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Abstract. We study W
2,m(·)
loc regularity for local weak solutions of p(·)-Laplace equations

where p ∈ C1(Ω) ∩ C(Ω) and minx∈Ω p(x) > 1.

1. Introduction

We consider the following p(·)-Laplace equation

(1.1) − div(|Du|p(x)−2Du) = f in Ω,

where Ω is an open bounded domain in RN . Since in this paper we will prove local regularity
results, we do not require any assumption on the regularity of the boundary of Ω.
Set C+(Ω) = {h ∈ C(Ω) | minx∈Ω h(x) > 1}. For h ∈ C(Ω) we denote

h− = min
x∈Ω

h(x) and h+ = max
x∈Ω

h(x).

Throughout this paper, we always assume that u ∈ W 1,p(·)
loc (Ω) is a local weak solution

to (1.1), that is ∫
Ω

|Du|p(x)−2(Du,Dϕ)dx =

∫
Ω

fϕdx, ∀ϕ ∈ C1
c (Ω)

and the following conditions are fulfilled:

(P0) p ∈ C1(Ω) ∩ C+(Ω),
(F0) f ∈ Lh(·)(Ω) where h ∈ C+(Ω) and h(x) > N/p(x) for all x ∈ Ω .

We deal with the study of the local regularity of the weak solutions to (1.1). More precisely,
since in general solutions are not of class C2

loc(Ω), then it is an important issue the study
of the summability of the second derivatives of the solutions. To state our main result we
need some notation:

We denote

Ω1 = {x ∈ Ω | 1 < p(x) < 2} ; Ω2 = {x ∈ Ω | 2 ≤ p(x) < 3} ; Ω3 = {x ∈ Ω | p(x) ≥ 3},
and for δ > 0, we also set:

Ω1(δ) = {x ∈ Ω | 1 < p(x) < 2 + δ} and Ω2(δ) = {x ∈ Ω | 2 + δ ≤ p(x) < 3}.
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Moreover for future use for k = 1, 2, 3, given Ω0 ⊂ Ω, we define Ωk
0 = Ωk ∩ Ω0 and for

k = 1, 2, we define Ωk
0(δ) = Ωk(δ) ∩ Ω0.

Consider the additional conditions on f :

(F1) f ∈ W 1,q(·)(Ω) where q ∈ C+(Ω),
(F2) f is continuous and f > 0 in a neighborhood of Ω3

and let m ∈ C1(Ω) ∩ C+(Ω) such that:

(i) m(x) ≤ 2 in Ωc
3 (the complement of Ω3 with respect to Ω)

(ii) m(x) ≤ p(x)−1
p(x)−2

− δ in Ω3 for some δ > 0.

Here we prove the following:

Theorem 1.1. Suppose that conditions (P0), (F0), (F1) and (F2) are satisfied and assume

that q(x) in (F1) is such that q(x) ≥ p(x)
p(x)−1

in a neighborhood of Ω1 and q(x) ≥ p(x)
2p(x)−3

in

Ω2, then

u ∈ W 2,m(·)
loc (Ω).

If else we assume that p is a constant such that 1 < p < 2, and condition (F0) are
satisfied with h(x) in (F0) such that h(x) ≥ p

p−1
in Ω, then

u ∈ W 2,2
loc (Ω).

The proof will be given in two separate theorems: Theorem (3.6) and Theorem (3.9) in
section 3.

If we consider the case when p is constant and u ∈ C1(Ω) (see [6, 9, 15, 8] and [1, 2, 7]),
our results reduce to the ones obtained in [5] (see also [14] for a local version). The
interested reader may find very useful reading the survey of G. Mingione [11], and the
references therein.

Note that, even in the case when p is constant, the regularity of the second derivatives
proved in Theorem 1.1 is optimal, at least in the case p ≥ 3. To show this it is sufficient

to consider the function u(x1, . . . , xN) = |x1|p
′

p′
, which solves

∆p u = 1 .

It is easy to see that, for p ≥ 3, the regularity of this solution is no more than the one
proved here and in [5].

Previous regularity results on the second derivatives of solutions to p-Laplace equations are
known in the case 1 < p ≤ 2, see [15].The achievement of results regarding summability of
the second derivatives in our context, and in the context of p-Laplace equations is a hard
task. The nonlinear Calderón-Zygmund theory does not work simply, even if important
results have been obtained in [12], see also the references therein (and [11]).

