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Abstract

We consider the Dirichlet problem for positive solutions of the equation —A,,,(u) = f(«) in a
bounded smooth domain Q, with f locally Lipschitz continuous, and prove some regularity
results for weak C!(Q) solutions. In particular when f(s)>0 for s>0 we prove summability

properties of ﬁ, and Sobolev’s and Poincaré type inequalities in weighted Sobolev spaces
m—2

with weight |Du|m*2. The point of view of considering |Du|™ "~ as a weight is particularly useful
when studying qualitative properties of a fixed solution. In particular, exploiting these new
regularity results we can prove a weak comparison principle for the solutions and, using the
well known Alexandrov—Serrin moving plane method, we then prove a general monotonicity
(and symmetry) theorem for positive solutions u of the Dirichlet problem in bounded (and
symmetric in one direction) domains when f(s) >0 for s>0 and m>2. Previously, results of
this type in general bounded (and symmetric) domains had been proved only in the case
l<m<2.
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1. Introduction and statement of the results

Let us consider weak C'(Q) solutions of the problem

—Apu(u) =f(u) in Q,
u>0 in Q, (1.1)
u=20 on 0Q,

where Q is a bounded smooth domain in RY, N>2, A,,(u) = div(|Du|” >Du) is the
m-Laplace operator, | <m< oo, and we have the following hypotheses on f:

(*) f£:[0,00)—>R is a continuous function which is locally Lipschitz continuous in
(0, c0).

It is well known that, since the m-Laplace operator is singular or degenerate elliptic
(respectively if 1 <m <2 or m>2), solutions of (1.1) belong generally to the class C'*
with 7<1, and solve (1.1) only in the weak sense. Moreover, there are no general
comparison theorems for the solutions as in the case when m = 2 or more generally
when uniformly elliptic operators are considered.

In this paper we prove some regularity properties of positive solutions of (1.1),

such as summability properties of |Dl—u‘, where Du is the gradient of u, and Sobolev and

Poincaré type inequalities in weighted Sobolev spaces with weight |Du|

Using these regularity results we prove a weak comparison theorem for solutions
of differential inequalities involving the m-Laplace operator. Exploiting all these
results, together with the Alexandrov—Serrin moving plane method [21], we finally
prove that the solutions of (1.1) in one direction in domains which are convex (and
symmetric) in one direction. Since the case 1<m<2 has been fully considered in
[7,8], this will conclude the analysis for the case of positive Lipschitz continuous
nonlinearities f(u). We also observe that if m>2 and f changes sign there are
counterexamples to the symmetry of the solutions in symmetric domains (see [4,14]).
Let us explain our results in details.

In Section 2 we study the linearized operator L, (see Section 2 for the precise
statement) associated to problem (1.1). In particular, we first prove that if
@€ W12(Q) has compact support then

LM(MXM (P)

m—2

= / [|1Du|™ 2 (Duy,, Do) + (m — 2)|Du|™*(Du, Duy,)(Du, Do) — [ (u)ux, @] dx
oA

is well defined and the following equation holds:
L,(ug,9) =0 YoeW'(Q), supp(p)cQ. (1.2)

The proofs of our regularity results will be based both on Egs. (1.1) and (1.2). Let us
state some of these results in the following:
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Theorem 1.1. Let ue C'(Q) be a weak solution of (1.1) with [ satisfying (*),
l<m< oo. Then, for any Ec < and for every i,j=1,...,N, we have, for every
xXeQ,

/ M|Du,,|2dy<c
E\{uxiZO} ‘u\z|/}|x - y|? -

where f<1, y<N =2 if N=23,y=01if N =2 and C depends on v, 5, E and on the
solution u, but does not depend on xe Q. Moreover

|Du|’11727ﬁ 5
o o Pl <

where Z = {xeQ: Du(x) = 0} is the critical set of the solution.
Finally, if Q is smooth, ue C'(Q) and f(s)>0 for s>0, then |Z| = 0 (see [18]) and,
for any xeQ and for every r<1, we have

1 1
- -dy<C,
/Q|Du<’”‘”’ Ix — [’

where C does not depend on x, y<N —2 if N>23 and y =0 if N = 2.

As a corollary we also prove that [Du|” >Due WIL‘f(Q, R") and the derivatives u,,
belong to the weighted Sobolev space H,?(<Q).

Let us remark that in a recent paper Lou [18] proved that, if ue WILZ"(Q) is a weak
solution of the equation

—div([Du/"*Du) = f(x) in Q (1.3)

loc
Z = {xeQ: Du(x) = 0} of the solution, so that |Z| =0 if f(x)#0 a.e in Q.
The lack of regularity of the solutions of (1.1) is one of the greatest difficulty in the
applications. In [1] the case when Q is a ball is considered. In this case the solutions
are radial (see [5,7]) and the authors study the Morse index of a fixed solution in the

with f e L1(Q), > ¢>2, then |Du|""" € W,2(Q) and f (x) = 0 a.¢ on the critical set

weighted Sobolev space of radial functions in H&ﬁ(Q) with p = [Du|™2.
Here, as in [19,26], if pe L'(Q), the space H;’P(Q) is defined as the completion of
C'(Q) (or C*(Q)) under the norm

1ol 10 = ol @) + 11Dl rg,p) (1.4)

and ||Dv||II’J,(Q_’p) = Jo|Dvl’pdx. In this way H,?(Q) is a Banach space and

H [1,2(9) is a Hilbert space. In [1] the authors also overcame the lack of regularity
of the solutions because in the case when u is a radial solution in a ball B,(0) and f
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satisfies some hypotheses (e.g. f(s)>0 for s>0) then the only critical point of a
solution is the origin, and a precise behavior of u near the origin can be obtained

2—
using the I” Hospital rule as in [23], namely |Du(x)|~ |x|ﬂ%1 and ||D*u(x)||~ |x|PTI‘) as
x—0.

In general, if we consider solutions of (1.1) in a general bounded smooth domain
then the critical set Z may be very irregular and estimates of this kind are not
available. However we will show that we can efficiently work in the weighted Sobolev
space H(;;(Q) using only the estimates proved in Theorem 1.1.

In particular, we will prove that if f(s) >0 for s> 0 and u is a solution of (1.1) with
m=2, considering the weight p = [Du|™ 2, for every p>2 and veH&’g(Q) a weighted
Poincaré ’s inequality holds , i.e '

1ol () < CULDIIDY] 1 g ) (1.5)

where C(|Q|) -0 if |2]|—0.
In [19,26] Eq. (1.5) is proved by assuming that

peL'(Q), %EL’(Q) (1.6)

with t>ﬁ and p>1+ % In the radial case, if we consider p = |Du|m72, m=2 (or more

generally m>§’,ﬁ which guarantees the belonging of p to L'(Q)) and p = 2, these

conditions are satisfied, as shown by the above estimates.
In a general domain, as a corollary of Theorem 1.1, we get that for m=>2,
—L_—eL(Q) for any r<1, which implies (1.6) with p =2 if N =2 or N>3 and

\DI
2N-2
m<s=.

In order to avoid this restriction in the applications, in Section 3 we will prove that
a weighted Poincaré’ s inequality in the space Hég (Q) can be obtained using classical
potential estimates, similarly to those in [19,26] and assuming that we have the
following estimate for the weight p:

1 1
/77}' dy<C, (1.7)
ap'|x—yl

where C does not depend on xeQ, y<N, t>2and p>1 +4 1 We will also prove a
weighted Sobolev inequality of the same type.

In the case when u is a solution of (1.1) with m>2 and p = |Du|™*, by Theorem
1.1 the previous estimate is satisfied for any y<N —2, 1<= ; So, using the
regularity results in Theorem 1.1 together with these abstract results, we can prove
the following Poincaré type inequality for solutions of (1.1).
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Theorem 1.2. Let ue C'(Q) be a weak solution of (1.1) where f satisfies (x) and
f(s)>0 for s>0, m=2. Then, if we consider p = \Du\m_2 we get, for every p=2

[[0l] (@) < C(I12D)]| Dy]

oy Jor every veH&;ﬁ(Q), (1.8)

where C(|Q2])—0 if |2]| - 0.
In particular (1.8) holds for every veH&ﬁ(Q).

