
J. Differential Equations 206 (2004) 483–515

Regularity, monotonicity and symmetry of
positive solutions of m-Laplace equations$

Lucio Damascelli� and Berardino Sciunzi
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Abstract

We consider the Dirichlet problem for positive solutions of the equation �DmðuÞ ¼ f ðuÞ in a
bounded smooth domain O; with f locally Lipschitz continuous, and prove some regularity

results for weak C1ð %OÞ solutions. In particular when f ðsÞ40 for s40 we prove summability
properties of 1

jDuj; and Sobolev’s and Poincaré type inequalities in weighted Sobolev spaces

with weight jDujm�2: The point of view of considering jDujm�2 as a weight is particularly useful
when studying qualitative properties of a fixed solution. In particular, exploiting these new

regularity results we can prove a weak comparison principle for the solutions and, using the

well known Alexandrov–Serrin moving plane method, we then prove a general monotonicity

(and symmetry) theorem for positive solutions u of the Dirichlet problem in bounded (and

symmetric in one direction) domains when f ðsÞ40 for s40 and m42: Previously, results of
this type in general bounded (and symmetric) domains had been proved only in the case

1omo2:
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1. Introduction and statement of the results

Let us consider weak C1ð %OÞ solutions of the problem

�DmðuÞ ¼ f ðuÞ in O;

u40 in O;

u ¼ 0 on @O;

8><
>: ð1:1Þ

where O is a bounded smooth domain in RN ; NX2; DmðuÞ ¼ divðjDujm�2
DuÞ is the

m-Laplace operator, 1omoN; and we have the following hypotheses on f :

(�) f : ½0;NÞ-R is a continuous function which is locally Lipschitz continuous in
ð0;NÞ:

It is well known that, since the m-Laplace operator is singular or degenerate elliptic

(respectively if 1omo2 or m42), solutions of (1.1) belong generally to the class C1;t

with to1; and solve (1.1) only in the weak sense. Moreover, there are no general
comparison theorems for the solutions as in the case when m ¼ 2 or more generally
when uniformly elliptic operators are considered.
In this paper we prove some regularity properties of positive solutions of (1.1),

such as summability properties of 1
jDuj; where Du is the gradient of u; and Sobolev and

Poincaré type inequalities in weighted Sobolev spaces with weight jDujm�2:
Using these regularity results we prove a weak comparison theorem for solutions

of differential inequalities involving the m-Laplace operator. Exploiting all these
results, together with the Alexandrov–Serrin moving plane method [21], we finally
prove that the solutions of (1.1) in one direction in domains which are convex (and
symmetric) in one direction. Since the case 1omo2 has been fully considered in
[7,8], this will conclude the analysis for the case of positive Lipschitz continuous
nonlinearities f ðuÞ: We also observe that if m42 and f changes sign there are
counterexamples to the symmetry of the solutions in symmetric domains (see [4,14]).
Let us explain our results in details.
In Section 2 we study the linearized operator Lu (see Section 2 for the precise

statement) associated to problem (1.1). In particular, we first prove that if

jAW 1;2ðOÞ has compact support then

Luðuxi
;jÞ

�
Z
O\Z

½jDujm�2ðDuxi
;DjÞ þ ðm � 2ÞjDujm�4ðDu;Duxi

ÞðDu;DjÞ � f 0ðuÞuxi
j� dx

is well defined and the following equation holds:

Luðuxi
;jÞ ¼ 0 8jAW 1;2ðOÞ; suppðjÞCO: ð1:2Þ

The proofs of our regularity results will be based both on Eqs. (1.1) and (1.2). Let us
state some of these results in the following:
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Theorem 1.1. Let uAC1ðOÞ be a weak solution of (1.1) with f satisfying (�),
1omoN: Then, for any ECCO and for every i; j ¼ 1;y;N; we have, for every

xAO; Z
E\fuxi

¼0g

jDujm�2

juxi
jbjx � yjg

jDuxi
j2 dyoC;

where bo1; goN � 2 if NX3; g ¼ 0 if N ¼ 2 and C depends on g; b; E and on the

solution u; but does not depend on xAO: Moreover

Z
E\Z

jDujm�2�b

jx � yjg jjD2ujj2 dyoC;

where Z ¼ fxAO :DuðxÞ ¼ 0g is the critical set of the solution.

Finally, if O is smooth, uAC1ð %OÞ and f ðsÞ40 for s40; then jZj ¼ 0 (see [18]) and,
for any xAO and for every ro1; we haveZ

O

1

jDujðm�1Þr
1

jx � yjg dypC;

where C does not depend on x; goN � 2 if NX3 and g ¼ 0 if N ¼ 2:

As a corollary we also prove that jDujm�2
DuAW

1;2
loc ðO;R

NÞ and the derivatives uxi

belong to the weighted Sobolev space H1;2
r ðOÞ:

Let us remark that in a recent paper Lou [18] proved that, if uAW 1;m
loc ðOÞ is a weak

solution of the equation

�divðjDujm�2
DuÞ ¼ f ðxÞ in O ð1:3Þ

with fALqðOÞ; q4N
m
; qX2; then jDujm�1AW 1;2

loc ðOÞ and f ðxÞ ¼ 0 a.e on the critical set
Z ¼ fxAO :DuðxÞ ¼ 0g of the solution, so that jZj ¼ 0 if f ðxÞa0 a.e in O:
The lack of regularity of the solutions of (1.1) is one of the greatest difficulty in the

applications. In [1] the case when O is a ball is considered. In this case the solutions
are radial (see [5,7]) and the authors study the Morse index of a fixed solution in the

weighted Sobolev space of radial functions in H
1;2
0;rðOÞ with r ¼ jDujm�2:

Here, as in [19,26], if rAL1ðOÞ; the space H1;p
r ðOÞ is defined as the completion of

C1ð %OÞ (or CNð %OÞ) under the norm

jjvjj
H
1;p
r

¼ jjvjjLpðOÞ þ jjDvjjLpðO;rÞ ð1:4Þ

and jjDvjjp
LpðO;rÞ ¼

R
O jDvjpr dx: In this way H1;p

r ðOÞ is a Banach space and

H1;2
r ðOÞ is a Hilbert space. In [1] the authors also overcame the lack of regularity

of the solutions because in the case when u is a radial solution in a ball Brð0Þ and f
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satisfies some hypotheses (e.g. f ðsÞ40 for s40) then the only critical point of a
solution is the origin, and a precise behavior of u near the origin can be obtained

using the l’ Hospital rule as in [23], namely jDuðxÞjEjxj
1

p�1 and jjD2uðxÞjjEjxj
2�p
p�1 as

x-0:
In general, if we consider solutions of (1.1) in a general bounded smooth domain

then the critical set Z may be very irregular and estimates of this kind are not
available. However we will show that we can efficiently work in the weighted Sobolev

space H
1;2
0;rðOÞ using only the estimates proved in Theorem 1.1.

In particular, we will prove that if f ðsÞ40 for s40 and u is a solution of (1.1) with

mX2; considering the weight r ¼ jDujm�2; for every pX2 and vAH
1;p
0;rðOÞ a weighted

Poincaré ’s inequality holds , i.e.

jjvjjLpðOÞpCðjOjÞjjDvjjLpðO;rÞ; ð1:5Þ

where CðjOjÞ-0 if jOj-0:
In [19,26] Eq. (1.5) is proved by assuming that

rAL1ðOÞ; 1

r
ALtðOÞ ð1:6Þ

with t4N
p
and p41þ 1

t
: In the radial case, if we consider r ¼ jDujm�2; mX2 (or more

generally m4Nþ2
Nþ1 which guarantees the belonging of r to L1ðOÞ) and p ¼ 2; these

conditions are satisfied, as shown by the above estimates.
In a general domain, as a corollary of Theorem 1.1, we get that for mX2;
1

jDujðm�1ÞrAL1ðOÞ for any ro1; which implies (1.6) with p ¼ 2 if N ¼ 2 or NX3 and

mo2N�2
N�2 :

In order to avoid this restriction in the applications, in Section 3 we will prove that

a weighted Poincaré’ s inequality in the space H
1;p
0;rðOÞ can be obtained using classical

potential estimates, similarly to those in [19,26] and assuming that we have the
following estimate for the weight r:

Z
O

1

rt

1

jx � yjg dypC; ð1:7Þ

where C does not depend on xAO; goN; t4N�g
p
and p41þ 1

t
: We will also prove a

weighted Sobolev inequality of the same type.

In the case when u is a solution of (1.1) with mX2 and r ¼ jDujm�2; by Theorem

1.1 the previous estimate is satisfied for any goN � 2; tom�1
m�2: So, using the

regularity results in Theorem 1.1 together with these abstract results, we can prove
the following Poincaré type inequality for solutions of (1.1).

ARTICLE IN PRESS
L. Damascelli, B. Sciunzi / J. Differential Equations 206 (2004) 483–515486



Theorem 1.2. Let uAC1ð %OÞ be a weak solution of (1.1) where f satisfies (�) and

f ðsÞ40 for s40; mX2: Then, if we consider r ¼ jDujm�2
we get, for every pX2

jjvjjLpðOÞpCðjOjÞjjDvjjLpðO;rÞ for every vAH
1;p
0;rðOÞ; ð1:8Þ

where CðjOjÞ-0 if jOj-0:
In particular (1.8) holds for every vAH

1;2
0;rðOÞ:

Remark 1.1. The previous regularity results hold for any 1omoN; but the
weighted Poincaré type inequality holds in this form in the case mX2: In the case
1omo2 Poincaré’ s inequalities without weight are often sufficient in the

applications, provided the solutions belong to the class C1ð %OÞ (see e.g. [6], where
comparison theorems are proved using them).