It would be interesting to study regularity result, following the approach presented here,
in the setting described in the interesting paper [13]. We point out however that in the
case p(x) ≡ p ≥ 3, the condition f ∈ Lq(Ω) is not enough to get the regularity result in
Theorem 1.1:
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To show this, let Ω = B(0, 1), u = −(1/r)|x1|r−1x1 for 1 < r < p′ and set σ = 1− (r −
1)(p− 1). Note that r < 2 and 0 < σ < 1. We have ∂u

∂x1
= −|x1|r−1, ∂2u

∂x2
1

= (1− r)|x1|r−3x1

and ∂u
∂xi

= ∂2u
∂x2
i

= 0 for all i 6= 1.

Therefore, ∂2u
∂x2

1
∈ Ls(Ω) if and only if s < 1

2−r . Since 1
2−r <

1
2−p′ = p−1

p−2
, u does not satisfy

regularity property in Theorem 1.1.
However u is a solution of (1.1) where

f = −div(|Du|p−2Du) =
∂

∂x1

(|x1|(r−1)(p−1)−1x1) =
∂

∂x1

(|x1|−σx1)

= (1− ε)|x1|−σ

belongs to Lt(Ω) for 1 < t < 1/σ and 1/σ ≈ ∞ if r ≈ p′.
The proof of Theorem 1.1 will be carried out in two different theorems: Theorem 3.6

and Theorem 3.9 below. Following [5] we linearize the equation and then we exploit it
via the right choice of test functions. However we deal with solutions that may not be
of class C1

loc, consequently we need to construct a regularized problem. We consequently
prove some uniform estimates on the second derivatives, that provides the desired result
by passing to the limiting problem.

2. Preliminaries

It is standard to see that, under our assumptions, we can assume without loss of gener-
ality that the problem can be locally regularized as follows:
for an open set B such that B ⊂⊂ Ω and ε ∈ (0, 1), let fε ∈ C∞(B) satisfy

(2.1) fε ≥ f a.e. in B, fε → f strongly in Lh(·)(B) and a.e. in B.

Then there exists a unique solution uε ∈ W 1,p(·)(B) to the local regularized problem

(2.2)

{
−div

(
(ε2 + |Duε|2)

p(x)−2
2 Duε

)
= fε in B,

uε|∂B = u.

Moreover, uε ∈ C2(B) and

(2.3)


∫
B

(ε2 + |Duε|2)
p(x)

2 dx ≤ C,

uε → u strongly in W 1,p(·)(B).

Remark 2.1. The construction of the regularized problem (2.2) has been used by many
authors. We refer the readers in particular to [6] where this approach was used in order to
deal with the study of C1,α

loc regularity of the solutions.
Let us point out for the reader’s convenience that the existence of the solution uε to (2.2)
follows in a standard way by minimizing the energy functional (note that fε = fε(x) is
fixed). The fact that uε ∈ C2(B) is now a consequence of standard elliptic regularity, since
the operator in (2.2) in strictly-uniformly elliptic.
Finally it follows that uε converges to u (that is (2.3) holds) by uniqueness and exploiting
the results in [3] (see also [4]).
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Here and hereafter, C > 0 denotes a constant independent of ε ∈ (0, 1), q′ = q/(q− 1) is
the conjugate of q, q∗ = Nq/(N − q) is the Sobolev exponent of q, Ω0 is an open set such
that Ω0 ⊂⊂ B and η ∈ C∞c (B) denotes a test function such that

(2.4)

{
0 ≤ η ≤ 1 in B,

η = 1 in Ω0.

For a function u : Ω → R, we also denote its partial derivatives ui = Diu = ∂
∂xi
u and

‖D2u‖ = (
∑

i,j |uij|2)
1
2 .

If f satisfies (F1), we will choose fε ∈ C∞(B) such that fε ≥ f a.e. in B, fε → f
strongly in W 1,q(·)(B) and a.e. in B. Then uε is constructed as above.