Remark 1.1. The previous regularity results hold for any 1<m< oo, but the
weighted Poincaré type inequality holds in this form in the case m>2. In the case
l<m<2 Poincaré’ s inequalities without weight are often sufficient in the
applications, provided the solutions belong to the class C'(Q) (see e.g. [6], where
comparison theorems are proved using them).

We then use the weighted Poincaré type inequality obtained in Theorem 1.2 to
prove the following:

Theorem 1.3 (Weak Comparison Principle). Suppose that either 1<m<2 and
u,ve W (Q): or m=2, u,ve W'(Q)\L*(Q), where either p = |Dul™* or p =
|Do|" 2 satisfy condition (1.7), namely

1 1
aop'|x =yl

where C does not depend on xeQ, y<N, t>1 and t>
Suppose that u, v weakly solve

N—y
5

—div(|Du|" "> Du) + g(x,u) — Au< — div(|Do|" 2Dv) + g(x,v) — Av in Q, (1.9)

where A=0 and ge C(Q x R) is such that for every xeQ, g(x,s) is nondecreasing for
|sl<max{|ful[ ., [[v]l .= }-

Let Q' =Q be open and suppose u<v on 0Q', then there exists 6>0 such that, if
|Q'| <9, then u<v in Q. If A =0 the thesis is true for every Q' = Q.

In particular the result holds if either u or v is a weak solutions of (1.1) with f
satisfying (x) and f(s)>0 for s>0.

The point of view of considering p = [Du|™? as a weight and working in the
weighted Sobolev space H&’ﬁ (Q), which is a Hilbert space, is particularly useful when
studying qualitative properties of a solution of (1.1), as done e.g. in [1] in studying
Morse index and uniqueness questions for radial solutions of (1.1).

In this paper, exploiting all the new regularity results together with the well known
Alexandrov—Serrin moving plane method, we study monotonicity and symmetry
properties of the solutions. In particular, when degenerate operators are considered,
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to apply the moving plane method, we have to take care of local symmetry
phenomena (see [7,8]). We will overcome this difficulty proving a property of the
critical set Z of the solution, which is interesting in itself:

Theorem 1.4. Let ue C'(Q) be a weak solution of (1.1) where Q is a general bounded
domain, and suppose that f satisfies (x) and f (s) >0 if s>0. Then Q\Z does not contain
any connected component C such that C<=Q. Moreover, if we assume that Q is a
smooth bounded domain with connected boundary, it follows that Q\Z is connected.

To state our monotonicity and symmetry result we need some notations.
Let v be a direction in RY. For a real number 4 we define

T, ={xeR:x-v=12}, (1.10)
Q) ={xeQ:x-v<i}, (1.11)
X, =Ri(x) =x+2(L—x-v)y, xeRY (1.12)
and
a(v) = ingx V. (1.13)

If /> a(v) then Q) is nonempty, thus we set

(Q5)' = R}(2)). (1.14)
Following [11,21] we observe that for 4 — a(v) small then (Q})’ is contained in Q and
will remain in it, at least until one of the following occurs:

(1) (Q}) becomes internally tangent to 9Q .
(ii) 77 is orthogonal to 0% .

Let A;(v) be the set of those 4> a(v) such that for each <A none of conditions (i)
and (ii) holds and define

J1(v) = sup A, (). (1.15)
Moreover, let
M) = {2>a(v): (@)@ Vue(a(v), 4]} (1.16)
and
Ja(v) = sup A (v). (1.17)

Note that since Q is supposed to be smooth neither A;(v) nor A,(v) are empty, and
A1(v)=42(v) so that 4;(v)</2(v) (in the terminology of [11] ] ) and @}
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correspond to the ‘maximal cap’, respectively to the ‘optimal cap’). Finally
define

Ag(v) = {A>a(v) :u<u; Vue(a(v),]} (1.18)
and

Zo(v) = sup Ag(v). (1.19)

Theorem 1.5. Let Q be a bounded smooth domain in RN, N>2, 1<m< o,
f:]0,0)>R a continuous function which is strictly positive and locally Lipschitz
continuous in (0, ), and ue C'(Q) a weak solution of (1.1).

For any direction v and for A in the interval (a(v), A (v)] we have

u(x)<u(x}) VxeQ). (1.20)
Moreover, for any A with a(v)<A<2(v) we have
u(x)<u(x}) VxeQ\Z!, (1.21)
where Z) = {xe Q) : Du(x) = Du}(x) = 0}. Finally,

Ou .
. (x)>0 VxeQ) ,\Z, (1.22)
where Z = {xeQ:Du(x) = 0}.

If f is locally Lipschitz continuous in the closed interval [0, o) then (1.20) and (1.21)
hold for any 2 in the interval (a(v),42(v)) and (1.22) holds for any xe€ ;. \Z.

Corollary 1.1. If f is locally Lipschitz continuous in the closed interval [0, c0) and
strictly positive in (0, 00), and the domain Q is convex with respect to a direction v and
symmetric with respect to the hyperplane Ty = {xe RY:x -v = 0}, then u is symmetric,
i.e. u(x) = u(x}), and nondecreasing in the v—direction in Qy with 24 (x)>0 in Q\Z.

In particular if Q is a ball then u is radially symmetric and %<O, where % is the
derivative in the radial direction.

Remark 1.2. The strength of our approach consists in the fact that it allows to
consider the case m>2, in general smooth domains, without any a priori assumption
on the critical set of the solution u. If 1<m<2 the previous monotonicity and
symmetry result had been proved in [7,8] for a function f, not necessarily positive,
which is either locally Lipschitz continuous in [0, o0 ) or locally Lipschitz continuous
in (0, 00) and satisfies some weak positivity assumption close to 0. Anyway, in the
case when £ is locally Lipschitz continuous in the closed interval [0, o0) and f'(s) >0
for s> 0 we slightly extend the result also in the case 1 <m <2, because (1.20) is true
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Vi€ (a(v),22(v)] and not only A€ (a(v),21(v)], and A2(v)=A;(v) and can be strictly
greater (consider e.g. a smoothed rectangle). We also simplify considerably the proof

in [7,8] (where to exclude local symmetry phenomena a long technical device is
needed).

Remark 1.3. Let us observe that in the case when f >0 every nontrivial nonnegative
solution of the equation —A,,u = f(u) is in fact positive, by the strong maximum
principle (see Theorem 2.1 in Section 2), and all the results we prove apply to
nonnegative solutions.

Let us recall some other works in the literature dealing with the problem of
symmetry and monotonicity of solutions of (1.1). When Q is a ball in [2] the
symmetry is obtained by assuming that the gradient vanishes only at the center. A
different approach is used in [15] where the case of f continuous and positive is
considered when Q is a ball and p = N. In [4,5], with the aid of the so called
“Continuous Steiner Symmetrization™, the author prove that solutions of (1.1), in
the ball, are radially symmetric under fairly weak assumption on the nonlinearity f.

Let us remark that the monotonicity results of Theorem 1.5 are important also in
the case of general (i.e. not symmetric) bounded domains. For example in the case of
strictly convex domains they show that there cannot be a concentration of maxima
of family of solutions approaching the boundary, and this is very important when
dealing with blow-up analysis and a priori estimates.

Let us finally remark that in the case of ground states of quasilinear elliptic
equations in the whole space, radial symmetry results were obtained in [9,22,4,5].

The paper is organized as follows. In Section 2 we prove Theorem 1.1 and some
related regularity results. In Section 3 we state sufficient conditions to get general
weighted Sobolev and Poincaré’s inequality and then we exploit them together with
Theorem 1.1 to prove Theorem 1.2. Moreover we exploit the weighted Poincaré’s
inequality obtained and we prove Theorem 1.3. Finally in Section 4 we prove our
monotonicity and symmetry results.

