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Abstract. This paper deals with phase transitions corresponding to an energy which is the sum of
a kinetic part ofp-Laplacian type and a double well potentialh0 with suitable growth conditions.
We prove that level sets of solutions of1pu = h′

0(u) possessing a certain decay property satisfy a
mean curvature equation in a suitable weak viscosity sense. From this, we show that, if the above
level sets approach uniformly a hypersurface, the latter has zero mean curvature.
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1. Introduction

Given a domain� ⊆ RN , we define the following functional onW1,p(�):

F�(u) =

∫
�

(
|∇u(x)|p

p
+ h0(u(x))

)
dx.

In girum imus nocte et consumimur igni: we are very much indebted to Ovidiu Savin, whose
magnificent work [18] has deeply inspired the present paper. This research has been supported
by MIUR Variational Methods and Nonlinear Differential Equations.

B. Sciunzi, E. Valdinoci: Dipartimento di Matematica, Università di Roma Tor Vergata, Via della
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Here and in what follows, we suppose 1< p < ∞ andh0 ∈ C0([−1, 1])∩C1,1((−1, 1)).
We will also assume that, for some 0< c < 1 < C and someθ∗

∈ (0, 1),

h0(ζ ) > 0 for anyζ ∈ (−1, 1), (1.1)

for anyθ ∈ [0, 1], cθp
≤ h0(−1 + θ) ≤ Cθp andcθp

≤ h0(1 − θ) ≤ Cθp, (1.2)

for anyθ ∈ [0, θ∗), h′

0(−1 + θ) ≥ cθp−1 andh′

0(1 − θ) ≤ −cθp−1. (1.3)

Quantities depending only on the constants above will be referred to as “universal con-
stants”. We also assume a convexity property ofh0 near±1, namely thath′

0 is ncreasing
in (−1, −1 + θ∗) ∪ (1 − θ∗, 1).

As a model example for a potentialh0 satisfying the conditions stated above, one may
consider

h0(ζ ) := (1 − ζ 2)p.

In the literature,h0 is often referred to as a “double well” potential, while its derivative
h′

0 is sometimes called a “bi-stable nonlinearity”.
In light of the hypotheses above, with no loss of generality, possibly reducing the size

of θ∗, we may and do assume that

h0(ζ ) ≥ max
[−1,−1+θ∗]∪[1−θ∗,1]

h0 for anyζ ∈ [−1 + θ∗, 1 − θ∗]. (1.4)

Notice that, ifu ∈ W1,p(�), |u| < 1, is critical forF�, thenu satisfies in the weak sense
the following singular/degenerate elliptic equation ofp-Laplacian type:

1pu(x) = h′

0(u(x)) (1.5)

for anyx ∈ �. Here and in what follows, we make use of the standard notation

1pu := div(|∇u|
p−2

∇u).

Notice also that, ifh0 can be extended to a function which isC1 in a neighborhood of
[−1, 1], then (1.5) holds for anyu critical forF� so1 that|u| ≤ 1.

The functionalF� above has been widely studied both for pure mathematical reasons
and for physical applications.

For p = 2, the model was introduced by [7] in order to approximate the behavior of
minimal surfaces and a famous conjecture concerning level sets of solutions of (1.5) was
presented (see also [2], [1], [18] and [22]).

In [14] and [13] the connection betweenF� and minimal surfaces was developed,
proving, with0-convergence methods, that ifu is a Class A minimizer for the functional
(i.e., if FK(u) ≤ FK(u + φ) for any compact setK ⊂ RN and anyφ ∈ C∞

0 (K)),
anduε(x) := u(x/ε), thenuε has a subsequence, sayuεj , which converges to a step
function χE − χRN\E , where∂E is a minimal surface (in the sense of [10]) andχX is
the characteristic function of a setX ⊆ RN . A more geometric version of this result was

1 For other comments on the relation between conditions|u| ≤ 1 and|u| < 1, see the footnote
on page 9.
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obtained in [5], showing that the level sets{uεj = 0} converge locally uniformly2 to E.
Remarkably, the proof in [5] also showed a “density estimate” property for such level
sets, stating that they somehow “behave in measure as if they were codimension 1 sets”
(see also [21] for further details).

The results in [14] and [13] have been extended to the casep 6= 2 in [4], while the
ones in [5] have been extended to the casep 6= 2 in [15] and [16].

Some of the results of this paper can be seen as viscosity versions of the ones in [4]:
indeed, we will show that if the level sets of solutions approach a limit hypersurface, then
this is a zero mean curvature equation in the viscosity3 sense. Differently from [4], we
are able to consider here also non-minimal solutions, replacing the minimality condition
of [4] by a weaker decay assumption (see (2.1) below); the counterpart of dropping the
minimality assumption in our results is that the limit surface obtained is not necessarily
minimal (as in [4]), but only of zero mean curvature.

What is more, we show that level sets of solutions also enjoy a weak viscosity zero
mean curvature property. Roughly speaking, we will prove that the level set{uε = 0}

cannot be touched from below by a convex paraboloid in a neighborhood of the origin
(which gets small withε). In some sense, we may think that{uε = 0} attains a zero
mean curvature property (though in a weak viscosity sense) even “before” converging
to the limit surface. The fact that level sets inherit further properties from the minimal
surface limit case is related with the flatness regularity of low dimensional level sets first
conjectured by De Giorgi forp = 2. In this setting, the weak viscosity equation fulfilled
by level sets that we prove in this paper will play a decisive rôle in the forthcoming
paper [22].

Independently of its importance in pure mathematics, the functional studied in this
paper has also some physical relevance, since it appears in the study of the equilibrium
of elastic rods under tension (see [3]) and in the van der Waals–Allen–Cahn–Hilliard
and Ginzburg–Landau theories of phase transition (see, for instance, [17]). In the latter
situation, the term|∇u|

p in the functional represents a penalization to the total energy,
which keeps under control the formation of interfaces (see [11]).

2. Statement of results

To state our result, we need to recall some standard convention about the sign of the mean
curvature of a paraboloid. Let us consider a hyperplaneπ ⊂ RN with normal vectorν.
Let S be a hypersurface andP a paraboloid with vertex at some pointx, and let us assume
that they are tangent to each other and toπ at x. We say thatP touchesS from below at
x in Bρ(x) if for any y ∈ S andz ∈ P with y, z ∈ Bρ(x) andy − z in the same direction
asν, we have(y − z) · ν ≥ 0. An analogous definition can be given for a paraboloid
touching from above.

2 For a formal definition of such locally uniform convergence, see (2.2) below.
3 In spite of the natural variational setting of the problem, viscosity solution methods forp-

Laplacian operators are coming into fashion and they are producing quite a number of interesting
results (see, for instance, [12] and the references therein). In this paper, however, there will be some
interplay between viscosity and weak Sobolev formulation.
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P

S

π

ν

x

P touchesS from below atx

Of course, up to a suitable choice of coordinates, one may assume thatx = 0, π =

{xN = 0} andν = eN . In this set of coordinates, the paraboloidP takes the form4{
(x′, xN ) ∈ RN−1

× R : xN =
1

2
x′

· Mx′

}
for someM ∈ Mat((N − 1) × (N − 1)). We say thatP hasnon-negative mean curvature
if tr M ≥ 0. Analogously, one may define positive, negative, non-positive and zero mean
curvature. Obviously, the sign of the mean curvature depends on the orientation ofν, i.e.,
changingν to−ν turns a positive mean curvature into a negative one, and so on. Similarly,
changingν to −ν transforms touching from below into touching from above.

The solutionsu of (1.5) we deal with are assumed to have the following decay prop-
erty: givenω ∈ SN−1, there exists a universal constantL > 0 so that, for anyl ≥ L,

• if {u = 0} ∩ {|x − (ω · x)ω|∞ ≤ l} ⊂ {ω · x ≥ −c?
1l}, thenu(x) < −1 + θ∗

for anyx = (x′, xN ) ∈ RN−1
× R satisfying

ω · x < −c?
2l and |x − (ω · x)ω|∞ < c?

3l;
(2.1)

• if {u = 0} ∩ {|x − (ω · x)ω|∞ ≤ l} ⊂ {ω · x ≤ c?
1l}, thenu(x) > 1 − θ∗

for anyx = (x′, xN ) ∈ RN−1
× R satisfying

ω · x ≥ c?
2l and |x − (ω · x)ω|∞ < c?

3l.

4 We will freely use the standard notationx = (x′, xN ) ∈ RN−1
× R to denote a pointx ∈ RN
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Herec?
2 > c?

1 ∈ (0, 1) andc?
3 ∈ (0, 1 − c?

2) are intended to be positive constants, to be
fixed once for all. For definiteness, we will takec?

1 := 1/10,c?
2 := 1/5 andc?

3 := 1/2.
In §9, we will give further details and motivation for assumption (2.1), showing also

that it is fulfilled by Class A minimizers ofF .

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

here u<−1+

u=0

O

ω

l

−l/10

θ*

Condition (2.1)

Quantities depending only onN , p and on the quantities introduced in (1.2), (1.3)
will often be referred to as “universal constants”. With these conventions, we are ready to
state our main result:

Theorem 2.1. Let u ∈ W
1,p

loc (RN ) be a Sobolev weak solution of(1.5) in the wholeRN

satisfying(2.1), with |u| ≤ 1. Let S = ∂E be a continuous hypersurface inRN . Let
uε(x) := u(x/ε). Assume thatuε converges inL1

loc to χE − χRN\E and that{uε = 0}

converges locally uniformly toS, i.e., for any compact setK ⊂ RN ,

lim
ε→0

sup
x∈{uε=0}∩K

dist(x,S) = 0. (2.2)

ThenS satisfies the zero mean curvature equation in the viscosity sense.
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More explicitly, letx?
∈ S be so that, for anyr > 0,

L(Br(x
?) ∩ (RN

\ E)) > 0 and L(Br(x
?) ∩ E) > 0, (2.3)

whereL denotes theN -dimensional Lebesgue measure. Assume also thatS admits a
tangent hyperplane inx?. Then:

• if a paraboloid with vertex atx? touchesS from below atx?, then its mean curvature
at x? must be non-positive;

• if a paraboloid with vertex atx? touchesS from above atx?, then its mean curvature
at x? must be non-negative.

In particular, if x?
∈ S is so thatS isC2 in a neighborhood ofx?, then the mean curvature

of S at x? is zero in the classical sense.

The proof deeply relies on the ideas of [18], which deals with the casep = 2, and it
is geometric in nature. The technique presented seems very flexible, and it may also be
appropriate for further interesting extensions (such as more general functionals related
with non-flat metrics on manifolds or fluid dynamics, operators in non-divergence form,
fully nonlinear equations, etc.). In the casep 6= 2, some additional care is needed in the
sliding procedure, since, due to the singularity or degeneracy of thep-Laplacian operator
at points where∇u vanishes, no general maximum and comparison results are available
in the literature. Also, a careful choice of parameters is necessary to deal with the more
severe nonlinearities provided by thep-Laplace equation.

Theorem 2.1 will follow from a stronger result concerning a mean curvature property,
in a weak viscosity sense, for level sets of rescaled solutions. That result is the following:

Theorem 2.2. Let u ∈ W
1,p

loc (RN ) be a Sobolev weak solution of(1.5) in the wholeRN ,
satisfying(2.1) for ω = eN , so that|u| ≤ 1 and u(0) = 0. Let d ∈ (0, 1) and M ∈

Mat((N − 1) × (N − 1)) with

tr M > d‖M‖ and ‖M‖ ≤ d−1.

Letuε(x) := u(x/ε) and

0 :=

{
x = (x′, xN ) ∈ RN−1

× R : xN =
1

2
x′

· Mx′

}
.

