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Monotonicity of the solutions of quasilinear elliptic equations in the half-plane
with a changing sign nonlinearity.

L. Montoro and B. Sciunzi

Abstract. We consider weak positive solutions of the equation −∆mu = f(u) in the half-plane with zero
Dirichlet boundary conditions and we prove a monotonicity result. We assume that the nonlinearity f is
Locally Lipschitz continuous and changing sign: in particular we refer to the model f(s) = sq−λsm−1, q >
m− 1. Our results extend to the case of sign changing nonlinearities the recent results in [DS3].

1. Introduction and statement of the main results

In this paper we consider the problem

(1)





−∆mu = f(u), in D ≡ {(x, y) ∈ R2 | y > 0}
u(x, y) > 0, in D

u(x, 0) = 0, ∀x ∈ R
where 3

2 < m ≤ 2 and ∆mu ≡ div(|∇u|m−2∇u). It is well known that solutions of m-Laplace equations are
generally of class C1,α (see [Di, Li, To]), and the equation has to be understood in the weak distributional
sense.
We extend here to the case of some sign changing nonlinearities the monotonicity results recently obtained
in [DS3]. We restrict our attention to the case m 6 2, since weak comparison principles hold true in
this case, as proved in [DP]. Also some strong maximum and comparison principles obtained in [Sc] are
exploited.
Our proof combines the geometric technique in [DS3] (which goes back to [BCN]), with the method of
moving planes as developed in [DP].
We assume for f (see Figure 1) the following hypotheses:

(f1) f is locally Lipschitz continuous;

(f2) f(s) :=





0 if s = 0 or s = k;
< 0 if s ∈ (0, k);
> 0 if s ∈ (k, +∞);

for some k > 0;

(f3) there exists some ε > 0 such that f is non-decreasing in (k − ε, k + ε).

As a typical example we refer to the case f(s) = sq − λsm−1 with q > m − 1 and λ > 0. We have the
following
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Figure 1. The nonlinearity f(s).

Theorem 1. Let u be a weak C1,α
loc solution of (1). Assume 3

2 < m ≤ 2 and that hypotheses (f1), (f2) and
(f3) hold true for the nonlinearity f . Then, u is monotone increasing in the e2-direction and

∂u

∂y
(x, y) > 0, ∀(x, y) ∈ D.

If moreover we assume that u is bounded, it follows that u is one dimensional, that is

u(x, y) = ū(y).

2. Notations

We let Lx0,s,θ the line, with slope tan(θ) passing through (x0, s) and Vθ is the vector orthogonal to Lx0,s,θ

θ
tan( )θ

s

0 , ,x sL θ

0x
•

Vθ

Figure 2

such that (Vθ, e2) > 0. We define
Tx0,s,θ

as the triangle delimited by Lx0,s,θ, {y = 0} and {x = x0}, see Figure 4. We set

θ
s

•

•

0 , , ( )x sT xθ

x

Figure 3
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ux0,s,θ(x) = u(Tx0,s,θ(x)),

where Tx0,s,θ(x) is the point symmetric to x, w.r.t. Lx0,s,θ (see Figure 3) and

wx0,s,θ = u− ux0,s,θ.

It is well known that ux0,s,θ still fulfills

x0

h
s

0 , ,x sT θ

Figure 4

−∆mux0,s,θ = f(ux0,s,θ).

For simplicity
ux0,s,0 = us.

3. Proof of Theorem 1

Given any x ∈ R, by Hopf boundary Lemma, (see [PS3, Va]), it follows that

uy(x, 0) =
∂u

∂y
(x, 0) > 0,

obviously, uy(x, 0) possibly goes to 0 if x → ±∞. Let x0 be fixed and h such that

∂u

∂y
(x, y) > γ > 0, ∀x, y ∈ Qh(x0),

where

(2) Qh(x0) = { |x− x0| 6 h, 0 6 y 6 2h}
as shown in Figure 5. Note that such γ > 0 exists since u ∈ C1,α. Also, since u ∈ C1,α, we may assume

x0h h

2h0
u

y
γ∂ ≥ >

∂

0( )hQ x

Figure 5

that there exists

(3) δ1 = δ1(h, γ, x0) > 0
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such that, if |θ| 6 δ1 (and consequently Vθ ≈ e2), we have

(4)
∂u

∂Vθ
> γ

2
> 0, in Qh(x0).

Then, let Qh(x0) as in (2) and δ1 defined in (3). Consider θ 6= 0 fixed such that |θ| 6 δ1. Then we find

s̄ = s̄(θ)

such that, for any s 6 s̄ we have that
the triangle Tx0,s,θ is contained in Qh(x0) (see Figure 4)
and u < ux0,s,θ in Tx0,s,θ (and u 6 ux0,s,θ on ∂(Tx0,s,θ)).

