Monotonicity of the solutions of quasilinear elliptic equations in the half-plane with a changing sign nonlinearity.

L. Montoro and B. Sciunzi

Abstract

We consider weak positive solutions of the equation $-\Delta_{m} u=f(u)$ in the half-plane with zero Dirichlet boundary conditions and we prove a monotonicity result. We assume that the nonlinearity f is Locally Lipschitz continuous and changing sign: in particular we refer to the model $f(s)=s^{q}-\lambda s^{m-1}, q>$ $m-1$. Our results extend to the case of sign changing nonlinearities the recent results in [DS3].

1. Introduction and statement of the main results

In this paper we consider the problem

$$
\begin{cases}-\Delta_{m} u=f(u), & \text { in } D \equiv\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\} \tag{1}\\ u(x, y)>0, & \text { in } D \\ u(x, 0)=0, & \forall x \in \mathbb{R}\end{cases}
$$

where $\frac{3}{2}<m \leq 2$ and $\Delta_{m} u \equiv \operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)$. It is well known that solutions of m-Laplace equations are generally of class $C^{1, \alpha}$ (see $\left.[\mathbf{D i}, \mathbf{L i}, \mathbf{T o}]\right)$, and the equation has to be understood in the weak distributional sense.
We extend here to the case of some sign changing nonlinearities the monotonicity results recently obtained in [DS3]. We restrict our attention to the case $m \leqslant 2$, since weak comparison principles hold true in this case, as proved in [DP]. Also some strong maximum and comparison principles obtained in [Sc] are exploited.
Our proof combines the geometric technique in $[\mathbf{D S 3}]$ (which goes back to $[\mathbf{B C N}]$), with the method of moving planes as developed in [DP].
We assume for f (see Figure 1) the following hypotheses:
(f1) f is locally Lipschitz continuous;
(f2) $f(s):=\left\{\begin{array}{ll}0 & \text { if } s=0 \text { or } s=k ; \\ <0 & \text { if } s \in(0, k) ; \\ >0 & \text { if } s \in(k,+\infty) ;\end{array} \quad\right.$ for some $k>0 ;$
(f3) there exists some $\varepsilon>0$ such that f is non-decreasing in $(k-\varepsilon, k+\varepsilon)$.
As a typical example we refer to the case $f(s)=s^{q}-\lambda s^{m-1}$ with $q>m-1$ and $\lambda>0$. We have the following

[^0]

Figure 1. The nonlinearity $f(s)$.

Theorem 1. Let u be a weak $C_{l o c}^{1, \alpha}$ solution of (1). Assume $\frac{3}{2}<m \leq 2$ and that hypotheses ($f 1$), (f2) and (f3) hold true for the nonlinearity f. Then, u is monotone increasing in the e_{2}-direction and

$$
\frac{\partial u}{\partial y}(x, y)>0, \quad \forall(x, y) \in \bar{D}
$$

If moreover we assume that u is bounded, it follows that u is one dimensional, that is

$$
u(x, y)=\bar{u}(y)
$$

2. Notations

We let $L_{x_{0}, s, \theta}$ the line, with slope $\tan (\theta)$ passing through $\left(x_{0}, s\right)$ and V_{θ} is the vector orthogonal to $L_{x_{0}, s, \theta}$

Figure 2
such that $\left(V_{\theta}, e_{2}\right) \geqslant 0$. We define

$$
\mathcal{T}_{x_{0}, s, \theta}
$$

as the triangle delimited by $L_{x_{0}, s, \theta},\{y=0\}$ and $\left\{x=x_{0}\right\}$, see Figure 4 . We set

Figure 3

$$
u_{x_{0}, s, \theta}(x)=u\left(T_{x_{0}, s, \theta}(x)\right)
$$

where $T_{x_{0}, s, \theta}(x)$ is the point symmetric to x, w.r.t. $L_{x_{0}, s, \theta}$ (see Figure 3) and

$$
w_{x_{0}, s, \theta}=u-u_{x_{0}, s, \theta}
$$

It is well known that $u_{x_{0}, s, \theta}$ still fulfills

Figure 4

$$
-\Delta_{m} u_{x_{0}, s, \theta}=f\left(u_{x_{0}, s, \theta}\right)
$$

For simplicity

$$
u_{x_{0}, s, 0}=u_{s}
$$

3. Proof of Theorem 1

Given any $x \in \mathbb{R}$, by Hopf boundary Lemma, (see [PS3, Va]), it follows that