Then there exist a universald? > 0 and a functionσ0 : (0, 1) → (0, 1) such that if
ε ∈ (0, σ0(d)) andd ∈ (0, d?), then0 cannot touch{uε = 0} from below inBd

√
ε/

√
tr M ;

more explicitly,

{uε = 0} ∩

{
xN <

1

2
x′

· Mx′

}
∩

{
|x| <

d
√

ε
√

tr M

}
6= ∅. (2.4)

We remark that Class A minimizers ofF are particular solutions satisfying the assump-
tions of Theorems 2.1 and 2.2 (providedh0 admits aC1 extension in a neighborhood of
[−1, 1]); thus the above theorems imply the following result:
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Theorem 2.3. Assume thath0 admits aC1 extension in a neighborhood of[−1, 1] and
let u be a Class A minimizer ofF with |u| ≤ 1. Then the claims of Theorems2.1and2.2
hold true. More precisely, foruε(x) := u(x/ε), the following results hold:

• If uε converges inL1
loc to χE − χRN\E and{uε = 0} converges locally uniformly toS,

whereS = ∂E is a continuous hypersurface inRN , thenS satisfies the zero mean
curvature equation in the viscosity sense.

• Letu(0) = 0, d ∈ (0, 1) andM ∈ Mat((N − 1) × (N − 1)) with

tr M > d‖M‖ and ‖M‖ ≤ d−1

and let

0 :=

{
x = (x′, xN ) ∈ RN−1

× R : xN =
1

2
x′

· Mx′

}
.

Then there exist a universald? > 0 and a functionσ0 : (0, 1) → (0, 1) such that if
ε ∈ (0, σ0(d)) andd ∈ (0, d?), then0 cannot touch{uε = 0} from below inBd

√
ε/

√
tr M .

The paper is organized as follows. In §3 we recall some standard PDE notions, such as
viscosity solutions and some comparison/maximum principles that will be of use in this
paper. To make the proofs of the main results more readable, we collected some technical
lemmata, mostly elementary in nature, in §4. Of course, the expert reader may skip §3 and
§4 and dedicate himself to the proofs of the main results, the core of which is contained in
§5 and §6. In particular, §5 is devoted to the construction of suitable barriers, built via the
one-dimensional solution, which will be used in §6 for the sliding method. That geometric
construction is an extension of the one presented in [18]. The proof of Theorem 2.2 will
be completed in §7, while the one of Theorem 2.1 is in §8. In §9 we make comments on
the assumption in (2.1) and prove Theorem 2.3.

3. PDE tools

We recall here the definition of viscosity supersolution (and subsolution, and solution)
for p-Laplacian type operators. Roughly, the notion of viscosity supersolution requires a
pointwise evaluation of thep-Laplacian of smooth functions touching from below. How-
ever, since thep-Laplacian diverges at critical points for 1< p < 2, we need toexclude
this casefrom the following definition:

Definition 3.1. Let � ⊆ RN be an open domain and letu ∈ C0(�). If p ≥ 2, we say
that u is a viscosity supersolutionof (1.5) (or that 1pu ≤ h′

0(u) in the viscosity sense)
if, wheneverx0 ∈ � andφ ∈ C2(�) are such thatu(x0) = φ(x0) andu(x) ≥ φ(x) in �,
we have

1pφ(x0) ≤ h′

0(φ(x0)).

If 1 < p < 2, we say thatu is a viscosity supersolutionof (1.5) if, wheneverx0 ∈ � and
φ ∈ C2(�) are such that∇φ(x0) 6= 0, u(x0) = φ(x0) andu(x) ≥ φ(x) in �, we have

1pφ(x0) ≤ h′

0(φ(x0)).
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Analogously, ifp ≥ 2, we say thatu is a viscosity subsolutionof (1.5) (or that 1pu ≥

h′

0(u) in the viscosity sense) if, wheneverx0 ∈ � andφ ∈ C2(�) are such thatu(x0) =

φ(x0) andu(x) ≤ φ(x) in �, we have

1pφ(x0) ≥ h′

0(φ(x0));

if 1 < p < 2, we say thatu is a viscosity subsolutionof (1.5) if, wheneverx0 ∈ � and
φ ∈ C2(�) are such that∇φ(x0) 6= 0, u(x0) = φ(x0) andu(x) ≤ φ(x) in �, we have

1pφ(x0) ≥ h′

0(φ(x0)).

If u is both a supersolution and a subsolution in the viscosity sense, we say thatu is a
viscosity solution.

Of course, ifu ∈ C2(�) andp ≥ 2, thenu is a viscosity solution of (1.5) if, and only if,

|∇u|
p−4(|∇u|

21u + (p − 2)〈D2u∇u, ∇u〉) = h′

0(u) (3.1)

pointwise. However, if 1< p < 2, the expression above may be ill defined even for
smooth functions, due to the vanishing of the gradient. Therefore, if 1< p < 2, for a
functionu ∈ C2(�), being a viscosity solution of (1.5) is equivalent to (3.1) holding at
points where∇u 6= 0.

One of the greatest difficulties when dealing withp-Laplace equations is that the
solutions belong generally only to the classC1,α with α ∈ (0, 1) (see [8] and [20]).
Also, thep-Laplace operator is singular or degenerate elliptic (respectively if 1< p < 2
or p > 2). A consequence of such pathologies is that there is no general comparison
theorem for solutions in casep 6= 2. Therefore, no complete analogy is possible, in
general, between the casesp = 2 andp 6= 2.

In this paper, we will need to compare weak Sobolev solutions of (1.5) with viscosity
supersolutions of (1.5). Even if there are no general results in the literature dealing with
this problem, we will succeed in doing this by applying some results obtained in [6],
together with Hopf’s Lemma forp-Laplace equations [23], and thanks to some geometric
properties of the barriers that we will introduce.

We now recall the maximum and comparison principles needed in our proofs. First of
all, in [6] (see, in particular, Theorem 1.4 there) the following result is obtained:

Theorem 3.2 (Strong Comparison Principle I).Let � be an open (not necessarily
bounded or connected) subset ofRN , and let3 ∈ R andu, v ∈ C1(�) satisfy

−1pu + 3u ≤ −1pv + 3v, u ≤ v in �. (3.2)

DefineZu,v = {x ∈ � : |Du(x)| + |Dv(x)| = 0} if p 6= 2, Zu,v = ∅ if p = 2. If
x0 ∈ � \ Zu,v andu(x0) = v(x0), thenu = v in the connected component of� \ Zu,v

containingx0.
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An easy consequence of the above result is the following one, which will be suitable for
our applications5:

Corollary 3.3 (Strong Comparison Principle II). Let � be an open (not necessarily
bounded or connected) subset ofRN , and letu, v ∈ C1(�) satisfy

−1pu + f (u) ≤ −1pv + f (v), u ≤ v in �, (3.3)

with f locally Lipschitz continuous. DefineZu,v as in Theorem3.2. Then the conclusion
of Theorem3.2holds.

Proof. Let ε > 0 be so thatBε(x0) ⊂ � and let

Mu,v = max{|u|L∞(Bε(x0)), |v|L∞(Bε(x0))}, 3 = sup
U 6=V

|U |,|V |≤Mu,v

|f (U) − f (V )|

|U − V |
.

Then

−1pu + 3u ≤ −1pv + f (v) − f (u) + 3u ≤ −1pv + 3|v − u| + 3u

= −1pv + 3(v − u) + 3u = −1pv + 3v,

hence the result follows from Theorem 3.2. ut

We recall that a similar result was proved in [19], under stronger assumptions.
We now state a result which will allow us to take care of the points at which solutions

of (1.5) may have a vanishing gradient. To this end, we recall the following version of a
more general result proved6 in [23]:

5 As a technical remark, we point out that we will use Corollary 3.3 on pages 25 and 27, with
f := h′

0. In our case,h0 is not assumed to beC1,1 in the closed interval [−1, 1], but only in
(−1, 1). Nevertheless, we will be able to exclude touching points at±1 with a direct argument,
hence we will apply Corollary 3.3 in the domain whereh0 is C1,1.

6 Although we do not explicitly assume|u| < 1 here, but only|u| ≤ 1, we think it is appropriate
to notice that, in many cases of interest, the two conditions are equivalent, thanks to the results
mentioned. Indeed, the condition|u| < 1, under suitable assumptions, is fulfilled by any solutionu
such that|u| ≤ 1 with |u| not identically equal to 1. For instance, assume that for anyθ ∈ [0, θ∗),
h′

0(−1 + θ) ≤ c′θp−1 andh′
0(1 − θ) ≥ −c′θp−1 (this condition is in particular satisfied by

h0(ζ ) := (1 − ζ2)p). Suppose there are points whereu = 1 (the caseu = −1 follows in the same
way). Since|u| is not identically 1, there exists a ballBr (x) with u < 1 in intBr (x) andu(y) = 1
for somey ∈ ∂Br (x). Thenw := 1−u is not identically zero in intBr (x) andw(y) = 0. Moreover,

−1pw = h′
0(u) =

h′
0(1 − w)

wp−1
wp−1

≥ −c′wp−1,

i.e. −1pw + c′wp−1
≥ 0 weakly. We can therefore exploit the Strong Maximum Principle of

Theorem 3.4 and prove thatu < 1. In the same way we also getu > −1.
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Theorem 3.4 (Strong Maximum Principle and Hopf’s Lemma).Let � be an open
connected (not necessarily bounded) set inRN and suppose thatu ∈ C1(�), u ≥ 0 in �,
weakly solves

−1pu + cuq
= g ≥ 0 in �

with q ≥ p − 1, c ≥ 0 andg ∈ L∞

loc(�). If u is not identically zero, thenu > 0 in �.
Moreover, for any pointx0 ∈ ∂� where the interior sphere condition is satisfied, and such
that u is C1 in a neighborhood of� ∪ {x0} andu(x0) = 0, we have∂u/∂s > 0 for any
inward directional derivative.

Remark 3.5. The proof of Theorem 3.4 follows at once by applying Theorem 5 of [23]
with β(s) = csq , q ≥ p − 1 andc ≥ 0. In particular, the conditionq ≥ p − 1 ensures
that conditions (13) and(13′) in [23] are fulfilled. Moreover, the conditionc ≥ 0 causes
β to be nondecreasing withβ(0) = 0.

4. Technical and elementary lemmata

This section, which may be skipped by the expert reader, collects some elementary lem-
mata that will be of use in the course of the proofs of the main results.

Lemma 4.1. There exists a positive constantC, depending only onp, such that

a1/p
− b1/p

≤ C
a − b

a(p−1)/p + b(p−1)/p
,

for anya ≥ b ≥ 0, a 6= 0.

Proof. For t ∈ [0, 1), set

f (t) :=
(1 − t1/p)(1 + t (p−1)/p)

1 − t
.

Notice thatf ∈ C0([0, 1)), f (0) = 1 and

lim
t→1

f (t) =
2

p
.

Hence,f (t) ≤ C for anyt ∈ [0, 1) and so

(a1/p
− b1/p)(a(p−1)/p

+ b(p−1)/p)

a − b
= f (b/a) ≤ C. ut

Lemma 4.2. For any0 ≤ s ≤ t ≤ θ∗,

h0(−1 + t) − h0(−1 + s) ≥ c(tp − sp)

for a suitable universal constantc > 0.
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Proof. From (1.3),

h0(−1 + t) − h0(−1 + s) =

∫ t

s

h′

0(−1 + θ) dθ ≥ const
∫ t

s

θp−1 dθ,

which implies the desired result. ut

Lemma 4.3. There exists a positive constantC̃, depending only onp, so that∫ 0

−1+b

dζ

((1 + ζ )p − ap)1/p
≤ C̃

(
1 + log

1

b

)
for any0 < a ≤ b ≤ 1.

Proof. Let

x :=

{
1 if b < 1/2,
0 if b ≥ 1/2.