2. Regularity results

In this section we prove all the statements of Theorem 1.1 and some other related
results.

Let us first recall a particular version of the Strong Maximum Principle and of the
Hopf’s Lemma [13] for the m-laplacian (see [27] for the case of the m-laplacian and
[20] for general quasilinear elliptic operators).

Theorem 2.1 (Strong Maximum Principle and Hopf’s Lemma). Let Q be a domain in
RY and suppose that ue C'(Q), u=0 in Q, weakly solves

—Aju+cul! =g=0 in Q
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with l<m<oo,gzm—1,c=0and ge L, (Q). If u#0 then u>0 in Q. Moreover for
any point xo€0Q where the interior sphere condition is satisfied, and such that
ue C'(Qu{xo}) and u(xy) = 0 we have that 2> 0 for any inward directional derivative
(this means that if'y approaches xq in a ball BSQ that has xo on its boundary, then

lim,_, y, "Ol’j;gff) >0).

Remark 2.1. By standard elliptic regularity, a C'(Q) solution u of (1.1) with f
satisfying (*) belongs to the class C?(Q\Z), where Z = {xeQ : Du(x) =0} is the
critical set of the solution (see [10,12,16,24]). Therefore the generalized derivatives of
|Du|™ ?uy,, coincide there with the classical ones.

Let us put
Uy, In Q\Z,
gy = {2 1)
' 0, in Z,
we will also use the notation Du; for the “gradient” (@, .oy tiN)-

We will prove later that |Du|™ u,, belong to the Sobolev space W'2(Q), so that
by Stampacchia’s Theorem (see e.g. [25, Theorem 1.56, p. 79]), the generalized

derivatives of \Du|m_2ux,. are zero almost everywhere in Z, and we will get
0 m=2 m=2 ~ m—4 ]
o, Pl "ux) = (1Dul™ "y + (m = 2)| Dul™ " (Du, Duj)us,),
j

where 0% stands for the distributional derivative.
]

Definition 2.1. If peL'(Q), let us define as in [19,26], the space H}”(Q), as the
completion of C'(Q) (or C*(Q)) under the norm

ol o = 1[oll o) + 1DVl g ) (2.2)

where ||Dv][7, , , = [o [Dvl”p dx. In this way H,?(Q) is a Banach space and H,?(Q)
is a Hilbert space. Moreover, we define H(;:Z(Q) as the closure of C!(Q) (or C*(Q))
in H)?(Q).

Observe that if pe L* (Q) then W!¥(Q) has a continuous embedding in H:;”(Q).

Let us also observe that if ue W' (Q), m>2 and p = |Du|”?, then by Holder’s
inequality W!"(Q) has a continuous embedding in the Hilbert space H;z(Q)
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Let us recall the definition of the linearized operator

L.(9,0)

E / 1Du["(Dg. D) + (m — 2)| Dul™*(Du, Dg)(Du, Do) — " (u)gp] lx.

The linearized operator is well defined if g,@eH,?*(Q), p= |Du|""2%, or if
geL2(Q,R), |Dul"* Dge L*(Q,RY) and pe W'2(Q).
We will prove later that |Du|™* Due W*(Q,RY) if ue C'(Q) is a solution of

loc

(1.1), so that if p e W'?(Q) has compact support we can also define
Lu(ux,-v (p)

= /Q [|1Du|™*(Du;, D) + (m — 2)|Du|™*(Du, Du;)(Du, Do) — " (), @] dx.

For the time being we use the definition of the linearized operator at the fixed

solution u only with test function ¢ e W'?(Q) with compact support in Q\Z, where
Z = {xeQ: Du(x) = 0} is the critical set of the solution u, and prove the following:

Lemma 2.1. Let ue C'(Q) be a weak solution of (1.1), with f satisfying (x). Then we
have L, (uy,, @) = 0 for every ¢ € W'2(Q) with compact support in Q\Z.

Proof. Let o CX(Q\Z), and set y = a‘/’~EC°°( Q). Using y as test function in (1.1)

/Q<Du|’”2DuD )d_/f ( )

Since the domain of integration is a subset of Q\Z, where ueC?,

we get

|Du|™ 2u,, € W,"2(@\Z), and since f is locally Lipschitz continuous in (0, c0) and u

loc

is positive in Q, f(u)e wh 2( ) we can integrate by parts obtaining

loc

/(8)6, (|Dul™*Du), D(p)dx— /f u)uy, @ dx.

and get
/ [[Dul"2(Bus, D) + (m — 2)|Du/"*(Du, Buy)(Du, Dg)] dx
Q

/[fy( Jux, ] dx =0 (2.3)
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ie.
Ly(uy;, @) = 0.
By density we get the general case of ¢ € W!?(Q) with compact support in Q\Z. [
We can now prove

Theorem 2.2. Let ue C'(Q) be a weak solution of (1.1), with f satisfying (x)
l<m< co. Then for any Ec < Q and for every i,j =1, ..., N, we have

D m=2 .
sup [ B pufay<c,
xeQ J E\{u,,=0} |uxl‘| |.X' - y|r

where <1, y<N =2 if N23,y=0if N=2and C = C(f,y,E). Moreover

D m—2—p
sup [ 2t ay<c.
xeQJEZ |x — ¥l

where Z = {xeQ: Du(x) = 0} is the critical set of the solution.

Proof. Let us observe that we can suppose that xe E without loss of generality. In
fact, suppose that we prove that for every measurable set Ec —Q we have

|Du|n172 <
sup 7,|Du,| dyéK(ﬂa%E)

vet B fu =0} [P — I

Then if 0<d<idist(E,0Q) and E; = {xeQ: dist(x, E)<d} considering the two
cases xe Es and xe Q\Ej, it follows that

Du m—2 - 1
sup/ %IlezdﬂK(ﬁy%E&)+7K(5’0’E)'
xeQ E\\{uxl:0}|ux,-| |x—y|’ 0

Let Ec =Q, xeE, and consider a cut-off function ¢ € C°(Q) such that ¢ >0 in Q,
and ¢ = 1 in E5 = {xeQ|dist(x, E) <0} where 0<d<1dist(E,0Q).
Let G, be defined by

G.(s)=0 if |s|<e,
G.(s) =25 —2¢ if e<<|s|<2e,
G.(s)=s if |s]>2e,

so that G, is a Lipschitz continuous function and 0< G, <2. To obtain our result we
will consider the case xe ENnZ and xe E\Z separately.



494 L. Damascelli, B. Sciunzi | J. Differential Equations 206 (2004) 483-515

Case 1: Suppose first that xe EnZ. In this case define ¥, () = % with
B<l,y<N —-2and N=3.If N =2weuse ,, = =% ("“,; ¢. Since G,(uy,) vanishes in a

neighborhood of each critical point, in particular in a neighborhood of y = x, we can
use |, , as a test function in (1.2) and get

m=2 173, |2
[0 0 () )

|eay, Polx =yl
Du|™™* (Du, Du;) Uy,
+ (m—2) | | B y ( u‘q - ( ‘))(de
e uy|"x =yl Us;
m— (ux) l
[ pup B, 0g) EH) gy
Q\E; |ty \ﬂ Ix —yf

G.(uy,) 1

|uX[|

~ 1 G, (uy,
+ /|Du|'"2<Du,-,Dy< .},)) s(u'\ﬂ‘)gody
Q \x—y| |ux,~
_ ~ 1 G, (uy,)
m—2 / Du|"™*(Du, Du; (Du,D( )> 22 o dy
m=2) [ oo ) (0 2y () ) T

ux) 1
S (u)uy, ; ¢ dy.
/ P =l

+ (m—2) / |Du|™*(Du, Du;)(Du, Do)
Q\E5

By the definition of G, it follows that (G} (uy,) — f = G <”‘ )>0 in Q. Therefore we get

