Monotonicity of the solutions of quasilinear elliptic equations in the half-plane with a changing sign nonlinearity.

L. Montoro and B. Sciunzi

ABSTRACT. We consider weak positive solutions of the equation $-\Delta_m u = f(u)$ in the half-plane with zero Dirichlet boundary conditions and we prove a monotonicity result. We assume that the nonlinearity f is Locally Lipschitz continuous and changing sign: in particular we refer to the model $f(s) = s^q - \lambda s^{m-1}$, q > m - 1. Our results extend to the case of sign changing nonlinearities the recent results in [**DS3**].

1. Introduction and statement of the main results

In this paper we consider the problem

(1)
$$\begin{cases} -\Delta_m u = f(u), & \text{in } D \equiv \{(x, y) \in \mathbb{R}^2 \mid y > 0\} \\ u(x, y) > 0, & \text{in } D \\ u(x, 0) = 0, & \forall x \in \mathbb{R} \end{cases}$$

where $\frac{3}{2} < m \leq 2$ and $\Delta_m u \equiv div(|\nabla u|^{m-2}\nabla u)$. It is well known that solutions of *m*-Laplace equations are generally of class $C^{1,\alpha}$ (see [**Di**, **Li**, **To**]), and the equation has to be understood in the weak distributional sense.

We extend here to the case of some sign changing nonlinearities the monotonicity results recently obtained in [**DS3**]. We restrict our attention to the case $m \leq 2$, since weak comparison principles hold true in this case, as proved in [**DP**]. Also some strong maximum and comparison principles obtained in [**Sc**] are exploited.

Our proof combines the geometric technique in [DS3] (which goes back to [BCN]), with the method of moving planes as developed in [DP].

We assume for f (see Figure 1) the following hypotheses:

(f1) f is locally Lipschitz continuous;

(f2)
$$f(s) := \begin{cases} 0 & \text{if } s = 0 \text{ or } s = k; \\ < 0 & \text{if } s \in (0, k); \\ > 0 & \text{if } s \in (k, +\infty); \end{cases}$$
 for some $k > 0;$

(f3) there exists some $\varepsilon > 0$ such that f is non-decreasing in $(k - \varepsilon, k + \varepsilon)$.

As a typical example we refer to the case $f(s) = s^q - \lambda s^{m-1}$ with q > m-1 and $\lambda > 0$. We have the following

²⁰⁰⁰ Mathematics Subject Classification. 35B05,35B65,35J70.

Address: *LM* – Università della Calabria – (Dipartimento di Matematica) – V. P. Bucci – Arcavacata di Rende (CS), Italy. Email: montoro@mat.unical.it.

BS - Università della Calabria - (Dipartimento di Matematica) - V. P. Bucci - Arcavacata di Rende (CS), Italy. Email: sciunzi@mat.unical.it.

Authors' research is supported by Metodi Variazionali e Topologici nello Studio di Fenomeni non Lineari.

Con il nostro ordine discreto dentro il cuore.....

FIGURE 1. The nonlinearity f(s).

THEOREM 1. Let u be a weak $C_{loc}^{1,\alpha}$ solution of (1). Assume $\frac{3}{2} < m \leq 2$ and that hypotheses (f1), (f2) and (f3) hold true for the nonlinearity f. Then, u is monotone increasing in the e_2 -direction and

$$\frac{\partial u}{\partial y}(x,y)>0,\quad \forall (x,y)\in\overline{D}.$$

If moreover we assume that u is bounded, it follows that u is one dimensional, that is

 $u(x,y) = \bar{u}(y).$

2. Notations

We let $L_{x_0,s,\theta}$ the line, with slope $\tan(\theta)$ passing through (x_0,s) and V_{θ} is the vector orthogonal to $L_{x_0,s,\theta}$

Figure 2

such that $(V_{\theta}, e_2) \ge 0$. We define

 $\mathcal{T}_{x_0,s,\theta}$ as the triangle delimited by $L_{x_0,s,\theta}$, $\{y=0\}$ and $\{x=x_0\}$, see Figure 4. We set