Using the substitutionτ := (1 + ζ )/b, we bound the integral above by∫ 1/b

1

dτ

(τp − (a/b)p)1/p
≤

∫ 1/b

1

dτ

(τp − 1)1/p

≤

∫ 2

1

dτ

(τp − 1)1/p
+ x

∫ 1/b

2

dτ

(τp − 1)1/p
.

Noticing that

τp
− 1 ≥

2p
− 1

2p
τp

if τ ≥ 2 and
τp

− 1 ≥ τ − 1

if τ ≥ 1, we bound the quantity above by

const

( ∫ 2

1

dτ

(τ − 1)1/p
+

∫ 1/b

2

dτ

τ

)
≤ const

(
1 + log

1

2b

)
,

which proves the desired result. ut

Lemma 4.4. Let U be an open subset ofR. Let g ∈ C2(U) and assume thatg has no
critical points. Define

9y,l(x) := g(|x − y| − l).

Then, fort = |x − y| − l ∈ U andx 6= y, we have

1p(9y,l(x)) = (p − 1)g′′(t)(g′(t))p−2
+ (g′(t))p−1 N − 1

|x − y|
.
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Proof. Note that

∇9y,l(x) = g′(t)
x − y

|x − y|

and

9
y,l
ij (x) = g′′(t)

(xi − yi)(xj − yj )

|x − y|2
+ g′(t)

(
δij

|x − y|
−

(xi − yi)(xj − yj )

|x − y|3

)
.

Since

1p(9y,l(x))

= |∇9y,l(x)|p−219y,l(x) + (p − 2)|∇9y,l(x)|p−49
y,l
ij (x)9

y,l
i (x)9

y,l
j (x),

we get

1p(9y,l(x)) = (g′(t))p−2g′′(t) + (p − 2)
∑
ij

(g′(t))p−2g′′(t)
(xi − yi)

2(xj − yj )
2

|x − y|4

+ (g′(t))p−1 N

|x − y|
+ (p − 2)(g′(t))p−1 1

|x − y|

− (g′(t))p−1 1

|x − y|
− (p − 2)

∑
ij

(g′(t))p−1 (xi − yi)
2(xj − yj )

2

|x − y|5

= (p − 1)(g′(t))p−2g′′(t) + (g′(t))p−1 N − 1

|x − y|
. ut

Lemma 4.5. Let U andg be as in Lemma4.4. Let 0 be a smooth hypersurface inRN

and letd0(x) be the signed distance function to0. Suppose that ifx ∈ � thend0(x) ∈ U .
Then

1pg(d0(x)) = (p − 1)|g′(d0(x))|p−2g′′(d0(x)) + |g′(d0(x))|p−2g′(d0(x))1d0(x).

(4.1)

Proof. Easy calculations show that

∇g(d0(x)) = g′(d0(x))∇d0(x) (4.2)

and
gij (d0(x)) = g′′(d0(x))(d0)i(x)(d0)j (x) + g′(d0(x))(d0)ij (x). (4.3)

By rotation invariance, it is not restrictive to consider a coordinate system for which

∇d0(x) = (0, 0, . . . , 0, 1)

and

D2d0 = diag

(
−k1

1 − d0k1
, . . . ,

−kN−1

1 − d0kN−1
, 0

)
∈ Mat(N × N),

where theki ’s are the principal curvatures of0 at the point where the distance is realized
(see, for instance, §14.6 of [9] for details). Therefore, taking into account (4.2) and (4.3),
we get

1pg(d0(x)) = (p−1)|g′(d0(x))|p−2g′′(d0(x))+|g′(d0(x))|p−2g′(d0(x))1d0(x). ut
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Lemma 4.6. Let I 3 0 be an interval ofR and leth ∈ C1(I ) satisfyh(s) > 0 for any
s ∈ I . Let

H(s) :=
∫ s

0

(p − 1)1/p dζ

(ph(ζ ))1/p
, ∀s ∈ I.

Define alsog as the inverse ofH , that is, g(t) := H−1(t) for any t ∈ H(I). Then
g ∈ C2 (H(I)) and

g′(t) =

(
p

p − 1
h(g(t))

)1/p

, g′′(t) =
(ph(g(t)))(2−p)/p

(p − 1)2/p
h′(g(t)),

for anyt ∈ H(I).

Proof. The first identity follows easily by differentiatingH(g(t)) = t . For the second
claim, notice that using the first identity twice gives

g′′(t) =
d

dt

(
p

p − 1
h(g(t))

)1/p

=
(ph(g(t)))1/p−1

(p − 1)1/p
h′(g(t))g′(t)

=
(ph(g(t)))2/p−1

(p − 1)2/p
h′(g(t)). ut

Lemma 4.7. Let � be an open domain inRN and letx0 ∈ �. Let w ∈ C1(�) and
v := ∇w(x0). Assume that there exists$ ∈ RN

\ {0} such that

w(x0 + x) ≤ v · x + w(x0)

for anyx ∈ RN so thatx + x0 ∈ � and$ · x ≥ 0. If P ∈ C2(�) is a quadratic function
touchingw from below atx0, then1pP(x0) ≤ 0 in the viscosity sense. Analogously, if

w(x0 + x) ≥ v · x + w(x0)

for anyx ∈ RN so thatx+x0 ∈ � and$ ·x ≥ 0, andP ∈ C2(�) is a quadratic function
touchingw from above atx0, then1pP(x0) ≥ 0 in the viscosity sense.

Proof. We prove the first claim, the second one being analogous. SinceP touchesw atx0,
w ∈ C1(�) and∇w(x0) = v, we have

P(x) =
1

2
M(x − x0) · (x − x0) + v · (x − x0) + w(x0)

for someM ∈ Mat(N × N). Notice thatM must be non-positive definite: indeed, ifM

had a strictly positive eigenvalueλ with corresponding eigenvectore and|e| = 1, possibly
changinge into −e we may assume that$ · e ≥ 0 and therefore, for a smallε > 0,

εv · e + w(x0) ≥ w(x0 + εe) ≥ P(x0 + εe) =
ε2

2
Me · e + εv · e + w(x0)

≥
ε2λ

2
+ εv · e + w(x0) > εv · e + w(x0),
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which is a contradiction. Hence,M is non-positive definite and thus1P = tr M ≤ 0.
Now, if p ≥ 2,

1pP = |∇P |
p−4(|∇P |

21P + (p − 2)〈D2P∇P, ∇P 〉)

= |v|
p−4(|v|

2 tr M + (p − 2)Mv · v) ≤ 0

atx0, which proves the claim forp ≥ 2.
Now assume 1< p < 2. If v = 0, then by Definition 3.1, there is nothing to check;

we may therefore assumev 6= 0. Letλ1 ≤ · · · ≤ λN ≤ 0 be the eigenvalues ofM. Then

1pP =
1

|v|2−p

(
tr M − (2 − p)M

v

|v|
·

v

|v|

)
≤

1

|v|2−p
(λ1 + · · · + λN − (2 − p)λ1)

=
1

|v|2−p
((p − 1)λ1 + λ2 + · · · + λN ) ≤ 0

atx0, which ends the proof for 1< p < 2. ut

Next, we point out an easy property of the signed distance function to paraboloids:

Lemma 4.8. LetM ∈ Mat((N − 1) × (N − 1)) andV ∈ RN−1. Define the paraboloid

0 :=

{
x = (x′, xn) ∈ RN−1

× R : xN =
1

2
x′

· Mx′
+ V · x′

}
.

Letd0 be the signed distance to0, with the sign convention thatd0 ≥ 0 above7 0. Then,
for anyτ ≥ 0,

d0(x + τeN ) ≥ d0(x).

Proof. Two cases are possible:x is either above or below0. Consider the first case. Then
d0(x) ≥ 0 andBd0(x)(x) touches0 from above. Therefore,Bd0(x)(x + τeN ) is above0
and thus, given anyp ∈ 0,

|p − (x + τeN )| ≥ d0(x).

This proves the desired claim ifx is above0.
If x is below0 we distinguish two subcases. Ifx + τeN is above0, then

d0(x + τ) ≥ 0 ≥ d0(x)

and we are done. If, on the contrary, bothx andx + τeN are below0, we consider the
reflection

R(y) = R(y′, yN ) := (y′, −yN ) ∀y ∈ RN

and we definêx := R(x + τeN ) and0̂ := R(0). Thenx̂ is above0̂. Since the claim was
proved in the first case, we know thatd

0̂
(x̂ + τeN ) ≥ d

0̂
(x̂). Hence,

d0(x) = −dR(0)(R(x)) = −d
0̂
(x̂ + τeN )

≤ −d
0̂
(x̂) = −dR(0)(R(x + τeN )) = d0(x + τeN ). ut

7 Of course, “above” here is with respect to theeN -direction.
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5. Useful barriers

The core of the proof of our results begins here. Before going into the details of the ar-
guments, which will be quite technical, we would like to point out some heuristic ideas
underlying the construction given below. Roughly, the crucial idea, which goes back to
De Giorgi, is that one-dimensional solutions are the ones which encode much information
on the system. Following this belief, we will construct two barriers, which are a suitable
modification of one-dimensional solutions. The first barrier, built in Lemma 5.1, is radi-
ally symmetric. More precisely, it is flat in a ball and then radially increasing. Clearly,
since the solution we consider does not possess such symmetry, this barrier may provide
good bounds in some direction, but poor bounds in another direction. Therefore, in §6,
we will have to slide this barrier to obtain information in all the domain we are interested
in. In a very non-rigorous way, we may think that the radial growth of this barrier will
provide information on “how the solution grows from−1 to+1”, while the flat part of the
barrier controls the “directions along which the level sets of the solution lie”. The second
barrier we need is constructed in Lemma 5.2. This is a modification of a one-dimensional
solution which takes into account the distance from the level sets. Equation (1.5) will then
relate second derivatives of this barrier with the mean curvature of the level sets of our
rescaled solution, leading to the estimates we need.

We now construct the first comparison function that will be used in the proof of the
main result. The function needed to construct such barrier is sketched in the picture.

t

s

c l−c l

l

−l/2

g
l1

_   

s −1

_     
l

T−l/2 l/2

The functiongl introduced in Lemma 5.1

Lemma 5.1. There exist universal constantsl̄ > 1 and0 < c̄ ≤ 1/2 so that, ifl ≥ l̄, we
can findTl ∈ [c̄l, l/2] and a non-decreasing function

gl ∈ C0(−∞, Tl) ∩ C1,1(−∞, 0) ∩ C2((−c̄l, Tl) \ {0})
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which is constant in an intervalI containing(−∞, −l/2], withg′

l > 0 outsideI , satisfies
gl(0) = 0, gl(Tl) = 1, and if we define

9y,l(x) := gl(|x − y| − l), (5.1)

then9y,l(x) is a strict supersolution of(1.5) in the viscosity sense inBTl+l(y) \ ∂Bl(y).
More precisely,gl is constructed as follows. There exist constants0 < c1 < C1, C2

so that, if we define

sl := e−c1l,

hl(s) :=


h0(s) − h0(sl − 1) −

C2

l
((1 + s)p − s

p
l ) if sl − 1 < s < 0,

h0(s) + h0(1 − sl) +
C2

l
((1 − s)p + s

p−1
l (1 − s)) if 0 ≤ s < 1,

Hl(s) :=
∫ s

0

(p − 1)1/p

(phl(ζ ))1/p
dζ,

H0(s) :=
∫ s

0

(p − 1)1/p

(ph0(ζ ))1/p
dζ, for anys ∈ (−1, 1),

then the following holds:

(i) hl(s) > 0 in sl − 1 < s < 1; in particular, Hl is well defined and strictly increasing
for sl − 1 < s < 1 and thus we may definegl(t) := H−1

l (t) for t ∈ Hl(sl − 1, 1);
(ii) gl(t) is defined to be constantly equal tosl − 1 for t ≤ Hl(sl − 1);

(iii) the following estimates onHl hold:

Hl(1) ≤ l/2; (5.2)

Hl(sl − 1) ≥ −l/2; (5.3)

H0(s) ≤ Hl(s) −
C1

l
log(1 − |s|) ∀|s| < 1 − e−c1l/2

; (5.4)

Hl(1 − e−c1l/2) ≥ c̄l; (5.5)

Hl(e
−c1l/2

− 1) ≤ −c̄l. (5.6)

Proof. The idea of the proof is that, onceHl is well defined, estimates (5.2)–(5.4) and the
viscosity supersolution property for9y,l are the core of the matter. Indeed, (5.3) says, in
particular, that, by construction,gl is constant in(−∞, −l/2]. Also, estimates (5.4) and
(1.2) imply that

Hl(1 − e−c1l/2) ≥ const
∫ 1−e−c1l/2

0

dζ

1 − ζ
− const= constl − 1 ≥ c̄l,

providedl is large enough and̄c small enough, and, analogously,

Hl(e
−c1l/2

− 1) ≤ −c̄l,
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proving (5.5) and (5.6). These estimates also imply thatgl is strictly increasing at least in
(−c̄l, c̄l).

