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Partial and full symmetry of solutions
of quasilinear elliptic equations,
via the Comparison Principle.

Patrizia Pucci, Berardino Sciunzi, and James Serrin

Dedidated to Häım Brezis on the occasion of his 60th birthday, with great admiration.

Abstract. Using a Comparison Principle for degenerate elliptic equations
of the form div{a(x)A(|Du|)Du} + B(x, u) = 0, we establish corresponding
symmetry results. As a consequence, for balls and annuli, we obtain radial
symmetry results for equations of the form

div{a(r)A(|Du|)Du}+ B(r, u) = 0,

when B(r, z) ∈ L∞loc(Ω× R) is non–increasing in z.

1. Introduction

In this paper we consider the equation

(1.1) div{a(x)A(|Du|)Du}+ B(x, u) = 0 in Ω,

where Ω is a bounded domain in RN and the solution is understood in the weak
distribution sense. We make the following structural assumptions on the operator

(H1) a(x) ≡ [aij(x)] (i, j = 1, . . . , N) is a locally bounded real positive definite
symmetric matrix, i.e.

0 < λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for all x ∈ Ω and ξ ∈ RN ;

(H2) A is positive and differentiable in R+. Also Φ(t) = o(1) as t → 0+, with
Φ(t) = tA(t) (Φ(0) = 0) and

(1.2) inf
t>0

tA′(t)
A(t)

= c1 > −1, sup
t>0

tA′(t)
A(t)

= c2 < ∞.

In some cases we shall not assume (H2), but only the condition
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(H3) A is positive and Φ is strictly increasing in R+, with Φ(t) = o(1) as
t → 0+.

Remark 1.1. Condition (H3) is weaker than (H2). Indeed, if (H2) holds, then
by (1.2), we have

Φ′(t)
A(t)

=
tA′(t)
A(t)

+ 1 > 0,

so that Φ is strictly increasing in R+.

Assumptions (H2), (H3) include the case A(t) = tp−2, p > 1, which gives the
well known Laplacian when p = 2 and a = I. The operator in (1.1) was first studied
in [10], see also [2] and [11].

For definiteness in the interpretation of (1.1) we put A(ξ) = A(|ξ|)ξ for ξ 6= 0
and A(0) = 0. Thus A is continuous on RN because of (H2), and (1.1) can also be
written in the form

div{a(x)A(Du)}+ B(x, u) = 0.

Our starting point is to give sufficient conditions to guarantee that the operator is
elliptic.

As shown in [2], see also [11], to this end it is important to know when the
product of two positive definite matrices is positive definite. In particular, using
the results in [8, 13, 2], it was proved in [11] that the operator a(x)A(|Du|)Du is
elliptic if

(H4)

√
Λ
λ

< min {φ(c1), φ(c2)} , φ(c) ≡ 2 + c + 2
√

1 + c

|c| ,

where c1 and c2 are given by (H2); see [11, Lemma 2.3.3] and the following Lemma 2.1.
We use the ellipticity of the operator to get a Comparison Principle, see Propo-

sition 2.1, from which symmetry results for solutions of (1.1) follow. In particular,
we consider the case when B(x, z) ∈ L∞loc(Ω× R) is non–increasing in z, and show
that if the domain is symmetric in one direction, say e1, then the solution is sym-
metric in the same direction, provided that the matrix a and the nonlinearity B
are similarly symmetric. No assumption is needed on the sign of the solution nor
need the domain be simply connected.

Our main result is Theorem 3.1. Here we point out an interesting corollary.

Theorem 1.2. Let Ω ⊂ RN be a ball or an annulus. Let u ∈ W 1,∞
loc (Ω)∩C(Ω)

be a solution of the following Dirichlet boundary value problem for (1.1), written in
distribution form: for all ϕ ∈ C∞0 (Ω)





∫

Ω

〈a(|x|)A(|Du|)Du , Dϕ〉 dx =
∫

Ω

B(|x|, u)ϕdx,

u(x) = g(|x|) on ∂Ω,

with1 B(|x|, z) ∈ L∞loc(Ω× R) non–increasing in z.
If the assumptions (H1), (H2), (H4) hold, then u is unique and radial (i.e.

u = u(|x|)).
If finally Φ(t) ≤ const. tp−1, p > 1, the same result holds even for solutions

u ∈ W 1,p
loc (Ω) ∩ C(Ω).

1Note that the condition at the boundary in Theorem 1.2 means that u is constant on ∂Ω if
Ω is a ball or u assumes two different values on ∂Ω if Ω is an annulus.