Du|" | Dui* [, G, (uy,
[P gyt

o luy|’|x =y
Du|™ 2| Du;||Do| G, (u.
<(m—1)/ |Du|™ "| Du;|| Do| .(u,,)d
Q\E;

lx =yl Juay, |
|Du|"™2| Du;| G, (uy,)
+ y(m—1) - :
o |x=y" fuyl!
/ " (@), > o dy
lx =yl '

By the definition of Ej, since xe E, we know that sup},EQ\Eérws% and, using the

fact that |Du|™ *|Du;|e L2, (Q), since ¢ has compact support in Q, we get
loc

Du|" 2| Du;|| Dop| G(usy,
[ DD )
O\E; |x — | |ty |
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where C; does not depend on x. Since @2 is bounded, then fgm is uniformly

bounded for any fixed s<n and, using the fact that ue C'(Q) and |f’(u)| is bounded
in supp(¢), we get

/

/lf u)||u x,' <pdy<C2,
[x =l

where C, does not depend on x. Here we have used that ueC!(Q) and

Guluy, -
| lu(?‘,‘,)|<|ux,.\l < Cy. Therefore

Du|™ 2| Du,|? G.(u,
P () - N
e |ug|"[x =yl

m=2 . 1 1
|Du| 2 IDuiI(IGs(ux,-)I >2|Dul 2 (|1Ge(uy,)])? (pl

|u‘~z|

+ G

o 2] = yI2 x =yl

By Young’s inequality (ab<ga® + b*\40), if 6 >0 we get

o=

IDul IDuzI(IG(ux,) >2|Dul (IG(ux,)I)
®

1oL
P2ux, 272 dy

B 2 _ 1
@ - yp N 1l = 2
D m-2| i v
<o | ”|ﬁ o (ux,)| o dy
Q |uy, |ux,|
|Dul"2 |G, (u,)| 1-p
5 [ ol .
Since W = %ﬁ'”), we can take ¢>0 such that (1 — f — ¢)>0 and

Du m=2 D~1/ll' 2 Gl: Uy;
[ s (G;wx,-) -5+ ) ) gy

<C3+C5/| y+2dy<C6,

where Cs does not depend on x. Let us note that, by definition, (G, (uy,) — (f +
)y >0 and (G)(uy,) — (B + o)) ) 1 — (B+0) in {uy,#0}. Therefore, by

Fatou’s Lemma, we get

D m—2 D~ 2
/ |@—iﬁi¢@<a
Q\{u‘lio} |u\L| |x y|y



496 L. Damascelli, B. Sciunzi | J. Differential Equations 206 (2004) 483-515

where C does not depend on xe EnZ. In particular,

D m—2—f D~ . 2
Q\{uy, =0} [x =yl

and, since uy,;, =0 a.e. in {u,, = 0}\Z, it follows, for any i =1, ..., N, that

Du m—2—p lju 2
[
Qz lx =yl

where xe Z and C does not depend on x. Moreover, since ¢ =1 in E, we get

Dul™ 2P D2yl 2
[l TR
E\Z |x — |

Case 2: Suppose now that xe E\Z. In this case consider E and Ej as above, and for
&¢>0 small consider a cut-off function ¢, , € C () such that ¢, , >0in Q, ¢, =0in
B.(x), ¢,, =1 in E;\By(x), |Do,,|<< in By(x)\B:(x) and |Dg, |<c outside
By, (x). Moreover suppose that there exists a set A < = Q such that supp(¢, ,) =4 for

every ¢ and xe E.
Using i, , = %@&x as a test function in (1.2), by the same estimates we

have used before, it follows

m—2
l%i——Q&L< L) — (B+ )GSM)>%J@/

Jus, | =yl
Du|™ 2| Du; G, (uy
<G+Q/ |||7H I(QW
Bu(0\B(v) X =) ™

Since x€ E\Z, by standard elliptic estimates, we have that u is regular near x, and for
¢ sufficiently small, there exists a constant Cy(¢, x) depending on ¢ and on x such that

|Du|™ 2| Du;| < Co (e, x) in Byy(x). Moreover, if x is fixed and ¢ is small, we can
suppose that Cy (&, x) does not depend on &. Therefore, if ¢ is sufficiently small, we get

Du|™ % Du; Uy, €
Cs/ | Du| |v \| G,( [;)dygcg(x) c
BB XV |m| &

N

Since y<N — 2, then Cg(x);%ao if e—0, and, for ¢ sufficiently small, we have

/UM$2QM< (1) = (B +0) 1f5%hﬁ<a+1

Jus P = 3l
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where C7 does not depend on x. Using Fatou’s Lemma we get the thesis also for the
case xe E\Z. Note that, to get the estimates above, the choice of ¢ depends on x. In
spite of this, exploiting Fatou’s Lemma, we get estimates which do not depend on x.

Finally, taking the greatest constant between the ones obtained in the two cases,
we prove the theorem. [

To extend Theorem 2.2 up to the boundary we need some informations
on the regularity of the solution on the boundary, which would be implied by
assuming e.g. 2 smooth and f sufficiently smooth and nonnegative (so that Hopf’s
lemma holds at the boundary). Since here we do not need to extend Theorem 2.2 up
to the boundary, we will only note that, if we consider x fixed, then we have
the following.

Corollary 2.1. Let Q be a smooth domain, ue C'(Q) be a weak solution of (1.1)
with f locally Lipschitz continuous in [0, c0) and f(s)>0 for s>0, l<m< + 0.
Then, |Z| = 0 and, for every fixed x € Q,

Dul" > Pluy |
/ ‘ ‘ | VXI»\/| dy< C,
Q |x—y

where f<1,y<N =2 if N=3 and y =0 if N = 2. In particular

/ |Du|” > Py, [P de< C.
Q

As a consequence of the previous estimates we can prove

Corollary 2.2. Let ueC'(Q) be a weak solution of (1.1) with f satisfying (x),
l<m< oo. Then ue C*(Q\Z), where Z = {xeQ: Du(x) = 0} is the critical set of the
solution, | Du|"*Due W,.2(Q, RY), therefore |Du""' € W:2(Q).

If moreover Q is smooth, ue C'(Q) and f is nonnegative and locally Lipschitz
continuous in the closed interval [0,0), then ZnoQ =0, ueC*(Q\Z),
|Du|"*Due W'2(Q,RY) and |Du|"" € W'2(Q).

Proof. Since ue C'(Q) is positive in Q and f is locally Lipschitz continuous in
(0, 00), we have that f(u) is locally Lipschitz continuous in © and by elliptic
regularity ue C>(Q\Z), since it satisfies an uniformly elliptic equation in a
neighborhood of each regular point xeQ\Z. Recall that in Theorem 2.2
(where we have used test function with compact support in Q\Z only) we obtain
that

/ |Du|" 7P| D?u|]* dx < C, (2.4)
EZ
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where f<1, Z = {xeQ : Du(x) = 0} is the critical set of the solution, and E is any
compact set contained in Q.
Let us now set

(rbn = Gl(|Du‘n772uXi)7

n

where G is defined as in Theorem 2.2, neN and ie{l, ..., N}. By the definition of
Gy we get that ¢, e W'?(E) and
n

0 72 ) 5
8_x_,-¢” = G%'(|Du\m ux,.)a—xj(lDu|”’ Uy, ). (2.5)
Therefore, taking into account Remark 2.1 and exploiting (2.4), we get

Hd)nHWll(E)gK VneN. (2.6)

Since W'2(E) has a compact embedding in L*(E), up to subsequences there exists
he W'2(E) such that

¢, —h strongly in L*(E),
as n tends to infinity and

¢, —h almost everywhere in E.

Since ¢, — |Du|™ *u,, almost everywhere in E, we get
\Du|" ?u,, = he W'2(E). (2.7)

Since ie{1, ..., N} is arbitrary the thesis follows and |Du|" *Due W]Lf(Q, RY).