Also, if Tl := Hl(1), by (5.2) and (5.5), we haveTl ∈ [c̄l, l/2]. Some careful com-
putation will be needed to show9y,l to be a strict viscosity supersolution of (1.5) at any
point where it is defined, except possibly on the sphere{|x − y| = l} (the fact thathl may
be discontinuous at 0 makesgl not necessarily smooth at 0 and deprives us of information
on the value of1p9y,l on the aforesaid sphere). We also remark that the extension in (ii)
is C1,1, since, by Lemma 4.6, ift = Hl(sl − 1),

g′

l(t) =

(
p

p − 1
hl(gl(t))

)1/p

=

( p

p − 1
hl(sl − 1)

)1/p

= 0.

We now deal with the actual proof of Lemma 5.1: in light of the arguments above, we
will focus on proving (5.2)–(5.4) and the viscosity supersolution property for9y,l .

The proof will consider separately the casessl − 1 < s < 0 and 0≤ s < 1. Let us
first consider the casesl − 1 ≤ s < 0. From (1.4),

hl(s) ≥ h0(θ
∗

− 1)/2 (5.7)

if θ∗
− 1 ≤ s < 0, providedl is suitably large. Also, in light of Lemma 4.2, we get

h0(s) − h0(sl − 1) ≥ c((1 + s)p − s
p
l ), (5.8)

for sl − 1 < s < θ∗
− 1, therefore

const(h0(s) − h0(sl − 1)) ≤ hl(s) (5.9)

if sl − 1 < s < θ∗
− 1, providedl is sufficiently large. This, (1.4) and (5.7) say that

hl(s) > 0 in sl − 1 < s < 0, showing thatHl is well defined and strictly increasing in
this case. Also, from the definition ofHl and (5.7)–(5.9) we gather

−Hl(sl − 1) = const
∫ 0

sl−1

dζ

(hl(ζ ))1/p

= const

( ∫ 0

θ∗−1

dζ

(hl(ζ ))1/p
+

∫ θ∗
−1

sl−1

dζ

(hl(ζ ))1/p

)
≤ const

(
1 +

∫ θ∗
−1

sl−1

dζ

(hl(ζ ))1/p

)
≤ const

(
1 +

∫ θ∗
−1

sl−1

dζ

((1 + ζ )p − s
p
l )1/p

)
≤ const

(
1 +

∫ 0

sl−1

dζ

((1 + ζ )p − s
p
l )1/p

)
,

hence, from Lemma 4.3, we get

Hl(sl − 1) ≥ −l/2

providedc1 is suitably small, proving (5.3).
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We now show that9y,l is a viscosity supersolution of (1.5) when|x − y| < l (i.e.,
whens = gl(t) < 0; here and in what follows, we often use the notationt = |x − y| − l

ands = gl(t) = 9y,l(x)).
Of course, if|x − y| < l/2, then9y,l(x) = sl − 1 by (5.3) and the definition ofgl ,

and therefore, by Lemma 4.7,

1p9y,l(x) ≤ 0 < h′

0(sl − 1) = h′

0(9
y,l(x)), (5.10)

showing that the viscosity supersolution property of9y,l holds in{9y,l
= sl − 1} (and

thus, in particular, if|x − y| < l/2). Hence, we can now concentrate on the casel/2 ≤

|x −y| < l (and, by (5.10), we may assume that9y,l(x) > sl −1). In light of Lemma 4.6,

g′

l(t) =

(
p

p − 1
hl(g(t))

)1/p

, g′′

l (t) =
(phl(g(t)))(2−p)/p

(p − 1)2/p
h′

l(gl(t)).

Thus, by Lemma 4.4, we have

1p(9y,l(x)) = (p − 1)g′′(t)(g′(t))p−2
+ (g′(t))p−1 N − 1

|x − y|

≤ h′

l(gl(t)) + K(N − 1)(hl(gl(t)))
(p−1)/p 1

|x − y|

≤ h′

l(gl(t)) +
2K(N − 1)(hl(gl(t)))

(p−1)/p

l
(5.11)

for |x − y| ≥ l/2, providedK > 0 is suitably large.
Hence, by definition ofhl we get (using again the notations = gl(t))

hl(s) ≤ h0(s) − h0(sl − 1) ≤ h0(s)

and

h′

l(s) = h′

0(s) −
pC2

l
(1 + s)p−1

in sl − 1 < s < 0, hence

1p(9y,l(x)) < h′

0(s) −
pC2

l
(1 + s)p−1

+
2K(N − 1)

l
(h0(s))

(p−1)/p (5.12)

for sl − 1 < s < 0. By (1.2), we get, forC2 suitably large,

pC2

l
(1 + s)p−1

≥
2K(N − 1)

l
(h0(s))

(p−1)/p (5.13)

and therefore
1p(9y,l(x)) < h′

0(9
y,l(x)) (5.14)

for sl − 1 < gl(t) and|x − y| ≥ l/2.
Estimates (5.10) and (5.14) show9y,l to be a strict viscosity supersolution of (1.5) at

any pointx so that|x − y| < l.
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Let us now prove (5.4) fore−c1l/2
− 1 < s ≤ 0. Observe that, by definition ofhl ,

recalling (1.2),

h0(s) − hl(s) ≤ h0(sl − 1) +
C2

l
((1 + s)p − s

p
l ) ≤ Cs

p
l +

C2

l
((1 + s)p − s

p
l )

≤
2C2

l
(1 + s)p (5.15)

providedl is sufficiently large. Furthermore, from (5.7)–(5.9), it follows that

hl(s) ≥ const(1 + s)p (5.16)

if e−c1l/2
− 1 < s ≤ 0 andl is large enough. Also, using Lemma 4.1, we obtain

H0(s) − Hl(s) =

∫ 0

s

1

(
p

p−1hl(ζ ))1/p
−

1

(
p

p−1h0(ζ ))1/p
dζ

= const
∫ 0

s

(h0(ζ ))1/p
− (hl(ζ ))1/p

(h0(ζ )hl(ζ ))1/p
dζ

≤ const
∫ 0

s

(h0(ζ ) − hl(ζ )) dζ

((h0(ζ ))(p−1)/p + (hl(ζ ))(p−1)/p)(h0(ζ )hl(ζ ))1/p

≤ const
∫ 0

s

h0(ζ ) − hl(ζ )

h0(ζ )(hl(ζ ))1/p
dζ.

Consequently, from (1.2), (5.16) and (5.15),

H0(s) − Hl(s) ≤
const

l

∫ 0

s

1

1 + ζ
dζ ≤ −

const

l
log(1 + s),

thus proving (5.4) fore−c1l/2
− 1 < s ≤ 0. This completes the proof in the case

sl − 1 < s < 0.
Let us now consider the case 0≤ s < 1. In this case,hl > 0 by inspection,

thus Hl is well defined and strictly increasing in [0, 1). Settingt = |x − y| − l and
s = gl(t) = 9y,l(x), we notice thats ≥ 0 corresponds to|x − y| ≥ l, therefore, arguing
as in (5.11), we have

1p(9y,l(x)) < h′

l(s) +
K(N − 1)

l
(hl(s))

(p−1)/p (5.17)

if |x − y| ≥ l, providedK is large enough. Since, by definition ofhl and (1.2),

hl(s) ≤ const(h0(s) + h0(1 − sl))

for C2 large enough, it follows that

1p(9y,l(x)) < h′

0(s)−
C2

l
(p(1−s)p−1

+s
p−1
l )+

K(N−1)

l
(h0(s)+h0(1−sl))

(p−1)/p

≤ h′

0(s)
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if C2 is suitably large, where, in the last estimate, (1.2) has been used once more together
with the simple inequality(a +b)q ≤ 2q(aq

+bq) with q := (p −1)/p . Thus9y,l(x) is
a strict viscosity supersolution of (1.5) for|x − y| > l, provided9y,l(x) is well defined.

We now need to prove (5.4) in the case 0≤ s < 1 − e−c1l/2. To this end, first notice
that, if 0≤ s < 1 − e−c1l/2, we have 1− s >

√
sl and therefore

s
p
l ≤ s

p/2
l (1 − s)p ≤

1

l
(1 − s)p (5.18)

if l is large enough. The definition ofhl , (1.2) and (5.18) imply that

hl(s) − h0(s) ≤ constsp
l +

const

l
(1 − s)p ≤

const

l
(1 − s)p, (5.19)

for 0 ≤ s < 1 − e−c1l/2. On the other hand, the definition ofhl and (1.2) lead to

hl(s) ≥ h0(s) + h0(1 − sl) ≥ const(1 − s)p (5.20)

for 0 ≤ s < 1 − e−c1l/2. Also, from Lemma 4.1,

H0(s) − Hl(s) =

∫ s

0

1

(
p

p−1h0(ζ ))1/p
−

1

(
p

p−1hl(ζ ))1/p
dζ

≤ const
∫ s

0

hl(ζ ) − h0(ζ )

((hl(ζ ))(p−1)/p + (h0(ζ ))(p−1)/p)(hl(ζ )h0(ζ ))1/p
dζ

≤ const
∫ s

0

hl(ζ ) − h0(ζ )

h0(ζ )(hl(ζ ))1/p
dζ. (5.21)

Then, from (5.19)– (5.21) and (1.2),

H0(s) − Hl(s) ≤
const

l

∫ s

0

dζ

1 − ζ
= −

const

l
log(1 − s)

if 0 ≤ s < 1 − e−c1l/2. This indeed proves (5.4) in the case 0≤ s < 1 − e−c1l/2.
Let us now prove (5.2). Using the definitions ofHl , hl and (1.2), we get

Hl(1) ≤ const
∫ 1

0

dζ

(h0(ζ ) + h0(1 − sl))1/p
≤ const

∫ 1

0

dζ

((1 − ζ )p + s
p
l )1/p

≤ const
∫ 1

0

dζ

1 − ζ + sl
≤ const log

1

sl
.

This proves (5.2) providedc1 is chosen to be suitably small, and ends the proof of
Lemma 5.1. ut

We now introduce an appropriate modification of the barrier in Lemma 5.1, in order to
deal with the distance function:



p-Laplace phase transitions 21

Lemma 5.2. Let 0 < ε ≤ σ ≤ δ < 1, ξ ∈ RN−1, andM ∈ Mat((N − 1) × (N − 1)).
Let0 be the hypersurface defined as

0 :=

{
xN =

ε

2
x′

· Mx′
+ σξ · x′

}
∩ {|x′

| < σ/ε}

and assume that

tr M ≥ δ, ‖M‖ ≤ 2/δ, |ξ | ≤ 1/δ.

Defined0(x) to be the signed distance fromx to 0, with the assumption thatd0 is posi-
tive8 above0.

