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Abstract

We prove one-dimensional symmetry of monotone solutions for some anisotropic
quasilinear elliptic equations in the plane.

1 Introduction

Let us first recall the following striking conjecture that was posed by De Giorgi in [5]:
Let u ∈ C2(Rn, [−1, 1]) satisfy ∆u+ u− u3 = 0 and ∂xnu > 0 in the whole Rn.

Is it true that all the level sets of u are hyperplanes, at least if n 6 8?

Many outstanding mathematicians contributed to this important issue, which is re-
lated to many physical and mathematical applications. Let us only mention the papers
[1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 21, 27, 28, 29], and refer the reader to [16]
for a survey on this topic and a nice and complete description of recent developments.
We only remark here that the conjecture has been completely understood in dimension
n = 2, 3 in both the semilinear and quasilinear case, see [1, 2, 21] and [10, 12, 13]. In
particular by [1] and [10, 12, 13] it follows that in low dimension n = 2, 3 the conjecture
holds true actually for any smooth nonlinearity. In higher dimensions the conjecture is
still open in spite of the important contribution in [27] (see also [29]), where the conjec-
ture is solved under the additional assumption that the limiting profiles are constants.
A remarkable improvement in this direction has been recently obtained in [17] where,
up to dimension eight, the validity of the De Giorgi conjecture has been proved under
more general assumptions on the limiting profiles. The case of other settings and op-
erators have been considered in [3, 11, 12, 13, 14, 15, 18, 28, 29], while an important
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contribution in [6] provides a counterexample in dimension n > 9.

In this paper, following the techniques in [12, 13], that go back to [9], we address the
validity of the conjecture of De Giorgi for some anisotropic quasilinear elliptic operators
in the plane.
More precisely we consider in R2 the anisotropic quasilinear degenerate elliptic equa-
tion:

∂

∂x1

(
|u1|p1−2u1

)
+

∂

∂x2

(
|u2|p2−2u2

)
= f(u) x ∈ R2 . (1)

with p = (p1, p2) ∈ R2, pi ∈ [2,+∞) and f ∈ C1(R). Note that the operator in (1)
does not reduce to the p-Laplace operator even if p1 = p2.

Let us set
Zu = {x ∈ R2 s.t. |u1(x)| · |u2(x)| = 0} (2)

with the notation ui :=
∂u
∂xi

. We assume that |∇u| is bounded and

u ∈ C1(R2) ∩ C2(R2 \ Zu) and |ui|pi−2ui ∈ W 1,2
loc (R

2)

Remark 1.1. Let us remark that the assumption u ∈ C2(R2 \ Zu) is not restrictive
because of the fact that outside Zu the solutions turn out to be smooth by stan-
dard regularity results. The C1,α regularity of the solutions in this setting is an hard
task not and yet well understood as is in the case of the p-laplacian. Nevertheless
this assumption is actually necessary, for technical reasons but also because of some
counterexamples (see [12]) that and show that the result is not valid in general. The
assumption |ui|pi−2ui ∈ W 1,2

loc (R2) is a natural assumption. This is by now standard in
the case of the p-laplacian, see for example [4] and also [22].

We say that u ∈ C1(R2) ∩ C2(R2 \ Zu) is a weak solution of (1) if u satisfies:∫
R2

{
|u1|p1−2u1v1 + |u2|p2−2u2v2

}
dx =

∫
R2

f(u)v dx ∀v ∈ C∞
c (R2) . (3)

It is easy to see that by density arguments we may assume that (3) is actually fulfilled
for every v ∈ C1

c (R2).