$$
u_{y}(x, 0)=\frac{\partial u}{\partial y}(x, 0)>0
$$

obviously, $u_{y}(x, 0)$ possibly goes to 0 if $x \rightarrow \pm \infty$. Let x_{0} be fixed and h such that

$$
\frac{\partial u}{\partial y}(x, y) \geqslant \gamma>0, \forall x, y \in Q_{h}\left(x_{0}\right)
$$

where

$$
\begin{equation*}
Q_{h}\left(x_{0}\right)=\left\{\left|x-x_{0}\right| \leqslant h, 0 \leqslant y \leqslant 2 h\right\} \tag{2}
\end{equation*}
$$

as shown in Figure 5. Note that such $\gamma>0$ exists since $u \in C^{1, \alpha}$. Also, since $u \in C^{1, \alpha}$, we may assume

Figure 5
that there exists

$$
\begin{equation*}
\delta_{1}=\delta_{1}\left(h, \gamma, x_{0}\right)>0 \tag{3}
\end{equation*}
$$

such that, if $|\theta| \leqslant \delta_{1}$ (and consequently $V_{\theta} \approx e_{2}$), we have

$$
\begin{equation*}
\frac{\partial u}{\partial V_{\theta}} \geqslant \frac{\gamma}{2}>0, \quad \text { in } Q_{h}\left(x_{0}\right) \tag{4}
\end{equation*}
$$

Then, let $Q_{h}\left(x_{0}\right)$ as in (2) and δ_{1} defined in (3). Consider $\theta \neq 0$ fixed such that $|\theta| \leqslant \delta_{1}$. Then we find

$$
\bar{s}=\bar{s}(\theta)
$$

such that, for any $s \leqslant \bar{s}$ we have that
the triangle $\mathcal{T}_{x_{0}, s, \theta}$ is contained in $Q_{h}\left(x_{0}\right)$ (see Figure 4) and $u<u_{x_{0}, s, \theta}$ in $\mathcal{T}_{x_{0}, s, \theta}\left(\right.$ and $u \leqslant u_{x_{0}, s, \theta}$ on $\left.\partial\left(\mathcal{T}_{x_{0}, s, \theta}\right)\right)$.

This follows by the monotonicity in $Q_{h}\left(x_{0}\right)$.
Let now θ be fixed with $|\theta| \leqslant \delta_{1}$, we set $\bar{s} \leqslant h$ in such a way that

- the triangle $\mathcal{T}_{x_{0}, s, \theta}$ is contained in $Q_{h}\left(x_{0}\right)$ as well as the triangle obtained from $\mathcal{T}_{x_{0}, s, \theta}$ by reflection with respect to the line $L_{x_{0}, s, \theta}$ (see Figure 4). Note that this is possible by simple geometric considerations;
- $u \leqslant u_{x_{0}, s, \theta}$ on $\partial\left(\mathcal{T}_{x_{0}, s, \theta}\right)$. In fact, since $|\theta| \leqslant \delta_{1}$ then $u \leqslant u_{x_{0}, s, \theta}$ on the line $\left(x_{0}, y\right)$ for $0 \leqslant y \leqslant s$, since of the monotonicity in the V_{θ}-direction, by construction (see (4)). Also $u \leqslant u_{x_{0}, s, \theta}$ if $y=0$ by the Dirichlet assumption, and the fact that u is positive in the interior of the domain. And finally $u \equiv u_{x_{0}, s, \theta}$ on $L_{x_{0}, s, \theta}$;
- possibly reducing \bar{s}, we assume that the Lebesgue measure $\mathcal{L}\left(\mathcal{T}_{x_{0}, s, \theta}\right)$ is sufficiently small in order to exploit the weak comparison principle in small domains.

Therefore, for $0 \leqslant s \leqslant \bar{s}$, if we define

$$
w_{x_{0}, s, \theta}=u-u_{x_{0}, s, \theta}
$$

we have that

$$
w_{x_{0}, s, \theta} \leqslant 0 \text { on } \partial \mathcal{T}_{x_{0}, s, \theta},
$$

therefore, by the weak comparison principle, which works in our case thanks to [DP] since $m \leqslant 2$, we get

$$
w_{x_{0}, s, \theta} \leqslant 0 \text { in } \mathcal{T}_{x_{0}, s, \theta}
$$