Then there exist functionsσ0 : (0, +∞) → (0, 1) andC0 : (0, +∞) → [1, +∞) and
Tε,δ ∈ [0, C0(δ) log(1/ε)] such that, ifε ≤ σ ≤ σ0(δ), we can find a non-decreasing func-
tion g0 ∈ C1,1(−∞, Tε,δ), constant in(−∞, −C0(δ) log(1/ε)], such thatg0(0) = 0,
g0(Tε,δ) = 1, g0 is C2 with g′

0 non-vanishing outside the set whereg is constant, and
for whichg0(d0(x)) is a strict viscosity supersolution of(1.5) in its domain of definition
(that is, providedd0(x) < Tε,δ).

More precisely,g0 is constructed as follows. Letc1 > 0 be suitably small and let
ρ ∈ C1(R) be a non-decreasing function so thatρ(0) = 0, ρ(s) = −1 for s ≤ −1/2 and
ρ(s) = 1 for s ≥ 1/2. For anys ∈ (0, 1), define

h0(s) := max{0, h0(s) + c1δερ(s)}. (5.22)

Let sδ,ε be the point near−1 for whichh0(sδ,ε) = c1δε. Define also

H0(s) :=
∫ s

0

(p − 1)1/p dζ

(ph0(ζ ))1/p
.

Then:

(i) There exists a constantc]
∈ (0, 1) so that

c](δε)1/p
≤ 1 + sδ,ε ≤

1

c]
(δε)1/p

; (5.23)

(ii) for anysδ,ε < s ≤ 1,

h0(s) > 0; (5.24)

in particular, H0 is well defined and strictly increasing in[sδ,ε, 1] and thus we may
defineg0(t) := H−1

0 (t) for any t ∈ [H0(sδ,ε), H0(1)] and extendg0(t) to be con-
stantlysδ,ε for t ≤ H0(sδ,ε). In particular, if g0(t) > sδ,ε, theng′

0(t) > 0.

8 Again, “above” is with respect to theeN -direction. For some properties of the distance function,
see [9].
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Proof. First observe that (5.23) follows from (1.2): indeed, ifc andC are as in (1.2), then(
c1

C

)1/p

(δε)1/p
≤ 1 + sδ,ε ≤

(
c1

c

)1/p

(δε)1/p.

Also, with no loss of generality, we may assumesδ,ε < −1 + θ∗, in order to use
(1.3). Note that since by (1.3),h0 is increasing in [sδ,ε, θ∗), we geth0(sδ,ε) > c1δε

in (sδ,ε, θ
∗). Moreover, from (1.2), ifc1 is small enough, we may supposeh0(s) > c1δε

for sδ,ε < s < 0. From the above discussions, (5.24) follows.
Notice that the constant extension ofg0 is C1,1 since, by Lemma 4.6, ift = H0(sδ,ε),

g′
0(t) =

(
p

p − 1
h0(g0(t))

)1/p

=

(
p

p − 1
h0(sδ,ε)

)1/p

= 0.

To estimate the domain on whichg0 is strictly increasing we have therefore to estimate
H0(sδ,ε) andH0(1). Using Lemma 4.2, one obtains

h0(s) ≥ h0(s) − c1δε = h0(s) − h0(sδ,ε) ≥ const((1 + s)p − (1 + sδ,ε)
p)1/p (5.25)

for anys ∈ [sδ,ε, −1+θ∗]. On the other hand, for anys ∈ [−1+θ∗, 0], (1.4) implies that

h0(s) ≥ h0(−1 + θ∗) − c1δε ≥ h0(−1 + θ∗)/2. (5.26)

Therefore, using the definition ofH0, (5.23), (5.25) and (5.26), and making use of Lem-
ma 4.3, we get

−H0(sδ,ε) =

∫ 0

sδ,ε

(p − 1)1/p dζ

(ph0(ζ ))1/p
=

∫ 0

−1+θ∗

(p − 1)1/p dζ

(ph0(ζ ))1/p
+

∫
−1+θ∗

sδ,ε

(p − 1)1/p dζ

(ph0(ζ ))1/p

≤ const

(
1 +

∫
−1+θ∗

sδ,ε

dζ

((1 + ζ )p − (1 + sδ,ε)p)1/p

)
≤ C0(δ) log

1

ε
,

or, equivalently,
H0(sδ,ε) ≥ C0(δ) logε. (5.27)

This completes the desired estimate onH0(sδ,ε).
Let us now estimateH0(1): from the definition ofh0 and (1.2),

H0(1) =

∫ 1

0

(p − 1)1/p dζ

(ph0(ζ ))1/p
≤

∫ 1/2

0

constdζ

1 − ζ
+

∫ 1

1/2

constdζ

(c(1 − ζ )p + c1δε)1/p

≤

∫ 1/2

0

constdζ

1 − ζ
+

∫ 1

1/2

constdζ

1 − ζ + (δε)1/p

≤ const(1 − log(δε)) ≤ −C0(δ) logε. (5.28)

The claims on the domain ofg0 are thus consequences of (5.27) and (5.28).
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Now we deal with the proof of the viscosity supersolution property ofg0. First of all,
notice that in an appropriate coordinate system we have

D2d0 = diag

(
−k1

1 − d0k1
, . . . ,

−kN−1

1 − d0kN−1
, 0

)
∈ Mat(N × N),

where theki ’s are the principal curvatures of0 at the point where the distance is realized
(see §14.6 in [9] for further details). We also defineP as the paraboloid describing0, i.e.,

P(x′) :=
ε

2
x′

· Mx′
+ σξ · x′.

Notice that, by construction,|∇P | ≤ 1; thus, by the mean curvature equation (see, for
instance, equation (14.103) of [9]), it follows that

N−1∑
i=1

ki =

∑
1≤i≤N−1

∂i

(
∂iP√

1 + |∇P |2

)
=

1P√
1 + |∇P |2

−
(D2P∇P) · ∇P

(1 + |∇P |2)3/2

≥
1

2
1P − const|∇P |

2
‖D2P ‖.

Consequently, ifx is so that|d0(x)| ≤ C0(δ) log(1/ε), since|ki | ≤ C1(δ)ε, we have

1d0 ≤

N−1∑
i=1

−ki

1 − d0ki

≤ −

N−1∑
i=1

ki + 2(C1(δ)ε)
2 log

1

ε

≤ −
1

2
1P + const|∇P |

2
‖D2P ‖ + C1(δ)ε

3/2

≤ −
εδ

2
+ C2(δ)(εσ

2
+ ε3/2) ≤ −

εδ

2
+ C3(δ)εσ

1/2. (5.29)

Therefore, ifd0(x) ∈ (H0(sδ,ε), H0(1)) (and thus, by (5.27) and (5.28),|d0(x)| ≤

C0(δ) log(1/ε) andg′
0(d0(x)) > 0), by Lemma 4.5 we have

1p(g0(t)) = (p − 1)(g′
0(t))p−2g′′

0(t) + (g′
0(t))p−11d0(t)

≤ (p − 1)(g′
0(t))p−2g′′

0(t) −
ε

2
(δ − C4(δ)σ

1/2)(g′
0(t))p−1, (5.30)

where we are using the notationt = d0(x). Taking into account Lemma 4.6, by (5.30)
we get

1p(g0(t)) ≤ h′
0(s) −

ε

2
(δ − C4(δ)σ

1/2)

(
p

p − 1
h0(s)

)(p−1)/p

,

where we are using the notations = g0(d0(x)).
Now we chooseσ0(δ) small such thatδ − C4(δ)σ

1/2
≥ δ/2 for σ ≤ σ0(δ). Thus, if

|d0(x)| ≤ C0(δ) log(1/ε) (and sos = g0(d0(x)) > sδ,ε), we gather (recall also (5.24))
that

1p(g0(t)) ≤ h′
0(s) − constδε(h0(s))(p−1)/p

≤ h′

0(s) + c1δερ
′(s) − constδε(h0(s) + c1δερ(s))(p−1)/p. (5.31)
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We now claim that

c1ρ
′(s) − const(h0(s) + c1δερ(s))(p−1)/p < 0 (5.32)

for anys ∈ (sδ,ε, 1), providedc1 is small enough. Indeed, ifs ≤ −1/2 or s ≥ 1/2, then
ρ′(s) = 0 and therefore the left hand side of (5.32) is under control. On the other hand,
if s ∈ (−1/2, 1/2), then settingc∗ := infs∈[−1/2,1/2] h0(s) (which is strictly positive on
account of (1.2)), we bound the left hand side of (5.32) by

c1‖ρ
′
‖∞ − const(c∗)(p−1)/p,

which is negative for suitably smallc1. This proves (5.32).
Therefore, by virtue of (5.31) and (5.32), ifd0(x) ∈ (H0(sδ,ε), H0(1)), we get

1p(g0(t)) < h′

0(g0(t)).

If elsed0(x) ≤ H0(sδ,ε), we have

1p(g0(t)) = 0 < h′

0(sδ,ε) = h′

0(g0(t)),

thanks to Lemma 4.7. ut

6. Sliding methods

We now use the barriers introduced in §5 and an appropriate sliding technique to de-
duce an estimate on the curvature of touching paraboloids for solutions of (1.5). Roughly
speaking, the barriers9y,l defined above provide a good constraint for touching points,
since the latter can lie only in the set where the barriers fail to be supersolutions (that is,
on their zero level set). More precisely, the following results hold:

Lemma 6.1. Let u be a weak Sobolev subsolution of(1.5). Thenu and9y,l cannot co-
incide in any open domain.

Proof. For short, let9 := 9y,l , B := BTl+l(y), B ′ := Bl(y). Furthermore, letτ(l) ∈

[l/2, (1 − c̄)l] be so that9 is flat in B ′′ := Bτ(l)(y). ThenB ′′
⊂ B ′

⊂ B, the domain
of definition of9 is B, and9 is C2 outside∂B ′

∪ ∂B ′′. Suppose by contradiction that
u = 9 in some ballB ⊆ B. Possibly taking a smaller ball, we may and do assume that

B ⊂ (� ∩ B) \ (∂B ′
∪ ∂B ′′),

henceu = 9 is C2 in B; therefore, for any non-negative smooth functionϕ supported
in B, we deduce from (1.5) that∫

h0(9)ϕ > −

∫
|∇9|

p−2
∇9 · ∇ϕ = −

∫
|∇u|

p−2
∇u · ∇ϕ ≥

∫
h0(u)ϕ

=

∫
h0(9)ϕ,

which is obviously impossible. ut
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Lemma 6.2. Fix y ∈ RN and letl > 0 be suitably large. Letu be a weak Sobolev sub-
solution of(1.5) in some domain�. Suppose thatu ∈ C1(�) and9 that |u| ≤ 1. Suppose
that 9y,l touchesu from above atx?, that is,9y,l

≥ u in their common domain of defi-
nition � ∩ BTl+l(y) and9y,l(x?) ≥ u(x?), with x? in the closure of� ∩ BTl+l(y). Then
eitherx?

∈ ∂� or u(x?) = 9y,l(x?) = 0.

Proof. For short, we write9 := 9y,l , B := BTl+l(y), B ′ := Bl(y). Assume that

x?
6∈ ∂�; (6.1)

we will show that then9(x?) = 0. For this, first we prove that

x?
6∈ ∂B. (6.2)

Indeed, suppose the contrary. Let us consider the “radial direction”

w :=
x?

− y

|x? − y|
.

Then, by the construction in Lemma 5.1,9(x?) = 1 and∇9(x?) · w > 0. On the other
hand,u ≤ 1 and, sinceu(x?) = 1, we have∇u(x?) = 0 (thanks to (6.1) and the assump-
tion thatu ∈ C1(�)). Let û := u − 9. From the above discussion,û ≤ 0 in B ∩ � and
û(x?) = 0, therefore

∇û(x?) · w ≥ 0.