If moreover Q is smooth, ue C'(Q) and f is nonnegative and locally Lipschitz
continuous in the closed interval [0, o0 ), then f(u) is Lipschitz continuous in Q and
Zn0Q =0 by the Hopf’s lemma. By standard elliptic regularity it follows that u
belongs to the class C? in a neighborhood of the boundary, so that ue C>(©\Z) and

|Du|" 2 Due W'2(Q,RY). O

Let us remark that in a recent paper Lou [18] proved that if ue Wli)é"(Q) is a weak
solution of the equation

—div(|Du|"Du) = f(x) in Q

with fe L4(Q), ¢>& ¢4>2, 1 <m< oo, then |Dul" e W'2(Q).

loc
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Remark 2.2. We recall that under the assumptions on the boundary of Corollary 2.2,
by the regularity results up to the boundary of Lieberman [17], it follows that any
solution u of (1.1) belongs to the class C'*(Q).

Remark 2.3. Since a C'(Q) solution u of (1.1) with f satisfying (*) is regular in Q\Z,

the generalized derivatives of |Du|”’72ux,,, coincide there with the classical ones.

Moreover in {u,, = 0}, by Stampacchia’s Theorem(see e.g. [25, Theorem 1.56, p.

79]), the generalized derivatives of |Du|m72uxi are zero almost everywhere. From now
on we will do all computations taking into account this fact. In particular, we get

0 ~
o (1Dul" ) = (Dul" iy + (m = 2| Dul"™* (Du, Dy, ),
/

where ;2 stands for the distributional derivative and i are defined as in Remark 2.1
-
by

Uy, N QZ,
0y = { \ (2.8)

0 in Z
and Du; stands for the “gradient™ (1, ..., fiy).
Let us now prove an elementary consequence of Corollary 2.2.

Lemma 2.2. Let ueCY Q) be a weak solution of (1.1). Then we have
\Du|" e L2 ().

loc

Proof. We have already shown that (|Du|" 2u,,), € L

Xj loc

(Q). With the aid of Remark
2.3 we can write

(D" 21s),, = (1Dul™ )ity + (m — 2)| D™ (Du, Duy) - (29)

)
Since |Du|™ ' e WIIOCZ(Q) we also know that

(m — 1)|Du™ > (Du, Du;) € L}

foc(€2)- (2.10)
So we get

(m — 2)|Du|""*(Du, Duj) - uy, € L2,.(R). (2.11)

Therefore |Du|” *d;e L2 () since it is a linear combination of elements of
L .(Q). O

loc
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Remark 2.4. Let us observe that in the case when f >0 every nontrivial nonnegative
solution of the equation —A,,u = f(u) is in fact positive, by the strong maximum
principle, and all the results we prove apply to nonnegative solutions.

In the case when f is positive then |Z]| = 0 by Lou’s result [18] (see next theorem
where we prove with our techniques a stronger result).

Therefore, since u is regular in Q\Z, the classical second derivatives uy,, are
defined almost everywhere, and coincide with ;. Since, from now on, in this section
we consider the case of positive nonlinearities, in order to simplify the statements, we
will use uy,y, instead of ;.

Moreover, since we have assumed Q2 to be smooth, in the case of f positive, Hopf’s
Lemma applies and shows that, in a neighborhood of 02, there are not points where
the gradient of u vanishes.

Consequently all regularity results, which we have proved, except for Theorem 2.2,
can be extended up to the boundary.

Lemma 2.3. Let ue C'(Q) be a weak solution of (1.1), with f satisfying (x). Then we
have L, (uy,, @) = 0 for every o € W'2(Q) with compact support in Q. If moreover Q is
smooth, ue C'(Q) and f is locally Lipschitz continuous and nonnegative in the closed
interval [0, o0), then L,(uy,, ¢) = 0 for every ¢ € WO1 2(Q).

Proof. By Corollary 2.2, |Du|" *u,, e WILCZ(Q), so that we can proceed as in Lemma

2.1 integrating by parts and, if pe C°(Q), we get
/[\Dulmfz(ﬁuuDQ)) + (m = 2)|Dul""*(Du, Du;)(Du, Dg)] dx
Q

— [ =0
Q

Lu(ux;a (P) =0.

By density we get the general case of ¢ e W'?(Q) with compact support.
If moreover Q is smooth, ue C'(Q) and f is locally Lipschitz continuous and
nonnegative in the closed interval [0, c0), then again by Corollary 2.2,

|Du|" 2u, e W'(Q), and f(u)e W'2(Q), so by density we can consider
peWX(Q). O

The results proved in this section allow us finally to get the summability properties
of the inverse of the weight p = |Du|™* stated in the introduction.

Theorem 2.3. Let Q be a smooth domain in RNue C'(Q) be a weak solution of (1.1)
with f satisfying (x) and f(s)>0 for s>0, l <m< + oo. Then, for any xeQ and for
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every r<1, we have that (|Z| = 0 and)

1 1
- -dy<C,
[ﬁpumﬁ”ﬂx—yV

where C does not depend on x, y<N —2 if N=3 and y =0 if N = 2.

Proof. Since f is positive, by Hopf’s Lemma, there exists E such that
Z< cEc Q. Moreover we can suppose dist(Z,0E)>0. Since (Q\E)nZ =0, it
follows that

/ (l_w ! 5 dy<— 1 (_1)4/ : sdy<C
o |Du)" V" |x = y| ming z|Dul" " Jar [x =y

and therefore to prove the theorem it is sufficient to show that for every xeQ we
have that

1 1
/ ( 71) V dy<c7
E|Du)" V" |x =yl

where C does not depend on x. Finally the same arguments in the proof of Theorem
2.2 allow to reduce to proving that, considering only x€ E,

1 ! -dy<C
(m=1)r |y — p|” ’
E|Dul Ix =

where C does not depend on xeE.
Let now ¢, be defined as in Theorem 2.2 and define

1 Pex
(Duf" o) =y

lﬁl:,x -

e
/

Since |Du|™"'e W'2(Q), its gradient vanishes a.e. in the critical set Z and W, can be
used as test function in (1.1). Since u=n>0 in E, by the positivity hypothesis on f,
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we have f(u(y)) = Cl>0 for any yeE, so that we get

/w”dy<c1/w” dy<61/wsx

D m—1 D .
<ci [ oup s [ ,fﬂl 109w
Q ’ 2 (|[Dul™" + &) |x =Yl

D m—1 D .
+,/ Pul r|¢“hb
Boo(x)\By(x) (|Du‘ + 8) ‘X - y|

|Du|m—l (Ps.x
+ C2/ m—1 r y+1 dy
o (|Dul™" 4+ &) |x—y
[Du[""" | Du|" || D]
+(h/ - T Qe dy
bz (|Dul" o)t =y T
-1 )
e Du" |Du" D]
2 m—1 r+1 | o7 &x ).
QE (|Dul"" +¢) X
m—1
Since r< 1, we have %<c in Q and, since we are supposing xe E, we have

[[D@, x| |12 (@£, < 0. Since u is regular in Q\E and dist(Z,0E)>0, we have
|| | Du|™ 2| D?ul| | ((0\F)na)< 00, Where A is such that supp(¢,,)cA=cQ for

every ¢ and x. Moreover, since Z< E and dist(Z,0E) >0, then %gcz in

Q\E. Therefore
D m—1 D x
/ | nl;lll r| (’0'7~ |/dy
o (|[Du|"" + &) |x =l

/ [Du"™" | Dul™ || D]
ok (|Dul™ " &) Jx =l

dy

£,X

1
<c3 T dy<C4,
or [x — |
where ¢4 does not depend on x. In the same way
D m—1 o
/ ‘ mll r ? +1 dy
o ([Dul""" +e)" |x — [
1
<cs / ———dy<cg,
olx—y[*!

where ¢¢ does not depend on x. As in Theorem 2.2 we also get

D m—1 D N N
/ | ;:14'1 Do Xl/dy<c7(x)?—1'
Bu()\B,(x) (|Dul™ " + &) |x =y &t
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Therefore, for ¢ sufficiently small, we can write for any <1

ull

1
(@,1)?

