
c© Birkhäuser Verlag, Basel, 2007
NoDEA
Nonlinear differ. equ. appl. 14 (2007) 315—334
1021–9722/07/040315–20
DOI 10.1007/s00030-007-5047-7

Some results on the qualitative properties of
positive solutions of quasilinear elliptic equations

Berardino SCIUNZI∗

Dipartimento di Matematica
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Abstract. We consider the Dirichlet problem −∆m(u) = f(u) in Ω with
zero Dirichlet boundary conditions. We prove local summability properties
of 1

|Du| and we exploit these results to give geometric characterizations of
the critical set Z = {x ∈ Ω | Du(x) = 0}. We extend to the case of changing
sign nonlinearities some results known in the case f(s) > 0 for s > 0.
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1 Introduction and statement of the results

Let us consider weak C1(Ω) solutions of the problem




−∆m(u) = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω

(1.1)

where Ω is a bounded smooth domain in R
N , N�2, ∆m(u) = div(|Du|m−2Du)

is the m-Laplace operator and f : R → R is a locally Lipschitz continuous
function.
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It is well known that, since the m-Laplace operator is singular or degenerate
elliptic (respectively if 1 < m < 2 or m > 2) in the critical set

Z ≡ {x ∈ Ω |Du(x) = 0} (1.2)

solutions of (1.1) belong generally to the class C1,τ with τ < 1 (see [6, 13]), and
solve (1.1) only in the weak sense.

On the contrary the m-Laplace operator is a strictly elliptic operator in Ω\Z
and many standard results known in the literature can be successfully exploited
there. As an example, solutions of (1.1) are smooth in Ω \ Z.

Therefore the study of the critical set is very interesting and leads to many
useful applications.

Nevertheless few results are known on this topic since the geometry of the
critical set could be very irregular and many geometric approaches (as Hopf
Lemma) do not provide satisfactory results.

In [4, 5] L. Damascelli and the author proved some results in the case when
f is positive. These results are based on summability properties of 1

|Du| which
allow to get a weighted Sobolev type inequality in weighted Sobolev spaces. A
weak Harnack type inequality for nonnegative solutions of the linearized equation
then follows (see [5]) and provides a strong maximum principle for the linearized
equations which is the key tool for the study of the critical set Z.

This paper deals with the case when the nonlinearity f may change sign.
In this setting, as many examples show, global summability results for 1

|Du|
like the ones in [4, 5] are not expected in general. In particular global summability
results for 1

|Du| could follow for particular nonlinearities but there are no results
in this direction.

In this paper we first prove a local version of the summability results for 1
|Du|

which holds in regions where f(u) is positive or in regions where f(u) is negative
(see Theorem 3.1).

Then, since the weighted Sobolev type inequality proved in [4] is local in
nature, a weighted Sobolev type inequality follows in regions where f(u) is positive
or in regions where f(u) is negative, and also allows to get weak Harnack type
inequalities for nonnegative solutions of the linearized equation as in [5].

Thereforeastrongmaximumprinciple for the linearizedoperator follows,which
is particulary interesting when applied to the derivatives of u (see Corollary 4.1).

We will exploit these results together with some general geometric properties
of the critical set proved in Section 5. In particular in Section 5 (see Proposition
5.1) we prove that there are not isolated points of Z in regions where the nonlin-
earity f is nondecreasing.

More precisely, we prove that, if G ⊂ Ω, f is nondecreasing in u(G), and

uxi�0 in G with uxi > 0 on ∂G

then it follows that
uxi > 0 in G

and consequently G ∩ Z = ∅.
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This result is based only on the regularity results of the solutions proved in
[4]. No assumptions on the sign of f(u) are needed in this case.

This is a crucial point since it allows to exploit these results, which hold in
regions where f is nondecreasing, together with the strong maximum principle
for the linearized operator (see Corollary 4.1), which holds in regions where f is
positive (or negative). As an application in Section 6 we assume that

I1 {s ∈ R | f(s) = 0} ≡ {0, u0} (u0 > 0).

