkfα+1+Γ(u) dx ≤ C

∫
RN

φm(k−1)|∇φ|mfα+2Γ−1+m(1−Γ)(u) dx

in view of (12). Hölder inequality with q := α+1+Γ
α+2Γ−1+m(1−Γ) and q′ := α+1+Γ

Γ(m−1)−(m−2)

(q > 1 in view of Γ ≥ γ > m−2
m−1 ) leads now to∫

RN
φmkfα+1+Γ(u) dx ≤ C

( ∫
RN

φm(k−1)qfα+1+Γ(u) dx
) 1
q
( ∫

RN
|∇φ|mq

′
dx
) 1
q′ .

Since 0 ≤ φ ≤ 1, for k large so that m(k − 1)q ≥ mk it follows that∫
RN

φmkfα+1+Γ(u) dx ≤ C
∫

RN
|∇φ|mq

′
dx

for all α ∈ I0. If now we further restrict our attention and consider smooth test
functions 0 ≤ φR ≤ 1 so that φR = 1 in BR(0), φR = 0 outside B2R(0) and
|∇φR| ≤ 2

R , we get that ∫
BR(0)

fα+1+Γ(u) dx ≤ CRN−mq
′
,

and then ∫
RN

fα+1+Γ(u) dx = 0
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whenever N −mq′ < 0. Since N −mq′ is a decreasing function of α, we evaluate
the quantity N −mq′ at α0 which reduces to:

N − m

m− 1
2 + 2

√
γ(m− 1)− (m− 2) + Γ(m− 1)

Γ(m− 1)− (m− 2)
.

By the definition (7) of N#, for 2 ≤ N < N# the quantity N −mq′ is negative at
α0 and, by continuity, is still negative for α ∈ (α0 − η, α0) ∩ I0, η > 0 small. For a
given ᾱ ∈ (α0 − η, α0) ∩ I0, we get that

∫
RN

f ᾱ+1+Γ(u) dx = 0.

Since f > 0 in (a0, a1], we get that a0 > −∞ and u ≡ a0. The solution u is trivial
and the proof is complete.

3. The radial case. We will be concerned now with the study of radial solutions
to (1). Inspired by the nice argument in [3] for bounded solutions in the semilinear
case, our aim is to to cover the case m ≥ 2 and allow possibly one-side bounded
solutions u.

Setting r = |x|, let u = u(r) be a stable radial solution of (1). We have ur(0) = 0
and ∫ ∞

0

rN−1(|ur|m−2urϕr − f(u)ϕ) dr = 0 for any ϕ ∈ C1
c [0,∞). (21)

Our first aim is to derive the following fundamental relationship: for every ψ ∈
C1[a, b]

∫ b

a

rN−1
[
(m− 1)|ur|m−2urrψr − f ′(u)urψ

]
= −(N − 1)

∫ b

a

rN−3|ur|m−2urψ dr

−
[
rN−1f(u)ψ + (N − 1)rN−2|ur|m−2urψ

]∣∣b
a
, (22)

where 0 < a < b < +∞ are so that ur has constant sign on [a, b] (positive or
negative).

Indeed, by classical elliptic regularity theory [22] ur is smooth in [a, b] and equation
(21) is solved in the classical sense in (a, b):

r1−N (rN−1|ur|m−2ur)r + f(u) =
(

(m− 1)urr +
N − 1
r

ur

)
|ur|m−2 + f(u)

= 0.
(23)
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Multiply now equation (23) by rN−1ψr, ψ ∈ C1[a, b], and integrate by parts on
(a, b) to get

0 =
∫ b

a

[
(rN−1|ur|m−2ur)rψr + rN−1f(u)ψr

]
dr

=
∫ b

a

rN−1

(
(m− 1)|ur|m−2urr +

N − 1
r
|ur|m−2ur

)
ψr dr

−
∫ b

a

rN−1

(
N − 1
r

f(u) + f ′(u)ur

)
ψdr + rN−1f(u)ψ

∣∣b
a

=
∫ b

a

rN−1

[
(m− 1)|ur|m−2urrψr − f ′(u)urψ +

N − 1
r2
|ur|m−2urψ

]
dr

−
∫ b

a

N − 1
r

[rN−1f(u) + (rN−1|ur|m−2ur)r]ψ dr

+
[
rN−1f(u)ψ + (N − 1)rN−2|ur|m−2urψ

]∣∣b
a

=
∫ b

a

rN−1
[
(m− 1)|ur|m−2urrψr − f ′(u)urψ

]
+ (N − 1)

∫ b

a

rN−3|ur|m−2urψ dr

+
[
rN−1f(u)ψ + (N − 1)rN−2|ur|m−2urψ

]∣∣b
a
.