But then
0 ≤ ∇(u − 9)(x?) · w = −∇9(x?) · w < 0,

which is a contradiction. This proves (6.2).
Due to (6.1) and (6.2),

x? is in the interior of� ∩ B. (6.3)

Moreover, by construction,9 has no points with vanishing gradient outside the region
where it is flat: more precisely,9 is flat inB ′′ := Bτ(l)(y) for someτ(l) ∈ [l/2, (1− c̄)l],
B ′′

⊂ B ′
⊂ B, 9 is constantly equal to−1 + e−constl in B ′′, and if

Zu,9 := {|∇u| + |∇9| = 0},

then
Zu,9 ⊆ {|∇9| = 0} ⊆ B ′′. (6.4)

Also, by Lemma 6.1,

u and9 cannot agree in any open domain. (6.5)

Then, by (6.4), (6.5) and Corollary 3.3 (and recalling (6.3)),x? may only lie either on∂B ′

(where9 = 0 and it fails to be a supersolution) or in the closure ofB ′′.

9 The assumptions on the subsolutionu in Lemma 6.2 (and in the other analogous results of this
section) are, in particular, fulfilled in caseu is a weak Sobolev solution of (1.5) satisfying|u| ≤ 1,
since theC1-regularity is given by the results in [8] or [20].
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Thus, Lemma 6.2 is proved once we show that

x? does not lie in the closure ofB ′′. (6.6)

The proof of (6.6) is, once more, by contradiction. If (6.6) were false, then (6.5) implies
that we haveu < 9 in the interior of a suitable ball̂B ⊆ B ′′ andu(y′) = 9(y′) for some
y′

∈ ∂B̂. Since∇9 t (y′) = 0 andu ∈ C1 by assumption, we have

∇u(y′) = 0. (6.7)

Setu? := −u + 1 − e−constl . Then, by (1.3), ifl is sufficiently large, we have, in a weak
sense,

−1pu?
= 1pu ≥ h′

0(u) ≥ const(1 + u)p−1
≥ 0

in B̂; also,u? > 0 in the interior ofB̂ andu?(y′) = 0; consequently, by Theorem 3.4 (with
c = 0 andg = 0) it would follow that∇u?(y′) 6= 0 and so∇u(y′) 6= 0, contradicting
(6.7).

This proves (6.6) and thus completes the proof of Lemma 6.2. ut

Here is another result which allows us to bound subsolutions of (1.5) by the barriers9y,l :

Proposition 6.3. Let u be a weak subsolution of(1.5) in the domain� ⊆ RN , with
|u(x)| ≤ 1 for anyx ∈ �. Assume thatu ∈ C1(�). Lety ∈ RN andl > 0 be such that

Bl+Tl
(y) ⊂ {x ∈ � : u(x) ≤ −1 + θ∗

}. (6.8)

Then
u(x) ≤ 9y,l(x)

for anyx ∈ Bl+Tl
(y), providedl is sufficiently large.

Proof. Notice that9y,l is defined onBl+Tl
(y) and that, ifx ∈ Bl+Tl

(y) \ Bl(y), then

9y,l(x) ≥ 0 > −1 + θ∗
≥ u(x).

Therefore, due to (6.8), if the claim of Proposition 6.3 were false, there would be an open
setU such that

U ⊂ Bl(y) ⊂ � ∩ {u < −1 + θ∗
}, (6.9)

so that9y,l < u in U, and9y,l
= u on∂U. Consequently, there existsκ > 0 so thatv :=

u − κ ≤ 9y,l in U, v < 9y,l in ∂U andv(x?) = 9(x?) for somex?
∈ U. Note also that

v(x?) = 9(x?) ∈ (−1, 0), (6.10)

sincex?
∈ U ⊂ Bl(y), and therefore

x?
∈ V := U ∩ {|v| < 1}. (6.11)

Sinceh′

0 is increasing inBl+Tl
(y) (thanks to (6.8) and our assumption on page 2),

1pv = 1pu ≥ h′

0(u) = h′

0(v + κ) ≥ h′

0(v) (6.12)

weakly inV. Consequently, from Lemma 6.2 we deduce that eitherx?
∈ ∂V orv(x?) = 0.

The first assertion would contradict (6.11), while the second one is ruled out by (6.10).
This provides the contradiction which proves the desired result. ut
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Proposition 6.3 can be easily sharpened, giving a strict inequality, in the following way:

Corollary 6.4. Let u be a weak subsolution of(1.5) in the domain� ⊆ RN , with
|u(x)| ≤ 1 for anyx ∈ �. Assume thatu ∈ C1(�). Lety ∈ RN andl > 0 be such that

Bl+Tl
(y) ⊂ {x ∈ � : u(x) ≤ −1 + θ∗

}. (6.13)

Then
u(x) < 9y,l(x)

for anyx ∈ Bl+Tl
(y), providedl is sufficiently large.

Proof. By Proposition 6.3, we know thatu ≤ 9y,l . If there existedx? for which equality
holds, then (6.13) and Lemma 6.2 would imply thatu(x?) = 9y,l(x?) = 0, in contradic-
tion with (6.13). ut

A result analogous to Lemma 6.2 holds for the barrierg0(d0) constructed in Lemma 5.2.
For the convenience of the reader we will now provide some details on this:

Lemma 6.5. Let u be a weak Sobolev subsolution of(1.5) in some domain�. Suppose
thatu ∈ C1(�) and that|u| ≤ 1. Suppose thatg0(d0) touchesu from above atx?. Then
x?

∈ ∂�.

Proof. First notice thatu andg0(d0) cannot be identically equal in any open set: this
can be proven by an easy modification of the argument in Lemma 6.1. By Corollary 3.3,
we infer that interior contact points may only lie in the region whereg0(d0) is flat. This
possibility, however, is ruled out by Theorem 3.4 (see the arguments on page 26, and in
particular the proof of (6.6) for further details). Thus,x? cannot be an interior point. This
proves that eitherx?

∈ ∂� or it lies on the boundary of the domain ofg0(d0). We now
show that the latter possibility cannot hold. Indeed, on the boundary of the domain of
g0(d0) we haveg0(d0) = 1. On the other hand, ifx? lies on that boundary (but in the
interior of�), then

u ≤ 1 = u(x?) = g0(d0(x?))

would give∇u(x?) = 0. Let nowe be any direction pointing fromx? outside the domain
of g0(d0) and letû := u − g0(d0). Then, by construction,̂u(x?

− te) ≤ 0 for any small
positivet , while û(x?) = 0. Therefore,∂eû(x?) ≥ 0 for any outer derivative. Ife is taken
to be the outer normal, however, then

∂e(g0 ◦ d0)(x?) = g′
0(d0(x?))∂ed0(x?) = g′

0(d0(x?)) > 0.

Collecting the above estimates, we have

0 > −∂e(g0 ◦ d0)(x?) = ∂eû(x?) ≥ 0, (6.14)

and this contradiction shows10 that the contact point may only lie on∂�. ut

10 The reader will observe that the argument in (6.14) is indeed the same as on page 25.
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The next result plays a crucial rôle, since it establishes that the zero mean curvature prop-
erty of the limit surface is somehow already attained by solutions of (1.5), though in a
weak viscosity sense.

Lemma 6.6. Let l, θ, δ > 0 andM1 ∈ Mat((N −1)× (N −1)). Letu be a weak Sobolev
solution of(1.5) in [−l, l]N . Assume that|u| ≤ 1 in [−l, l]N , u(0) = 0 andu(x) < 0 for
anyx = (x′, xN ) ∈ [−l, l]N so that

xN <
θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′.

Assume also that(2.1) holds forω = eN . Then there exist a universal constantδ0 > 0
and a functionσ : (0, 1) → (0, 1) so that, if

δ ∈ (0, δ0], δ ≤ θ, θ/ l ∈ (0, σ (δ)], ‖M1‖ ≤ 1/δ, |ξ | ≤ 1/δ,

thentr M1 ≤ δ.

Proof. We remark that, by our assumption,l ≥ δ/σ (δ) may and will be assumed to
be a large quantity. Letgl and 9y,l be the functions defined in Lemma 5.1. Let also
c̄ ∈ (0, 1/10) be such that

Tl/4 ≥ c̄l. (6.15)

Define also

01 :=

{
x = (x′, xN ) ∈ [−l, l]N : xN =

θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′

}
.

Let us make some elementary observations on the above paraboloid. First of all, by con-
struction,u is negative below01 in [−l, l]N . Furthermore, by our assumptions,

01 ⊆ {|xN | ≤ constθ/δ} ⊆ {|xN | ≤ constσ(δ)l/δ} ⊆ {|xN | ≤ c̄l/8}. (6.16)

Therefore,
xN − c̄l/8 ≤ d01(x) ≤ xN + c̄l/8 (6.17)

for anyx ∈ [−l, l]N .
GivenX ∈ 01 let νX be the normal direction to01 atX pointing downwards. Let also

C := {|x′
| ≤ l/4} × {xN ∈ [−l/2, l/8]}.

We claim that
C ⊆

⋃
X∈01

B(c̄+1/4)l(X + (l/4)νX). (6.18)

To prove this, take anyx ∈ C and letX = X(x) ∈ 01 realized01. By (6.17), we have

d01(x) ∈

[
−

l

2
−

c̄l

8
,

l

8
+

c̄l

8

]
. (6.19)
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This says in particular that|d01(x)| < 3l/4, hence the defintion ofC implies thatX lies
in the interior of [−l, l]N and thereforex − X is orthogonal to01 atX, that is,

x = X + τ lνX

for a suitableτ ∈ R. Hence,
d01(x) = −τ l (6.20)

and
|x − (X + (l/4)νX)| = |τ − 1/4|l. (6.21)

Then, by (6.20) and (6.19), we have

τ ∈

[
−

1

8
−

c̄

8
,

1

2
+

c̄

8

]
and so

τ −
1

4
∈

[
−

3

8
−

c̄

8
,

1

4
+

c̄

8

]
⊂

[
−

1

4
−

c̄

8
,

1

4
+

c̄

8

]
.

This and (6.21) imply thatx ∈ B(c̄+1/4)l(X + (l/4)νX). This proves (6.18).
We now observe that

θ‖M1‖

l2
≤

θ

l2δ
≤

σ(δ)

lδ
. (6.22)

The bound on the curvature of01 given in (6.22) implies that, ifσ(δ)/δ is sufficiently
small, then, given anyX ∈ 01, there exists a ball of radiusl/4 which touches01 from
below atX.

The following is the decisive step towards the proof of the desired result. We claim
that

u(x) ≤ gl/4(d01(x)) (6.23)

for anyx ∈ C. To prove (6.23), first notice that, from (2.1) and Corollary 6.4, we infer that

u(x) < 9(0,...,0,−l/2),l/4(x), ∀x ∈ Bl/4+Tl/4(0, . . . , 0, −l/2).

Then, for a givenX ∈ 01 we define

X′
= X′(X) := X + (l/4)νX,

where, as above, we denoted byνX the normal direction to01 atX pointing downwards.
In particular, from the above observation,Bl/4(X

′) touches01 from below atX. We now
slide the surface9(0,...,0,−l/2),l/4 in the direction of the vector

v = v(X) := X′
− (0, . . . , 0, −l/2),

that is, we consider the surface9 t := 9(0,...,0,−l/2)+tv,l/4 for t > 0. We will show that

9 t (x) > u(x) for anyt ∈ [0, 1) and anyx ∈ Bl/4+Tl/4((0, . . . , 0, −l/2) + tv). (6.24)

Indeed, lett ∈ [0, 1) be the first time at which9 t touchesu. First of all, note that, since
t < 1, we haveu < 0 on∂Bl/4((0, . . . , 0, −l/2) + tv), while 9 t

= 0 there. Therefore,u
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u=0

u>0

u<0

X

X’

x

Γ1
_

Ψ =0
1

Ψ =11

Tl/4

l/4
((1/4)+c) l

Touching between91 and01

cannot be equal to9 t , and no touching points occur on∂Bl/4((0, . . . , 0, −l/2)+ tv). On
the other hand, Lemma 6.2 says that touching points cannot occur anywhere else. This
proves (6.24).