I2 f ′�0 a.e. in [u0 − γ;u0 + γ] (for some γ > 0).

so that f is nondecreasing where it changes sign. With these assumptions
we prove that, if the domain is a bounded convex and symmetric domain in R

2

( 2N+2
N+2 < m � 2), then, assuming that 0 is the center of symmetry, we have

Z ≡ {x ∈ Ω |Du(x) = 0} = {0} (1.3)

(Consequently u ∈ C2(Ω \ {0})).
As a model nonlinearity for this application we may consider

f(s) = sq − Λsm−1.

For this kind of nonlinearity global summability results for 1
|Du| like the ones in

[4, 5] are not known but could hold and could provide stronger results then the
ones in this paper.

Anyway it is important to note that conditions I1 and I2 also allows to
consider many other nonlinearities for which global summability results for 1

|Du|
are not expected.

2 Preliminaries

In the sequel, as in [10], if ρ ∈ L1(Ω), the space H1,p
ρ (Ω) is defined as the comple-

tion of C1(Ω) (or C∞(Ω)) under the norm

‖v‖H1,p
ρ

= ‖v‖Lp(Ω) + ‖Dv‖Lp(Ω,ρ) (2.1)

and ‖Dv‖p
Lp(Ω,ρ) =

∫
Ω |Dv|pρ dx. In this way H1,p

ρ (Ω) is a Banach space and

H1,2
ρ (Ω) is a Hilbert space. Moreover we define H1,p

0,ρ (Ω) as the closure of C1
c (Ω)

(or C∞
c (Ω)) in H1,p

ρ (Ω)1.
From now on, given a fixed C1(Ω) solution of (1.1), we will consider

ρ ≡ |Du|m−2 (2.2)

1We also recall that in [15] H1,p
0,ρ is defined as the space of functions having a distributional

derivatives represented by a function for which the norm defined in (2.1) is bounded. These two
definitions are equivalent if the domain has piecewise regular boundary (as is in our case).
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Therefore ρ ∈ L∞(Ω) if m > 2 since u ∈ C1(Ω). If instead 2N+2
N+2 < m < 2, then

ρ ∈ L1(Ω) as follows easily by the results of [4]. The point of view of considering
|Du|m−2 as a weight has been introduced in [1] where the case of radial solutions
is considered and existence and uniqueness results are obtained.

Let us recall that the linearized operator at a fixed solution u of (1.1),
Lu(v, ϕ), is well defined, for every v, ϕ ∈ H1,2

ρ (Ω)(see Section 2 for details) with
ρ ≡ |Du|m−2, by

Lu(v, ϕ) ≡
∫

Ω
[|Du|m−2(Dv,Dϕ)

+(m− 2)|Du|m−4(Du,Dv)(Du,Dϕ) − f ′(u)vϕ]dx

Moreover, v ∈ H1,2
ρ (Ω) is a weak solution of the linearized equation if

Lu(v, ϕ) = 0 (2.3)

for any ϕ ∈ H1,2
0,ρ(Ω).

More generally, v ∈ H1,2
ρ (Ω) is a weak supersolution (subsolution) of (2.3)

if Lu(v, ϕ)�0 (�0) for any nonnegative ϕ ∈ H1,2
0,ρ(Ω).

If u is a C1(Ω) solution of (1.1), then by [4] we have that

|Du|m−2Du ∈ W 1,2(Ω,RN )

and we can show that

Lu(uxi , ϕ) ≡
∫

Ω
|Du|m−2(Duxi , Dϕ) dx

+
∫

Ω
(m− 2)|Du|m−4(Du,Duxi

)(Du,Dϕ) − f ′(u)uxi
ϕdx

is well defined for every 1 < m < ∞ and for every ϕ ∈ C1
0 (Ω). Moreover the

following equation holds

Lu(uxi , ϕ) = 0 ∀ϕ ∈ C1
0 (Ω). (2.4)

Exploiting the linearized equation, in [4] some regularity results for the
second derivatives of the solutions of (1.1) are proved. For the readers conve-
nience we recall the statements here below.