We then use the weighted Poincaré type inequality obtained in Theorem 1.2 to
prove the following:

Theorem 1.3 (Weak Comparison Principle). Suppose that either 1omo2 and

u; vAW 1;NðOÞ; or mX2; u; vAW 1;mðOÞ-LNðOÞ; where either r � jDujm�2
or r �

jDvjm�2
satisfy condition (1.7), namely

Z
O

1

rt

1

jx � yjg dypC;

where C does not depend on xAO; goN; t41 and t4N�g
2
:

Suppose that u; v weakly solve

�divðjDujm�2
DuÞ þ gðx; uÞ � Lup� divðjDvjm�2

DvÞ þ gðx; vÞ � Lv in O; ð1:9Þ

where LX0 and gACð %O� RÞ is such that for every xAO; gðx; sÞ is nondecreasing for

jsjpmaxfjjujjLN ; jjvjjLNg:
Let O0DO be open and suppose upv on @O0; then there exists d40 such that, if

jO0jpd; then upv in O0: If L ¼ 0 the thesis is true for every O0DO:
In particular the result holds if either u or v is a weak solutions of (1.1) with f

satisfying (�) and f ðsÞ40 for s40:

The point of view of considering r ¼ jDujm�2 as a weight and working in the

weighted Sobolev space H1;2
0;rðOÞ; which is a Hilbert space, is particularly useful when

studying qualitative properties of a solution of (1.1), as done e.g. in [1] in studying
Morse index and uniqueness questions for radial solutions of (1.1).
In this paper, exploiting all the new regularity results together with the well known

Alexandrov–Serrin moving plane method, we study monotonicity and symmetry
properties of the solutions. In particular, when degenerate operators are considered,
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to apply the moving plane method, we have to take care of local symmetry
phenomena (see [7,8]). We will overcome this difficulty proving a property of the
critical set Z of the solution, which is interesting in itself:

Theorem 1.4. Let uAC1ð %OÞ be a weak solution of (1.1) where O is a general bounded

domain, and suppose that f satisfies (�) and f ðsÞ40 if s40: Then O\Z does not contain

any connected component C such that %CCO: Moreover, if we assume that O is a

smooth bounded domain with connected boundary, it follows that O\Z is connected.

To state our monotonicity and symmetry result we need some notations.

Let n be a direction in RN : For a real number l we define

T n
l ¼ fxAR : x � n ¼ lg; ð1:10Þ

On
l ¼ fxAO : x � nolg; ð1:11Þ

xn
l ¼ Rn

lðxÞ ¼ x þ 2ðl� x � nÞn; xARN ð1:12Þ

and

aðnÞ ¼ inf
xAO

x � n: ð1:13Þ

If l4aðnÞ then On
l is nonempty, thus we set

ðOn
lÞ0 ¼ Rn

lðOn
lÞ: ð1:14Þ

Following [11,21] we observe that for l� aðnÞ small then ðOn
lÞ0 is contained in O and

will remain in it, at least until one of the following occurs:

(i) ðOn
lÞ0 becomes internally tangent to @O .

(ii) T n
l is orthogonal to @O .

Let L1ðnÞ be the set of those l4aðnÞ such that for each mol none of conditions (i)
and (ii) holds and define

l1ðnÞ ¼ supL1ðnÞ: ð1:15Þ

Moreover, let

L2ðnÞ ¼ fl4aðnÞ : ðOn
mÞ0DO 8mAðaðnÞ; l�g ð1:16Þ

and

l2ðnÞ ¼ supL2ðnÞ: ð1:17Þ

Note that since O is supposed to be smooth neither L1ðnÞ nor L2ðnÞ are empty, and
L1ðnÞDL2ðnÞ so that l1ðnÞpl2ðnÞ (in the terminology of [11] On

l1ðnÞ and On
l2ðnÞ
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correspond to the ‘maximal cap’, respectively to the ‘optimal cap’). Finally
define

L0ðnÞ ¼ fl4aðnÞ : upun
l 8mAðaðnÞ; l�g ð1:18Þ

and

l0ðnÞ ¼ supL0ðnÞ: ð1:19Þ

Theorem 1.5. Let O be a bounded smooth domain in RN ; NX2; 1omoN;
f : ½0;NÞ-R a continuous function which is strictly positive and locally Lipschitz

continuous in ð0;NÞ; and uAC1ð %OÞ a weak solution of (1.1).
For any direction n and for l in the interval ðaðnÞ; l1ðnÞ� we have

uðxÞpuðxn
lÞ 8xAOn

l: ð1:20Þ

Moreover, for any l with aðnÞolol1ðnÞ we have

uðxÞouðxn
lÞ 8xAOn

l\Z
n
l; ð1:21Þ

where Zn
l � fxAOn

l :DuðxÞ ¼ DunlðxÞ ¼ 0g: Finally,

@u

@n
ðxÞ40 8xAOn

l1ðnÞ\Z; ð1:22Þ

where Z ¼ fxAO:DuðxÞ ¼ 0g:
If f is locally Lipschitz continuous in the closed interval ½0;NÞ then (1.20) and (1.21)

hold for any l in the interval ðaðnÞ; l2ðnÞÞ and (1.22) holds for any xAOn
l2ðnÞ\Z:

Corollary 1.1. If f is locally Lipschitz continuous in the closed interval ½0;NÞ and

strictly positive in ð0;NÞ; and the domain O is convex with respect to a direction n and

symmetric with respect to the hyperplane T n
0 ¼ fxARN :x � n ¼ 0g; then u is symmetric,

i.e. uðxÞ ¼ uðxn
0Þ; and nondecreasing in the n–direction in On

0 with @u
@n ðxÞ40 in On

0\Z:

In particular if O is a ball then u is radially symmetric and @u
@r
o0; where @u

@r
is the

derivative in the radial direction.

Remark 1.2. The strength of our approach consists in the fact that it allows to
consider the case m42; in general smooth domains, without any a priori assumption
on the critical set of the solution u: If 1omo2 the previous monotonicity and
symmetry result had been proved in [7,8] for a function f ; not necessarily positive,
which is either locally Lipschitz continuous in ½0;NÞ or locally Lipschitz continuous
in ð0;NÞ and satisfies some weak positivity assumption close to 0: Anyway, in the
case when f is locally Lipschitz continuous in the closed interval ½0;NÞ and f ðsÞ40
for s40 we slightly extend the result also in the case 1omo2; because (1.20) is true
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8lAðaðnÞ; l2ðnÞ� and not only lAðaðnÞ; l1ðnÞ�; and l2ðnÞXl1ðnÞ and can be strictly
greater (consider e.g. a smoothed rectangle). We also simplify considerably the proof
in [7,8] (where to exclude local symmetry phenomena a long technical device is
needed).

Remark 1.3. Let us observe that in the case when fX0 every nontrivial nonnegative
solution of the equation �Dmu ¼ f ðuÞ is in fact positive, by the strong maximum
principle (see Theorem 2.1 in Section 2), and all the results we prove apply to
nonnegative solutions.

Let us recall some other works in the literature dealing with the problem of
symmetry and monotonicity of solutions of (1.1). When O is a ball in [2] the
symmetry is obtained by assuming that the gradient vanishes only at the center. A
different approach is used in [15] where the case of f continuous and positive is
considered when O is a ball and p ¼ N: In [4,5], with the aid of the so called
‘‘Continuous Steiner Symmetrization’’, the author prove that solutions of (1.1), in
the ball, are radially symmetric under fairly weak assumption on the nonlinearity f :
Let us remark that the monotonicity results of Theorem 1.5 are important also in

the case of general (i.e. not symmetric) bounded domains. For example in the case of
strictly convex domains they show that there cannot be a concentration of maxima
of family of solutions approaching the boundary, and this is very important when
dealing with blow-up analysis and a priori estimates.
Let us finally remark that in the case of ground states of quasilinear elliptic

equations in the whole space, radial symmetry results were obtained in [9,22,4,5].
The paper is organized as follows. In Section 2 we prove Theorem 1.1 and some

related regularity results. In Section 3 we state sufficient conditions to get general
weighted Sobolev and Poincaré’s inequality and then we exploit them together with
Theorem 1.1 to prove Theorem 1.2. Moreover we exploit the weighted Poincaré’s
inequality obtained and we prove Theorem 1.3. Finally in Section 4 we prove our
monotonicity and symmetry results.

2. Regularity results

In this section we prove all the statements of Theorem 1.1 and some other related
results.
Let us first recall a particular version of the Strong Maximum Principle and of the

Hopf’s Lemma [13] for the m-laplacian (see [27] for the case of the m-laplacian and
[20] for general quasilinear elliptic operators).