We are now in position to state our main result:

Theorem 1.2. Let u ∈ C1(R2)∩C2(R2\Zu) be a weak solution of (3) with |ui|pi−2ui ∈
W 1,2
loc (R2). Let pi ∈ [2,+∞) and let f ∈ C1(R). Assume that |∇u| is bounded and that

u2(x) > 0 for every x ∈ R2 , (4)

then the level sets of u are flat, and there exists ν ∈ S1 and w : R → R such that

u(x) = w(x · ν) ∀x ∈ R2 . (5)
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Remark 1.3. In the case of isotropic quasilinear elliptic equations, if u is a solution, we
can rotate it (that means we consider the function v(x) = u(Rx) for some orthogonal
matrix R) to get a new solution. This means that, if u varies only in one direction
(and hence its level sets are flat), we can obtain infinitely many solutions with flat level
sets. On the contrary equation (1) is not invariant up to rotations. Nevertheless we
can look for other solutions of (1), which have a one dimensional profile, and flat level
sets that are not parallel to the axis. More precisely we can look for solutions of the
following form:
u(x) = w(a · x) for a = (a1, a2) ∈ R2 and w : R → R. Then u satisfy (1) with u2 > 0
if w is a solution of:

w′′ =
f(w)

(p1 − 1)ap11 w
′p1−2 + (p2 − 1)ap22 w

′p2−2
. (6)

with w′ > 0.

2 Preliminary results

For completeness let us first remark that equation (3) is well defined in anisotropic
Sobolev spaces. More precisely, for Ω ⊆ Rn and p = (p1, · · · , pn) ∈ Rn consider

∥u∥1,p =
n∑
i=1

∥ui∥pi , (7)

and denote by W 1,p(Ω) the set of those functions having distributional derivative for
which the norm in (7) is bounded. It is customary to define W 1,p

0 (Ω) as the closure of
C∞
c (Ω) in W 1,p(Ω) with respect to the norm

∥u∥1,p =
n∑
i=1

∥ui∥pi ,

where ∥v∥pi :=
(∫

Ω

|v|pidx
) 1

pi

. An elegant and useful description of this approach may

be found in [24], where previous founding papers [19, 25, 26, 32, 33] are also resumed.
In the above cited papers it is shown that the use of density arguments in order to
assume that (3) is actually fulfilled for every v ∈ W 1,p

0 (Ω) is delicate and requires em-
beddings in some Lebesgue spaces which generally holds true only in some cases.

For a given solution u ∈ C1(R2) ∩ C2(R2 \ Zu) to (3) such that |ui|pi−2ui ∈ W 1,2
loc (R2)

we have the following:

Definition 2.1. We say that u is stable if:∫
R2

(p1 − 1)|u1|p1−2φ2
1 + (p2 − 1)|u2|p2−2φ2

2 − f ′(u)φ2dx ≥ 0 (8)
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for every φ ∈ C∞
c (R2) (or φ ∈ C1

c (R2)).

Let us consider a domain Ω ⊆ R2 and two positive weights ρ1 and ρ2 and set

∥v∥ρ1 , ρ2 = ∥v∥L2(Ω) + ∥u1∥L2(Ω,ρ1) + ∥u2∥L2(Ω,ρ2) (9)

where ∥ui∥L2(Ω,ρi) =
( ∫

Ω
u2i ρi

) 1
2 .

The anisotropic weighted Sobolev space W 1,2(Ω, ρ1, ρ2) can be defined as the set of
those functions having distributional derivative for which the norm in (9) is bounded.
Consequently we can also define the anisotropic weighted Sobolev space H1,2(Ω, ρ1, ρ2)
as the closure of C∞(Ω) ∩W 1,2(Ω, ρ1, ρ2) in W 1,2(Ω, ρ1, ρ2) w.r.t. the norm in (9).
Analogously H1,2

0 (Ω, ρ1, ρ2) as the closure of C
∞
c (Ω)∩W 1,2(Ω, ρ1, ρ2) inW

1,2(Ω, ρ1, ρ2)
w.r.t. the norm in (9). It follows that H ⊆ W . In the isotropic standard case
ρ1 = ρ2 = 1, by the paper of Meyers and Serrin [23] it is known that in any domain
actually H = W .
There is a large literature dealing with the isotropic weighted case ρ1 = ρ2 = ρ.
And generally sufficient conditions which guarantees that W is a Banach space and
H = W are studied. Generally we may resume that summability of the weight ρ and
summability of the inverse of the weight 1