PARTIAL AND FULL SYMMETRY 3

Theorem 1.2 will be proved in Section 3.
In case a(x) = ρ(|x|)I it is enough in Theorem 1.1 to assume only that condition

(H3) holds and that ρ is positive and locally bounded in BR \ {0}. See the remark
in Section 3 after the proof of Theorem 1.1

Remark 1.3. For the case of the p–Laplace operator, we refer the reader to
[4, 5] and the references therein. In particular in [4] the case of locally Lipschitz
continuous nonlinearities with p ≤ 2 is considered, while [5] deals with the case of
positive locally Lipschitz continuous nonlinearities for p ≥ 2.

When A(t) = tp−2 and a is not the identity matrix (0 < λ|ξ|2 ≤ aij(x)ξiξj ≤
Λ|ξ|2), the ellipticity condition (H4) becomes

√
Λ
λ

<
p + 2

√
p− 1

|p− 2|
with no condition if p = 2, see [2] and [11, Section 2.3].

Remark 1.4. In spite of the elegance of the results, the reader should observe
that nontrivial solutions of the Dirichlet problem in Theorem 1.2 may not exist for
arbitrary boundary data.

In particular, consider the zero Dirichlet boundary value problem for (1.1), with
B independent of x and non–increasing in z, and B(0) = 0. Let u be a solution,
and note that it can be used as test function in (1.1), yielding

0 ≤
∫

Ω

〈a(x)A(|Du|)Du , Du〉 dx =
∫

Ω

B(u)u dx ≤ 0.

It follows that Du ≡ 0, showing that there are no non–trivial solutions!
Nevertheless, there are other cases with different Dirichlet boundary conditions,

or with B(0) 6= 0, where this difficulty does not arise and nontrivial solutions
exist. In these cases we obtain symmetry results which hold for broad classes
of operators and domains. In fact we only need to assume that the domains in
question are symmetric in some direction to prove that the solution is symmetric
(in that direction). We note particularly that the domains need not be convex or
even simply connected.

If we consider the semilinear non–degenerate case (A(t) = 1 and a = I), there
are in the literature many symmetry and monotonicity results obtained exploit-
ing the well known Alexandrov–Serrin [12] moving plane method. We mention
here the celebrated papers [1, 7] where symmetry and monotonicity results are ob-
tained for positive solutions with zero Dirichlet boundary conditions, under general
assumptions on the nonlinearity.

There are cases when the moving plane technique can not be exploited. As an
example if the domain is not convex (e.g. an annulus) or if we consider operators
that depend on the position (as in our case in view of the matrix a). Nevertheless
one could expect that if the domain is symmetric then the solution inherits symme-
try properties. If the domain is a ball or an annulus and we consider the semilinear
non–degenerate case, axial symmetry of the solutions is proved in [9] assuming that
Morse index information concerning the solution is known and assuming that the
nonlinearity is convex.

The idea behind [9], which we shall also exploit here in a different (and possibly
degenerate) context and with different techniques, is to consider the solution u and
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its reflection (say ũ) directly in the entire domain.

2. Preliminaries

The following two lemmas can be found in [11]. For the reader’s convenience
we recall the proofs.

Lemma 2.1. (Lemma 2.3.3 of [11]). Assume that conditions (H1), (H2), (H4)
are fulfilled. Then the operator a(x)A(|Du|)Du is elliptic in Ω × RN , i.e. the
Jacobian matrix ∂ξ{a(x)A(|ξ|)ξ} is positive definite in Ω×RN . Moreover, for any
x ∈ Ω and ξ, η ∈ RN , with ξ 6= η, we have

(2.1) 〈a(x)A(|ξ|)ξ − a(x)A(|η|)η , ξ − η〉 > 0.

Proof. By direct calculations we get

∂ξ{a(x)A(|ξ|)ξ)} = a(x)A(|ξ|)
[
I+

|ξ|A′(|ξ|)
A(|ξ|)

ξ ⊗ ξ

|ξ|2
]

,

that is
∂ξ{a(x)A(|ξ|)ξ} = a(x)A(|ξ|)b(ξ),

with

b(ξ) ≡ I+ c(|ξ|)ξ ⊗ ξ

|ξ|2 , c(|ξ|) =
|ξ|A′(|ξ|)
A(|ξ|) .

By linear algebra the eigenvalues of the matrix b are 1 with multiplicity N − 1 and
1 + c. Note that 1 + c > 0 by (H3). Therefore b is symmetric and positive definite
and by [8, 2, 13], see Theorem 2.1 of [2], the (symmetric) product ab is positive
definite, provided

(√
Λ
λ
− 1

)
(√

1 + c− 1
)

< 2 if c ≥ 0

(√
Λ
λ
− 1

)(√
1

1 + c
− 1

)
< 2 if − 1 < c < 0,

that is √
Λ/λ < φ(c).