The validity of (22) easily follows.

Now we want to show that ur does not change sign on (0,∞). Given r0 > 0 be
such that ur(r0) 6= 0, by continuity let (a0, b0), 0 ≤ a0 < b0 ≤ +∞, be the largest
interval in [0,+∞) where ur 6= 0. We claim that necessarily b0 = +∞ and then, ur
has constant sign on (0,+∞).
To prove the claim, assume by contradiction b0 < +∞. For ε > 0 small, use (22)
on (a0 + ε, b0 − ε) with ψ = ur to get∫ b0−ε

a0+ε

rN−1
[
(m− 1)|ur|m−2u2

rr − f ′(u)u2
r

]
dr (24)

= −(N − 1)
∫ b0−ε

a0+ε

rN−3|ur|m dr −
[
rN−1f(u)ur + (N − 1)rN−2|ur|m

]∣∣b0−ε
a0+ε

.

By (23) and the Hopital rule we get that for a0 = 0

lim
r→0+

|ur|m−2ur
r

= lim
r→0+

(rN−1|ur|m−2ur)r
(rN )r

= −f(u(0))
N

while for a0 > 0

lim
r→a+

0

|ur|m−2ur
r − a0

= lim
r→a+

0

(|ur|m−2ur)r = (m− 1) lim
r→a+

0

|ur|m−2urr = −f(u(a0)).

In conclusion, there holds

|ur|m−1 = O(|r − a0|) as r → a+
0 ; |ur|m−1 = O(|r − b0|) as r → b−0 , (25)

and, in particular

rN−3|ur|m ∈ L1(a0, b0). (26)

Since ur(a0) = ur(b0) = 0, letting ε→ 0 in (24) by (26) we get that

rN−1|ur|m−2u2
rr ∈ L1(a0, b0) (27)
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and∫ b0

a0

rN−1
[
(m− 1)|ur|m−2u2

rr − f ′(u)u2
r

]
dr = −(N − 1)

∫ b0

a0

rN−3|ur|m dr. (28)

On the other side, the stability of u implies Q(ϕ) ≥ 0 for any ϕ ∈ C1
c [0,∞), where

Q(ϕ) :=
∫ ∞

0

rN−1
[
(m− 1)|ur|m−2ϕ2

r − f ′(u)ϕ2
]
dr.

Given ε > 0, let 0 ≤ Ψ ≤ 1 be a smooth cut-off function in R so that Ψ ≡ 1 in
(a0 + 2ε, b0− 2ε), Ψ ≡ 0 in [0,∞) \ (a0 + ε, b0− ε) and Ψ2

r ≤ 2
ε2 . Since ur is smooth

in (a0, b0), urΨ ∈ C1
c [0,+∞) and then

Q(urΨ) =
∫ ∞

0

rN−1
[
(m− 1)|ur|m−2

(
u2
rrΨ

2 + 2ururrΨΨr + u2
rΨ

2
r

)
− f ′(u)u2

rΨ
2
]

≥ 0.

We get that by (25) ∫ ∞
0

rN−1|ur|mΨ2
r ≤ Cε

1
m−1 → 0

and by (27)∫ ∞
0

rN−1|ur|m−1|urr|Ψ|Ψr| ≤

(∫ b0

a0

rN−1|ur|m−2u2
rr

) 1
2 (∫ ∞

0

rN−1|ur|mΨ2
r

) 1
2

≤ Cε
1

2(m−1) → 0

as ε→ 0+. By (28) and the Lebesgue Theorem we get that

0 ≤ lim
ε→0

Q(urΨ) =
∫ b0

a0

rN−1
[
(m− 1)|ur|m−2u2

rr − f ′(u)u2
r

]
dr

= −(N − 1)
∫ b0

a0

rN−3|ur|m dr < 0.

Hence, b0 = +∞ and the claim is proved.