We will use the following inequality

(2.5) | log t|2 + | log t| ≤ Cδ + tδ + t−δ

for t > 0 and δ > 0 and Cδ is a constant depending on δ. It is important to note that
the constant Cδ becomes arbitrary large when δ approaches zero. In our applications, see
Lemma 3.1, we will in any case use (2.5) with δ > 0 fixed.

3. Local regularity

Lemma 3.1. Let uε be a solution to (2.2) and assume that f satisfies (F1). Let β ∈ C(B)
such that 0 < β− ≤ β+ < 1 and 1− p(x)/q′(x) ≤ β(x) for all x ∈ B, then we have∫

Ω0

(ε2 + |Duε|2)
p(x)−2−β(x)

2 ‖D2uε‖2 dx < C

where C depends only on B, p, f and β.
Moreover, if p is constant in B, the conclusion is still valid for constant β such that

0 ≤ β < 1 and 1− p/q′(x) ≤ β for all x ∈ B.

Proof. The main ingredient in this proof is the linearized equation, which involves the sec-
ond derivatives of the solutions. Then, everything is reduced to the right choice of test
functions.

For simplicity in notation, we denote w = uε. Choosing test function ϕ = Diψ, with
ψ ∈ C1

c (B), for the regularized problem (2.2), we get:∫
B

(ε2 + |Dw|2)
p(x)−2

2 (Dw,D(Diψ))− fεDiψ dx = 0.

Integrating by parts we obtain∫
B

(ε2 + |Dw|2)
p(x)−2

2 (Dwi, Dψ) + (p(x)− 2)(ε2 + |Dw|2)
p(x)−4

2 (Dw,Dwi)(Dw,Dψ)

+
1

2
pi(x) log(ε2 + |Dw|2)(ε2 + |Dw|2)

p(x)−2
2 (Dw,Dψ)− ψDifε dx = 0.
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Choose ψ = wi(ε
2 + |wi|2)−

β(x)
2 η2 where η satisfies (2.4), then

Dψ = η2(ε2 + |wi|2)−
β(x)

2

(
1− β(x)|wi|2

ε2 + |wi|2

)
Dwi

+ 2wi(ε
2 + |wi|2)−

β(x)
2 ηDη − 1

2
wiη

2(ε2 + |wi|2)−
β(x)

2 log(ε2 + |wi|2)Dβ.

Hence we have

0 =∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2

(
1− β(x)|wi|2

ε2 + |wi|2

)
dx

+ 2

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

wiη(Dwi, Dη) dx

− 1

2

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dwi, Dβ) dx

+

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

(Dw,Dwi)
2η2

(
1− β(x)|wi|2

ε2 + |wi|2

)
dx

+ 2

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

wiη(Dw,Dwi)(Dw,Dη) dx

− 1

2

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dw,Dwi)(Dw,Dβ) dx

+
1

2

∫
B

pi(x) log(ε2 + |Dw|2)
(ε2 + |Dw|2)

p(x)−2
2

(ε2 + |wi|2)
β(x)

2

(Dw,Dwi)η
2

(
1− β(x)|wi|2

ε2 + |wi|2

)
dx

+

∫
B

pi(x) log(ε2 + |Dw|2)
(ε2 + |Dw|2)

p(x)−2
2

(ε2 + |wi|2)
β(x)

2

wiη(Dw,Dη) dx

− 1

4

∫
B

pi(x) log(ε2 + |Dw|2)
(ε2 + |Dw|2)

p(x)−2
2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dw,Dβ) dx

−
∫
B

wi(ε
2 + |wi|2)−

β(x)
2 η2Difε dx

≡ I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 + I10.

Here Ik denotes each term in the previous expression, consecutively.
Since

0 < 1− β+ ≤ 1− β(x)|wi|2

ε2 + |wi|2
≤ 1,
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we have

I1 + I4 =

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2

(
1− β(x)|wi|2

ε2 + |wi|2

)
dx

+

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

(Dw,Dwi)
2η2

(
1− β(x)|wi|2

ε2 + |wi|2

)
dx

≥ inf
x∈Ω

(min{p(x)− 1, 1})(1− β+)I1 ≥ C0

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx.