&,X DM
/ m,lw’ p ~dy< C3 + C4/ | |
E (| Du| +&)|x—y| EZ

m— 2+ﬁ

|x —yl2

1
&,X 2 1

(¢ 1) r _dy.

m-— 5 ~

(|Du| +)2|x —y|2

IDu\

Note that here we do not need to consider the case xe Z and xe E\Z separately. If
2+ﬁ

now we choose <1 such that r =
2.2, we can choose ¢ small such that

<1, using Young’s inequality as in Theorem

1 D m=2—f D2 2
(1_5)/( Pex ~dy<Cs + Cs |Dul™ = 7Dl )

E(IDul" " 4 g) X =yl BZ x — [’

Therefore, by Theorem 2.2,

P x 1
/ m—1 N v dyéC’
E(|Dul"" + &) Ix =yl

where C does not depend on x.

Do 120 1
(|Du™ " e)” Ix—pl” \Du| m=Drjx—y[’
+o0 in Z, by Fatou’s Lemma we get that |Z| = 0 and the thesis. [

Since almost everywhere in E\Z, while it tends to

As a consequence we get the following summability result for the a.e. defined
second derivatives of u.

Proposition 2.1. Let Q be a smooth domain, ue C'(Q) be a weak solution of (1.1), and
suppose that f is locally Lipschitz continuous in the closed interval [0, o) and f(s) >0
for s>0. Then |uy| € L*(Q) if 1 <m<3. If otherwise m=3, then |u, | €L (Q) with
P<i

m=2-f
Proof. By Corollary 2.1, [Du|™ 2 uy,, € L*(Q) for every [3< 1, proving the thesis for

1 <m<3. Moreover by Theorem 2.3 we know that I(”’ e L'(Q) for every r<1.

|D
Consider [u,,|” as product of two functions in the following way:

m—2—f 1
|ux,'xj |17 = |ux,'X/ |17|Du| 2 m=2—p

| Du|

If m>3 and p<2=l then p<2. Therefore we can choose f<1 such that

m—2
m=2—p m2ﬁ

—LpE- 5)<m — 1 (because for m>3 and ff =1 we have that p(z—fp)<m -1
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m—2—f 2 2
iff p<2=3), and we get that |uy, ["|Du| 2~ "€ Lr, and —15—-€ L>7. By Holder’s
D 27

inequality we get the thesis. [

We can now easily prove that u,, e H ;2(9) To this end we have to show that the

distributional derivatives of u,, are measurable functions. More generally let us
prove the following:

Proposition 2.2. Let Q be a smooth domain, ue C'(Q) be a weak solution of (1.1), and
suppose that f is locally Lipschitz continuous in [0, 00) and f(s) >0 for s>0. Then if
l<m<3, u,eW'2(Q), while if m=3 then u,e W' (Q), Yi=1,...,N for every
p<%. Moreover the generalized derivatives of uy, coincide with the classical ones,
both denoted with uy,,, almost everywhere in Q.

Finally ux,eH:,’z(Q).

Proof. Let G, be defined as in Theorem 2.2. Integrating by parts we get
[ Gwpiodi= [ Guwo,d woecz @)
Q Q

For ¢—0, since ;€ L'(Q) and G is bounded, we can use Lebesgue’s Dominated
Convergence Theorem and get

/ gy dx = — / uy, @, dx VoeCl(Q)
Q Q

which shows that ij; are the second distributional derivatives. In the case of f
positive we know that [Z| = 0, so that u,, = i; a.e. (more precisely in \Z). Finally
all the integrability properties have been already proved. [

3. Weighted Poincaré type inequality and weak comparison principle

In this section we prove a weighted Poincaré type inequality, and then we use it to
prove a weak comparison principle in small domains. Let us start by recalling some
known results about the potential of a function. If fe L*(Q2), a>1, and 0<a<N
then the potential of order o generated by f is defined by

U,Lf)(x) = / FO)x— PN dy.

If 1<a<% denoting by b the number defined by ; = one can show that the

linear map f e L*(Q)— L"(Q)3 U,[f] is continuous.

1_x
a N’
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More precisely there is a constant C = C(N, a, a) >0 such that for any ¢, 1 <¢<b,
11

ULf]ll, < Clela ?|If 1], (3.1)

If instead a>% then (3.1) holds for any ¢< oo (and ; =1 — £ negative in this case),

while if a = % then (3.1) holds for every g<b = 4+ o0 with C = C, depending on ¢ in

this case.
Suppose now that pe L'(Q), 7€ L'(Q) with 1>, r>1and | +<p<N(l +7). Let

11 1 1
=14 -) = 3.2
¥ p<4t) N (3-2)

Using the above estimates, in [19,26], the following Sobolev inequality is

now p* be defined as

proved for any function u in the weighted Sobolev space Holy’fj(Q) (see
Definition 2.1)

|u

(@) < C(1QDI[Dull 1 (g.p)» (3.3)

where C(|Q|)—0 if |Q]—0.
If t>N/p, then p*>p, and by Holder’s inequality we get a weighted Poincaré’s
inequality

[lull (@) < CULDDul () (3-4)

where C(|Q[)—0 if |2|—>0. The same inequality holds if p>N(1 +1), provided
t>N/p.

In the case of problem (1.1) the weighted space which is naturally associated to
this equation, is H}*(Q) with p = |Du" 2. If Q is a ball, then under suitable
hypothesis (see [5,7]) every solution is radial and, as shown in [1] it follows that the

gradient of « vanishes only at a point , e.g. in 0, and |Du|~|x|»-1. This implies that
the condition Je L'(Q) with 7> is satisfied in the case m>2 (while if 1 <m<2 the

condition pe L'(Q) is satisfied if m>4{+9).
|

In a general domain, having proved that WELI (Q) for every r< 1, we get that

;e L'(Q) with r>5if N = 2 or N >3 and m <=3 which allows to obtain (3.4) in this
case.

In order to avoid such restrictions on m, in what follows we will use the estimates
proved in Section 2 to handle the general case.

We begin by proving general Sobolev and Poincaré type inequalities, using
potential estimates as in [19,26].
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Theorem 3.1. Let Q be a bounded domain in RN and let pe L' (Q) be a positive weight
Sfunction such that

1
/ﬁdySC VXEQ,
op'lx—yl

where t>1, 0<y<N and C does not depend on x.
Assume also that p>1 satisfy 1+ %<p and t>¥.

If p<N(1 —&—%) — 2 then there exists a constant ¢y = co(N,p,p,t,y) such that the

following weighted Sobolev’s inequality holds for any ueH&’t’: (Q):
[l 1 < ol | Dul| ) (3.5)

where p* is defined by

Loy
pop t) N Nt
Ij‘(lJr%(p,t}%and)p:N(lJr%)—%then

[|ul

14 S €4l | Dul

Lr(Q.p)s (36)

for any ueHd_”f)’(Q) and for every q>1.
If instead (1 +1<{p, l>% and) p>N(1+1) =1 then we get

[[oa]| - <cO||Du||U<Q,p) (3.7)

1,p
for any ue Hy?(Q).
Finally for any p such that p>1 +% and t>¥ we get the following weighted

Poincaré’s inequality for any ueH&’fj(Q):

el o) < CULD DU g ) (3.8)

where C(|2]) =0 if |Q] - 0.

Proof. By density arguments we may suppose ueC!(Q), so that there exists a
constant Cy, depending only on N, such that, for every xeQ, we get

1
|[Du(y)|pr 1

Du
ol o [Pl ay<cy L
2 lx =yl Clx =y prlx — yirt
1 1
1 pi|| |D P
<CN</ , ydy>p [Du()ler (3.9)
ap'|x =yl

N-1-L
Ix=y1" " 2| o (g
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Let us set

£0) = (1Duy)|or)”

If N-1 —%go, then by (3.9), since (pt)'<p by the hypothesis 1+%<p, we get
immediately

1 1
| o < K[| Dutl o] pioor S Kol[[ Dl p?[[ 1 = K[| D[ 10 )

If instead (N — 1 _1%)>0’ letusset N—a=(N—-1 —1;'—’,)(pt)’ and get

()] < C O T (| Du(y) 7)) .