FIGURE 3

$$u_{x_0,s,\theta}(x) = u(T_{x_0,s,\theta}(x)),$$

where $T_{x_0,s,\theta}(x)$ is the point symmetric to x, w.r.t. $L_{x_0,s,\theta}$ (see Figure 3) and

$$w_{x_0,s,\theta} = u - u_{x_0,s,\theta}.$$

It is well known that $u_{x_0,s,\theta}$ still fulfills

FIGURE 4

$$-\Delta_m u_{x_0,s,\theta} = f(u_{x_0,s,\theta})$$

For simplicity

$$u_{x_0,s,0} = u_s$$

3. Proof of Theorem 1

Given any $x \in \mathbb{R}$, by Hopf boundary Lemma, (see [**PS3**, **Va**]), it follows that

$$u_y(x,0) = \frac{\partial u}{\partial y}(x,0) > 0,$$

obviously, $u_y(x,0)$ possibly goes to 0 if $x \to \pm \infty$. Let x_0 be fixed and h such that

$$\frac{\partial u}{\partial y}(x,y) \geqslant \gamma > 0, \forall x, y \in Q_h(x_0),$$

where

(2)
$$Q_h(x_0) = \{ |x - x_0| \leq h, 0 \leq y \leq 2h \}$$

as shown in Figure 5. Note that such $\gamma > 0$ exists since $u \in C^{1,\alpha}$. Also, since $u \in C^{1,\alpha}$, we may assume

Figure 5

that there exists

(3)

$$\delta_1 = \delta_1(h, \gamma, x_0) > 0$$

3

such that, if $|\theta| \leq \delta_1$ (and consequently $V_{\theta} \approx e_2$), we have

(4)
$$\frac{\partial u}{\partial V_{\theta}} \ge \frac{\gamma}{2} > 0, \quad \text{in } Q_h(x_0).$$

Then, let $Q_h(x_0)$ as in (2) and δ_1 defined in (3). Consider $\theta \neq 0$ fixed such that $|\theta| \leq \delta_1$. Then we find

 $\bar{s} = \bar{s}(\theta)$

such that, for any $s \leq \bar{s}$ we have that the triangle $\mathcal{T}_{x_0,s,\theta}$ is contained in $Q_h(x_0)$ (see Figure 4) and $u < u_{x_0,s,\theta}$ in $\mathcal{T}_{x_0,s,\theta}$ (and $u \leq u_{x_0,s,\theta}$ on $\partial(\mathcal{T}_{x_0,s,\theta})$).

This follows by the monotonicity in $Q_h(x_0)$.

Let now θ be fixed with $|\theta| \leq \delta_1$, we set $\bar{s} \leq h$ in such a way that

- the triangle $\mathcal{T}_{x_0,s,\theta}$ is contained in $Q_h(x_0)$ as well as the triangle obtained from $\mathcal{T}_{x_0,s,\theta}$ by reflection with respect to the line $L_{x_0,s,\theta}$ (see Figure 4). Note that this is possible by simple geometric considerations;
- $u \leq u_{x_0,s,\theta}$ on $\partial(\mathcal{T}_{x_0,s,\theta})$. In fact, since $|\theta| \leq \delta_1$ then $u \leq u_{x_0,s,\theta}$ on the line (x_0, y) for $0 \leq y \leq s$, since of the monotonicity in the V_{θ} -direction, by construction (see (4)). Also $u \leq u_{x_0,s,\theta}$ if y = 0by the Dirichlet assumption, and the fact that u is positive in the interior of the domain. And finally $u \equiv u_{x_0,s,\theta}$ on $L_{x_0,s,\theta}$;
- possibly reducing \bar{s} , we assume that the Lebesgue measure $\mathcal{L}(\mathcal{T}_{x_0,s,\theta})$ is sufficiently small in order to exploit the weak comparison principle in small domains.