(3.1)

On the other hand, for all δ > 0

|I2|+ |I5| =
∣∣2∫

B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

wiη(Dwi, Dη) dx
∣∣

+
∣∣2∫

B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

wiη(Dw,Dwi)(Dw,Dη) dx
∣∣

≤ sup
x∈Ω

(2 + 2|p(x)− 2|)
∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|wi||η||Dwi||Dη| dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx+ C(δ)

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|wi|2|Dη|2 dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx+ C(δ)

∫
B

(ε2 + |Dw|2)
p(x)−β(x)

2 dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx+ C(δ)

(3.2)

where the second estimate is an application of Young inequality and the last estimate is
derived from (2.3).
For future use we point out that later δ will be a fixed (small) parameter. Consequently
C(δ) will be a fixed (large) constant.
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By Young inequality and (2.5) we get

|I7| =
∣∣1
2

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dw,Dwi)(Dw,Dβ) dx

∣∣
≤ C

∫
B

∣∣log(ε2 + |Dw|2)
∣∣ (ε2 + |Dw|2)

p(x)−1
2

(ε2 + |wi|2)
β(x)

2

|Dwi|η dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx+ C(δ)

∫
B

∣∣log(ε2 + |Dw|2)
∣∣2 (ε2 + |Dw|2)

p(x)
2

(ε2 + |wi|2)
β(x)

2

dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx

+ C(δ)

∫
B

(ε2 + |Dw|2)
p(x)

2

(ε2 + |wi|2)
β(x)

2

+
(ε2 + |Dw|2)

p(x)+δ
2

(ε2 + |wi|2)
β(x)

2

+
(ε2 + |Dw|2)

p(x)−δ
2

(ε2 + |wi|2)
β(x)

2

dx

≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx

+ C(δ)

∫
B

(ε2 + |Dw|2)
p(x)−β(x)

2 + (ε2 + |Dw|2)
p(x)−β(x)+δ

2 + (ε2 + |Dw|2)
p(x)−β(x)−δ

2 dx.

Note that C(δ) depends on δ because of the Young inequality and also includes Cδ given
by(2.5). Also in the following C(δ) may be relabeled.
Similarly,

|I8|+ |I9| =
∣∣ ∫

B

pi(x) log(ε2 + |Dw|2)
(ε2 + |Dw|2)

p(x)−2
2

(ε2 + |wi|2)
β(x)

2

wiη(Dw,Dη) dx
∣∣

+
∣∣1
4

∫
B

pi(x) log(ε2 + |Dw|2)
(ε2 + |Dw|2)

p(x)−2
2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dw,Dβ) dx

∣∣
≤ C

∫
B

(ε2 + |Dw|2)
p(x)−β(x)

2 + (ε2 + |Dw|2)
p(x)−β(x)+δ

2 + (ε2 + |Dw|2)
p(x)−β(x)−δ

2 dx
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and

|I3|+ |I6| =
∣∣1
2

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dwi, Dβ) dx

∣∣
+
∣∣1
2

∫
B

(p(x)− 2)
(ε2 + |Dw|2)

p(x)−4
2

(ε2 + |wi|2)
β(x)

2

wiη
2 log(ε2 + |wi|2)(Dw,Dwi)(Dw,Dβ) dx

∣∣
≤ δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx

+ C(δ)

∫
B

(ε2 + |Dw|2)
p(x)−β(x)

2 + (ε2 + |Dw|2)
p(x)−β(x)+δ

2 + (ε2 + |Dw|2)
p(x)−β(x)−δ

2 dx.

If p and β are constants then I3 = I6 = I7 = I8 = I9 = 0. Otherwise, recalling the
assumption 0 < β− ≤ β+ < 1, we can choose δ fixed small enough such that δ < C0/4 and
δ < β(x) < p− − δ for all x ∈ B, from the previous estimates and (2.3) we have

|I3|+ |I6|+ |I7|+ |I8|+ |I9| ≤ 2δ

∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx+ C(δ).(3.3)

On the other hand,

|I10| =
∣∣ ∫

B

wi(ε
2 + |wi|2)−

β(x)
2 η2Difε dx

∣∣
≤
∫
B

(ε2 + |wi|2)
1−β(x)

2 |Difε| dx ≤ C‖Difε‖Lq(·)(B)

∥∥∥(ε2 + |wi|2)
1−β(x)

2

∥∥∥
Lq
′(·)(B)

.