Theorem 2.1 Let u ∈ C1(Ω) be a weak solution of (1.1), with f locally Lipschitz
continuous 1 < m < ∞. Then, for any E ⊂⊂ Ω and for every i, j = 1, . . . , N , we
have

sup
x∈Ω

∫
E\{uxi

=0}

|Du|m−2

|uxi |β |x− y|γ |Dui|2 dy < C
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where β < 1, γ < N − 2 if N � 3, γ = 0 if N = 2 and C = C(β, γ,E). Moreover

sup
x∈Ω

∫
E\Z

|Du|m−2−β

|x− y|γ ‖D2u‖2 dy < C,

where Z = {x ∈ Ω : Du(x) = 0} is the critical set of the solution.

Corollary 2.1 Let u ∈ C1(Ω) be a weak solution of (1.1) with f locally Lipschitz
continuous, 1 < m < ∞. Then u ∈ C2(Ω \Z), where Z = {x ∈ Ω : Du(x) = 0} is
the critical set of the solution, |Du|m−2Du ∈ W 1,2

loc (Ω,RN ), therefore |Du|m−1 ∈
W 1,2

loc (Ω).
If moreover Ω is smooth, u ∈ C1(Ω) and f is nonnegative and locally Lips-

chitz continuous in the closed interval [0,∞), then Z ∩ ∂Ω = ∅, u ∈ C2(Ω \ Z),
|Du|m−2Du ∈ W 1,2(Ω,RN ) and |Du|m−1 ∈ W 1,2(Ω).

Remark 2.1 Let us remark that the fact that u ∈ W 2,2(Ω) if 1 < m < 2 had been
proved in the celebrated paper [12], among other regularity results for solutions
of (1.1).

Remark 2.2 We recall that under the assumptions at the boundary of Corollary
2.1 by [9] it follows that any solution u of (1.1) belongs to the class C1,τ (Ω). In
particular in [9] G.M. Lieberman considers a more general class of operators with
weaker assumptions on the solutions.

Remark 2.3 Since a C1(Ω) solution u of (1.1) with f satisfying Locally Lipschitz
continuous is regular in Ω \Z, the generalized derivatives of |Du|m−2uxi

coincide
there with the classical ones. Moreover in {uxi = 0}, by Stampacchia’s Theorem
(see e.g. [14] Theorem 1.56 pp. 79), the generalized derivatives of |Du|m−2uxi are
zero almost everywhere in {uxi

= 0}.

3 Summability of the weight

In this section we give a local version of summability properties of 1
|Du| , in the spirit

of the results in [4]. We recall that in [4] a positive nonlinearity f is considered
and global results are proved.

In particular we prove local summability properties of 1
|Du| in regions where

f(u) is positive (or negative). The proofs follow closely the one in [4] but some
modifications are needed since we can not use the Hopf Lemma near the boundary
of the regions considered which in our case may contain critical points of the
solution.

Proposition 3.1 Let Ω be a domain in R
N and let u ∈ C1(Ω) be a weak solution

of (1.1) with f locally Lipschitz continuous , 1 < m < ∞.
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Let x0 ∈ Ω and ρ = ρ(x0) > 0 be such that f(u(x)) > 0 in B3ρ(x0).
Then, we have that |Z∩B2ρ(x0)| = 0 , and for any x ∈ Bρ(x0) and for every

r < 1, it follows

sup
x∈Bρ(x0)

∫
B2ρ(x0)

1
|Du|(m−1)r

1
|x− y|γ dy�C sup

B3ρ(x0)

(
1

|f(u)|
)

(3.1)

where C depends on ρ, γ < N − 2 if N�3 and γ = 0 if N = 2.
Analogously, if f(u(x)) < 0 in B3ρ(x0) the same result follows.

Proof. We prove the result in the case when f is positive in B3ρ(x0).
Given x ∈ Bρ(x0), let us consider the cut-off function ϕε,x(y) ∈ C∞

0 (B3ρ(x0))
such that

• supp (Dϕε,x) ⊂ {
B3ρ(x0) \B2ρ(x0) ∪B2ε(x) \Bε(x)

}
.