Note that we use the fact that 1> to get a = N — (N — 1 — —)(pt) >0.

1
Moreover, since |Du|pr e L7 (Q) we getfeL(l”

p>1+1
Let us consider first the case p<N(1 +1) —Z In this case (it is easy to see that
(N -1 —]3—’t)>0, and ) %>%, so that we can set h>1 such that

Therefore U,[f]eL?(Q) and, for every 0> (pt)’ we have

1 1 1 L
llull 10 < Cy CP|| U LT 1o = Cn CP U L1 - (3.10)
(pt)

~

Taking 0 = b(pt)’, by (3.1), we get

1

] sy < C(C )PP Cal (1Dt ?) |72 <ol [Dul| 1 q,)- (3.11)
(pt)
pt)

Since b(pt) = p* we get (3.5).

If p=N(1+1) —1 we get (3.10) and (3.11) for every 0> (pt)’ and therefore we
prove (3.6). If otherwise p> N(1 —i—%) — 1 we also get 0 = +o0 in (3.10) and (3.7)
follows.

Finally, let us note that if p>N(1 + —) Land t>~=2 then Poincaré’s inequality

(3.8) follows immediately by (3.6) and (3.7). Otherw1se, if p<N(1 —i—;) — 1, by the
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Holder’s inequality

11 1.1
el @) < el e () |21 7 < ol @1 7

0)

which proves (3.8). O

We will now apply this result to the case p = |Dul™ %, m>=2 and u is a weak
solution of (1.1).

Theorem 3.2. Let ue C'(Q) be a weak solution of (1.1) with f satisfying (x) and
f(5)>0 for s>0, m=2. Then, if we consider p = \Du\m_z we get, for every p=2

01| 7o) < CURNIIDVl 1y gy Sor every ve Hyh (). (3.12)

where C(|Q])—0 if || 0.
In particular (3.12) holds for every veHé_’lf (Q).

Proof. Since ue C'(Q) and m=2, obviously p = |Du/" *e L'(Q). By Theorem 2.3

we have
1
————dy<C,
Qp |X—)’|

where C does not depend on x, t<m — and y<N — 2. Thus we have that r>N=2f

”172>E and v is sufficiently close to N — 2. Therefore, for p>2 and m>2, the
condition t>¥ is always verified.

Moreover we have p>1 + % since ¢ > 1. Therefore we can apply Theorem 2.3, to get
the thesis for UEH&’Z(Q). O

Note that usually the case p =2, which gives a Hilbert space H&i(Q), is
considered. Therefore the condition p=>2 is not restrictive.

Moreover if m=2, p>2 and ve Wl”’( ), the same conclusion holds. In fact, being
ue C'(Q), and m=2, p = |Du|™* is bounded, so that WIP(Q)L»H&’F’;(Q).

The previous inequality allows us to prove the following:

Theorem 3.3 (Weak Comparison Principle). Suppose that either 1<m<2
and u,ve W'*(Q); or m=2, u,ve W' (Q)nL*(Q), where either p = |Du|"* or
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p = |Dv|"? satisfy condition (1.7), namely

11
——— _dy<C,
/Qp’ lx =yl

where C does not depend on xeQ, y{N,t>1 and t>¥.
Suppose that u, v weakly solve

—div (|Du"*Du) + g(x,u) — Au< — div (|Dv|"*Dv) + g(x,v) — Av in Q, (3.13)

where A=0 and ge C(Q x R) is such that for every xeQ, g(x,s) is nondecreasing for
sl <max|ful] . Il .. }-

Let Q' =Q be open and suppose u<v on 0Q', then there exists 6>0 such that, if
|Q'1<0, then u<vin Q. If A =0 the thesis is true for every Q' = Q.

In particular the result holds if either u or v is a C'(Q) weak solutions of (1.1) with f
satisfying (x) and f(s)>0 for s>0.

Proof. The case 1 <m <2 has been considered in [6] and from now we suppose m > 2.
Let us consider in Q' the function (u — v)". It is bounded, it vanishes on 92’ and it
belongs to Wol’m(Q), so that (see Definition 2.1) it belongs to H&ﬁ(Q’) NL*(Q') and
can be used as test function in (3.13), obtaining

/ (|Du|™"*Du — | Dv|" 2 Dv)(Du — Dv)dx
[u=v]

2
+ /[u%}[g(xﬂ)—g(x,v)](u—v) dx—/l/ (u—0v)"dx<0, (3.14)

[u=1]

where [u=v] = {xe Q' :u(x)<v(x)}. Moreover g(x,u) <g(x,v) if u<v, so that

/ (|Du|™ 2 Du — | Dv|" > Dv)(Du — Dv) dx</1/ (u—v)*dx. (3.15)
[u=v]

[u=v

By standard estimates (see e.g. [6, Lemma 2.1],), the following inequality follows

/

/ (|1Du™ % + | Do|™ ) |D(u — v) " |* dx < Cm/l/ [(u—0)"Vdx,  (3.16)
Q/
where C,, depends on m, so that

/|D(u—u)+|2pdx<Cm/1/[(u—v)ﬂzdx, (3.17)
ol @

m—2

where we can take p = |Du| orp= |Dv|m*2 . By Poincaré’s inequality with weight

Theorem 3.2, we get

ID(u—v) P pdx<CnAC(Q)) | |Du—0v)")?pdx. (3.18)
Q, Q!
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A contradiction occurs if C,, 4 C(|Q'|)<1, unless (u —v)" =0in Q' i.e. u<vin Q.
(Let us recall that the integral in the last inequality define a norm). If A = 0, the same
arguments prove the result for every Q'=Q. 0O

Remark 3.1. Let us point out that the parameters in the previous result may
depend only on u. This will be useful in the study of symmetry where v = u, is not
fixed.

We end the section by recalling the following result, which we will use in Section 4

(see [6]).
Theorem 3.4 (Strong Comparison Principle). Let 1 <m< oo, and u,ve C'(Q) satisfy
—div(|Du|" " Du) + Au< — div(|Dv|"2Dv) + Av, u<v in Q. (3.19)

Define Z,,, = {xeQ: |Du(x)| + |Do(x)| =0} if m#2, Z,,, = 0 if m = 2. If xoe Q\Z,,
and uy, = vy, then u = v in the connected component of Q\Z,, containing x,.

Remark 3.2. Theorems 3.3 and 3.4 apply for solutions u of (1.1) once we note that a
function f : I — R is locally Lipschitz continuous in an interval [ if and only if for
each compact subinterval [a, b] =T there exist two positive costants C; and C; such
that

(i) f1(s) =f(s) — Cs is nonincreasing in [a, b].
(i) f2(s) = f(s) + Cys is nondecreasing in [a, b].

4. Qualitative properties of the solutions

In this section we will study some properties of the critical set and some qualitative
properties, such as monotonicity and symmetry in some directions, of solutions of
(1.1).

Properties of the critical set Z are very important in the study of solutions of (1.1).
In particular, as we will see in Theorem 4.2, it is very useful to know whether Q\Z is
connected or not. We are able to give a positive answer in the case when f is positive.

Theorem 4.1. Let ue C'(Q) be a weak solution of (1.1) where Q is a general bounded
domain, and suppose that f(s)>0 if s>0. Then Q\Z does not contain any connected
component C such that C<=Q. Moreover, if we assume that Q is a smooth bounded
domain with connected boundary, it follows that Q\Z is connected.