We are now in a position to complete the proof of (6.23) by arguing as follows. We
deduce from (6.24) that91(x) ≥ u(x) for anyx ∈ Bl/4+Tl/4(X

′), hence, a fortiori, for any
x ∈ B(1/4+c̄)l(X

′), thanks to (6.15). Therefore, taking now anyx ∈ C and lettingX′ be so
thatx ∈ B(1/4+c̄)l(X

′) (recall (6.18)), we have

gl/4(d01(x)) = gl/4(|x − X′
| − l/4) = 9X′,l/4(x) = 91(x) ≥ u(x).

This proves (6.23).
We now complete the proof by supposing that trM1 > δ: under this assumption, by

Lemma 5.2,g02(d02) is a strict supersolution of (1.5), where

02 :=

{
x = (x′, xN ) ∈ [−l, l]N : xN =

θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′

−
εδ

2(N − 1)
|x′

|
2
}
,

ε :=
θ

2l2
.

Note that
02 ⊆ {|xN | ≤ σ(δ)(δ + 1/δ)l} ⊆ {|xN | ≤ c̄l/8}. (6.25)

Moreover, we claim that, ifθ/ l andδ are sufficiently small, then

h02(s) ≤ hl/4(s) if sδ,ε < s ≤ −1 + (δθl−2)1/p, (6.26)

h02(s) ≥ hl/4(s) if 1 − (δθl−2)1/p
≤ s ≤ 1. (6.27)
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Indeed, ifh02(s) = 0, then (6.26) follows from item (i) in Lemma 5.1. If, on the contrary,
h02(s) > 0 ands ∈ [sδ,ε, −1 + (δε)1/p], then, by the definitions ofh02 andhl/4, (1.2)
and (5.23),

h02(s) − hl/4(s) ≤ −constδε +
const

l
(1 + s)p −

const

l
s
p

l/4 + h0(−1 + sl/4)

≤ −const
δθ

l2
+

const

l
(1 + s)p + constsp

l/4

≤ −const
δθ

l2
+ const

δε

l
+ constsp

l/4

= −const
δθ

l2
+ const

δθ

l3
+ conste−constl,

which is negative for sufficiently largel, completing the proof of (6.26). To prove (6.27),
use (1.2), (5.23) and the definitions ofh02 andhl/4 to deduce that, if 1− (δθl−2)1/p

≤

s ≤ 1,

h02(s) − hl/4(s) ≥ h0(s) + constδε − hl/4(s)

≥ constδε − h0(1 − sl/4) −
const

l
((1 − s)p + s

p

l/4)

≥ constδε − constsp

l/4 −
const

l
((1 − s)p + s

p

l/4)

≥ constδε − const
δθ

l3
− conste−constl

= const
δθ

l2
− const

δθ

l3
− conste−constl .

Takingl large enough provides the proof of (6.27).
According to (6.26) and (6.27), the functions 7→ H02(s) − Hl/4(s) is increasing for

s ≤ −1 + (δθl−2)1/p and decreasing fors ≥ 1 − (δθl−2)1/p, therefore its maximum
occurs in [−1 + (δθl−2)1/p, 1 − (δθl−2)1/p], i.e.,

max
s∈[sδ,ε,1]

(H02(s) − Hl/4(s)) = max
s∈[−1+(δθl−2)1/p,1−(δθl−2)1/p ]

(H02(s) − Hl/4(s)). (6.28)

Also, recalling the definition ofH0 in Lemma 5.1, ifs ∈ [0, 1 − (δθl−2)1/p],

H02(s) =

∫ s

0

(p − 1)1/p dζ

(ph02(ζ ))1/p
≤

∫ s

0

(p − 1)1/p dζ

(ph0(ζ ))1/p
= H0(s), (6.29)

and analogously, ifs ∈ [−1 + (δθl−2)1/p, 0],

−H02(s) =

∫ 0

s

(p − 1)1/p dζ

(ph02(ζ ))1/p
≥

∫ s

0

(p − 1)1/p dζ

(ph0(ζ ))1/p
= −H0(s). (6.30)

Hence, from (6.29) and (6.30),
H02(s) ≤ H0(s)
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for anys ∈ [−1 + (δθl−2)1/p, 1 − (δθl−2)1/p]. Consequently, from (5.4), ifs ∈ [−1 +

(δθl−2)1/p, 1 − (δθl−2)1/p], then

H02(s) ≤ Hl/4(s) +
const

l
log

l2

δθ
.

Therefore, by (6.28),

H02(s) ≤ Hl/4(s) +
const

l
log

l2

δθ
(6.31)

for anys ∈ [sδ,ε, 1]. Furthermore, by definition of01 and02, if |x′
| = l/4, then

d02(x) ≥ d01(x) + c(δ)

for a suitablec(δ) ∈ (0, 1). Hence, using (6.31) and takingl appropriately large, with
s = gl/4(d01(x)),

H02(gl/4(d01(x))) < Hl/4(gl/4(d01(x))) +
const

l
log

l2

δθ

= d01(x) +
const

l
log

l2

δθ
≤ d02(x)

providedgl/4(d01(x)) ≥ sδ,ε and|x′
| = l/4; therefore, sinceH02 is strictly increasing in

[sδ,ε, 1],
gl/4(d01(x)) < g02(d02(x)) (6.32)

for anyx so thatgl/4(d01(x)) ≥ sδ,ε and|x′
| = l/4. Of course, ifgl/4(d01(x)) < sδ,ε,

then (6.32) holds sinceg02 ≥ sδ,ε by construction (recall item (ii) of Lemma 5.2). Thus,

gl/4(d01(x)) < g02(d02(x)), ∀|x′
| = l/4, (6.33)

provided thatd01(x) is in the domain ofgl/4 andd02(x) in the domain ofg02. Notice,
however, that the first of these conditions is implied by the second:

if d02(x) is in the domain ofg02, thend01(x) is in the domain ofgl/4. (6.34)

To prove this, takex so thatd02(x) is in the domain ofg02. Then, by Lemma 5.2 and our
choice of parameters,

d02(x) ≤ C0(δ) log
l2

θ
,

and thus, from (6.15), (6.16) and (6.25), we deduce that

d01(x) ≤ d02(x) +
c̄l

4
≤ C0(δ) log

l2

θ
+

c̄l

4
≤

c̄l

2
≤ Tl/4,

which says thatd01(x) is in the domain ofgl/4, thus proving (6.34).
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Now, (6.33), (6.23) and (6.34) imply that

u(x) < g02(d02(x)) (6.35)

for anyx so that|x′
| = l/4 andd02(x) is in the domain ofg02.

With these estimates, we are now ready to deduce the contradiction that will finish the
proof of the desired result. To this end, we slideg02(d02) (as constructed in Lemma 5.2)
in theeN -direction till we touchu in C, i.e., we consider, fort ∈ R,

gt (x) := g02(d02(x − teN )).

If we denote byD0 the domain ofg02(d02), then Lemma 5.2 shows thatD0 is the sub-
graph of a paraboloid, namely

D0 = {d02(x) ≤ Tε,δ} ⊆

{
xN ≤ C0(δ) log

l2

θ

}
. (6.36)

Also, on the top of the paraboloid,g02(d02) takes value 1, i.e., ifd02(x) = Tε,δ then
g02(d02(x)) = 1. Notice that, with this notation,gt is defined inDt := D0 + teN and
gt takes value 1 on the top ofDt . Thus, if t � 0, thengt > u in Dt ∩ C, sinceu < 0
below01. On the other hand,

g0(0) = g02(d02(0)) = g02(0) = 0 = u(0),

therefore, there is a timet ≤ 0 of first touch ofgt andu in Dt ∩ C. Hence, in light of
Lemma 6.5, contact points may only happen either on the lateral side of the cylinderC
(i.e., on|x′

| = l/4) or on its bottom (i.e., onxN = −l/2; the casexN = l/8, correspond-
ing to the upper face of the cylinderC cannot hold becauset ≤ 0, henceDt lies way
belowxN = l/8, due to (6.36)).

We now exclude the possibility of touching atxN = −l/2 by arguing as follows. By
applying (6.23), (6.17) and the fact thatgl/4 is constant in(−∞, −l/8], we deduce that,
if xN = −l/2, then

u(x) ≤ gl/4(d01(x)) ≤ gl/4

(
xN +

c̄l

8

)
= gl/4

(
−

l

2
+

c̄l

8

)
≤ gl/4

(
−

l

8

)
= −1 + econstl < sδ,ε ≤ gt (x),

which rules out the possibility of touching atxN = −l/2.
Therefore, a contact pointx?

∈ Dt ∩ C betweenu andgt does occur when|x′
| = l/4.

Notice now that, from Lemma 4.8,

d02(x
?
− teN ) ≥ d02(x

?).

But then, sinceg02 is non-decreasing, we deduce from (6.35) that

g02(d02(x
?
− teN )) = gt (x?) = u(x?) < g02(d02(x

?)) ≤ g02(d02(x
?
− teN )).

This contradiction concludes the proof of Lemma 6.6. ut
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7. Proof of Theorem 2.2

The proof of Theorem 2.2 can now be completed as follows. We will apply Lemma 6.6
with the following choice of parameters:

l :=
d

√
ε tr M

, δ := θ := d2, M1 :=
1

tr M
M, ξ := 0.

If the claim of Theorem 2.2 were false, by scaling back and using the above parameters,
we would infer that01 touches from below the zero level set ofu inside [−l, l]N , where

01 =

{
x = (x′, xN ) ∈ RN−1

× R : xN =
θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′

}
.

By Lemma 6.6, we gather that 1> δ ≥ tr M1 = 1, which is the contradiction that proves
Theorem 2.2.

8. Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1. Letx? be a point whereS admits a tan-
gent plane. With no loss of generality, we may assume that the normal vector toS at x?

is eN . Let P be a paraboloid touching from below. We will show that the mean curvature
of P is non-positive; an analogous proof gives that, ifP is a paraboloid touching from
above, then its mean curvature is non-negative, and this ends the proof of Theorem 2.1.

By construction, ifP touchesS from below atx?, then

P =

{
(x′, x) ∈ RN−1

× R : xN =
1

2
(x′

− (x?)′) ·M(x′
− (x?)′) + x?

N

}
for someM ∈ Mat((N − 1) × (N − 1)). Let IN−1 be the(N − 1) × (N − 1) identity
matrix and set

M̂ :=M−
trM

2(N − 1)
IN−1. (8.1)

Notice that

trM̂ =
1

2
trM. (8.2)

Let us also define

P :=

{
(x′, x) ∈ RN−1

× R : xN =
1

2
(x′

− (x?)′) · M̂(x′
− (x?)′) + x?

N

}
.

Assume, by contradiction, that trM > 0. Then trM̂ > 0 in light of (8.2), andP also
touchesS from below atx?. Let r ∈ (0, 1), to be chosen suitably small later, and consider
the cubeQ := {|x − x?

|∞ ≤ r}. Notice that, by the tangency of{xN = x?
N } andS, if r is

small enough, we have
S ∩ Q ⊆ {|xN − x?