This follows by the monotonicity in Qh(x0).
Let now θ be fixed with |θ| 6 δ1, we set s̄ 6 h in such a way that

• the triangle Tx0,s,θ is contained in Qh(x0) as well as the triangle obtained from Tx0,s,θ by reflection
with respect to the line Lx0,s,θ (see Figure 4). Note that this is possible by simple geometric
considerations;

• u 6 ux0,s,θ on ∂(Tx0,s,θ). In fact, since |θ| 6 δ1 then u 6 ux0,s,θ on the line (x0, y) for 0 6 y 6 s,
since of the monotonicity in the Vθ-direction, by construction (see (4)). Also u 6 ux0,s,θ if y = 0
by the Dirichlet assumption, and the fact that u is positive in the interior of the domain. And
finally u ≡ ux0,s,θ on Lx0,s,θ;

• possibly reducing s̄, we assume that the Lebesgue measure L(Tx0,s,θ) is sufficiently small in order
to exploit the weak comparison principle in small domains.

Therefore, for 0 6 s 6 s̄, if we define
wx0,s,θ = u− ux0,s,θ

we have that

wx0,s,θ 6 0 on ∂Tx0,s,θ,

therefore, by the weak comparison principle, which works in our case thanks to [DP] since m 6 2, we get

wx0,s,θ 6 0 in Tx0,s,θ.

Using repeatedly now the moving plane technique, the rotating plane technique and the sliding plane tech-
nique, as made in [DS3], together with the weak comparison principle proved in [DP], one has that

(5) u 6 us̃ in Σs̃, ∀s̃ ∈ (0, h],

where

Σt ≡ {(x, y) | 0 < y < t}.
We now point out some consequences:
First of all, we have also proved that u is monotone increasing in the e2-direction in Σh. In fact, given
(x, y1) and (x, y2) in Σh (say 0 6 y1 < y2 6 h), by equation (5), one has that

u(x, y1) 6 u y1+y2
2

(x, y1),

which gives exactly
u(x, y1) 6 u(x, y2).

Also we note that, this immediately gives

(6)
∂u

∂y
(u) > 0 in Σh.

Claim: Let us show now that actually
∂u

∂y
(u) > 0 in Σh. We point out that the nonlinearity f change

sign, see Figure 1. We remark that since the local weighted Sobolev type inequality is local in nature (see
[DS1, Sc] for example), then a Sobolev type inequality follows in regions where f(s) is negative or positive.
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Therefore a strong maximum principle for the linearized operator follows in such regions (see [Sc]) and,
when applied to the derivative of u, we readily get

∂u

∂y
> 0,

in regions where the nonlinearity is positive or negative. To get the same result in regions where f change
sign, we use a sliding balls technique as made in [Sc, Theorem 6.1]. Here, for the reader’s convenience, we
give just some details. Let us consider a ball B1

ρ(x, y), with ρ sufficiently small such that is contained in the
region where f does not change sign. Then we move it in the positive y-direction up to reach the level set
f(s) ≡ k at some point P1. Next we repeat the same technique sliding a second ball B2

ρ(x, y) with radius ρ
sufficiently small up to reach the level set f(s) ≡ k in a second point P2, see Figure 6. By Hopf boundary

y

x

Σh

P1

P2
f ≡ k

C

Figure 6. The sliding method.

Lemma ([Va]) we get that

(7)





∂u

∂n2
(P1) 6= 0;

∂u

∂n2
(P2) 6= 0.

Here n1 (resp. n2) denote the outer normal vector at P1 (at P2) to the boundary of B1
ρ(x, y) (of B2

ρ(x, y)).
From (7) and by continuity it follows that ∇u is different from zero in a sufficiently small neighborhood of
P1 and P2. Therefore a Strong Maximum Principle holds near P1 and P2, and in connection with equation
(6), it gives

∂u

∂y
(P1) > 0 and

∂u

∂y
(P2) > 0.

Then let us fix an open set C in such a way its closure cross the two points P1 and P2, see Figure 6. Also, let
us assume that C ⊂ {k− ε < u < k + ε}, where ε is the one in condition f(3) and with no loss of generality
∂u

∂y
> 0 on ∂C. Then by a Strong Maximum Principle for the linearized equation (see in particular [Sc,

Theorem 6.1]) one has that
∂u

∂y
> 0 ∀y ∈ C,

and consequently the strictly monotonicity of u in the strip Σh with
∂u

∂y
> 0 ∀y ∈ Σh,
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since C was arbitrary. It follows now that by equation (5), we have that w = u − us̃ 6 0 in Σs̃. By the
Strong Comparison Principle which holds now since ∇u 6= 0 in Σs̃ we reduce to the case

w < 0,

being the case w ≡ 0 easily excluded.