Therefore, for $0 \leq s \leq \bar{s}$, if we define

$$w_{x_0,s,\theta} = u - u_{x_0,s,\theta}$$

we have that

$$w_{x_0,s,\theta} \leq 0 \text{ on } \partial \mathcal{T}_{x_0,s,\theta},$$

therefore, by the weak comparison principle, which works in our case thanks to $[\mathbf{DP}]$ since $m \leq 2$, we get

$$w_{x_0,s,\theta} \leq 0$$
 in $\mathcal{T}_{x_0,s,\theta}$.

Using repeatedly now the moving plane technique, the rotating plane technique and the sliding plane technique, as made in [DS3], together with the weak comparison principle proved in [DP], one has that

(5)
$$u \leqslant u_{\tilde{s}} \quad \text{in } \Sigma_{\tilde{s}}, \quad \forall \tilde{s} \in (0,h]$$

where

$$\Sigma_t \equiv \{ (x, y) \, | \, 0 < y < t \}.$$

We now point out some consequences:

First of all, we have also proved that u is monotone increasing in the e_2 -direction in Σ_h . In fact, given (x, y_1) and (x, y_2) in Σ_h (say $0 \leq y_1 < y_2 \leq h$), by equation (5), one has that

$$u(x,y_1) \leqslant u_{\frac{y_1+y_2}{2}}(x,y_1)$$

which gives exactly

$$u(x, y_1) \leqslant u(x, y_2)$$

Also we note that, this immediately gives

(6)
$$\frac{\partial u}{\partial y}(u) \ge 0$$
 in Σ_h

Claim: Let us show now that actually $\frac{\partial u}{\partial y}(u) > 0$ in Σ_h . We point out that the nonlinearity f change sign, see Figure 1. We remark that since the local weighted Sobolev type inequality is local in nature (see **[DS1, Sc]** for example), then a Sobolev type inequality follows in regions where f(s) is negative or positive.

Therefore a strong maximum principle for the linearized operator follows in such regions (see [Sc]) and, when applied to the derivative of u, we readily get

$$\frac{\partial u}{\partial y} > 0,$$

in regions where the nonlinearity is positive or negative. To get the same result in regions where f change sign, we use a *sliding balls technique* as made in [Sc, Theorem 6.1]. Here, for the reader's convenience, we give just some details. Let us consider a ball $B_{\rho}^{1}(x, y)$, with ρ sufficiently small such that is contained in the region where f does not change sign. Then we move it in the positive y-direction up to reach the level set $f(s) \equiv k$ at some point P_1 . Next we repeat the same technique sliding a second ball $B_{\rho}^{2}(x, y)$ with radius ρ sufficiently small up to reach the level set $f(s) \equiv k$ in a second point P_2 , see Figure 6. By Hopf boundary

FIGURE 6. The sliding method.

Lemma ([Va]) we get that

(7)
$$\begin{cases} \frac{\partial u}{\partial n_2}(P_1) \neq 0; \\ \frac{\partial u}{\partial n_2}(P_2) \neq 0. \end{cases}$$

Here n_1 (resp. n_2) denote the outer normal vector at P_1 (at P_2) to the boundary of $B^1_{\rho}(x, y)$ (of $B^2_{\rho}(x, y)$). From (7) and by continuity it follows that ∇u is different from zero in a sufficiently small neighborhood of P_1 and P_2 . Therefore a Strong Maximum Principle holds near P_1 and P_2 , and in connection with equation (6), it gives

$$\frac{\partial u}{\partial y}(P_1) > 0 \quad \text{and} \quad \frac{\partial u}{\partial y}(P_2) > 0.$$