ρ
are requested. For example, see [4], if the

weight is bounded and 1
ρ
is in L1 it follows that actually W 1,2(Ω, ρ) is a Banach space

and H1,2(Ω, ρ) = W 1,2(Ω, ρ). This has been used for example in [4] in the study of the
linearized equation corresponding to −∆pu = f(u) (p > 2) with positive nonlinearity
f . In this case the weight which naturally is associated to the problem is ρ = |∇u|p−2

and summability of 1
ρ
is proved in the case of positive nonlinearities. We guess one can

try to extend this theory also to the weighted anisotropic case ρ1 ̸= ρ2. It is not our
intent since in our applications summability of the inverse of the weights are not in
general expected since we do not assume f to be positive.
In our context the weights that are naturally associated to the problem are

ρ1 = |u1|p1−2 and ρ2 = |u2|p2−2.

We therefore consider the space H1,2
0 (Ω, ρ1, ρ2) defined as above. In the proof of our

main result this is sufficient.

Remark 2.2. With the notations above it is now clear that, if the solution u is stable
according to Definition (2.1), it follows also by density arguments that:∫

R2

(p1 − 1)|u1|p1−2φ2
1 + (p2 − 1)|u2|p2−2φ2

2 − f ′(u)φ2dx ≥ 0 (10)

for every φ ∈ H1,2
0 (R2, ρ1, ρ2).

Let us now describe a linearization argument, that will be useful in the sequel. Given
φ ∈ C∞

c (R2), let us put v = φ1 and v = φ2 in (3). By the fact that

|u1|p1−2u1 ∈ W 1,2
loc and |u2|p2−2u2 ∈ W 1,2

loc
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we can integrate by parts either with respect to x1 or with respect to x2 and we get
the linearized equations :∫

R2

{
(p1 − 1)|u1|p1−2u11φ1 + (p2 − 1)|u2|p2−2u22φ1

}
dx =

∫
R2

f ′(u)u1φ dx (11)∫
R2

{
(p1 − 1)|u1|p1−2u11φ1 + (p2 − 1)|u2|p2−2u12φ2

}
dx =

∫
R2

f ′(u)u1φ dx (12)∫
R2

{
(p1 − 1)|u1|p1−2u11φ2 + (p2 − 1)|u2|p2−2u22φ2

}
dx =

∫
R2

f ′(u)u2φ dx (13)∫
R2

{
(p1 − 1)|u1|p1−2u12φ1 + (p2 − 1)|u2|p2−2u22φ1

}
dx =

∫
R2

f ′(u)u2φ dx. (14)

Lemma 2.3. Let u ∈ C1(R2) ∩ C2(R2 \ Zu) be a solution to (3) and assume that
|ui|pi−2ui ∈ W 1,2

loc for i = 1, 2 and that |∇u| is bounded.
If u1 > 0 in R2 or u2 > 0 in R2, then it follows that u is stable.

Proof. Let us assume for example that u1 > 0 in R2.
Given ψ ∈ C∞

c (R2), since u1 is strictly positive, we can take φ = ψ2

u1
as test function in

equation (12) and we get:∫
R2

(p1 − 1)
|u1|p1−2

|u1|2
u11(2ψψ1u1 − ψ2u11)+

+

∫
R2

(p2 − 1)
|u2|p2−2

|u1|2
u12(2ψψ2u1 − ψ2u12)−

∫
R2

f ′(u)ψ2 = 0.

(15)

Noting that 2ψψ1u1u11−ψ2u211 ≤ ψ2
1u

2
1 and 2ψψ2u1u12−ψ2u212 ≤ ψ2

2u
2
1, we immediately

get the thesis.