Theorem 2.1 (Strong Maximum Principle and Hopf’s Lemma). Let O be a domain in

RN and suppose that uAC1ðOÞ; uX0 in O; weakly solves

�Dmu þ cuq ¼ gX0 in O
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with 1omoN; qXm � 1; cX0 and gALN

locðOÞ: If ua0 then u40 in O: Moreover for

any point x0A@O where the interior sphere condition is satisfied, and such that

uAC1ðO,fx0gÞ and uðx0Þ ¼ 0 we have that @u
@s
40 for any inward directional derivative

(this means that if y approaches x0 in a ball BDO that has x0 on its boundary, then

limy-x0
uðyÞ�uðx0Þ
jy�x0j 40).

Remark 2.1. By standard elliptic regularity, a C1ðOÞ solution u of (1.1) with f

satisfying (�) belongs to the class C2ðO\ZÞ; where Z ¼ fxAO : DuðxÞ ¼ 0g is the
critical set of the solution (see [10,12,16,24]). Therefore the generalized derivatives of

jDujm�2
uxi

; coincide there with the classical ones.
Let us put

ũij ¼
uxixj

; in O\Z;

0; in Z;

�
ð2:1Þ

we will also use the notation D̃ui for the ‘‘gradient’’ ðũi1;y; ũiNÞ:
We will prove later that jDujm�2

uxi
belong to the Sobolev space W 1;2ðOÞ; so that

by Stampacchia’s Theorem (see e.g. [25, Theorem 1.56, p. 79]), the generalized

derivatives of jDujm�2
uxi
are zero almost everywhere in Z; and we will get

@

@xj

ðjDujm�2
uxi

Þ � ðjDujm�2
ũij þ ðm � 2ÞjDujm�4ðDu; D̃ujÞuxi

Þ;

where @
@xj
stands for the distributional derivative.

Definition 2.1. If rAL1ðOÞ; let us define as in [19,26], the space H1;p
r ðOÞ; as the

completion of C1ð %OÞ (or CNð %OÞ) under the norm

jjvjj
H
1;p
r

¼ jjvjjLpðOÞ þ jjDvjjLpðO;rÞ; ð2:2Þ

where jjDvjjp
LpðO;rÞ ¼

R
O jDvjpr dx: In this way H1;p

r ðOÞ is a Banach space and H1;2
r ðOÞ

is a Hilbert space. Moreover, we define H
1;p
0;rðOÞ as the closure of C1c ðOÞ (or CN

c ðOÞ)
in H1;p

r ðOÞ:
Observe that if rALNðOÞ then W 1;pðOÞ has a continuous embedding in H1;p

r ðOÞ:
Let us also observe that if uAW 1;mðOÞ; mX2 and r ¼ jDujm�2; then by Hölder’s

inequality W 1;mðOÞ has a continuous embedding in the Hilbert space H1;2
r ðOÞ:
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Let us recall the definition of the linearized operator

Luðg;jÞ

�
Z
O
½jDujm�2ðDg;DjÞ þ ðm � 2ÞjDujm�4ðDu;DgÞðDu;DjÞ � f 0ðuÞgj� dx:

The linearized operator is well defined if g;jAH1;2
r ðOÞ; r ¼ jDujm�2; or if

gAL2ðO;RÞ; jDujm�2
DgAL2ðO;RNÞ and jAW 1;2ðOÞ:

We will prove later that jDujm�2
DuAW

1;2
loc ðO;R

NÞ if uAC1ðOÞ is a solution of
(1.1), so that if jAW 1;2ðOÞ has compact support we can also define

Luðuxi
;jÞ

�
Z
O
½jDujm�2ðD̃ui;DjÞ þ ðm � 2ÞjDujm�4ðDu; D̃uiÞðDu;DjÞ � f 0ðuÞuxi

j� dx:

For the time being we use the definition of the linearized operator at the fixed

solution u only with test function jAW 1;2ðOÞ with compact support in O\Z, where
Z ¼ fxAO : DuðxÞ ¼ 0g is the critical set of the solution u; and prove the following:

Lemma 2.1. Let uAC1ðOÞ be a weak solution of (1.1), with f satisfying (�). Then we

have Luðuxi
;jÞ ¼ 0 for every jAW 1;2ðOÞ with compact support in O\Z:

Proof. Let jACN

c ðO\ZÞ; and set c � @j
@xi
ACN

c ðOÞ: Using c as test function in (1.1)
we get

Z
O

jDujm�2
Du;D

@j
@xi

� 	
dx ¼

Z
O

f ðuÞ @j
@xi

� 	
dx:

Since the domain of integration is a subset of O\Z; where uAC2;

jDujm�2
uxi

AW 1;2
loc ðO\ZÞ; and since f is locally Lipschitz continuous in ð0;NÞ and u

is positive in O; f ðuÞAW
1;2
loc ðOÞ we can integrate by parts obtaining

Z
O

@

@xi

ðjDujm�2
DuÞ;Dj

� 	
dx ¼

Z
O

f 0ðuÞuxi
j dx:

and get

Z
O
½jDujm�2ðD̃ui;DjÞ þ ðm � 2ÞjDujm�4ðDu; D̃uiÞðDu;DjÞ� dx

�
Z
O
½ fy0ðuÞuxi

j� dx ¼ 0 ð2:3Þ
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i.e.

Luðuxi
;jÞ ¼ 0:

By density we get the general case of jAW 1;2ðOÞ with compact support in O\Z: &

We can now prove

Theorem 2.2. Let uAC1ðOÞ be a weak solution of (1.1), with f satisfying (�)
1omoN: Then for any ECCO and for every i; j ¼ 1;y;N; we have

sup
xAO

Z
E\fuxi

¼0g

jDujm�2

juxi
jbjx � yjg

jD̃uij2 dyoC;

where bo1; goN � 2 if NX3; g ¼ 0 if N ¼ 2 and C ¼ Cðb; g;EÞ: Moreover

sup
xAO

Z
E\Z

jDujm�2�b

jx � yjg jjD2ujj2 dyoC;

where Z ¼ fxAO :DuðxÞ ¼ 0g is the critical set of the solution.

Proof. Let us observe that we can suppose that xAE without loss of generality. In
fact, suppose that we prove that for every measurable set ECCO we have

sup
xAE

Z
E\fuxi

¼0g

jDujm�2

juxi
jbjx � yjg

jD̃uij2 dypKðb; g;EÞ:

Then if 0odp1
2
distðE; @OÞ and Ed ¼ fxAO : distðx;EÞpdg considering the two

cases xAEd and xAO\Ed; it follows that

sup
xAO

Z
E\fuxi

¼0g

jDujm�2

juxi
jbjx � yjg

jD̃uij2 dypKðb; g;EdÞ þ
1

dg
Kðb; 0;EÞ:

Let ECCO; xAE; and consider a cut-off function jACN

c ðOÞ such that jX0 in O;
and j � 1 in Ed ¼ fxAO j distðx;EÞpdg where 0odp1

2
distðE; @OÞ:

Let Ge be defined by

GeðsÞ ¼ 0 if jsjpe;

GeðsÞ ¼ 2s � 2e if epjsjp2e;
GeðsÞ ¼ s if jsjX2e;

8><
>:

so that Ge is a Lipschitz continuous function and 0pG0
ep2: To obtain our result we

will consider the case xAE-Z and xAE\Z separately.
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Case 1: Suppose first that xAE-Z: In this case define ce;xðyÞ ¼
Geðuxi

ÞðyÞ
juxi

ðyÞjb
jðyÞ
jx�yjg with

bo1; goN � 2 and NX3: If N ¼ 2 we use ce;x ¼ Geðuxi
Þ

juxi
jb j: Since Geðuxi

Þ vanishes in a
neighborhood of each critical point, in particular in a neighborhood of y ¼ x; we can
use ce;x as a test function in (1.2) and get

Z
O

jDujm�2

juxi
jb

jD̃uij2

jx � yjg G0
eðuxi

Þ � b
Geðuxi

Þ
uxi

� 	
j dy

þ ðm � 2Þ
Z
O

jDujm�4ðDu; D̃uiÞ2

juxi
jbjx � yjg

G0
eðuxi

Þ � b
Geðuxi

Þ
uxi

� 	
j dy

þ
Z
O\Ed

jDujm�2ðD̃ui;DjÞ Geðuxi
Þ

juxi
jb

1

jx � yjg dy

þ ðm � 2Þ
Z
O\Ed

jDujm�4ðDu; D̃uiÞðDu;DjÞ Geðuxi
Þ

juxi
jb

1

jx � yjg dy

þ
Z
O
jDujm�2

D̃ui;Dy
1

jx � yjg
� 	� 	

Geðuxi
Þ

juxi
jb

j dy

þ ðm � 2Þ
Z
O
jDujm�4ðDu; D̃uiÞ Du;Dy

1

jx � yjg
� 	� 	

Geðuxi
Þ

juxi
jb

j dy

¼
Z
O

f 0ðuÞuxi

Geðuxi
Þ

juxi
jb

1

jx � yjg j dy:

By the definition of Ge it follows that ðG0
eðuxi

Þ � b Geðuxi
Þ

uxi

ÞX0 in O: Therefore we get

Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

G0
eðuxi

Þ � b
Geðuxi

Þ
uxi

� 	
j dy

pðm � 1Þ
Z
O\Ed

jDujm�2jD̃uijjDjj
jx � yjg

Geðuxi
Þ

juxi
jb

dy

þ gðm � 1Þ
Z
O

jDujm�2jD̃uij
jx � yjgþ1

Geðuxi
Þ

juxi
jb

j dy

þ
Z
O

jf 0ðuÞjjuxi
j2�b

jx � yjg j dy:

By the definition of Ed; since xAE; we know that supyAO\Ed
1

jx�yjgp
1
dg and, using the

fact that jDujm�2jD̃uijAL2locðOÞ; since j has compact support in O; we get

Z
O\Ed

jDujm�2jD̃uijjDjj
jx � yjg

Geðuxi
Þ

juxi
jb

dypC1;
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where C1 does not depend on x: Since O is bounded, then
R
O

1
jx�yjs dx

is uniformly

bounded for any fixed son and, using the fact that uAC1ðOÞ and jf 0ðuÞj is bounded
in suppðjÞ; we get

Z
O

jf 0ðuÞjjuxi
j2�b

jx � yjg j dypC2;

where C2 does not depend on x: Here we have used that uAC1ðOÞ and
jGeðuxi

Þj
juxi

jb pjuxi
j1�bpC0: Therefore

Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

G0
eðuxi

Þ � b
Geðuxi

Þ
uxi

� 	
j dypC3

þ C4

Z
O

jDuj
m�2
2 jD̃uij

juxi
j
b
2jx � yj

g
2

jGeðuxi
Þj

juxi
j j

� 	1
2jDuj

m�2
2 ðjGeðuxi

ÞjÞ
1
2

jx � yj
g
2
þ1

j
1
2juxi

j
1
2
�b
2 dy:

By Young’s inequality (abpsa2 þ b2\4s), if s40 we get

Z
O

jDuj
m�2
2 jD̃uij

juxi
j
b
2jx � yj

g
2

jGeðuxi
Þj

juxi
j j

� 	1
2 jDuj

m�2
2 ðjGeðuxi

ÞjÞ
1
2

jx � yj
g
2
þ1

j
1
2juxi

j
1
2
�b
2 dy

ps
Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

jGeðuxi
Þj

juxi
j j dy

þ 1

4s

Z
O

jDujm�2jGeðuxi
Þj

jx � yjgþ2
jjuxi

j1�b
dy:

Since
jGeðuxi

Þj
juxi

j � Geðuxi
Þ

uxi

; we can take s40 such that ð1� b� sÞ40 and

Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

G0
eðuxi

Þ � ðbþ sÞ Geðuxi
Þ

uxi

� 	
j dy

pC3 þ C5

Z
O

1

jx � yjgþ2
dypC6;

where C6 does not depend on x: Let us note that, by definition, ðG0
eðuxi

Þ � ðbþ

sÞGeðuxi
Þ

uxi

ÞX0 and ðG0
eðuxi

Þ � ðbþ sÞGeðuxi
Þ

uxi

Þ-1� ðbþ sÞ in fuxi
a0g: Therefore, by

Fatou’s Lemma, we get

Z
O\fuxi

¼0g

jDujm�2jD̃uij2

juxi
jbjx � yjg

j dypC;
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where C does not depend on xAE-Z: In particular,

Z
O\fuxi

¼0g

jDujm�2�bjD̃uij2

jx � yjg j dypC

and, since uxixj
¼ 0 a.e. in fuxi

¼ 0g\Z; it follows, for any i ¼ 1;y;N; that

Z
O\Z

jDujm�2�bjD̃uij2

jx � yjg j dypC;

where xAZ and C does not depend on x: Moreover, since j � 1 in E; we get

Z
E\Z

jDujm�2�bjjD2ujj2

jx � yjg dypC:

Case 2: Suppose now that xAE\Z: In this case consider E and Ed as above, and for
e40 small consider a cut-off function je;xACN

c ðOÞ such that je;xX0 in O; je;x � 0 in
BeðxÞ; je;x � 1 in Ed\B2eðxÞ; jDje;xjpC

e in B2eðxÞ\BeðxÞ and jDje;xjpc1 outside

B2eðxÞ:Moreover suppose that there exists a set ACCO such that suppðje;xÞCA for

every e and xAE:

Using ce;x ¼ Geðuxi
Þ

juxi
jb

1
jx�yjg je;x as a test function in (1.2), by the same estimates we

have used before, it follows

Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

G0
eðuxi

Þ � ðbþ sÞ Geðuxi
Þ

uxi

� 	
je;x dy

pC7 þ C8

Z
B2eðxÞ\BeðxÞ

jDujm�2jD̃uij
jx � yjg jDje;xj

Geðuxi
Þ

juxi
jb

dy:

Since xAE\Z; by standard elliptic estimates, we have that u is regular near x; and for
e sufficiently small, there exists a constant C9ðe; xÞ depending on e and on x such that

jDujm�2jD̃uijpC9ðe; xÞ in B2eðxÞ: Moreover, if x is fixed and e is small, we can
suppose that C9ðe; xÞ does not depend on e: Therefore, if e is sufficiently small, we get

C8

Z
B2eðyÞ\BeðyÞ

jDujm�2jD̃uij
jx � yjg jDje;yj

Geðuxi
Þ

juxi
jb

dypC9ðxÞ
eN

egþ1
:

Since goN � 2; then C9ðxÞ eN

egþ1-0 if e-0; and, for e sufficiently small, we have

Z
O

jDujm�2jD̃uij2

juxi
jbjx � yjg

G0
eðuxi

Þ � ðbþ sÞGeðuxi
Þ

uxi

� 	
je;x dypC7 þ 1;
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where C7 does not depend on x: Using Fatou’s Lemma we get the thesis also for the
case xAE\Z: Note that, to get the estimates above, the choice of e depends on x: In
spite of this, exploiting Fatou’s Lemma, we get estimates which do not depend on x:
Finally, taking the greatest constant between the ones obtained in the two cases,

we prove the theorem. &

To extend Theorem 2.2 up to the boundary we need some informations
on the regularity of the solution on the boundary, which would be implied by
assuming e.g. O smooth and f sufficiently smooth and nonnegative (so that Hopf’s
lemma holds at the boundary). Since here we do not need to extend Theorem 2.2 up
to the boundary, we will only note that, if we consider x fixed, then we have
the following.

Corollary 2.1. Let O be a smooth domain, uAC1ð %OÞ be a weak solution of (1.1)
with f locally Lipschitz continuous in ½0;NÞ and f ðsÞ40 for s40; 1omoþN:
Then, jZj ¼ 0 and, for every fixed xAO;

Z
O

jDujm�2�bjuxixj
j2

jx � yjg dypC;

where bo1; goN � 2 if NX3 and g ¼ 0 if N ¼ 2: In particular

Z
O
jDujm�2�bjuxixj

j2 dxpC:

As a consequence of the previous estimates we can prove

Corollary 2.2. Let uAC1ðOÞ be a weak solution of (1.1) with f satisfying (�),
1omoN: Then uAC2ðO\ZÞ; where Z ¼ fxAO :DuðxÞ ¼ 0g is the critical set of the

solution, jDujm�2
DuAW

1;2
loc ðO;R

NÞ; therefore jDujm�1AW
1;2
loc ðOÞ:

If moreover O is smooth, uAC1ð %OÞ and f is nonnegative and locally Lipschitz

continuous in the closed interval ½0;NÞ; then Z-@O ¼ |; uAC2ð %O\ZÞ;
jDujm�2

DuAW 1;2ðO;RNÞ and jDujm�1AW 1;2ðOÞ:

Proof. Since uAC1ðOÞ is positive in O and f is locally Lipschitz continuous in
ð0;NÞ; we have that f ðuÞ is locally Lipschitz continuous in O and by elliptic

regularity uAC2ðO\ZÞ; since it satisfies an uniformly elliptic equation in a
neighborhood of each regular point xAO\Z: Recall that in Theorem 2.2
(where we have used test function with compact support in O\Z only) we obtain
that

Z
E\Z

jDujm�2�bjjD2ujj2 dxoC; ð2:4Þ
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where bo1; Z ¼ fxAO : DuðxÞ ¼ 0g is the critical set of the solution, and E is any
compact set contained in O:
Let us now set

fn � G1
n

ðjDujm�2
uxi

Þ;

where G1
n

is defined as in Theorem 2.2, nAN and iAf1;y;Ng: By the definition of

G1
n

we get that fnAW 1;2ðEÞ and

@

@xj

fn ¼ G1
n

0ðjDujm�2
uxi

Þ @

@xj

ðjDujm�2
uxi

Þ: ð2:5Þ

Therefore, taking into account Remark 2.1 and exploiting (2.4), we get

jjfnjjW 1;2ðEÞpK 8nAN: ð2:6Þ

Since W 1;2ðEÞ has a compact embedding in L2ðEÞ; up to subsequences there exists
hAW 1;2ðEÞ such that

fn-h strongly in L2ðEÞ;

as n tends to infinity and

fn-h almost everywhere in E:

Since fn-jDujm�2
uxi
almost everywhere in E; we get

jDujm�2
uxi

� hAW 1;2ðEÞ: ð2:7Þ

Since iAf1;y;Ng is arbitrary the thesis follows and jDujm�2
DuAW 1;2

loc ðO;R
NÞ:

If moreover O is smooth, uAC1ð %OÞ and f is nonnegative and locally Lipschitz

continuous in the closed interval ½0;NÞ; then f ðuÞ is Lipschitz continuous in %O and
Z-@O ¼ | by the Hopf’s lemma. By standard elliptic regularity it follows that u

belongs to the class C2 in a neighborhood of the boundary, so that uAC2ð %O\ZÞ and
jDujm�2

DuAW 1;2ðO;RNÞ: &

Let us remark that in a recent paper Lou [18] proved that if uAW
1;m
loc ðOÞ is a weak

solution of the equation

�divðjDujm�2
DuÞ ¼ f ðxÞ in O

with fALqðOÞ; q4N
m
; qX2; 1omoN; then jDujm�1AW 1;2

loc ðOÞ:
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Remark 2.2. We recall that under the assumptions on the boundary of Corollary 2.2,
by the regularity results up to the boundary of Lieberman [17], it follows that any

solution u of (1.1) belongs to the class C1;tð %OÞ:

Remark 2.3. Since a C1ðOÞ solution u of (1.1) with f satisfying (�) is regular in O\Z;

the generalized derivatives of jDujm�2
uxi

; coincide there with the classical ones.
Moreover in fuxi

¼ 0g; by Stampacchia’s Theorem(see e.g. [25, Theorem 1.56, p.