Without loss of generality, we can now suppose ur < 0 in (0,∞) and, by classical
elliptic regularity theory [22], we find that u ∈ C∞(0,∞) solves (23) in (0,+∞).
Moreover, by (25) we get that rN−3|ur|m ∈ L1

loc[0,+∞).
Given η ∈ C1

c [0,+∞), apply (22) on (ε,M) with ψ = η2ur, where M is large so
that supp η ⊂ [0,M ]. Letting ε→ 0+, we get that rN−1|ur|m−2u2

rr ∈ L1
loc[0,+∞)

and∫ ∞
0

rN−1
[
(m− 1)η2|ur|m−2u2

rr + 2(m− 1)ηηr|ur|m−2ururr − f ′(u)η2u2
r

]
= −(N − 1)

∫ ∞
0

η2rN−3|ur|m dr.
(29)

Formula (29) allows to write Q(ηur) as:

Q(ηur) =
∫ ∞

0

rN−1|ur|m
[
(m− 1) η2

r −
N − 1
r2

η2

]
dr.

Arguing as before, by (25) we can get that

Q(ηur) = lim
ε→0+

Q(ηurΨ) ≥ 0
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for a cut-off function 0 ≤ Ψ ≤ 1 so that Ψ ≡ 1 in (2ε,+∞), Ψ ≡ 0 in [0, ε) and
Ψ2
r ≤ 2

ε2 . In conclusion, there holds∫ ∞
0

rN−1|ur|m
[
(m− 1) η2

r −
N − 1
r2

η2

]
dr ≥ 0 (30)

for every η ∈ C1
c [0,+∞). By density (30) is valid also for η ∈ H1

c [0,+∞).
Now, for α > 0 choose

η =

{
1 if r < 1
r−α if r ≥ 1.

Applying (30) to (η − R−α)χ(0,R) and letting R → ∞, by monotone convergence
we see that[

(m− 1)α2 − (N − 1)
] ∫ ∞

1

rN−2α−3|ur|m dr ≥ (N − 1)
∫ 1

0

rN−3|ur|m > 0, (31)

provided ∫ ∞
1

rN−2α−3|ur|m dr <∞. (32)

We reach a contradiction whenever we can find some α ≤
√

N−1
m−1 so that (32) holds.

This will be the case in low dimensions 2 ≤ N ≤ N#, for a suitable N#.

Assume as before ur < 0 in (0,+∞) and let u∞ := lim
r→∞

u(r). Define the energy

E(r) =
m− 1
m
|ur(r)|m + F (u(r)) , F (u) =

∫ u

u∞

f(s) ds.

Since f ∈ L1(a2, a3), notice that E(r) is well defined for r > 0 and E ∈ C1(0,∞).
By equation (23) a direct differentiation of E(r) yields to

E′(r) = −N − 1
r
|ur(r)|m < 0 for any r > 0.

In particular, we have

(N − 1)
∫ r

0

|ur(s)|m

s
ds = E(0)− E(r) ≤

∫ u(0)

u(r)

f(s) ds

which implies ∫ ∞
0

|ur(r)|m

r
dr ≤

∫ a3

a2

|f |(s) ds <∞.

This means that equation (32) is valid whenever α ≥ N−2
2 . We reach a contradiction

in the dimensions N so that N−2
2 ≤

√
N−1
m−1 , i.e. 2 ≤ N ≤ N# = 2m+2

√
m

m−1 as in (8).
This concludes the proof of Theorem 1.4 part a).

To prove part b), notice that a2 > −∞ leads to u∞ > −∞. Hence, we necessarily
get lim inf

r→∞
ur(r) = 0, and by Lebesgue Theorem we obtain

lim
r→∞

E(r) = lim
r→∞

∫ u(r)

u∞

f(s) ds = 0.

Thus 0 ≤ E(r) ≤ E(0) for any r > 0, which means that E is bounded. Since
F (u(r)) is also bounded by assumption, we get ur ∈ L∞(0,∞). We then have∫ ∞

0

|ur(r)|m dr ≤ C
∫ ∞

0

|ur(r)| dr = −C
∫ ∞

0

ur(r) dr = C(u(0)− u∞) <∞.
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Equation (32) is then valid for any α ≥ N−3
2 . We reach a contradiction if N−3

2 ≤√
N−1
m−1 , i.e. for any 2 ≤ N ≤ N# = 3m−1+2

√
2m−1

m−1 as in (9). This proves Theorem
1.4 part b).