Proposition 2.4. Let u be a solution of (3) with |∇u| bounded and u1(x) > 0 in R2

or u2(x) > 0 in R2 .
Then u is stable and there exists M > 0 such that the following inequality holds:∫
R2

{
|u1|p1−2

[
|∇u1|2 − (|∇u|1)2

]
+ |u2|p2−2

[
|∇u2|2 − (|∇u|2)2

]}
ψ2dx ≤M

∫
R2

|∇ψ|2dx

(16)
for every ψ ∈ C∞

c (R2).

Proof. Assume for example that u2(x) > 0 in R2. The case u1(x) > 0 in R2 is analogous.
Let us first note that by Lemma 2.3 it follows that the solution is stable (accordingly
to (8) and (10)), because of the assumption u2(x) > 0. Consider now the real Lipschitz
continuous function Gε(t) = (2t − 2ε)χ[ε , 2ε](t) + tχ[2ε ,∞)(t) for t > 0, while Gε(t) =
−Gε(−t) for t 6 0 (χ[a,b](·) denoting the characteristic function of a set).

We will use the stability condition (8) ( see (10)) taking φ = ψ
√
(Gε(u1))2 + u22, where

ψ ∈ C∞
c (R2).
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We claim that φ can be plugged into (8) ( see (10)). More precisely, it follows that
φ ∈ W 1,2

0 (R2) ⊆ H1,2
0 (R2 , ρ1 , ρ2). In fact, in order to prove this, note that we are

assuming u2 > 0. Consequently φ is smooth in the set |u1| > ε by the assumption
u ∈ C1(R2) ∩ C2(R2 \ Zu). Also by construction φ = ψ|u2| in the set |u1| 6 ε. Note
now that |u2|p2−2u2 ∈ W 1,2

loc which gives u2 ∈ W 1,2
loc since we already assumed u2 > 0.

Consequently we have φ ∈ W 1,2
0 (R2). Finally, since we have p1 > 2 and p2 > 2, it

follows W 1,2
0 (R2) ⊆ H1,2

0 (R2 , ρ1 , ρ2) and therefore φ ∈ H1,2
0 (R2 , ρ1 , ρ2) can be used

as test function in (10) by Remark 2.2.
Since

∂ φ

∂x1
= ψ · Gε(u1)G

′
ε(u1)u1 1 + u2u1 2√

(Gε(u1))2 + u22
+ ψ1

√
(Gε(u1))2 + u22

and
∂ φ

∂x2
= ψ · Gε(u1)G

′
ε(u1)u1 2 + u2u2 2√

(Gε(u1))2 + u22
+ ψ2

√
(Gε(u1))2 + u22

by the stability condition (10) it follows

∫
R2

(p1 − 1)|u1|p1−2

[
ψ · Gε(u1)G

′
ε(u1)u1 1 + u2u1 2√

(Gε(u1))2 + u22
+ ψ1

√
(Gε(u1))2 + u22

]2

dx+

+

∫
R2

(p2 − 1)|u2|p2−2

[
ψ · Gε(u1)G

′
ε(u1)u2 1 + u2u2 2√

(Gε(u1))2 + u22
+ ψ2

√
(Gε(u1))2 + u22

]2

dx ≥

≥
∫
R2

f ′(u)ψ2((Gε(u1))
2 + u22) (17)

where we also used that u1 2 = u2 1 in the set |u1| > ε, since the solution is smooth
there by assumption. Considering now the fact that |Gε(t)| 6 t and |G′

ε(t)| 6 2, and
ψ ∈ C∞

c (R2), it follows that[
ψ · Gε(u1)G

′
ε(u1)u1 1 + u2u1 2√

(Gε(u1))2 + u22
+ ψ1

√
(Gε(u1))2 + u22

]2

6 const(|u1 1|2 + |u1 2|2 + 1)

and[
ψ · Gε(u1)G

′
ε(u1)u2 1 + u2u2 2√

(Gε(u1))2 + u22
+ ψ2

√
(Gε(u1))2 + u22

]2

6 const(|u2 1|2 + |u2 2|2 + 1)