Then let us fix an open set C in such a way its closure cross the two points P_1 and P_2 , see Figure 6. Also, let us assume that $C \subset \{k - \varepsilon < u < k + \varepsilon\}$, where ε is the one in condition f(3) and with no loss of generality $\frac{\partial u}{\partial y} > 0$ on ∂C . Then by a Strong Maximum Principle for the linearized equation (see in particular [Sc, Theorem 6.1]) one has that

$$\frac{\partial u}{\partial y} > 0 \quad \forall y \in \mathcal{C},$$

and consequently the strictly monotonicity of u in the strip Σ_h with

$$\frac{\partial u}{\partial y} > 0 \quad \forall y \in \Sigma_h,$$

L.MONTORO AND B. SCIUNZI

since \mathcal{C} was arbitrary. It follows now that by equation (5), we have that $w = u - u_{\tilde{s}} \leq 0$ in $\overline{\Sigma}_{\tilde{s}}$. By the Strong Comparison Principle which holds now since $\nabla u \neq 0$ in $\overline{\Sigma}_{\tilde{s}}$ we reduce to the case

w < 0,

being the case $w \equiv 0$ easily excluded.

REMARK 2. We point out that to apply the Strong Maximum Principle, here we need to require that $f(\cdot)$ is non-decreasing in a neighborhood of its nodal point, see f(3).

Some Notations

Let us set

$$\Lambda = \{\lambda \in \mathbb{R}^+ : u < u_{\lambda'} \ \forall \lambda' < \lambda\}$$

and define

$$\lambda = \sup_{\lambda \in \Lambda} \lambda$$

so that $u \leq u_{\bar{\lambda}}$ by continuity and also $u < u_{\bar{\lambda}}$ arguing as above. Consequently, exactly as above, this implies that u is strictly monotone increasing in the e_2 -direction with

(8)
$$\frac{\partial u}{\partial y} > 0$$

in $\Sigma_{\bar{\lambda}}$. To prove the theorem, we have to show that actually $\bar{\lambda} = \infty$. To do this we now assume $\bar{\lambda} < \infty$ and show that we can take $\delta > 0$ such that

$$u < u_{\lambda}$$
 for $0 < \lambda \leq \overline{\lambda} + \delta$

which would implies $\lambda > \overline{\lambda}$ and then the thesis. To prove this let us consider θ fixed with $|\theta| \leq \delta$, and consequently set λ small such that

the triangle
$$\mathcal{T}_{x_0,\lambda,\theta}$$
 is contained in $Q_h(x_0)$ (see Figure 4),
 $u < u_{x_0,\lambda,\theta}$ in $\mathcal{T}_{x_0,\lambda,\theta}$ (and $u \leq u_{x_0,\lambda,\theta}$ on $\partial(\mathcal{T}_{x_0,\lambda,\theta})$).

In the following we need to follow the proof of **Claim-1** and **Claim-2** in **[DS3]**. In particular we need to show that we may and do assume

$$\nabla u(x_0,\lambda) \neq 0.$$

To do this we have to generalize the arguments in **Claim-1** and **Claim-2** in [**DS3**] since, in our case, the nonlinearity change sign with respect to the case considered in [**DS3**]. Anyway we get the same conclusion distinguishing two different cases:

- (1) it may occur that $u(x,\lambda) \equiv k, \forall x \in \mathbb{R}$. In this situation f(u) = 0 by (f2) on $\{y = \lambda\}$. Then, since $u(x,\cdot)$ is strictly increasing in the strip Σ_{λ} , we easily prove the existence of some point $(x_0,\overline{\lambda})$ (actually for any $(x,\overline{\lambda})$) where the gradient is different from zero, by using standard Hopf Lemma;
- (2) otherwise the nonlinearity f could change sign on the line $y = \overline{\lambda}$. Without loss of generality, since f is continuous, we find some neighborhood $I_{\sigma} = (x_0 \sigma, x_0 + \sigma)$, with σ sufficiently small, where $f(u(t,\overline{\lambda}))$ is strictly positive (or negative) when $t \in (x_0 \sigma, x_0 + \sigma)$. Then the conclusion in the previous case follows as in Theorem 1.1 in [**DS3**].