In order to prove part c), without loss of generality we can suppose u∞ = 0, u > 0
and ur < 0 in (0,∞). By the smoothness of u we can differentiate (23) to get

− (m− 1)r1−N (rN−1|ur|m−2urr)′ +
N − 1
r2
|ur|m−2ur = f ′(u)ur in (0,∞). (33)

By (23) we would easily get that |ur|m−1 ≥ δr → +∞ as r → +∞ when f(0) > 0
and |ur|m−1 ≤ −δr → −∞ as r → +∞ when f(0) < 0, for some δ > 0. Hence,
f(0) = 0 and also f ′(0) ≤ 0 does hold. Indeed, if f ′(0) > 0 for large r, from
Q(φ) ≥ 0, with φ a cut-off function so that φ ≡ 0 in (0, R) ∪ (4R,∞) and φ ≡ 1 in
(2R, 3R), we would get εRN ≤ CRN−2 for R large and some ε > 0 (we are using
ur ∈ L∞(0,+∞) as previously shown). This is a contradiction for large R.
By our assumptions we have

lim
s→0+

f ′(s)
sq

= b 6= 0. (34)

If b < 0, we have f ′(s) < 0 for s small, which means f ′(u(r))ur(r) ≥ 0 for r →∞ and
then (rN−1|ur|m−2urr)′ ≤ 0 for large r, in view of (33). Hence |ur|m−2urr ≤ Cr1−N

for sufficiently large r and C ∈ R. Since lim inf
r→∞

ur(r) = 0, integrating from r to
infinity we have

|ur| ≤ Cr−
N−2
m−1 for any large r. (35)

If b > 0, since f(0) = 0 and f ′(0) ≤ 0, we necessarily have q > 0. This means that
f(s) ≥ δsq+1 for some δ > 0 and every small s > 0, so that −(rN−1|ur|m−2ur)′ ≥
δrN−1uq+1 for large r. Integrating on (s, t) we have

−tN−1|ur(t)|m−2ur(t) ≥ δ

∫ t

s

rN−1uq+1 dr − sN−1|ur(s)|m−2ur(s)

≥ δ

∫ t

s

rN−1uq+1 dr

for large s < t. Now, since uq+1(r) > uq+1(t) for r < t, we deduce

−|ur(t)|m−2ur(t)u−(q+1)(t) ≥ δ

N
(t− sN/tN−1)

for large s < t. This gives −ur(t)u−
q+1
m−1 (t) ≥ C(t − sN/tN−1)

1
m−1 ≥ C ′t

1
m−1 for

some C,C ′ > 0 and large 2s < t.
Notice that necessarily q ≥ m − 2: if q < m − 2, integrating the last equation on
(2s, r) we would have −u

m−q−2
m−1 (r) ≥ Cr

m
m−1 for large r which is clearly a contra-

diction.
Integrating on (2s, r) we get for large r:

uq+2−m(r) ≤ Cr−m. (36)

Now, by (34) we also have f(s) ≤ C ′sq+1 for all s ∈ [0, u(0)]. Hence, by (36) we
deduce that

−(rN−1|ur|m−2ur)′ ≤ C ′rN−1uq+1 ≤
{
C for 0 ≤ r < 1
CrN−1−mum−1 for r ≥ 1
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for any r > 0 and for some C > 0. If we integrate on (0, t) with t > 1 we obtain

tN−1|ur(t)|m−1 ≤

{
C + C um−1(0)

N−m (tN−m − 1) when N 6= m

C + Cum−1(0) ln t when N = m

which gives

|ur| ≤ C


r−

N−1
m−1 for N < m

r−1(ln r)
1

m−1 for N = m
r−1 for N > m

(37)

for r sufficiently large. Taking into account (35) and (37), we discuss the two cases:
a) when N < m + 1, the estimate |ur| ≤ Cr−

N−2
m−1 for r ≥ 1 yields to the validity

of (32) for α ≥ − 1
2 and we reach a contradiction whenever − 1

2 ≤
√

N−1
m−1 , i.e.

2 ≤ N < m+ 1;
b) when N ≥ m + 1, the estimate |ur| ≤ Cr−1 for r ≥ 1 yields to the validity of

(32) for α ≥ N−m−2
2 and we reach a contradiction whenever N−m−2

2 ≤
√

N−1
m−1 , i.e.

m+ 1 ≤ N ≤ m+ 4m
m−1 .

In conclusion, a contradiction arises whenever 2 ≤ N ≤ N# = m+ 4m
m−1 as in (10),

and Theorem 1.4 part c) is established.
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