79]), the generalized derivatives of jDujm�2
uxi
are zero almost everywhere. From now

on we will do all computations taking into account this fact. In particular, we get

@

@xj

ðjDujm�2
uxi

Þ � ðjDujm�2
ũij þ ðm � 2ÞjDujm�4ðDu; D̃ujÞuxi

Þ;

where @
@xj
stands for the distributional derivative and ũij are defined as in Remark 2.1

by

ũij ¼
uxixj

in O\Z;

0 in Z

�
ð2:8Þ

and D̃ui stands for the ‘‘gradient’’ ðũi1;y; ũiNÞ:

Let us now prove an elementary consequence of Corollary 2.2.

Lemma 2.2. Let uAC1ðOÞ be a weak solution of (1.1). Then we have

jDujm�2
ũijAL2locðOÞ:

Proof. We have already shown that ðjDujm�2
uxi

Þxj
AL2locðOÞ:With the aid of Remark

2.3 we can write

ðjDujm�2
uxi

Þxj
¼ ðjDujm�2Þũij þ ðm � 2ÞjDujm�4ðDu; D̃ujÞ � uxi

: ð2:9Þ

Since jDujm�1AW 1;2
loc ðOÞ we also know that

ðm � 1ÞjDujm�3ðDu; D̃ujÞAL2locðOÞ: ð2:10Þ

So we get

ðm � 2ÞjDujm�4ðDu; D̃ujÞ � uxi
AL2locðOÞ: ð2:11Þ

Therefore jDujm�2
ũijAL2locðOÞ since it is a linear combination of elements of

L2locðOÞ: &
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Remark 2.4. Let us observe that in the case when fX0 every nontrivial nonnegative
solution of the equation �Dmu ¼ f ðuÞ is in fact positive, by the strong maximum
principle, and all the results we prove apply to nonnegative solutions.
In the case when f is positive then jZj ¼ 0 by Lou’s result [18] (see next theorem

where we prove with our techniques a stronger result).
Therefore, since u is regular in O\Z; the classical second derivatives uxixj

are

defined almost everywhere, and coincide with ũij : Since, from now on, in this section

we consider the case of positive nonlinearities, in order to simplify the statements, we
will use uxixj

instead of ũij:

Moreover, since we have assumed O to be smooth, in the case of f positive, Hopf’s
Lemma applies and shows that, in a neighborhood of @O; there are not points where
the gradient of u vanishes.
Consequently all regularity results, which we have proved, except for Theorem 2.2,

can be extended up to the boundary.

Lemma 2.3. Let uAC1ðOÞ be a weak solution of (1.1), with f satisfying (�). Then we

have Luðuxi
;jÞ ¼ 0 for every jAW 1;2ðOÞ with compact support in O: If moreover O is

smooth, uAC1ð %OÞ and f is locally Lipschitz continuous and nonnegative in the closed

interval ½0;NÞ; then Luðuxi
;jÞ ¼ 0 for every jAW

1;2
0 ðOÞ:

Proof. By Corollary 2.2, jDujm�2
uxi

AW
1;2
loc ðOÞ; so that we can proceed as in Lemma

2.1 integrating by parts and, if jACN

c ðOÞ; we get
Z
O
½jDujm�2ðD̃ui;DjÞ þ ðm � 2ÞjDujm�4ðDu; D̃uiÞðDu;DjÞ� dx

�
Z
O
½ f 0ðuÞuxi

j� dx ¼ 0

i.e.

Luðuxi
;jÞ ¼ 0:

By density we get the general case of jAW 1;2ðOÞ with compact support.
If moreover O is smooth, uAC1ð %OÞ and f is locally Lipschitz continuous and

nonnegative in the closed interval ½0;NÞ; then again by Corollary 2.2,

jDujm�2
uxi

AW 1;2ðOÞ; and f ðuÞAW 1;2ðOÞ; so by density we can consider

jAW
1;2
0 ðOÞ: &

The results proved in this section allow us finally to get the summability properties

of the inverse of the weight r ¼ jDujm�2 stated in the introduction.

Theorem 2.3. Let O be a smooth domain in RNuAC1ð %OÞ be a weak solution of (1.1)
with f satisfying (�) and f ðsÞ40 for s40; 1omoþN: Then, for any xAO and for
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every ro1; we have that (jZj ¼ 0 and)

Z
O

1

jDujðm�1Þr
1

jx � yjg dypC;

where C does not depend on x; goN � 2 if NX3 and g ¼ 0 if N ¼ 2:

Proof. Since f is positive, by Hopf’s Lemma, there exists E such that

ZCCECCO: Moreover we can suppose distðZ; @EÞ40: Since ðO\EÞ-Z ¼ |; it
follows that

Z
O\E

1

jDujðm�1Þr
1

jx � yjg dyp
1

minO\E jDujðm�1Þr

Z
O\E

1

jx � yjg dypC

and therefore to prove the theorem it is sufficient to show that for every xAO we
have that

Z
E

1

jDujðm�1Þr
1

jx � yjg dypC;

where C does not depend on x: Finally the same arguments in the proof of Theorem
2.2 allow to reduce to proving that, considering only xAE;

Z
E

1

jDujðm�1Þr
1

jx � yjg dypC;

where C does not depend on xAE:
Let now je;x be defined as in Theorem 2.2 and define

ce;x ¼ 1

ðjDujm�1 þ eÞr

je;x

jx � yjg:

Since jDujm�1AW 1;2ðOÞ; its gradient vanishes a.e. in the critical set Z and ce;x can be

used as test function in (1.1). Since uXn40 in E; by the positivity hypothesis on f ;
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we have f ðuðyÞÞX 1
C1
40 for any yAE; so that we get

Z
E

ce;x dypC1

Z
E

ce;x f ðuÞ dypC1

Z
O
ce;x f ðuÞ dy

pC1

Z
O
jDujm�2ðDu;Dce;xÞ dyp

Z
O\Ed

jDujm�1

ðjDujm�1 þ eÞr

jDje;xj
jx � yjg dy

þ
Z

B2eðxÞ\BeðxÞ

jDujm�1

ðjDujm�1 þ eÞr

jDje;xj
jx � yjg dy

þ C2

Z
O

jDujm�1

ðjDujm�1 þ eÞr

je;x

jx � yjgþ1
dy

þ C2

Z
E\Z

jDujm�1

ðjDujm�1 þ eÞrþ1
jDujm�2jjD2ujj

jx � yjg je;x dy

þ C2

Z
O\E

jDujm�1

ðjDujm�1 þ eÞrþ1
jDujm�2jjD2ujj

jx � yjg je;x dy:

Since ro1; we have jDujm�1

ðjDujm�1þeÞrpc in O and, since we are supposing xAE; we have

jj jDje;xj jjLNðO\EdÞoN: Since u is regular in O\E and distðZ; @EÞ40; we have
jj jDujm�2jjD2ujj jjLNððO\EÞ-AÞoN; where A is such that suppðje;xÞCACCO for

every e and x: Moreover, since ZCE and distðZ; @EÞ40; then jDujm�1

ðjDujm�1þeÞrþ1pc2 in

O\E: Therefore

Z
O\E

jDujm�1

ðjDujm�1 þ eÞr

jDje;xj
jx � yjg dy

þ
Z
O\E

jDujm�1

ðjDujm�1 þ eÞrþ1
jDujm�2jjD2ujj

jx � yjg je;x dy

pc3

Z
O\E

1

jx � yjg dypc4;

where c4 does not depend on x: In the same way

Z
O

jDujm�1

ðjDujm�1 þ eÞr

je;x

jx � yjgþ1
dy

pc5

Z
O

1

jx � yjgþ1
dypc6;

where c6 does not depend on x: As in Theorem 2.2 we also get

Z
B2eðxÞ\BeðxÞ

jDujm�1

ðjDujm�1 þ eÞr

jDje;xj
jx � yjg dypc7ðxÞ

eN

egþ1
:
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Therefore, for e sufficiently small, we can write for any bo1