Using repeatedly now the moving plane technique, the rotating plane technique and the sliding plane technique, as made in [DS3], together with the weak comparison principle proved in [DP], one has that

$$
\begin{equation*}
u \leqslant u_{\tilde{s}} \quad \text { in } \bar{\Sigma}_{\tilde{s}}, \quad \forall \tilde{s} \in(0, h] \tag{5}
\end{equation*}
$$

where

$$
\Sigma_{t} \equiv\{(x, y) \mid 0<y<t\}
$$

We now point out some consequences:
First of all, we have also proved that u is monotone increasing in the e_{2}-direction in Σ_{h}. In fact, given $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ in Σ_{h} (say $0 \leqslant y_{1}<y_{2} \leqslant h$), by equation (5), one has that

$$
u\left(x, y_{1}\right) \leqslant u_{\frac{y_{1}+y_{2}}{2}}\left(x, y_{1}\right)
$$

which gives exactly

$$
u\left(x, y_{1}\right) \leqslant u\left(x, y_{2}\right)
$$

Also we note that, this immediately gives

$$
\begin{equation*}
\frac{\partial u}{\partial y}(u) \geqslant 0 \quad \text { in } \quad \Sigma_{h} \tag{6}
\end{equation*}
$$

Claim: Let us show now that actually $\frac{\partial u}{\partial y}(u)>0$ in Σ_{h}. We point out that the nonlinearity f change sign, see Figure 1. We remark that since the local weighted Sobolev type inequality is local in nature (see [DS1, Sc] for example), then a Sobolev type inequality follows in regions where $f(s)$ is negative or positive.

Therefore a strong maximum principle for the linearized operator follows in such regions (see $[\mathbf{S c}]$) and, when applied to the derivative of u, we readily get

$$
\frac{\partial u}{\partial y}>0
$$

in regions where the nonlinearity is positive or negative. To get the same result in regions where f change sign, we use a sliding balls technique as made in [Sc, Theorem 6.1]. Here, for the reader's convenience, we give just some details. Let us consider a ball $B_{\rho}^{1}(x, y)$, with ρ sufficiently small such that is contained in the region where f does not change sign. Then we move it in the positive y-direction up to reach the level set $f(s) \equiv k$ at some point P_{1}. Next we repeat the same technique sliding a second ball $B_{\rho}^{2}(x, y)$ with radius ρ sufficiently small up to reach the level set $f(s) \equiv k$ in a second point P_{2}, see Figure 6. By Hopf boundary

Figure 6. The sliding method.

Lemma ([Va]) we get that

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial n_{2}}\left(P_{1}\right) \neq 0 \tag{7}\\
\frac{\partial u}{\partial n_{2}}\left(P_{2}\right) \neq 0
\end{array}\right.
$$

Here n_{1} (resp. n_{2}) denote the outer normal vector at $P_{1}\left(\right.$ at $\left.P_{2}\right)$ to the boundary of $B_{\rho}^{1}(x, y)$ (of $B_{\rho}^{2}(x, y)$). From (7) and by continuity it follows that ∇u is different from zero in a sufficiently small neighborhood of P_{1} and P_{2}. Therefore a Strong Maximum Principle holds near P_{1} and P_{2}, and in connection with equation (6), it gives

$$
\frac{\partial u}{\partial y}\left(P_{1}\right)>0 \quad \text { and } \quad \frac{\partial u}{\partial y}\left(P_{2}\right)>0
$$

Then let us fix an open set \mathcal{C} in such a way its closure cross the two points P_{1} and P_{2}, see Figure 6. Also, let us assume that $\mathcal{C} \subset\{k-\varepsilon<u<k+\varepsilon\}$, where ε is the one in condition $\mathrm{f}(3)$ and with no loss of generality $\frac{\partial u}{\partial y}>0$ on $\partial \mathcal{C}$. Then by a Strong Maximum Principle for the linearized equation (see in particular [Sc, Theorem 6.1]) one has that

$$
\frac{\partial u}{\partial y}>0 \quad \forall y \in \mathcal{C}
$$

and consequently the strictly monotonicity of u in the strip Σ_{h} with

$$
\frac{\partial u}{\partial y}>0 \quad \forall y \in \Sigma_{h}
$$

since \mathcal{C} was arbitrary. It follows now that by equation (5), we have that $w=u-u_{\tilde{s}} \leqslant 0$ in $\bar{\Sigma}_{\tilde{s}}$. By the Strong Comparison Principle which holds now since $\nabla u \neq 0$ in $\bar{\Sigma}_{\tilde{s}}$ we reduce to the case

$$
w<0
$$

being the case $w \equiv 0$ easily excluded.
Remark 2. We point out that to apply the Strong Maximum Principle, here we need to require that $f(\cdot)$ is non-decreasing in a neighborhood of its nodal point, see $f(3)$.