N | ≤ r/4}. (8.3)
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Also, by (2.2), if we fix anyη > 0, we have

dist(x,S) ≤ η (8.4)

for anyx ∈ {uε = 0} ∩ B1(x
?), providedε is small enough. We also claim that

Bη(x
?) ∩ {uε = 0} 6= ∅ (8.5)

if ε is small enough. To prove this, assume that, say,uε < 0 in Bη(x
?). Then, sinceuε

converges inL1
loc to χ := χE − χRN\E , we have

0 ≥ lim
ε→0+

∫
Bη(x?)

|uε − χ | = lim
ε→0+

∫
Bη(x?)∩E

|uε − 1| +

∫
Bη(x?)∩(RN\E)

|uε + 1|

≥ L(Bη(x
?) ∩ E),

whereL is theN -dimensional Lebesgue measure, so

L(Bη(x
?) ∩ E) = 0;

this contradicts (2.3) and proves (8.5).
We will now consider the touching of a suitable sliding ofP with {uε = 0} in Q. In

order to formalize the argument, define

Pt :=

{
(x′, x) ∈ RN−1

× R : xN =
1

2
(x′

− (x?)′) · M̂(x′
− (x?)′) + x?

N − t

}
,

and lett ∈ R be so thatPt ∩ {uε = 0} ∩ Q 6= ∅, while Ps ∩ {uε = 0} ∩ Q = ∅ for any
s > t . Notice that, from (8.4) and (8.5),

|t | ≤ 2η. (8.6)

Let x]
∈ Pt ∩{uε = 0}∩Q. We now show thatx] is in the interior ofQ; more precisely,

x]
∈ {|x − x?

|∞ ≤ r/2}. (8.7)

First of all, by (8.3) and (8.4),

{uε = 0} ∩ Q ⊆ {|xN − x?
N | ≤ r/2} (8.8)

providedε is small enough. Hence, to prove (8.7), it remains to show that|x
]
i −x?

i | ≤ r/2
for 1 ≤ i ≤ N − 1.

For this, recalling (8.4), let̃x ∈ S be so that

|x̃ − x]
| ≤ η. (8.9)

Then, sinceS is aboveP ,

x̃N ≥
1

2
(x̃′

− (x?)′) ·M(x̃′
− (x?)′) + x?

N . (8.10)
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Since, on the other hand,x]
∈ Pt ,

x
]
N =

1

2
((x])′ − (x?)′) · M̂((x])′ − (x?)′) + x?

N − t,

which, from (8.1) and (8.6), implies

x
]
N ≤ −

trM
4(N − 1)

|(x])′−(x?)′|2+
1

2
((x])′−(x?)′)·M((x])′−(x?)′)+x?

N +2η. (8.11)

Subtracting (8.10) and (8.11), and making use of (8.9), one gets

constη ≥ x̃N − x
]
N

≥
trM

4(N − 1)
|(x])′ − (x?)′|2 +

1

2
(x̃′

− (x?)′) ·M(x̃′
− (x?)′)

−
1

2
((x])′ − (x?)′) ·M((x])′ − (x?)′) − 2η

≥
trM

4(N − 1)
|(x])′ − (x?)′|2 − const(1 + ‖M‖)η.

Since trM > 0, this shows in particular that|x]
i −x?

i | ≤ r/2 for 1 ≤ i ≤ N −1, provided
η (and soε) is suitably small, thus completing the proof of (8.7).

With no loss of generality, we may now assume thatx]
= 0. Notice that, with this

assumption, by (8.7),Pt touches{uε = 0} from below in{|x|∞ ≤ r/2}. Hence, either
uε < 0 or uε > 0 belowPt in [−r/2, r/2]N ; we will consider the first possibility, the
second being analogous. Namely, we assume that

uε < 0 belowPt in [−r/2, r/2]N . (8.12)

Also, since 0∈ Pt , the equation ofPt takes the form

xN =
1

2
x′

· M̂x′
+ V · x′ (8.13)

with
|V | ≤ const‖M̂‖r.

We now apply Lemma 6.6 with the following choices: letδ ∈ (0, 1) be a fixed small
quantity,M1 := M̂/trM̂, l := r/(2ε), θ := εl2 trM̂, ξ := lV /θ . Let us check that
the hypotheses of Lemma 6.6 are fulfilled in the setting above if we chooser small (in
dependence on a fixed, smallδ) andε small (in dependence onδ andr). Indeed,

θ = const
r2 trM̂

ε

is greater thanδ if ε is small enough. On the other hand,

θ

l
= εl trM̂ = constr trM̂
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is less thanσ(δ) if r is small. Furthermore,‖M1‖ is obviously less than 1/δ if δ is small
enough and also

|ξ | ≤ const
‖M̂‖rl

θ
= const

‖M1‖r

εl
= const‖M1‖,

which is less than 1/δ if δ is small. The last hypothesis to check in order to use Lemma
6.6 is that

u < 0 (8.14)

for anyx ∈ [−l, l]N with

xN <
θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′.

To prove this, letx be as above and sety := εx. Then

|y|∞ ≤ εl ≤ r/2

and

yN <
θ

2l2ε
y′

· M1y
′
+

θ

l
ξ · y′

=
1

2
y′

· M̂y′
+ V · y′,

hencey is belowPt thanks to (8.13), and therefore, recalling (8.12), we deduce that

0 > uε(y) = u(x).

This proves (8.14). Since the assumptions of Lemma 6.6 are fulfilled, we deduce from
Lemma 6.6 that

1 > δ ≥ tr M1 = 1.

This contradiction, caused by the assumption that trM > 0, shows that the mean curva-
ture ofP must be non-positive. This completes the proof of Theorem 2.1.

9. Comments on the decay property (2.1) and proof of Theorem 2.3

In this section we assume thath0 admits aC1 extension to a neighborhood of [−1, 1].
We would like to show that conditions of type (2.1) are somehow natural. First of

all, a condition of this kind is necessary to avoid, for instance, periodic one-dimensional
solutions. Also, Class A minimizers ofF fulfill (2.1). This follows from some density
estimates for minimizers ofF , proved in [16]. In our setting11, we may state this result as
follows. We say thatu is alocal minimizer12 forF in some bounded domain� if F�(u) ≤

F�(u + ϕ) for any smooth functionϕ supported in�. Then the following result holds:

11 In (part of) [16] a uniform Lipschitz assumption onh0 is assumed. Such a condition is fulfilled
here, because, for anyξ ∈ (−1, −1 + θ∗) andζ ∈ (1 − θ∗, 1), we have

|h′
0(ξ)| = h′

0(ξ) ≤ h′
0(−1 + θ∗) and |h′

0(ζ )| = −h′
0(ζ ) ≤ −h′

0(1 − θ∗).

Hence, sup(−1,1) |h′
0| ≤ const.

12 The reader will note that, with this definition, a Class A minimizer is simply a local minimizer
in any domain.
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Theorem 9.1 ([16]). Let u be a local minimizer ofF in a domain� such that|u| ≤ 1.
Fix ε ∈ (0, 1) and supposex ∈ {−1 + ε < u < 1 − ε}. Then there exist positiver0(ε)

andc(ε) such that

L(Br(x) ∩ {u > −1 + ε}) ≥ c(ε)rN and L(Br(x) ∩ {u < 1 − ε}) ≥ c(ε)rN (9.1)

for any r ≥ r0(ε), whereL is theN -dimensional Lebesgue measure, providedBr+1(x)

⊂ �.

Further details on the above result are given in Theorem 1.1 of [16]. This implies that
local (and hence Class A) minimizers satisfy (2.1):

Corollary 9.2. Any local minimizer ofF in [−l, l]N satisfies(2.1) for any ω ∈ SN−1,
provided thatl is large enough.

Proof. Suppose that

{u = 0} ∩ ({|ω · x| ≤ l} × {|x − (ω · x)ω| ≤ l}) ⊂ {ω · x ≥ −c?
1l}

and letx = (x′, xN ) ∈ RN−1
× R satisfyω · x < −c?

2l and|x − (ω · x)ω| ≤ c?
3l. Fix

ε > 0, and assume by contradictionu(x) > −1 + ε. By Theorem 9.1 withl sufficiently
large with respect tor0(ε), we see thatB(c?

2−c?
1)l/2(x) contains points whereu = 0. This

contradiction shows that (2.1). ut

The proof of Theorem 2.3 is now completed via Corollary 9.2.

Thanks to Lemma 6.6 and Corollary 9.2, we can now state the following result, which
will be of use in the forthcoming paper [22]:

Lemma 9.3. Let l, θ, δ > 0 and M1 ∈ Mat((N − 1) × (N − 1)). Let u be a local
minimizer ofF in [−l, l]N , with |u| ≤ 1 in [−l, l]N , u(0) = 0 and u(x) < 0 for any
x = (x′, xN ) ∈ [−l, l]N so that

xN <
θ

2l2
x′

· M1x
′
+

θ

l
ξ · x′.

Then there exist a universal constantδ0 > 0 and a functionσ : (0, 1) → (0, 1) so that, if

δ ∈ (0, δ0], δ ≤ θ, θ/ l ∈ (0, σ (δ)], ‖M1‖ ≤ 1/δ, |ξ | ≤ 1/δ,

thentr M1 ≤ δ.

To end this paper, we note that, as a matter of fact, the barriers constructed here also show
that Class A minimizers approach±1 exponentially fast, once the zero level set is under
control. Though this result is not explicitly used here, we believe it is useful to clarify the
picture of Class A minimizers:
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Lemma 9.4. Let u ∈ W
1,p

loc (RN ) be a weak Sobolev solution of(1.5) so thatu(x) <

−1 + θ∗ for anyx ∈ RN with xN ≤ −κ for someκ > 0. Then

u(x) ≤ −1 + θ∗eκ ′(xN+κ) if xN ≤ −κ,

u(x) ≥ 1 − θ∗eκ ′(κ−xN ) if xN ≥ κ,
(9.2)

for a suitableκ ′ > 0.
What is more, letu be a Class A minimizer forF with |u| ≤ 1. Let θ > 0 and as-

sume thatu(x) < 0 if xN ≤ −θ , andu(x) > 0 if xN ≥ θ . Then there existκ1, κ2 > 0,
depending only onθ and on universal constants, so that

u(x) ≤ −1 + θ∗eκ1(xN+κ2) if xN ≤ −κ2,

u(x) ≥ 1 − θ∗eκ1(κ2−xN ) if xN ≥ κ2.
(9.3)

Proof. Let u be a Class A minimizer. By arguing as in Corollary 9.2, one easily deduces
from Theorem 9.1 and the inclusion{u = 0} ⊆ {|xN | ≤ θ}, that

u(x) < −1 + θ∗ for anyx ∈ RN with xN ≤ −κ2, (9.4)

for a suitableκ2 (depending only onθ , θ∗ and universal constants). This shows that the
claim in (9.3) reduces to the one in (9.2). Now, for(x, t) ∈ RN

× [0, θ∗] let

β(t)(x) := −1 + θ∗eκ1(κ2+xN )
+ t. (9.5)

Notice that, by (9.4) and (9.5),

β(t)
≥ −1 + θ∗ > u (9.6)

in {xN ≤ −κ2}. Also, with a straightforward computation, recalling (1.2), one gets

1pβ(t)
= 1pβ(0)

= (p − 1)κconst
1 (1 + β(0))p−1

≤ (p − 1)κconst
1 (1 + β(t))p−1

≤ h′

0(β
(t))

providedκ1 is small enough. Then we slideβ(t), decreasingt from θ∗ towards 0 until we
possibly touchu in {xN ≤ −κ2}. We prove in fact that no touching occurs untilt = 0,
that is,

β(t) > u (9.7)

for anyx ∈ RN with xN ≤ −κ2 and anyt ∈ (0, θ∗]. To prove (9.7), assume the converse;
then, in light of (9.4), a touching point occurs at somex? with x?

N < −κ2.
Note now that

|∇β(t)(x)| = θ∗κ1e
κ1(κ2+xN ) > 0.

In particular, if we consider the setBρ(x?) with ρ := −x?
N − κ2 it follows thatu < β(t)

at least at some point on∂Bρ(x?). Therefore, by Theorem 3.3,

β(t) > u in Bρ(x?), (9.8)

which is a contradiction. This proves (9.7). From this,u ≤ β(0), which proves the first
estimate in (9.2)–(9.3). The second one can be proven in a similar way. ut
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