This, via the regularity assumption on u, allows us to exploit the dominated conver-
gence theorem and pass to the limit in (17). Therefore, letting ε → 0, observing that
Gε(t) converges to t and G

′
ε(t) converges to 1, we get:
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∫
R2

(p1 − 1)|u1|p1−2

[
ψ1|∇u|+ ψ

∇u · ∇u1
|∇u|

]2
dx+

+

∫
R2

(p2 − 1)|u2|p2−2

[
ψ2|∇u|+ ψ

∇u · ∇u2
|∇u|

]2
dx

≥
∫
R2

f ′(u)ψ2|∇u|2

and hence:

(p1 − 1)

∫
R2

{
|u1|p1−2ψ2

1|∇u|2 +
|u1|p1−2

|∇u|2
ψ2(∇u · ∇u1)2 + 2|u1|p1−2ψψ1(∇u · ∇u1)

}
dx+

(p2 − 1)

∫
R2

{
|u2|p2−2ψ2

2|∇u|2 +
|u2|p2−2

|∇u|2
ψ2(∇u · ∇u2)2 + 2|u2|p2−2ψψ2(∇u · ∇u2)

}
dx ≥

≥
∫
R2

f ′(u)ψ2|∇u|2dx . (18)

For ψ ∈ C∞
c (R2) we choose φ = Gε(u1)ψ

2 in equation (12) and we get:

∫
R2

f ′(u)ψ2u21 = (p1 − 1)

∫
R2

{
|u1|p1−2u211G

′
ε(u1)ψ

2 + 2|u1|p1−2u11Gε(u1)ψψ1

}
dx+

+ (p2 − 1)

∫
R2

{
|u2|p2−2u212G

′
ε(u1)ψ

2 + 2|u2|p2−2u12Gε(u1)ψψ2

}
dx .

Passing to the limit for ε → 0 as above and exploiting the dominated convergence
theorem, it follows:

∫
R2

f ′(u)ψ2u21 = (p1 − 1)

∫
R2

{
|u1|p1−2u211ψ

2 + 2|u1|p1−2u11u1ψψ1

}
dx+

+ (p2 − 1)

∫
R2

{
|u2|p2−2u212ψ

2 + 2|u2|p2−2u12u1ψψ2

}
dx .

(19)

For ψ ∈ C∞
c (R2) we choose now φ = u2ψ

2 in1 equation (14) and we get:∫
R2

f ′(u)ψ2u22 = (p1 − 1)

∫
R2

{
|u1|p1−2u212ψ

2 + 2|u1|p1−2u12u2ψψ1

}
dx+

+ (p2 − 1)

∫
R2

{
|u2|p2−2u222ψ

2 + 2|u2|p2−2u22u2ψψ2

}
dx ,

(20)

1Note that here it is not necessary to consider the smoothing given by Gε since u2 > 0 by assump-
tion.
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where we also use that |u1|p1−2u212 = |u1|p1−2u221, since u is smooth outside the set
u1 = 0, while |u1|p1−2u212 = 0 = |u1|p1−2u221 in the set u1 = 0.
Recalling that for i = 1, 2 |∇u|i = ∇u·∇ui

|∇u| , by (18), (19), (20) it follows:

(p1 − 1)

∫
R2

{
|u1|p1−2ψ2

1|∇u|2 + |u1|p1−2ψ2(|∇u|1)2 + 2|u1|p1−2ψψ1|∇u|1|∇u|
}
dx+

+ (p2 − 1)

∫
R2

{
|u2|p2−2ψ2

2|∇u|2 + |u2|p2−2ψ2(|∇u|2)2 + 2|u2|p2−2ψψ2|∇u|2|∇u|
}
dx ≥

≥
∫
R2

f ′(u)ψ2|∇u|2dx = (21)

= (p1 − 1)

∫
R2

{
|u1|p1−2u211ψ

2 + 2|u1|p1−2u11u1ψψ1 + |u1|p1−2u212ψ
2 + 2|u1|p1−2u12u2ψψ1

}
dx+

+ (p2 − 1)

∫
R2

{
|u2|p2−2u212ψ

2 + 2|u2|p2−2u12u1ψψ2 + |u2|p2−2u222ψ
2 + 2|u2|p2−2u22u2ψψ2

}
dx .