Therefore, in all two cases we get the existence of some point x_0 where

$$\nabla u(x_0, \overline{\lambda}) \neq 0.$$

Now we use the above arguments:

(*i*) the sliding technique:

we move the line $L_{x_0,\lambda,\theta}$ in the e_2 -direction towards the line $L_{x_0,\bar{\lambda}+\delta,\theta}$, letting θ fixed and moving $\lambda \to \bar{\lambda}+\delta$. We note that for every $\lambda \leq \bar{\lambda} + \delta$ we have $u \leq u_{x_0,\lambda,\theta}$ on $\partial(\mathcal{T}_{x_0,\lambda,\theta})$. In fact, since $|\theta| \leq \delta$ can be taken as small as we like, then following closely **Claim-1** and **Claim-2**¹ in [**DS3**] one has that $u < u_{x_0,\lambda,\theta}$ on the line (x_0, y) for $0 \leq y < \lambda$. Also $u \leq u_{x_0,\lambda,\theta}$ if y = 0 by the Dirichlet assumption. And finally $u \equiv u_{x_0,\lambda,\theta}$ on

¹The fact that $\nabla u(x_0, \overline{\lambda}) \neq 0$ is needed to exploit the Hopf Comparison Lemma in $(x_0, \overline{\lambda})$ as in [DS3].

 $L_{x_0,\lambda,\theta}.$

Therefore by the sliding technique described above, we get

$$u < u_{x_0,\bar{\lambda}+\delta,\theta}$$
 in $\mathcal{T}_{x_0,\bar{\lambda}+\delta,\theta}$.

Now start with

(*ii*) the rotating plane technique:

rotating the line $L_{x_0,\bar{\lambda}+\delta,\theta}$ towards the line $\{y = \bar{\lambda} + \delta\}$, letting $\bar{\lambda} + \delta$ fixed and moving $\theta \to 0$. We still have the right conditions on the boundary of $\mathcal{T}_{x_0,\bar{\lambda}+\delta,\theta}$ and at same way starting from positive θ at the limit $(\theta \to 0)$ we get $u < u_{\bar{\lambda}+\delta}$ in $\Sigma_{\bar{\lambda}+\delta} \cap \{x \leq x_0\}$. If else we start from a negative θ , it follows $u < u_{\bar{\lambda}+\delta}$ in $\Sigma_{\bar{\lambda}+\delta} \cap \{x \geq x_0\}$. Finally

$$u < u_{\bar{\lambda}+\delta}$$
 in $\Sigma_{\bar{\lambda}+\delta}$,

proving that $\lambda > \overline{\lambda}$, that is $\lambda = +\infty$.

If now we assume that u is bounded, we have that the gradient is bounded too. Consequently, exploiting Theorem 1.1 in [**FSV**], we may follow exactly the proof of Theorem 1.4 in [**DS3**], and get that u is one dimensional ², that is there exists $\overline{u} : \mathbb{R} \to \mathbb{R}$ such that

$$u(x,y) = \overline{u}(y).$$

concluding the proof.

References

- [BCN] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(1-2), pp. 69 – 94, 1997.
- [DP] L. Damascelli and F. Pacella. Monotonicity and symmetry of solutions of p-Laplace equations, 1 plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(4):689–707, 1998.
- [DS1] L. Damascelli and B. Sciunzi. Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations. J. Differential Equations, 206(2):483–515, 2004.
- [DS2] L. Damascelli and B. Sciunzi. Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of *m*-Laplace equations. *Calc. Var. Partial Differential Equations*, 25(2):139–159, 2006.
- [DS3] L. Damascelli and B. Sciunzi. Monotonicity of the solutions of some quasilinear elliptic equations in the half-plane, and applications. To appear.
- [Di] E. Di Benedetto. $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8):827–850, 1983.
- [FSV] A. Farina; B. SCiunzi and E. Valdinoci. Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), to appear.
- [Li] G.M. Lieberman. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., 12(11):1203–1219, 1988.
- [PS3] P. Pucci, J. Serrin, The maximum principle, Birkhauser, Bostono (2007).
- [Sc] B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), no. 3-4, 315–334.
- [To] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51(1):126–150, 1984.
- [Va] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 1984, pp. 191 202.

²Observe that there are no problems in defining the notion of stable solution, since $\{\nabla u = 0\} = \emptyset$ by our monotonicity result.