(3.4)

Since fε → f inW 1,q(·)(B), we have ‖Difε‖Lq(·)(B) < C. Moreover, from 0 < 1−β(x)
2

q′(x) ≤
p(x)

2
in B and (2.3) we have ‖(ε2 + |wi|2)

1−β(x)
2 ‖Lq′(·)(B) < C, and then |I10| < C.

Taking into account (3.1), and exploiting (3.2), (3.3) and (3.4), we conclude that∫
B

(ε2 + |Dw|2)
p(x)−2

2

(ε2 + |wi|2)
β(x)

2

|Dwi|2η2 dx ≤ C.

Since η = 1 in Ω0, the desired result follows by taking the sum of the previous inequality
over i.

�

Lemma 3.2. Let uε be a solution to (2.2) and assume that f satisfies (F1). Let l ∈
C1(B) ∩ C+(B) such that p(x) ≤ l(x) in B and l(x) ≤ 2 if 1 < p(x) < 2. We assume that

(3.5)

∫
B

(ε2 + |Duε|2)
l(x)
2 dx ≤ C.

Let β ∈ C(B) such that supB(p − l) < β− ≤ β+ < 1 and 1 − l(x)/q′(x) ≤ β(x) for all
x ∈ B. Then we have ∫

Ω0

(ε2 + |Duε|2)
p(x)−2−β(x)

2 ‖D2uε‖2 dx < C
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where C depends only on B, p, l, f and β.
Moreover, if p and l are constant in B, the conclusion is still valid for constant β such

that p− l ≤ β < 1 and 1− l/q′(x) ≤ β for all x ∈ B.

Proof. The proof is rather similar to that of Lemma 3.1 but (3.5) is used instead of (2.3).
�

Lemma 3.3. Let uε be a solution to (2.2). Consider Ω0 ⊂⊂ B as above and assume that
f satisfies (F1) and f > 0 in a neighborhood of B and 0 ≤ r < 1. Then we have∫

Ω0

dx

(ε2 + |Duε|2)
(p(x)−1)r

2

< C.

Proof. As before, denote w = uε.
It is sufficient to prove the lemma for

sup
x∈B

max{1− p(x)

(p(x)− 1)q′(x)
, 1− 1− s−

p+ − 1
, 0} ≤ r < 1− 1− s+

p− − 1

where 0 < s− ≤ s+ < 1 and 1− s+ is small enough.
By hypothesis, fε(x) ≥ C1 in B for some C1 > 0 and ε small enough.

Using test function ψiε = (ε2 + |Dw|2)
(1−p(x))r

2 η in (2.2) where η satisfies (2.4), we have

C1

∫
B

(ε2 + |Dw|2)
(1−p(x))r

2 η dx

≤
∫
B

fεψ
i
ε dx

=

∫
B

(ε2 + |Dw|2)
p(x)−2

2 (Dw,Dψiε) dx

=

∫
B

(ε2 + |Dw|2)
p(x)−2

2 (ε2 + |Dw|2)
(1−p(x))r

2 (Dw,Dη) dx

+

∫
B

(1− p(x))r(ε2 + |Dw|2)
p(x)−2

2 |Dw|(ε2 + |Dw|2)
(1−p(x))r−2

2 η(Dw,D|Dw|) dx

− r

2

∫
B

log(ε2 + |Dw|2)(ε2 + |Dw|2)
p(x)−2

2 (ε2 + |Dw|2)
(1−p(x))r

2 η(Dw,Dp) dx

≡ J1 + J2 + J3.

Exploiting (2.5) and (2.3), we have the estimates:

J1 + J3

≤ C

∫
B

(
1 + | log(ε2 + |Dw|2)|

)
(ε2 + |Dw|2)

(p(x)−1)(1−r)
2 dx

≤ C

∫
B

(ε2 + |Dw|2)
(p(x)−1)(1−r)

2 + (ε2 + |Dw|2)
(p(x)−1)(1−r)+δ

2 + (ε2 + |Dw|2)
(p(x)−1)(1−r)−δ

2 dx

≤ C

where 0 < (p(x)−1)(1−r)
2

≤ 1
2
< p(x)

2
in B and 0 < δ < p− − 1 can be taken sufficiently small.
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On the other hand,