Z
E

je;x

ðjDujm�1 þ eÞrjx � yjg
dypC3 þ C4

Z
E\Z

jDuj
m�2�b
2 jjD2ujj

jx � yj
g
2

ðje;xÞ
1
2

� jDuj
m�2þb
2

jDuj
ðm�1Þr
2

ðje;xÞ
1
2

ðjDujm�1 þ eÞ
r
2

1

jx � yj
g
2

dy:

Note that here we do not need to consider the case xAZ and xAE\Z separately. If

now we choose bo1 such that r ¼ m�2þb
m�1 o1; using Young’s inequality as in Theorem

2.2, we can choose s small such that

ð1� sÞ
Z

E

je;x

ðjDujm�1 þ eÞr

1

jx � yjg dypC3 þ C5

Z
E\Z

jDujm�2�bjjD2ujj2

jx � yjg dy:

Therefore, by Theorem 2.2,

Z
E

je;x

ðjDujm�1 þ eÞr

1

jx � yjg dypC;

where C does not depend on x:

Since
je;x

ðjDujm�1þeÞr
1

jx�yjg 
!e-0 1

jDujðm�1Þr
1

jx�yjg almost everywhere in E\Z; while it tends to

þN in Z; by Fatou’s Lemma we get that jZj ¼ 0 and the thesis. &

As a consequence we get the following summability result for the a.e. defined
second derivatives of u:

Proposition 2.1. Let O be a smooth domain, uAC1ð %OÞ be a weak solution of (1.1), and

suppose that f is locally Lipschitz continuous in the closed interval ½0;NÞ and f ðsÞ40
for s40: Then juxixj

jAL2ðOÞ if 1omo3: If otherwise mX3; then juxixj
jALpðOÞ with

pom�1
m�2:

Proof. By Corollary 2.1, jDuj
m�2�b
2 uxixj

AL2ðOÞ for every bo1; proving the thesis for
1omo3: Moreover by Theorem 2.3 we know that 1

jDujðm�1ÞrAL1ðOÞ for every ro1:

Consider juxixj
jp as product of two functions in the following way:

juxixj
jp � juxixj

jpjDuj
m�2�b
2

p 1

jDuj
m�2�b
2

p

:

If mX3 and pom�1
m�2 then po2: Therefore we can choose bo1 such that

m�2�b
2

pð 2
2�p

Þom � 1 (because for mX3 and b ¼ 1 we have that m�2�b
2

pð 2
2�p

Þom � 1
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iff pom�1
m�2), and we get that juxixj

jpjDuj
m�2�b
2

pAL
2
p; and 1

jDuj
m�2�b
2 p

AL
2
2�p: By Hölder’s

inequality we get the thesis. &

We can now easily prove that uxi
AH1;2

r ðOÞ: To this end we have to show that the
distributional derivatives of uxi

are measurable functions. More generally let us
prove the following:

Proposition 2.2. Let O be a smooth domain, uAC1ð %OÞ be a weak solution of (1.1), and

suppose that f is locally Lipschitz continuous in ½0;NÞ and f ðsÞ40 for s40: Then if

1omo3; uxi
AW 1;2ðOÞ; while if mX3 then uxi

AW 1;pðOÞ; 8i ¼ 1;y;N for every

pom�1
m�2: Moreover the generalized derivatives of uxi

coincide with the classical ones,

both denoted with uxixj
; almost everywhere in O:

Finally uxi
AH1;2

r ðOÞ:

Proof. Let Ge be defined as in Theorem 2.2. Integrating by parts we getZ
O

G0
eðuxi

Þũijj dx ¼ �
Z
O

Geðuxi
Þjxj

dx 8jACN

c ðOÞ:

For e-0; since ũijAL1ðOÞ and G0
e is bounded, we can use Lebesgue’s Dominated

Convergence Theorem and get

Z
O

ũijj dx ¼ �
Z
O

uxi
jxj

dx 8jACN

c ðOÞ

which shows that ũij are the second distributional derivatives. In the case of f

positive we know that jZj ¼ 0; so that uxixj
� ũij a.e. (more precisely in O\Z). Finally

all the integrability properties have been already proved. &

3. Weighted Poincaré type inequality and weak comparison principle

In this section we prove a weighted Poincaré type inequality, and then we use it to
prove a weak comparison principle in small domains. Let us start by recalling some
known results about the potential of a function. If fALaðOÞ; aX1; and 0oaoN

then the potential of order a generated by f is defined by

Ua½ f �ðxÞ ¼
Z
O

f ðyÞjx � yja�N
dy:

If 1oaoN
a denoting by b the number defined by 1

b
¼ 1

a
� a

N
; one can show that the

linear map fALaðOÞ-LbðOÞ{Ua½ f � is continuous.
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More precisely there is a constant C ¼ CðN; a; aÞ40 such that for any q; 1pqpb;

jjUa½ f �jjqpCjOj
1
q
�1

bjjf jja: ð3:1Þ

If instead a4N
a then (3.1) holds for any qpN (and 1

b
¼ 1

a
� a

N
negative in this case),

while if a ¼ N
a then (3.1) holds for every qob ¼ þN with C ¼ Cq depending on q in

this case.

Suppose now that rAL1ðOÞ; 1rALtðOÞ with t4N
p
; t41 and 1þ 1

t
opoNð1þ 1

t
Þ: Let

now px be defined as

1

px
¼ 1

p
1þ 1

t

� 	
� 1

N
: ð3:2Þ

Using the above estimates, in [19,26], the following Sobolev inequality is

proved for any function u in the weighted Sobolev space H
1;p
0;rðOÞ (see

Definition 2.1)

jjujj
Lpx ðOÞpCðjOjÞjjDujjLpðO;rÞ; ð3:3Þ

where CðjOjÞ-0 if jOj-0:
If t4N=p; then px4p; and by Hölder’s inequality we get a weighted Poincaré’s

inequality

jjujjLpðOÞpC̃ðjOjÞjjDujjLpðO;rÞ; ð3:4Þ

where C̃ðjOjÞ-0 if jOj-0: The same inequality holds if pXNð1þ 1
t
Þ; provided

t4N=p:
In the case of problem (1.1) the weighted space which is naturally associated to

this equation, is H1;2
r ðOÞ with r � jDujm�2: If O is a ball, then under suitable

hypothesis (see [5,7]) every solution is radial and, as shown in [1] it follows that the

gradient of u vanishes only at a point , e.g. in 0; and jDujEjxj
1

m�1: This implies that

the condition 1rALtðOÞ with t4N
2
is satisfied in the case mX2 (while if 1omo2 the

condition rAL1ðOÞ is satisfied if m4Nþ2
Nþ1).

In a general domain, having proved that 1

jDujðm�1ÞrAL1ðOÞ for every ro1; we get that
1
rALtðOÞ with t4N

2
if N ¼ 2 or NX3 and mo2N�2

N�2 which allows to obtain (3.4) in this

case.
In order to avoid such restrictions on m; in what follows we will use the estimates

proved in Section 2 to handle the general case.
We begin by proving general Sobolev and Poincaré type inequalities, using

potential estimates as in [19,26].
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Theorem 3.1. Let O be a bounded domain in RN and let rAL1ðOÞ be a positive weight

function such that Z
O

1

rtjx � yjg dypC 8xAO;

where t41; 0pgoN and C does not depend on x:

Assume also that p41 satisfy 1þ 1
t
op and t4N�g

p
:

If poNð1þ 1
t
Þ � g

t
then there exists a constant c0 ¼ c0ðN; p; r; t; gÞ such that the

following weighted Sobolev’s inequality holds for any uAH
1;p
0;rðOÞ:

jjujjLp�pc0jjDujjLpðO;rÞ; ð3:5Þ

where p� is defined by

1

p� ¼
1

p
1þ 1

t

� 	
� 1

N
� g

NðptÞ:

If (1þ 1
t
/p; tSN�g

p
and) p ¼ Nð1þ 1

t
Þ � g

t
then

jjujjLqpcqjjDujjLpðO;rÞ; ð3:6Þ

for any uAH
1;p
0;rðOÞ and for every q41:

If instead (1þ 1
t
/p; tSN�g

p
and) p4Nð1þ 1

t
Þ � g

t
then we get

jjujjLNpc0jjDujjLpðO;rÞ ð3:7Þ

for any uAH
1;p
0;rðOÞ:

Finally for any p such that p41þ 1
t

and t4N�g
p

we get the following weighted

Poincaré’s inequality for any uAH
1;p
0;rðOÞ:

jjujjLpðOÞpCðjOjÞjjDujjLpðO;rÞ; ð3:8Þ

where CðjOjÞ-0 if jOj-0:

Proof. By density arguments we may suppose uAC1c ðOÞ; so that there exists a
constant CN ; depending only on N; such that, for every xAO; we get

juðxÞjpCN

Z
O

jDuðyÞj
jx � yjN�1 dypCN

Z
O

jDuðyÞjr
1
p

jx � yjN�1� g
pt

1

r
1
pjx � yj

g
pt

dy

pCN

Z
O

1

rtjx � yjg dy

� 	 1
pt jDuðyÞjr

1
p

jx � yjN�1� g
pt

������
������

������
������
LðptÞ0 ðOÞ

ð3:9Þ
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Let us set

f ðyÞ ¼ ðjDuðyÞjr
1
pÞðptÞ0 :