After simplifications inequality (21) becomes:∫
R2

{
(p1 − 1)|u1|p1−2

[
|∇u1|2 − (|∇u|1)2

]
+ (p2 − 2)|u2|p2−2

[
|∇u2|2 − (|∇u|2)2

]}
ψ2dx ≤

≤
∫
R2

{
(p1 − 1)|u1|p1−2|∇u|2ψ2

1 + (p2 − 1)|u2|p2−2|∇u|2ψ2
2

}
dx , (22)

which gives:∫
R2

{
|u1|p1−2

[
|∇u1|2 − (|∇u|1)2

]
+ |u2|p2−2

[
|∇u2|2 − (|∇u|2)2

]}
ψ2dx ≤

≤ max{(p1 − 1) , (p2 − 2)}
min{(p1 − 1) , (p2 − 2)}

∥∇u∥max{p1 , p2}
∞

∫
R2

|∇ψ|2dx (23)

and the thesis follows with M =M(u, p1, p2) =
max{(p1−1) , (p2−2)}
min{(p1−1) , (p2−2)} ∥∇u∥

max{p1 , p2}
∞ .

3 Proof of Theorem 1.2

Let u ∈ C1(R2) ∩ C2(R2 \ Zu), such that |ui|pi−2ui ∈ W 1,2
loc (R2), be a weak solution of

(3). Assume that |∇u| is bounded and:

u2(x) > 0 for every x ∈ R2. (24)

It follows by Lemma 2.3 that u is stable and by Proposition 2.4 we get that there
exists M > 0 such that:∫
R2

{
|u1|p1−2

[
|∇u1|2 − (|∇u|1)2

]
+ |u2|p2−2

[
|∇u2|2 − (|∇u|2)2

]}
ψ2dx ≤M

∫
R2

|∇ψ|2dx

(25)
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for every ψ ∈ C∞
c (R2). Following [12] we now choose

ψ = ψR := max{0 , min{1 , ln(R2/|x|)
lnR

}}

and letting R → ∞ it occurs that M
∫
R2 |∇ψR|2dx goes to zero and consequently

|u1|p1−2
[
|∇u1|2 − (|∇u|1)2

]
+ |u2|p2−2

[
|∇u2|2 − (|∇u|2)2

]
= 0 . (26)

Note now that the quantities αi := |∇ui|2− (|∇u|i)2(i = 1, 2), are nonnegative. In fact

explicit calculation shows that α1 =
(u11u2−u12u1)2

u21+u
2
2

and α2 =
(u22u1−u12u2)2

u21+u
2
2

.

Equation (26) consequently implies that

2∑
i=1

|∇ui|2 − |∇|∇u||2 = 0 , outside {u1 = 0}. (27)

For u, g ∈ C1(Rn), we now set Lu,x := {y ∈ Rn : u(y) = u(x)} and we denote by
∇τ(u,x)g the tangential gradient of g along Lu,x, that means:

∇τ(u,x)g = ∇g −∇g · ∇u
|∇u|

. (28)

For i = 1, . . . , n−1, κiu,x denotes the i-th principal curvature of Lu,x at point x. κu,x(y)
denotes the mean curvature of Lu,x at y. We recall that for n = 2 there is one only
principal curvature, which therefore coincides with the mean curvature.
By formula (2.1) in [31] we have:

2∑
i=1

|∇ui|2 − |∇|∇u||2 = |∇u|2κ2u,x + |∇τ(u,x)|∇u||2 . (29)