J2 ≤ (p+ − 1)r

∫
B

(ε2 + |Dw|2)
(p(x)−1)(1−r)−1

2 |D2w||η| dx

≤ δ

∫
B

(ε2 + |Dw|2)
(1−p(x))r

2 η dx+
C

δ

∫
B

(ε2 + |Dw|2)
p(x)−2−β(x)

2 |D2w|2 dx,

where δ < C1 and β ∈ C(B) such that

(1− p(x))r

2
+
p(x)− 2− β(x)

2
= (p(x)− 1)(1− r)− 1

or equivalently, β(x) = 1 − (p(x) − 1)(1 − r). Note that s− ≤ β(x) ≤ s+ for every x ∈ B
and β satisfies conditions in Lemma 3.1. Hence the proof is completed. �

Lemma 3.4. Let uε be a solution to (2.2) and l ∈ C1(Ω)∩C+(Ω) such that l(x) ≤ p(x)−δ1

in Ω1(δ), l(x) ≤ 2 in Ω2(δ) and l(x) ≤ p(x)−1
p(x)−2

− δ2 in Ω3 for some positive numbers δ, δ1

and δ2. Suppose that f satisfies (F1), (F2), q(x) ≥ p(x)
p(x)−1

in a neighborhood of Ω1(δ) and

q(x) ≥ p(x)
2p(x)−3

in Ω2. Then ∫
Ω0

‖D2uε‖l(x) dx < C.

Proof. Recall that we define Ωk
0 = Ωk ∩ Ω0 and Ωk

0(δ) = Ωk(δ) ∩ Ω0. Note that it suffices
to prove the lemma for δ, δ1 and δ2 small enough.

We can choose δ, δ1 ∈ (0, p− − 1) so that δ < δ1 and δ1 is small enough, there exists

a bounded neighborhood B1 of Ω1
0(δ) such that for x ∈ B1 we have q(x) ≥ p(x)

p(x)−1
, which

implies q′(x) ≤ p(x). We can choose β ∈ C(B1) such that

(2− p(x) + β(x))(p(x)− δ1)

4

2

2− p(x) + δ1

=
p(x)

2
,

then 0 < β− ≤ β+ < 1 and we can apply Lemma 3.1 to obtain∫
Ω1

0(δ)

‖D2uε‖2

(ε2 + |Duε|2)
2−p(x)+β(x)

2

dx < C.

We write ‖D2uε‖p(x)−δ1 as a product of two functions as follows

‖D2uε‖p(x)−δ1 =

(
‖D2uε‖2

(ε2 + |Duε|2)
2−p(x)+β(x)

2

) p(x)−δ1
2

(ε2 + |Duε|2)
(2−p(x)+β(x))(p(x)−δ1)

4 .

The argument above and (2.3) yield

(
‖D2uε‖2

(ε2+|Duε|2)
2−p(x)+β(x)

2

) p(x)−δ1
2

∈ L
2

p(x)−δ1 (Ω1
0(δ)) and

(ε2 + |Duε|2)
(2−p(x)+β(x))(p(x)−δ1)

4 ∈ L
2

2−p(x)+δ1 (Ω1
0(δ)). Consequently,

∫
Ω1

0(δ)
‖D2uε‖p(x)−δ1 dx <

C, then

(3.6)

∫
Ω1

0(δ)

‖D2uε‖l(x) dx < C.
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Next, from q(x) ≥ p(x)
2p(x)−3

in Ω2 we have q′(x) ≤ p(x)
3−p(x)

for x ∈ Ω2
0(δ), then

(3.7)

∫
Ω2

0(δ)

‖D2uε‖2 dx < C

follows directly from Lemma 3.1 by choosing β(x) = p(x)− 2.
Finally, for x ∈ Ω3

0, we write ‖D2uε‖l(x) as a product of two functions as follows

‖D2uε‖l(x) =
(

(ε2 + |Duε|2)
p(x)−2−β(x)

2 ‖D2uε‖2
) l(x)

2 1

(ε2 + |Duε|2)
(p(x)−2−β(x))l(x)

4

.