If N � 1� g
pt
p0; then by (3.9), since ðptÞ0op by the hypothesis 1þ 1

t
op; we get

immediately

jjujjLNpK1jjjDujr
1
pjjLðptÞ0pK2jjjDujr

1
pjjLp ¼ K2jjDujjLpðO;rÞ:

If instead ðN � 1� g
pt
Þ40; let us set N � a ¼ ðN � 1� g

pt
ÞðptÞ0 and get

juðxÞjpCNC
1
ptjUa½ðjDuðyÞjr

1
pÞðptÞ0 �j

1
ðptÞ0 :

Note that we use the fact that t4N�g
p
to get a ¼ N � ðN � 1� g

pt
ÞðptÞ040:

Moreover, since jDujr
1
pALpðOÞ we get fAL

p
ðptÞ0 where p

ðptÞ041 by the assumption

p41þ 1
t
:

Let us consider first the case poNð1þ 1
t
Þ � g

t
: In this case (it is easy to see that

ðN � 1� g
pt
Þ40; and ) ðptÞ0

p
4 a

N
; so that we can set b41 such that

1

b
¼ ðptÞ0

p
� a

N
:

Therefore Ua½ f �ALbðOÞ and, for every yXðptÞ0 we have

jjujjLypCNC
1
ptjjjUa½ f �

1
ðptÞ0 jjLy ¼ CNC

1
ptjjUa½ f �jj

1
ðptÞ0

L

y
ðptÞ0

: ð3:10Þ

Taking y ¼ bðptÞ0; by (3.1), we get

jjujjLbðptÞ0pCðCNÞ
1
ptC2jjðjDujr

1
pÞðptÞ0 jj

1
ðptÞ0

p
ðptÞ0

pc0jjDujjLpðO;rÞ: ð3:11Þ

Since bðptÞ0 ¼ p� we get (3.5).

If p ¼ Nð1þ 1
t
Þ � g

t
we get (3.10) and (3.11) for every y4ðptÞ0 and therefore we

prove (3.6). If otherwise p4Nð1þ 1
t
Þ � g

t
we also get y ¼ þN in (3.10) and (3.7)

follows.

Finally, let us note that if pXNð1þ 1
t
Þ � g

t
and t4N�g

p
; then Poincaré’s inequality

(3.8) follows immediately by (3.6) and (3.7). Otherwise, if poNð1þ 1
t
Þ � g

t
; by the
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assumption t4N�g
p
; we get p�4p and, by Hölder’s inequality

jjujjLpðOÞpjjujjLp� ðOÞjOj
1
p
� 1

p�pc0jOj
1
p
� 1

p� jjDujjLpðO;rÞ

which proves (3.8). &

We will now apply this result to the case r ¼ jDujm�2; mX2 and u is a weak
solution of (1.1).

Theorem 3.2. Let uAC1ð %OÞ be a weak solution of (1.1) with f satisfying (�) and

f ðsÞ40 for s40; mX2: Then, if we consider r ¼ jDujm�2
we get, for every pX2

jjvjjLpðOÞpCðjOjÞjjDvjjLpðO;rÞ for every vAH
1;p
0;rðOÞ: ð3:12Þ

where CðjOjÞ-0 if jOj-0:
In particular (3.12) holds for every vAH1;2

0;rðOÞ:

Proof. Since uAC1ð %OÞ and mX2; obviously r ¼ jDujm�2AL1ðOÞ: By Theorem 2.3
we have

Z
O

1

rtjx � yjg dypC;

where C does not depend on x; tom�1
m�2 and goN � 2: Thus we have that t4N�g

p
if

m�1
m�24

2
p
and g is sufficiently close to N � 2: Therefore, for pX2 and mX2; the

condition t4N�g
p
is always verified.

Moreover we have p41þ 1
t
since t41: Therefore we can apply Theorem 2.3, to get

the thesis for vAH
1;p
0;rðOÞ: &

Note that usually the case p ¼ 2; which gives a Hilbert space H1;2
0;rðOÞ; is

considered. Therefore the condition pX2 is not restrictive.

Moreover if mX2; pX2 and vAW
1;p
0 ðOÞ; the same conclusion holds. In fact, being

uAC1ð %OÞ; and mX2; r ¼ jDujm�2 is bounded, so that W
1;p
0 ðOÞ+H

1;p
0;rðOÞ:

The previous inequality allows us to prove the following:

Theorem 3.3 (Weak Comparison Principle). Suppose that either 1omo2
and u; vAW 1;NðOÞ; or mX2; u; vAW 1;mðOÞ-LNðOÞ; where either r � jDujm�2

or
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r � jDvjm�2
satisfy condition (1.7), namelyZ

O

1

rt

1

jx � yjg dypC;

where C does not depend on xAO; g/N; tS1 and t4N�g
2 :

Suppose that u; v weakly solve

�div ðjDujm�2
DuÞ þ gðx; uÞ � Lup� div ðjDvjm�2

DvÞ þ gðx; vÞ � Lv in O; ð3:13Þ

where LX0 and gACð %O� RÞ is such that for every xAO; gðx; sÞ is nondecreasing for

jsjpmaxfjjujjLN ; jjvjjLNg:
Let O0DO be open and suppose upv on @O0; then there exists d40 such that, if

jO0jpd; then upv in O0: If L ¼ 0 the thesis is true for every O0DO:
In particular the result holds if either u or v is a C1ð %OÞ weak solutions of (1.1) with f

satisfying (�) and f ðsÞ40 for s40:

Proof. The case 1omo2 has been considered in [6] and from now we suppose m42:
Let us consider in O0 the function ðu � vÞþ: It is bounded, it vanishes on @O0 and it

belongs to W 1;m
0 ðOÞ; so that (see Definition 2.1) it belongs to H1;2

0;rðO0Þ-LNðO0Þ and
can be used as test function in (3.13), obtainingZ

½uXv�
ðjDujm�2

Du � jDvjm�2
DvÞðDu � DvÞdx

þ
Z
½uXv�

½gðx; uÞ � gðx; vÞ�ðu � vÞ dx � L
Z
½uXv�

ðu � vÞ2 dxp0; ð3:14Þ

where ½uXv� ¼ fxAO0 : uðxÞpvðxÞg: Moreover gðx; uÞpgðx; vÞ if upv; so thatZ
½uXv�

ðjDujm�2
Du � jDvjm�2

DvÞðDu � DvÞ dxpL
Z
½uXv�

ðu � vÞ2 dx: ð3:15Þ

By standard estimates (see e.g. [6, Lemma 2.1],), the following inequality followsZ
O0
ðjDujm�2 þ jDvjm�2ÞjDðu � vÞþj2 dxpCm L

Z
O0
½ðu � vÞþ�2 dx; ð3:16Þ

where Cm depends on m; so thatZ
O0
jDðu � vÞþj2r dxpCm L

Z
O0
½ðu � vÞþ�2 dx; ð3:17Þ

where we can take r � jDujm�2 or r � jDvjm�2: By Poincarè’s inequality with weight
Theorem 3.2, we getZ

O0
jDðu � vÞþj2 r dxpCm L CðjO0jÞ

Z
O0
jDðu � vÞþj2 r dx: ð3:18Þ
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A contradiction occurs if Cm L CðjO0jÞo1; unless ðu � vÞþ ¼ 0 in O0; i.e. upv in O0:
(Let us recall that the integral in the last inequality define a norm). If L ¼ 0; the same
arguments prove the result for every O0DO: &

Remark 3.1. Let us point out that the parameters in the previous result may
depend only on u: This will be useful in the study of symmetry where v � ul is not
fixed.

We end the section by recalling the following result, which we will use in Section 4
(see [6]).

Theorem 3.4 (Strong Comparison Principle). Let 1omoN; and u; vAC1ðOÞ satisfy

�divðjDujm�2
DuÞ þ Lup� divðjDvjm�2

DvÞ þ Lv; upv in O: ð3:19Þ

Define Zu;v ¼ fxAO : jDuðxÞj þ jDvðxÞj ¼ 0g if ma2; Zu;v ¼ | if m ¼ 2: If x0AO\Zu;v

and ux0 ¼ vx0 then u � v in the connected component of O\Zu;v containing xo:

Remark 3.2. Theorems 3.3 and 3.4 apply for solutions u of (1.1) once we note that a
function f : I-R is locally Lipschitz continuous in an interval I if and only if for
each compact subinterval ½a; b�CI there exist two positive costants C1 and C2 such
that

(i) f1ðsÞ ¼ f ðsÞ � C1s is nonincreasing in ½a; b�:
(ii) f2ðsÞ ¼ f ðsÞ þ C2s is nondecreasing in ½a; b�:

4. Qualitative properties of the solutions

In this section we will study some properties of the critical set and some qualitative
properties, such as monotonicity and symmetry in some directions, of solutions of
(1.1).
Properties of the critical set Z are very important in the study of solutions of (1.1).

In particular, as we will see in Theorem 4.2, it is very useful to know whether O\Z is
connected or not. We are able to give a positive answer in the case when f is positive.