Let us first prove (2.1) assuming that 0 /∈ [ξ, η] (that is, 0 is not on the segment
from ξ to η). We have for some ζ ∈ [ξ, η]

〈a(x)A(|ξ|)ξ − a(x)A(|η|)η, ξ − η〉 = 〈∂ξ{a(x)A(|ζ|)ζ}(ξ − η), ξ − η〉
= A(|ζ|)〈a(x)b(ζ)(ξ − η), ξ − η〉 > 0,

since we already proved that ab is positive definite.
When 0 ∈ [ξ, η], we can exploit the same arguments in [η, 0] and [0, ξ], using

the fact that A is continuous. ¤

If a(x) = I we have

Lemma 2.2. (Lemma 2.3.2 of [11]). Assume (H3). Then for all ξ and η in
RN , with ξ 6= η,

〈A(|ξ|)ξ −A(|η|)η , ξ − η〉 > 0.
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Proof. If either of the vectors is 0 the assertion is trivial since A(0) = 0.
Otherwise, since A(t) > 0 for t > 0 and 〈ξ, η〉 ≤ |ξ| · |η|, we have

〈A(|ξ|)ξ −A(|η|)η , ξ − η〉
= A(|ξ|)|ξ|2 + A(|η|)|η|2 −A(|ξ|)〈ξ , η〉 −A(|η|)〈ξ , η〉
≥ Φ(|ξ|)|ξ|+ Φ(|η|)|η| − Φ(|ξ|)|η| − Φ(|η|)|ξ|
= {Φ(|ξ|)− Φ(|η|)}(|ξ| − |η|)

and the conclusion now comes from the strict monotonicity of Φ. ¤

Exploiting now Lemma 2.1 and Lemma 2.2, we prove the following Comparison
Principle, see Theorem 3.3.3 of [11].

Proposition 2.1. Let Ω ⊂ RN be a bounded domain and let u, v ∈ W 1,∞
loc (Ω)∩

C(Ω) be such that

(2.2)

∫

Ω

〈a(x)A(|Du|)Du,Dϕ〉dx−
∫

Ω

B(x, u)ϕ dx

≤
∫

Ω

〈a(x)A(|Dv|)Dv, Dϕ〉dx−
∫

Ω

B(x, v)ϕdx.

for any ϕ ∈ C∞0 (Ω). Assume that B(x, z) ∈ L∞loc(Ω × R) and is non–increasing in
z. Let conditions (H1), (H2), (H4) be fulfilled and suppose that u ≤ v on ∂Ω. Then

u ≤ v in Ω.

The same result holds assuming only u, v ∈ W 1,p
loc (Ω)∩C(Ω) when Φ(t) ≤ const. tp−1,

p > 1.
Finally, in the case a(x) = ρ(|x|)I with ρ positive and locally bounded, the result

follows with the assumptions (H1), (H2), (H4) replaced by the weaker condition
(H3).

Proof. For ε > 0, define ϕ = ϕε = (u− v − ε)+. and

Γ = Γε ≡ {x ∈ Ω : u(x)− v(x) > ε} .

Then since u ≤ v on ∂Ω we have supp ϕ ⊂ Γ and Γ ⊂⊂ Ω so ϕ ∈ W 1,∞
0 (Ω).

Therefore, recalling that the matrix a is locally bounded, by density arguments
we can use ϕ as test–function in (2.2) and get

∫

Γ

〈a(x)A(|Du|Du− a(x)A(|Dv|)Dv,Du−Dv〉dx

≤
∫

Γ

[B(x, u)−B(x, v)]ϕdx ≤ 0.

where [B(x, u) − B(x, v)]ϕ is non–positive in Γ since ϕ ≥ 0 and B(x, z) is non–
increasing in z. By Lemma 2.1 it now follows easily that Dϕ = Du − Dv ≡ 0 in
the (open) set Γ.

Also Dϕ = 0 a.e. in Ω \ Γ. Thus ϕ = constant in Ω, and in turn since ϕ = 0
in Ω \ Γ we get ϕ = 0 in Ω. That is u ≤ v in Ω.

Next assume that u, v ∈ W 1,p
loc (Ω)∩C(Ω) and Φ(t) ≤ const. tp−1. Define Γ = Γε,

ϕ = ϕε as above. In this case ϕ ∈ W 1,p
0 (Ω). Also A(Du) ≤ const. |Du|p−1 so that

A(Du) ∈ Lp′

loc(Ω). Consequently, by density arguments, ϕ can be used as test–
function in (2.2) and the result follows as above.
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When a(x) = ρ(|x|)I the result can be proved in exactly the same way using
Lemma 2.2 instead of Lemma 2.1. ¤

3. Symmetry (and monotonicity) results

We exploit the above preliminaries to get symmetry and monotonicity results.
Introduce the notation

x = (x1, x
′), x′ = (x2, . . . , xN ), x̃ = (−x1, x

′).