Let B3 be a neighborhood of Ω3
0 restricted in Ω. Choose β ∈ (1 − p−/q−, 1) such that

1− β is small enough. We have

(p(x)− 2− β)l(x)

4

2

2− l(x)
=

(p(x)− 1)r(x)

2

for r ∈ C(B3), r+ < 1 and 1−r− is small enough. From Lemma 3.1 and Lemma 3.3 we get(
(ε2 + |Duε|2)

p(x)−2−β
2 ‖D2uε‖2

) l(x)
2 ∈ L

2
l(x) (Ω3

0) and 1

(ε2+|Duε|2)
(p(x)−2−β(x))l(x)

4

∈ L
2

2−l(x) (Ω3
0),

respectively. Hence

(3.8)

∫
Ω3

0

‖D2uε‖l(x) dx < C.

The conclusion follows now from (3.6), (3.7) and (3.8). �

Lemma 3.5. Let uε be a solution to (2.2) and m ∈ C1(Ω) ∩ C+(Ω) such that m(x) ≤ 2

in (Ω3)c and m(x) ≤ p(x)−1
p(x)−2

− δ in Ω3 for some δ > 0. Suppose that f satisfies (F1), (F2),

q(x) ≥ p(x)
p(x)−1

in a neighborhood of Ω1 and q(x) ≥ p(x)
2p(x)−3

in Ω2. Then∫
Ω0

‖D2uε‖m(x) dx < C.

Proof. From Lemma 3.4, it is sufficient to consider δ sufficiently small and to prove that

(3.9)

∫
Ω0∩(Ω3)c

‖D2uε‖m(x) dx < C.

Moreover, we can assume that q(x) ≥ p(x)
p(x)−1

in a neighborhood of Ω1(δ). Let l ∈ C+(Ω)

such that l(x) ≤ p(x)− δ in Ω1(δ), l(x) ≤ 2 in Ω2(δ) and l(x) ≤ p(x)−1
p(x)−2

− δ in Ω3. Since δ

is small, we can assume l∗(x) > p(x) in (Ω3)c. From Lemma 3.4, we have

(3.10)

∫
Ω0∩(Ω3)c

‖D2uε‖l(x) dx < C,

and then by Sobolev embedding

(3.11)

∫
Ω0∩(Ω3)c

|Duε|l
∗(x) dx < C.
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Since this is true for all Ω0 such that Ω0 ⊂ Ω, by Lemma 3.2 we have∫
Ω0∩(Ω3)c

(ε2 + |Duε|2)
p(x)−2−β(x)

2 ‖D2uε‖2 dx < C,

where supB(p− l∗) < β− ≤ β+ < 1 and 1− l∗(x)/q′(x) ≤ β(x).
We can, therefore, repeat the proof in the first and second part of that of Lemma 3.4

with finer choice of β, allowed by (3.11), and get

(3.12)

∫
Ω0∩(Ω3)c

‖D2uε‖l1(x) dx < C,

where l1(x) = 2 if l∗(x) ≥ 2 + δ1 and l1(x) ≤ l∗(x)− δ1 if l∗(x) < 2 + δ1 for some δ1 small
enough.

Since the sequence lk+1 = (lk)∗ converges to ∞ uniformly, by repeating the previous
argument we finally get

(3.13)

∫
Ω0∩(Ω3)c

‖D2uε‖m(x) dx < C.

This proof also points out that

(3.14)

∫
Ω0

|Duε|m(x) dx < C.

�

Theorem 3.6. Let m ∈ C1(Ω)∩C+(Ω) such that m(x) ≤ 2 in (Ω3)c and m(x) ≤ p(x)−1
p(x)−2

−δ
in Ω3 for some δ > 0. Suppose that f satisfies (F1), (F2), q(x) ≥ p(x)

p(x)−1
in a neighborhood

of Ω1 and q(x) ≥ p(x)
2p(x)−3

in Ω2. Then u ∈ W 2,m(·)
loc (Ω).

Proof. We have,
∫

Ω0
‖D2uε‖m(x) dx < C, by Lemma 3.5. Moreover, from

∫
Ω0
|Duε|m(x) dx <

C, we obtain ‖(ε2 + |Duε|2)
1
2‖W 1,m(·)(Ω0) < C. Thus, we can suppose that

(ε2 + |Duε|2)
1
2 → h

weakly in W 1,m(·)(Ω0), strongly in Lm(·)(Ω0) and almost everywhere in Ω0.
Then, by (2.3), we must have h = |Du|. Therefore,

|Du| ∈ W 1,m(·)(Ω0).