Theorem 4.1. Let uAC1ð %OÞ be a weak solution of (1.1) where O is a general bounded

domain, and suppose that f ðsÞ40 if s40: Then O\Z does not contain any connected

component C such that %CCO: Moreover, if we assume that O is a smooth bounded

domain with connected boundary, it follows that O\Z is connected.

Proof. Let C be a connected component of O\Z such that CCCO: Then

DuðxÞ ¼ 0 8xA@C: ð4:1Þ
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By Corollary 2.2, since jDujm�2
Du is continuous and identically zero on @C; we get

jDujm�2
DuAW

1;2
0 ðC;RNÞ: Then there exists a vector field AnACN

0 ðC;RNÞ which
approximates jDujm�2

Du in the norm of W
1;2
0 ðC;RNÞ: If now ECC is a smooth

subset such that

suppðAnÞCCECCC

by the Divergence Theorem applied to An in E; it follows, for every fAW 1;2

Z
C

divðAnÞfþ ðAn;DfÞ dx ¼
Z

E

divðAnÞfþ ðAn;DfÞ dx

¼
Z
@E

fðAn; ZÞ ds ¼ 0: ð4:2Þ

Moreover, since when f is positive jZj ¼ 0; by (1.1) we get

�divðjDujm�2
DuÞ ¼ f ðuÞ almost everywhere in C:

If now we choose f � ka0 then we getZ
C

f ðuÞ f dx ¼
Z

C

�divðjDujm�2
DuÞ f dx

¼ lim
n-N

Z
C

�divðAnÞ f dx ¼ 0 ð4:3Þ

and by (4.3) Z
C

f ðuÞ dx ¼ 0 ð4:4Þ

which is impossible when f is positive.
If O is smooth, since f is positive, by Hopf’s Lemma a neighborhood of the

boundary belongs to a component C of O\Z: A second component C0 would be
compactly contained in O; which is impossible by what we have just proved. So O\Z
is connected. &

Remark 4.1. The proof of Theorem 4.1 shows that the same conclusion holds if

uAW 1;mðOÞ is a weak solution of equation

�divðjDujm�2
DuÞ ¼ f ðxÞ in O

with jDujm�2
DuAW 1;2ðO;RNÞ; fALqðOÞ; q4N

m
; qX2; 1omoN; and fX0 does not

vanish identically in any open subset of O:

Now we want to prove some monotonicity and symmetry properties for solution u

of (1.1) with positive nonlinearities in general smooth domains. If 1omo2; this
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problem has been studied in [7,8] where the case of f locally Lipschitz continuous but
not necessarily positive is considered. In the case when f is positive we extend the
result to the case m42 using all the regularity results in previous sections and the
Alexandrov–Serrin moving planes method, following the approach of Berestycki and
Nirenberg in [3].
Moreover in the case of a positive nonlinearity f ; even in the case 1omo2

we simplify considerably the proof of the same result in [7], using
Theorem 4.1 to exclude local symmetry phenomena, avoiding the long and
technical analysis in [7]. We also extend the result to a more general class of
domains (see Remark 1.2).
We can now prove the following result (see Section 1 for notations).

Theorem 4.2. Let O be a bounded smooth domain in RN ; NX2; 1omoN;
f : ½0;NÞ-R a continuous function which is strictly positive and locally Lipschitz

continuous in ð0;NÞ; and uAC1ð %OÞ a weak solution of (1.1).
For any direction n and for l in the interval ðaðnÞ; l1ðnÞ� we have

uðxÞpuðxn
lÞ 8xAOn

l: ð4:5Þ

Moreover, for any l with aðnÞolol1ðnÞ we have

uðxÞouðxn
lÞ 8xAOn

l\Z
n
l; ð4:6Þ

where Zn
l � fxAOn

l :DuðxÞ ¼ DunlðxÞ ¼ 0g: Finally

@u

@n
ðxÞ40 8xAOn

l1ðnÞ\Z; ð4:7Þ

where Z ¼ fxAO :DuðxÞ ¼ 0g:
If f is locally Lipschitz continuous in the closed interval ½0;NÞ then (4.5) hold for

any l in the interval ðaðnÞ; l2ðnÞÞ and (4.7) holds for any xAOn
l2ðnÞ\Z:

Proof. Let us first suppose that f is locally Lipschitz continuous in the closed
interval ½0;NÞ: Since O is smooth L2ðnÞ is nonempty for any direction n: For
aðnÞolol2ðnÞ we can compare u and un

l � uðxn
lÞ; using Theorems 3.3 and 3.4 taking

into account Remark 3.2, since un
l satisfies the same equation �Dmðun

lÞ ¼ f ðun
lÞ in On

l:

In particular if l� aðnÞ is small, then jOn
lj is small.

Hence, by the Weak Comparison Principle in small domains (see Theorem 3.3),
since upun

l on @On
l; it follows that upun

l in On
l if l� aðnÞ is small, so

that L0ðnÞa| (recall that we put L0ðnÞ ¼ fl4aðnÞ : upun
l 8mAðaðnÞ; l�g and

l0ðnÞ ¼ supL0ðnÞ).
Suppose now by contradiction that l0ðnÞol2ðnÞ: By continuity it follows un

l0ðnÞXu

in On
l0ðnÞ: By the Strong Comparison Principle (see Theorem 3.4) if C is a connected

component of On
l0ðnÞ\Z; then un

l04u unless un
l0ðnÞ � u in C:
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Suppose that %C is a connected component of On
l0ðnÞ\Z and that un

l0ðnÞ � u in %C:

Since Z-@O ¼ | by the Hopf’s Lemma, we get that @C\Tn
l0ðnÞCZ:Moreover, by the

local symmetry, we get that @C\T n
l0ðnÞ,Rn

l0ðnÞð@C\T n
l0ðnÞÞCZ; showing that O\Z

would be not connected. Since O\Z is connected by Theorem 4.1, a contradiction
occurs, showing that un

l0ðnÞ4u in any connected component of On
l0ðnÞ\Z:

Let now A be an open set such that Z-On
l0ðnÞCACOn

l0ðnÞ: Since jZj ¼ 0
we can take A of arbitrarily small measure. Consider a compact set K in On

l0ðnÞ
such that jOn

l0ðnÞ\K j is sufficiently small in order to guarantee the applicability of
Theorem 3.3 (see Remark 3.1). By what we proved before, un

l0ðnÞ � u is

positive in K\A which is compact. Thus minK\Aðun
l0ðnÞ � uÞ ¼ m40: By continuity

there exists e40 such that, l0ðnÞ þ eol2ðnÞ and for l0ðnÞolol0ðnÞ þ e we have that
jOn

l\K j is still sufficiently small as before and un
l � u4m=240 in K\A: In particular

un
l � u40 on @ðK\AÞ: Moreover for such values of l we have that upun

l on

@ðOn
l\ðK\AÞÞ: By the Weak Comparison Principle applied in On

l\ðK\AÞ; which has
small measure, we get that upun

l in On
l; which contradicts the assumption

l0ðnÞol2ðnÞ:
Therefore l0ðnÞ � l2ðnÞ and the thesis is proved.
The proof of (4.6) follows immediately by Theorem 3.4 and the first part of this

Theorem. In fact if (4.6) were not true, by the Strong Comparison Principle, there
would exist a component of local symmetry, against what we have just proved.

Finally, to prove (4.7) let us note that, by the linearity of Lu; we get that
@u
@n weakly

solves (1.2). Therefore, by the strong maximum principle for uniformly elliptic

operators, we have that (4.7) holds unless @u
@n � 0: Since this is not possible by (4.6)

the thesis follows.
When f is not Lipschitz up to 0; Lemma 2.2, p. 1187 in [8] works as it is in our

context and shows that for any direction n and l0 in the interval ðaðnÞ; l1ðnÞ� there
exist neighborhoods I of @O and J of l0 such that we have uðxÞpuðxn

lÞ for any
xAOn

l-I ; lAJ:
Of course this is true only up to l1ðnÞ (which can be strictly lower than l2ðnÞ), since

the proof exploits the Hopf’s lemma and needs that the normal to the boundary is
not perpendicular to the direction n:
Far from the boundary u is positive and f Lipschitz continuous in the range of u

and the proof goes through as before using our comparison principles in smaller
domains. &

An immediate consequence is the following.

Corollary 4.1. If f is locally Lipschitz continuous in the closed interval ½0;NÞ and

strictly positive in ð0;NÞ; and the domain O is convex with respect to a direction n and

symmetric with respect to the hyperplane Tn
0 ¼ fxARN : x � n ¼ 0g; then u is

symmetric, i.e. uðxÞ ¼ uðxn
0Þ; and nondecreasing in the n–direction in On

0 with
@u
@nðxÞ40 in On

0\Z:
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In particular if O is a ball then u is radially symmetric and @u
@r
o0; where @u

@r
is the

derivative in the radial direction.

Proof. It is immediate from the previous theorem. Let us only note that in the case
of a ball, since the level sets of the solutions are spheres, an application of Hopf’s
Lemma (recall that f is positive) shows that 0 is the only critical point and that the
derivative in the radial direction is negative in all the other points. &
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Note added in the proof

It was pointed out to us that Serrin and Zou, in their celebrated paper [28], state in

the case 1omo2 the solution m belongs to the Sobolev space W
1;2
loc ðOÞ; among other

regularity results for solutions of quasilinear elliptic equations.
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