Theorem 3.1. Let Ω ⊂ RN be a bounded domain, symmetric with respect to
the e1–direction (that is x ∈ Ω ⇔ x̃ ∈ Ω). Let u ∈ W 1,∞

loc (Ω) ∩ C(Ω) be a solution
of the following Dirichlet boundary value problem for (1.1), written in distribution
form: for all ϕ ∈ C∞0 (Ω)

(3.1)





∫

Ω

〈a(x)A(|Du|)Du,Dϕ〉dx =
∫

Ω

B(x, u)ϕdx

u = g on ∂Ω,

with B(x, z) ∈ L∞loc(Ω× R) non–increasing in z.
Assume that conditions (H1), (H2), (H4) are fulfilled and suppose

(3.2) a(x) = a(x̃), B(x, z) = B(x̃, z), g(x) = g(x̃).

Then u is the only solution of (3.1) in W 1,∞
loc (Ω) ∩ C(Ω), and is symmetric with

respect to the e1–direction.
The same result holds for solutions u only of class W 1,p

loc (Ω) ∩ C(Ω) if Φ(t) ≤
const. tp−1, p > 1.

Proof. Let v ∈ W 1,p
loc (Ω) ∩ C(Ω) be any other solution of (3.1). Since u = v

on ∂Ω, by Proposition 2.1 we get u ≤ v and u ≥ v so that u = v. Now let us define

ũ(x) ≡ u(x̃)

for any x ∈ Ω. By the change of variables x → x̃ it follows that for all ϕ ∈ C∞0 (Ω)
∫

Ω

〈a(x̃)A(|Dũ|)Dũ,Dϕ〉dx =
∫

Ω

B(x̃, ũ)ϕdx

ũ(x) = g(x̃) on ∂Ω.

By the assumption (3.2) it follows that ũ is a solution of (3.1) so that u ≡ ũ and
the assertion is proved. ¤

Proof of Theorem 1.2. By rotation of coordinates, we can use Theorem 3.1 to obtain
reflection symmetry with respect to all directions in RN . Radial symmetry is now
apparent; an explicit proof for this is given in [6], Lemma 1.8. This completes the
proof of Theorem 3.1.

The case when a(x) = ρ(|x|)I in Theorem 1.1 (and condition (H3) holds) is
proved in the same way, using however the final part of Proposition 2.1.

The ideas of Theorem 3.1 can also be used to prove monotonicity of the solution
in the e1–direction, provided Ω is partially convex and the conditions on the matrix
a and the function B are slightly strengthened.
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Theorem 3.2. Let Ω ⊂ RN be a bounded domain, partially convex in the
sense that the intersection of Ω with any line x′ = constant is connected, and also
symmetric with respect to the e1–direction. Let u ∈ W 1,∞

loc (Ω) ∩ C(Ω) be such that
for all ϕ ∈ C∞0 (Ω)





∫

Ω

〈a(x)A(|Du|)Du,Dϕ〉dx =
∫

Ω

B(x, u)ϕdx

u > 0 in Ω
u = 0 on ∂Ω,

with B(x, z) ∈ L∞loc(Ω× R) non–increasing in z.
Assume that conditions (H1), (H2), (H4) are fulfilled and suppose

(3.3) a(x) = a(x′), B(x, z) = B(x′, z).

Then u is non–decreasing in the e1–direction in Ω− = {x ∈ Ω |x1 < 0}.
The same result holds for solution u only of class W 1,p

loc (Ω) ∩ C(Ω) if Φ(t) ≤
const. tp−1, p > 1.

Proof. For λ < 0 and x ∈ Ω−, define

x̄ = (x1 + 2(λ− x1), x′),

the reflection of the point x across the plane x1 = λ. Let Ωλ = {x ∈ Ω : x1 < λ}.
By convexity if x ∈ Ωλ then x̄ ∈ Ω, and we can define

v(x) = u(x̄).

By (3.3) we see that v is a solution of (1.1) in Ωλ, as also of course is u.
Since u = 0 on ∂Ω and u > 0 in Ω, one has u < v on ∂Ωλ ∩ ∂Ω and u = v on

∂Ωλ \ ∂Ω. Hence by Proposition 2.1 applied in Ωλ we find that

u ≤ v in Ωλ.

Now let y, z be two points in Ω− with y′ = z′ and y1 < z1 < 0. Choose
specifically

λ =
y1 + z1

2
< 0.

Then ȳ = z and so u(y) ≤ v(y) = u(ȳ) = u(z). ¤
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