Proof. Let C be a connected component of Q\Z such that C< < Q. Then

Du(x) =0 VxedC. (4.1)



L. Damascelli, B. Sciunzi | J. Differential Equations 206 (2004) 483-515 S11

By Corollary 2.2, since \Du|m*20u is continuous and identically zero on 0C, we get
|Du">Due Wy?(C,RY). Then there exists a vector field 4,eCy°(C,RY) which

approximates |Du|” >Du in the norm of W,?*(C,R"). If now EcC is a smooth
subset such that

supp(d,)ccEccC

by the Divergence Theorem applied to 4, in E, it follows, for every ¢ e W2
/ div(4,)¢ + (A4,, Do) dx = / div(4,)¢ + (4,, Do) dx
c E
= / ¢(A,,n) do = 0. (4.2)
OE

Moreover, since when f" is positive |Z| = 0, by (1.1) we get
—div(|Du|™2Du) = f(u)  almost everywhere in C.

If now we choose ¢ = k#0 then we get

/ f(u) ¢pdx = / —div(|Du|™ 2 Du) ¢ dx
C C

= lim [ —div(4,)¢pdx=0 (4.3)
n— oo C
and by (4.3)
/f(u) dx=0 (4.4)
c

which is impossible when f is positive.

If Q is smooth, since f is positive, by Hopf’s Lemma a neighborhood of the
boundary belongs to a component C of Q\Z. A second component C’ would be
compactly contained in €, which is impossible by what we have just proved. So Q\Z
is connected. [

Remark 4.1. The proof of Theorem 4.1 shows that the same conclusion holds if
ue W(Q) is a weak solution of equation

—div(|Du|"Du) = f(x) in Q

with [Du|™*Due W'2(Q,R"), f e L1(Q), g>% ¢=2,1<m< o0, and />0 does not
vanish identically in any open subset of Q.

Now we want to prove some monotonicity and symmetry properties for solution u
of (1.1) with positive nonlinearities in general smooth domains. If 1<m<2, this
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problem has been studied in [7,8] where the case of f locally Lipschitz continuous but
not necessarily positive is considered. In the case when f is positive we extend the
result to the case m>2 using all the regularity results in previous sections and the
Alexandrov—Serrin moving planes method, following the approach of Berestycki and
Nirenberg in [3].

Moreover in the case of a positive nonlinearity f, even in the case 1<m<2
we simplify considerably the proof of the same result in [7], using
Theorem 4.1 to exclude local symmetry phenomena, avoiding the long and
technical analysis in [7]. We also extend the result to a more general class of
domains (see Remark 1.2).

We can now prove the following result (see Section 1 for notations).

Theorem 4.2. Let Q be a bounded smooth domain in RY, N>2, 1<m< w0,
f:]0,0)>R a continuous function which is strictly positive and locally Lipschitz
continuous in (0, ), and ue C'(Q) a weak solution of (1.1).
For any direction v and for 1 in the interval (a(v), A1 (v)] we have
u(x)<u(x}) VxeQ. (4.5)

A

Moreover, for any A with a(v)<A<2,(v) we have
u(x)<u(xy) VxeQ\Z., (4.6)
where Z) = {xeQ) : Du(x) = Du}(x) = 0}. Finally

% (X)>0 VxeQ; ,\Z, (4.7)

where Z = {xeQ: Du(x) = 0}.
If f is locally Lipschitz continuous in the closed interval [0, c0) then (4.5) hold for
any Z in the interval (a(v), 22(v)) and (4.7) holds for any xe &} ,\Z.

Proof. Let us first suppose that f is locally Lipschitz continuous in the closed
interval [0, c0). Since Q is smooth A,(v) is nonempty for any direction v. For
a(v) <A<Z(v) we can compare u and u} = u(x}), using Theorems 3.3 and 3.4 taking
into account Remark 3.2, since ) satisfies the same equation —A,,(u}) = f(u}) in Q.

In particular if 4 — a(v) is small, then |Q}| is small.

Hence, by the Weak Comparison Principle in small domains (see Theorem 3.3),
since u<uj on 0Qj, it follows that u<u) in Q) if A—a(v) is small, so
that Ag(v)#0 (recall that we put Ag(v) = {A>a(v):u<u} Vue(a(v),A]} and
Jolv) = supAo(v)).

Suppose now by contradiction that 1y(v) <Z2(v). By continuity it follows Uy ZU
in Q)

Zo(v)
component of QEO(\,)\Z , then u >u unless u}"o(w =uin C.

. By the Strong Comparison Principle (see Theorem 3.4) if C is a connected
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Suppose that C is a connected component of Q) \Z and that u} J = U in C.
Since Z N 0Q = () by the Hopf’s Lemma, we get that 8C\T Y CZ Moreover, by the
local symmetry, we get that OC\T; v R ) (8C\T y )cZ showing that Q\Z
would be not connected. Since 2\Z is connected by Theorem 4.1, a contradiction
occurs, showing that uio(‘,) >u in any connected component of Q}MV)\Z.

Let now A be an open set such that ZnQ} , cA<=Q; . Since |[Z|=0
we can take A of arbitrarily small measure. Consider a compact set K in Q) o)
such that |Q; \K | is sufficiently small in order to guarantee the applicability of
Theorem 3.3 (see Remark 3.1). By what we proved before, u} o) U is
positive in K\A which is compact. Thus mmK\A(“zo(v) —u) = m>0. By continuity
there exists ¢ >0 such that, Ag(v) + e</2(v) and for Ao(v) <A<lo(v) + ¢ we have that
|Q\K]| is still sufficiently small as before and u} —u>m/2>0 in K\A. In particular
u; —u>0 on O(K\A). Moreover for such values of 4 we have that u<u) on
0(Q2)\(K\4)). By the Weak Comparison Principle applied in Q}\(K\4), which has
small measure, we get that u<u) in @}, which contradicts the assumption
lo(v)<Za(v).

Therefore Ag(v) = A2(v) and the thesis is proved.

The proof of (4.6) follows immediately by Theorem 3.4 and the first part of this
Theorem. In fact if (4.6) were not true, by the Strong Comparison Principle, there
would exist a component of local symmetry, against what we have just proved.
Finally, to prove (4.7) let us note that, by the linearity of L,, we get that ¢ ’7” “ weakly
solves (1.2). Therefore, by the strong maximum principle for umformly elliptic
operators, we have that (4.7) holds unless g—‘v‘ = 0. Since this is not possible by (4.6)
the thesis follows.

When f is not Lipschitz up to 0, Lemma 2.2, p. 1187 in [8] works as it is in our
context and shows that for any direction v and A’ in the interval (a(v),4;(v)] there
exist neighborhoods I of 9Q and J of 4’ such that we have u(x)<u(x}) for any
xeQinl, lel.

Of course this is true only up to A;(v) (which can be strictly lower than 4,(v)), since
the proof exploits the Hopf’s lemma and needs that the normal to the boundary is
not perpendicular to the direction v.

Far from the boundary u is positive and f Lipschitz continuous in the range of u
and the proof goes through as before using our comparison principles in smaller
domains. [

An immediate consequence is the following.

Corollary 4.1. If f is locally Lipschitz continuous in the closed interval [0, o) and
strictly positive in (0, 00), and the domain Q is convex with respect to a direction v and
symmetric with respect to the hyperplane T) = {xeR" :x-v=0}, then u is
symmetric, ie. u(x)=u(x}), and nondecreasing in the v—direction in Q) with
u(x)>0 in Q\Z.
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In particular if Q is a ball then u is radially symmetric and %<0, where % is the

derivative in the radial direction.

Proof. It is immediate from the previous theorem. Let us only note that in the case
of a ball, since the level sets of the solutions are spheres, an application of Hopf’s
Lemma (recall that f is positive) shows that 0 is the only critical point and that the
derivative in the radial direction is negative in all the other points. [
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Note added in the proof

It was pointed out to us that Serrin and Zou, in their celebrated paper [28], state in
the case 1 <m <2 the solution u belongs to the Sobolev space WIIOCZ(Q), among other
regularity results for solutions of quasilinear elliptic equations.
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