Some Notations

Let us set

$$
\Lambda=\left\{\lambda \in \mathbb{R}^{+}: u<u_{\lambda^{\prime}} \forall \lambda^{\prime}<\lambda\right\}
$$

and define

$$
\bar{\lambda}=\sup _{\lambda \in \Lambda} \lambda
$$

so that $u \leqslant u_{\bar{\lambda}}$ by continuity and also $u<u_{\bar{\lambda}}$ arguing as above. Consequently, exactly as above, this implies that u is strictly monotone increasing in the e_{2}-direction with

$$
\begin{equation*}
\frac{\partial u}{\partial y}>0 \tag{8}
\end{equation*}
$$

in $\Sigma_{\bar{\lambda}}$. To prove the theorem, we have to show that actually $\bar{\lambda}=\infty$. To do this we now assume $\bar{\lambda}<\infty$ and show that we can take $\delta>0$ such that

$$
u<u_{\lambda} \text { for } 0<\lambda \leqslant \bar{\lambda}+\delta
$$

which would implies $\lambda>\bar{\lambda}$ and then the thesis. To prove this let us consider θ fixed with $|\theta| \leqslant \delta$, and consequently set λ small such that

$$
\begin{aligned}
& \text { the triangle } \mathcal{T}_{x_{0}, \lambda, \theta} \text { is contained in } Q_{h}\left(x_{0}\right) \text { (see Figure 4), } \\
& \quad u<u_{x_{0}, \lambda, \theta} \text { in } \mathcal{T}_{x_{0}, \lambda, \theta}\left(\text { and } u \leqslant u_{x_{0}, \lambda, \theta} \text { on } \partial\left(\mathcal{T}_{x_{0}, \lambda, \theta}\right)\right) .
\end{aligned}
$$

In the following we need to follow the proof of Claim-1 and Claim-2 in [DS3]. In particular we need to show that we may and do assume

$$
\nabla u\left(x_{0}, \bar{\lambda}\right) \neq 0
$$

To do this we have to generalize the arguments in Claim-1 and Claim-2 in [DS3] since, in our case, the nonlinearity change sign with respect to the case considered in [DS3]. Anyway we get the same conclusion distinguishing two different cases:
(1) it may occur that $u(x, \bar{\lambda}) \equiv k, \forall x \in \mathbb{R}$. In this situation $f(u)=0$ by (f2) on $\{y=\bar{\lambda}\}$. Then, since $u(x, \cdot)$ is strictly increasing in the strip Σ_{λ}, we easily prove the existence of some point $\left(x_{0}, \bar{\lambda}\right)$ (actually for any $(x, \bar{\lambda})$) where the gradient is different from zero, by using standard Hopf Lemma;
(2) otherwise the nonlinearity f could change sign on the line $y=\bar{\lambda}$. Without loss of generality, since f is continuous, we find some neighborhood $I_{\sigma}=\left(x_{0}-\sigma, x_{0}+\sigma\right)$, with σ sufficiently small, where $f(u(t, \bar{\lambda}))$ is strictly positive (or negative) when $t \in\left(x_{0}-\sigma, x_{0}+\sigma\right)$. Then the conclusion in the previous case follows as in Theorem 1.1 in [DS3].

Therefore, in all two cases we get the existence of some point x_{0} where

$$
\nabla u\left(x_{0}, \bar{\lambda}\right) \neq 0
$$

Now we use the above arguments:
(i) the sliding technique:
we move the line $L_{x_{0}, \lambda, \theta}$ in the e_{2}-direction towards the line $L_{x_{0}, \bar{\lambda}+\delta, \theta}$, letting θ fixed and moving $\lambda \rightarrow \bar{\lambda}+\delta$. We note that for every $\lambda \leqslant \bar{\lambda}+\delta$ we have $u \leqslant u_{x_{0}, \lambda, \theta}$ on $\partial\left(\mathcal{T}_{x_{0}, \lambda, \theta}\right)$. In fact, since $|\theta| \leqslant \delta$ can be taken as small as we like, then following closely Claim-1 and Claim-2 ${ }^{1}$ in [DS3] one has that $u<u_{x_{0}, \lambda, \theta}$ on the line $\left(x_{0}, y\right)$ for $0 \leqslant y<\lambda$. Also $u \leqslant u_{x_{0}, \lambda, \theta}$ if $y=0$ by the Dirichlet assumption. And finally $u \equiv u_{x_{0}, \lambda, \theta}$ on