Consequently, |Du| ∈ W 1,m(·)
loc (Ω), and then u ∈ W 2,m(·)

loc (Ω). �

Now we prove a regularity result for the constant exponent case where the assumption
that f belongs to a variable exponent Sobolev space is relaxed.

Lemma 3.7. Let uε be a solution to (2.2) and assume that p is a constant such that
1 < p < 2 and h(x) ≥ p

p−1
in Ω, then we have∫

Ω0

(ε2 + |Duε|2)
p−2
2 ‖D2uε‖2 dx < C.
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Proof. As before, we denote w = uε.
Working similarly to Lemma 3.1 with β = 0, we obtain the same estimates for I1, ... I9.

Now we give a new estimate for I10.

I10 = −
∫
B

wiη
2Difε dx

=

∫
B

Di(wiη
2)fε dx

=

∫
B

η2wiifε dx+ 2

∫
B

wiηηifε dx

= J1 + J2.

By Young inequality, we have

J1 ≤ δ

∫
B

(ε2 + |Dw|2)
p−2
2 |wii|2η2 dx+

C

δ

∫
B

(ε2 + |Dw|2)
2−p
2 |fε|2η2 dx

≤ δ

∫
B

(ε2 + |Dw|2)
p−2
2 |wii|2η2 dx+

C

δ

∫
B

(ε2 + |Dw|2)
2−p
2 |fε|2 dx.

Moreover,∫
B

(ε2 + |Dw|2)
2−p
2 |fε|2 dx ≤

∥∥∥(ε2 + |Dw|2)
2−p
2

∥∥∥
L

p
2−p (B)

∥∥|fε|2∥∥
L

p
2p−2 (B)

= ‖(ε2 + |Dw|2)‖(2−p)/2
Lp/2(B)

‖fε‖2

L
p
p−1 (B)

,

which is bounded due to (2.3), (2.1) and h(x) ≥ p
p−1

. Therefore,

J1 ≤ δ

∫
B

(ε2 + |Dw|2)
p−2
2 |Dwi|2η2 dx+

C

δ
.

On the other hand,

J2 ≤ C

∫
B

(ε2 + |wi|2)
1
2 |fε| dx ≤ C‖(ε2 + |wi|2)

1
2‖Lp(B)‖fε‖

L
p
p−1 (B)

,

which is bounded by the same reasons.
Now proceed as in Lemma 3.1, we obtain

∫
B

(ε2 + |Dw|2)
p−2
2 |Dwi|2η2 dx ≤ C,

as desired.
�
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Lemma 3.8. Let uε be a solution to (2.2) and assume that p and l are constants such that
1 < p ≤ l < 2 and h(x) ≥ p

p−1
in Ω. Moreover, we assume that

(3.15)

∫
B

(ε2 + |Duε|2)
l
2 dx ≤ C.

Then we have ∫
Ω0

(ε2 + |Duε|2)
l−2
2 ‖D2uε‖2 dx < C.

Proof. The proof is rather similar to that of Lemma 3.7 but (3.15) is used instead of
(2.3). �

Theorem 3.9. Suppose that p is a constant such that 1 < p < 2 and h(x) ≥ p
p−1

in Ω.

Then u ∈ W 2,2
loc (Ω).

Proof. From Lemma 3.7 we have∫
Ω0

‖D2uε‖2

(ε2 + |Duε|2)
2−p
2

dx < C.

We write ‖D2uε‖p as product of two functions as follows

‖D2uε‖p =

(
‖D2uε‖2

(ε2 + |Duε|2)
2−p
2

) p
2

(ε2 + |Duε|2)
(2−p)p

4 .

The argument above and (2.3) yield

(
‖D2uε‖2

(ε2+|Duε|2)
2−p
2

) p
2

∈ L
2
p (Ω0) and (ε2+|Duε|2)

(2−p)p
4 ∈

L
2

2−p (Ω0). From Hölder’s inequality we obtain∫
Ω0

‖D2uε‖p dx < C.

The remaining proof is similar to that of Theorem 3.6 with the aid of Lemma 3.8. �
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