• ϕε,x = 1 in B2ρ(x0) \B2ε(x).

• ϕε,x = 0 in Bε(x)

• |Dϕε,x| ≤ C
ρ in B3ρ(x0) \B2ρ(x0)

• |Dϕε,x| ≤ C
ε in B2ε(x) \Bε(x)

• Here above, x is an arbitrary point in Bρ(x0) and ε is a small parameter.
For the moment we only assume that ε is small with respect to ρ. In
particular, to make the above assumptions simultaneously fulfilled, we may
and do assume that B2ε(x) ⊂⊂ B2ρ(x0) since x ∈ Bρ(x0).

Let us consider

ψε,x(y) =
1

(|Du|m−1 + ε)r

1
|x− y|γ

with γ and r as in the statement of the proposition.
By the assumption on ϕε,x it follows that

ψε,xϕε,x

can be used as test function in (1.1), obtaining

∫
Ω
f(u)

(
ψε,xϕε,x

)
dy =

∫
Ω
(|Du|m−2Du,D

(
ψε,x

)
ϕε,x dy

+
∫

Ω
(|Du|m−2Du,D(ϕε,x)

(
ψε,x

)
dy

(3.2)
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Consequently, exploiting the assumption that f(u) > 0 in B3ρ(x0), we get

∫
B3ρ(x0)

(
ψε,xϕε,x

)
dy =

∫
B3ρ(x0)

f(u)
f(u)

(
ψε,xϕε,x

)
dy

≤ sup
B3ρ(x0)

(
1

f(u)

) ∫
B3ρ(x0)

f(u)
(
ψε,xϕε,x

)
dy

≤ sup
B3ρ(x0)

(
1

f(u)

) {∫
B3ρ(x0)

|Du|m−1|Dψε,x|ϕε,x dy

+
∫

B3ρ(x0)
|Du|m−1|Dϕε,x|(ψε,x

)
dy

}
(3.3)

Let us now note that, since |Du|m−1

(|Du|m−1+ε)r ≤ |Du|(m−1)(1−r)� const because
r < 1 and u ∈ C1(Ω), then

∫
B3ρ(x0)

|Du|m−1|Dϕε,x|(ψε,x

)
dy ≤

∫
B3ρ(x0)

|Dϕε,x|
|x− y|γ dy

≤
∫

B3ρ(x0)\B2ρ(x0)

|Dϕε,x|
|x− y|γ dy

+
∫

B2ε(x)\Bε(x)

|Dϕε,x|
|x− y|γ dy

≤ const + const
εN

εγ+1 ≤ const

(3.4)

where we have used the fact that γ + 1 < N and r < 1 by assumption. Moreover
1

|x−y|γ ≤ const in B3ρ(x0) \ B2ρ(x0) since x is in Bρ(x0). Also we recall that
|Dϕε,x| ≤ C

ε by assumption and we have 1
|x−y|γ ≤ C

εγ in B2ε(x)\Bε(x). Therefore,

∫
B3ρ(x0)

(
ψε,xϕε,x

)
dy

≤ const · sup
B3ρ(x0)

(
1

f(u)

) {
1 +

∫
B3ρ(x0)

|Du|m−1|Dψε,x|ϕε,x dy

} (3.5)

and∫
B3ρ(x0)

(
ψε,xϕε,x

)
dy

≤ sup
B3ρ(x0)

(
1

f(u)

) {
const

∫
B3ρ(x0)

|Du|m−1

(|Du|m−1 + ε)r+1

|Du|m−2‖D2u‖
|x− y|γ ϕε,x dy
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+ const
∫

B3ρ(x0)

|Du|m−1

(|Du|m−1 + ε)r

ϕε,x

|x− y|γ+1 dy + const

}

≤ sup
B3ρ(x0)

1
f(u)

{
const

∫
B3ρ(x0)

|Du|m−1|Du|m−2‖D2u‖ϕε,x

(|Du|m−1 + ε)r+1|x− y|γ dy + const

} (3.6)