Remark 2. We point out that to apply the Strong Maximum Principle, here we need to require that f(·)
is non-decreasing in a neighborhood of its nodal point, see f(3).

Some Notations

Let us set
Λ = {λ ∈ R+ : u < uλ′ ∀λ′ < λ}

and define
λ̄ = sup

λ∈Λ
λ

so that u 6 uλ̄ by continuity and also u < uλ̄ arguing as above. Consequently, exactly as above, this
implies that u is strictly monotone increasing in the e2-direction with

(8)
∂u

∂y
> 0

in Σλ̄. To prove the theorem, we have to show that actually λ̄ = ∞. To do this we now assume λ̄ < ∞ and
show that we can take δ > 0 such that

u < uλ for 0 < λ 6 λ̄ + δ

which would implies λ > λ̄ and then the thesis. To prove this let us consider θ fixed with |θ| 6 δ, and
consequently set λ small such that

the triangle Tx0,λ,θ is contained in Qh(x0) (see Figure 4),
u < ux0,λ,θ in Tx0,λ,θ (and u 6 ux0,λ,θ on ∂(Tx0,λ,θ)).

In the following we need to follow the proof of Claim-1 and Claim-2 in [DS3]. In particular we need to
show that we may and do assume

∇u(x0, λ) 6= 0.

To do this we have to generalize the arguments in Claim-1 and Claim-2 in [DS3] since, in our case, the
nonlinearity change sign with respect to the case considered in [DS3]. Anyway we get the same conclusion
distinguishing two different cases:

(1) it may occur that u(x, λ) ≡ k, ∀x ∈ R. In this situation f(u) = 0 by (f2) on {y = λ}. Then, since
u(x, ·) is strictly increasing in the strip Σλ, we easily prove the existence of some point (x0, λ)
(actually for any (x, λ)) where the gradient is different from zero, by using standard Hopf Lemma;

(2) otherwise the nonlinearity f could change sign on the line y = λ. Without loss of generality, since
f is continuous, we find some neighborhood Iσ = (x0−σ, x0 +σ), with σ sufficiently small, where
f(u(t, λ)) is strictly positive (or negative) when t ∈ (x0 − σ, x0 + σ). Then the conclusion in the
previous case follows as in Theorem 1.1 in [DS3].

Therefore, in all two cases we get the existence of some point x0 where

∇u(x0, λ) 6= 0.

Now we use the above arguments:

(i) the sliding technique:

we move the line Lx0,λ,θ in the e2-direction towards the line Lx0,λ̄+δ,θ, letting θ fixed and moving λ → λ̄+δ.
We note that for every λ 6 λ̄ + δ we have u 6 ux0,λ,θ on ∂(Tx0,λ,θ). In fact, since |θ| 6 δ can be taken as
small as we like, then following closely Claim-1 and Claim-2 1 in [DS3] one has that u < ux0,λ,θ on the
line (x0, y) for 0 6 y < λ. Also u 6 ux0,λ,θ if y = 0 by the Dirichlet assumption. And finally u ≡ ux0,λ,θ on

1The fact that ∇u(x0, λ) 6= 0 is needed to exploit the Hopf Comparison Lemma in (x0, λ) as in [DS3].
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Lx0,λ,θ.
Therefore by the sliding technique described above, we get

u < ux0,λ̄+δ,θ in Tx0,λ̄+δ,θ.

Now start with

(ii) the rotating plane technique:

rotating the line Lx0,λ̄+δ,θ towards the line {y = λ̄ + δ}, letting λ̄ + δ fixed and moving θ → 0. We still
have the right conditions on the boundary of Tx0,λ+δ,θ and at same way starting from positive θ at the
limit (θ → 0) we get u < uλ̄+δ in Σλ̄+δ ∩ {x 6 x0}. If else we start from a negative θ, it follows u < uλ̄+δ

in Σλ̄+δ ∩ {x > x0}. Finally

u < uλ̄+δ in Σλ̄+δ,

proving that λ > λ̄, that is λ = +∞.

If now we assume that u is bounded, we have that the gradient is bounded too. Consequently, exploiting
Theorem 1.1 in [FSV], we may follow exactly the proof of Theorem 1.4 in [DS3], and get that u is one
dimensional 2, that is there exists u : R→ R such that

u(x, y) = u(y),

concluding the proof.
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