[^1]$L_{x_{0}, \lambda, \theta}$.
Therefore by the sliding technique described above, we get
$$
u<u_{x_{0}, \bar{\lambda}+\delta, \theta} \text { in } \mathcal{T}_{x_{0}, \bar{\lambda}+\delta, \theta}
$$

Now start with
(ii) the rotating plane technique:
rotating the line $L_{x_{0}, \bar{\lambda}+\delta, \theta}$ towards the line $\{y=\bar{\lambda}+\delta\}$, letting $\bar{\lambda}+\delta$ fixed and moving $\theta \rightarrow 0$. We still have the right conditions on the boundary of $\mathcal{T}_{x_{0}, \bar{\lambda}+\delta, \theta}$ and at same way starting from positive θ at the limit $(\theta \rightarrow 0)$ we get $u<u_{\bar{\lambda}+\delta}$ in $\Sigma_{\bar{\lambda}+\delta} \cap\left\{x \leqslant x_{0}\right\}$. If else we start from a negative θ, it follows $u<u_{\bar{\lambda}+\delta}$ in $\Sigma_{\bar{\lambda}+\delta} \cap\left\{x \geqslant x_{0}\right\}$. Finally

$$
u<u_{\bar{\lambda}+\delta} \text { in } \Sigma_{\bar{\lambda}+\delta},
$$

proving that $\lambda>\bar{\lambda}$, that is $\lambda=+\infty$.

If now we assume that u is bounded, we have that the gradient is bounded too. Consequently, exploiting Theorem 1.1 in [FSV], we may follow exactly the proof of Theorem 1.4 in [DS3], and get that u is one dimensional ${ }^{2}$, that is there exists $\bar{u}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
u(x, y)=\bar{u}(y)
$$

concluding the proof.

References

[BCN] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(1-2), pp. 69 - 94, 1997.
[DP] L. Damascelli and F. Pacella. Monotonicity and symmetry of solutions of p-Laplace equations, $1<p<2$, via the moving plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(4):689-707, 1998.
[DS1] L. Damascelli and B. Sciunzi. Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations. J. Differential Equations, 206(2):483-515, 2004.
[DS2] L. Damascelli and B. Sciunzi. Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations. Calc. Var. Partial Differential Equations, 25(2):139-159, 2006.
[DS3] L. Damascelli and B. Sciunzi. Monotonicity of the solutions of some quasilinear elliptic equations in the half-plane, and applications. To appear.
[Di] E. Di Benedetto. $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8):827-850, 1983.
[FSV] A. Farina ; B. SCiunzi and E. Valdinoci. Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), to appear.
[Li] G.M. Lieberman. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal., 12(11):1203-1219, 1988.
[PS3] P. Pucci, J. Serrin, The maximum principle, Birkhauser, Bostono (2007).
[Sc] B. Sciunzi, Some results on the qualitative properties of positive solutions of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 14 (2007), no. 3-4, 315-334.
[To] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51(1):126-150, 1984.
[Va] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 1984, pp. 191 202.

[^2]
[^0]: 2000 Mathematics Subject Classification. 35B05,35B65,35J70.
 Address: $L M$ - Università della Calabria - (Dipartimento di Matematica) - V. P. Bucci - Arcavacata di Rende (CS), Italy. Email: montoro@mat.unical.it.
 $B S$ - Università della Calabria - (Dipartimento di Matematica) - V. P. Bucci - Arcavacata di Rende (CS), Italy. Email: sciunzi@mat.unical.it.
 Authors' research is supported by Metodi Variazionali e Topologici nello Studio di Fenomeni non Lineari.
 Con il nostro ordine discreto dentro il cuore......

[^1]: ${ }^{1}$ The fact that $\nabla u\left(x_{0}, \bar{\lambda}\right) \neq 0$ is needed to exploit the Hopf Comparison Lemma in $\left(x_{0}, \bar{\lambda}\right)$ as in [DS3].

[^2]: ${ }^{2}$ Observe that there are no problems in defining the notion of stable solution, since $\{\nabla u=0\}=\emptyset$ by our monotonicity result.