By (27) and (29) it follows that

κu,x = 0 and ∇τ(u,x)|∇u| = 0 (30)

along Lu,x.
Using (30) and arguing as in Section 2.4 of [12], it follows that the level sets are flat
and the thesis. For the readers convenience we recall some details.
Note that, if u1(x) = 0 for every x ∈ R2, then the thesis trivially follows and Lu,x
are lines parallel to the x1-axis. If u1 is not identically equal to zero, let x ∈ R2 be
such that u1(x) ̸= 0 and set L := Lu,x and L̃ := L ∩ {x ∈ R2 : u1 ̸= 0}. Since u is
continuous and strictly monotone increasing w.r.t. the x2-direction, it follows that L is
a graph. Arguing as in Lemma 2.7 in [12], we also infer that |∇u| is constant on every
connected component of L̃.
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By (30) we know that the curvature of L is zero at x and hence L is flat near x, that
means that there exist v0, v ∈ R2 such that γ(t) = v0 + tv is a local parametrization of
L for t ∈ I ⊆ R and for some interval I = (a, b). We show that I must be equal to R
and hence the whole level set is a line. Let us fix a and set

Ba = {b | b > a and {γ(t) , t ∈ (a, b)} ⊆ L}

and set b̄ = supBa. It follows that γ(b̄) does not lies in Zu. In fact, to prove this, let
us first note that u2(γ(b̄)) ̸= 0 by assumption. Also u1(γ(t)) ̸= 0 on γ(t) = v0+ tv with
t ∈ (a, b) since we have that |∇u| and ∇u

|∇u| are constant there as remarked above (see

Lemma 2.7 in [12]). By the continuity of ∇u it follows now that actually u1(γ(b̄)) ̸= 0.
Therefore L is flat near γ(b̄). This is a contradiction with the definition of b̄ and shows
that b̄ = ∞. Analogously we can fix some b and set

Ab = {a | a < b and {γ(t) , t ∈ (a, b)} ⊆ L}

and ā = infAb. In the same way it follows that ā = −∞. Therefore, {γ(t) , t ∈ R} ⊆ L.
And this shows that actually L is flat with {γ(t) , t ∈ R} = L, since L is a graph w.r.t.
the x2-direction by the monotonicity of u w.r.t. the x2-direction. This also shows that
every level set is flat, and this follows exactly in the same way as in Lemma 2.11 of
[12]. We therefore conclude that every level set of u is flat, and it is standard now to
see that this is equivalent to say that there exists ν ∈ S1 and w : R → R such that

u(x) = w(x · ν) ∀x ∈ R2 . (31)

This concludes the proof of Theorem 1.2.
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[19] Fragalà I. , Gazzola F., Kawohl B., Existence and nonexistence results for
anisotropic quasilinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21
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[26] Rácosńık J. , Some remarks to anisotropic Sobolev Spaces II, Beitrage Anal. 15
(1981), pp. 127-140

[27] Savin O., Regularity of flat level sets in phase transitions, Ann. of Math. 169 (1)
(2009), pp. 41-78

[28] Sciunzi B., Valdinoci E., Mean curvature properties for p-Laplace phase transi-
tions, J. Eur. Math. Soc. (JEMS), 7(3), (2005), pp. 319–359

[29] Valdinoci E, Sciunzi B., Savin O., Flat level set regularity of p-Laplace phase
transitions, Mem. Amer. Math. Soc. , 182(858), (2006),

[30] Sire Y., Valdinoci E., Fractional Laplacian phase transitions and boundary reac-
tions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009),
no. 6, pp. 18421864

[31] Sternberg P., Zumbrun K., Connectivity of phase boundaries in strictly convex
domains, Arch. Rational. Mech. Anal., 141(4), (1998), pp. 375–400

[32] Troisi M., Teoremi di inclusioni per spazi di Sobolev non isotropi, Ricerche Mat.
18 (1969), pp. 3–24

[33] Ven’tuan L., On embedding theorems for spaces of functions with partial derivatives
of various degree of summability, Vestnik Leingrad. Univ. 16 (1961), pp. 23–37

12