Here above we used the fact that∫
Ω

|Du|m−1

(|Du|m−1 + ε)r

ϕε,x

|x− y|γ+1 dy ≤ const
∫

Ω

1
|x− y|γ+1 dy ≤ const

since |Du|m−1

(|Du|m−1+ε)r ≤ 1 and γ + 1 < N by assumption.
Now we end the proof arguing as in [4]. Therefore, for ε sufficiently small,

we can write for any β < 1

∫
B3ρ(x0)

ϕε,x

(|Du|m−1 + ε)r|x− y|γ dy� sup
B3ρ(x0)

(
1

f(u)

) {
const

+ const
∫

B3ρ(x0)

(ϕε,x)
1
2 |Du|m−2−β

2 ‖D2u‖
|x− y| γ

2

|Du|m−2+β
2

|Du| (m−1)r
2

(ϕε,x)
1
2

(|Du|m−1+ε)
r
2 |x−y| γ

2
dy

}

For β < 1 such that r = m−2+β
m−1 < 1, by Young’s inequality (ab�σa2 +

b2\4σ), we can choose σ small such that

(1 − σ)
∫

B3ρ(x0)

ϕε,x

(|Du|m−1 + ε)r

1
|x− y|γ dy

� sup
B3ρ(x0)

(
1

f(u)

) {
const + const

∫
B3ρ(x0)

|Du|m−2−β‖D2u‖2

|x− y|γ dy

}
.

(3.7)

Therefore, since by Theorem 2.1∫
B3ρ(x0)

|Du|m−2−β‖D2u‖2

|x− y|γ dy ≤ const

it follows ∫
B3ρ(x0)

ϕε,x

(|Du|m−1 + ε)r

1
|x− y|γ dy�C · sup

B3ρ(x0)

(
1

f(u)

)

where C does not depend on x.
Since ϕε,x

(|Du|m−1+ε)r
1

|x−y|γ
ε→0→ 1

|Du|(m−1)r
1

|x−y|γ a.e. in B2ρ(x0) \ Z, while it
tends to +∞ in Z, by Fatou’s Lemma we get that |Z∩B2ρ(x0)| = 0 and the thesis.

�
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We use now covering arguments to deduce an analogous of previous results
in regions where f(u) is positive (or negative). In particular we will prove a result
which holds also in regions which are not smooth.

Theorem 3.1 Let Ω be a domain in R
N and u ∈ C1(Ω) a weak solution of (1.1)

with f locally Lipschitz continuous, 1 < m < ∞ and let Z ≡ {x ∈ Ω |Du(x) = 0}.
Suppose Ω′ ⊂ Ω and

f(u(x)) � θ > 0 in Ω′ (3.8)

or

f(u(x)) � θ′ < 0 in Ω′ (3.9)

Then |Z ∩ Ω′| = 0 and, for any x ∈ Ω′ and for every r < 1, γ < N − 2 if
N � 3 and γ = 0 if N = 2, we have∫

Ω′

1
|Du|(m−1)r

1
|x− y|γ dy�C (3.10)

where C does not depend on x, but depends on Ω′.

Proof. We prove the result in the case

f(u(x)) � θ > 0 in Ω′ (3.11)

Consider in this case Ω′′ such that

Ω′ ⊂⊂ Ω′′ ⊂⊂
{
x ∈ Ω|f(u(x))�θ

2
> 0

}
(3.12)

Let us note that given p ∈ Ω′, by Proposition 3.1, there exists a ball
B2ρp(p) ⊂ Ω′′ such that, for any x ∈ Bρp

(p), we have∫
B2ρp (p)

1
|Du|(m−1)r

1
|x− y|γ dy� 2C(ρp, p) (3.13)

Consequently (3.10) and the fact that |Z ∩ Ω′| = 0 follows at once if γ = 0
with simple covering arguments.

A little care is needed in the general case γ < N − 2 because of the position
of the pole x. We argue as follows.

2Here we mean that C(ρp, p) depends on ρp also via sup
B3ρp (p)

(
1

f(u)

)
.
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Since Ω′ is compact, we may assume that

Ω′ ⊂
M⋃
i=1

Bρpi
(pi)

with B2ρpi
(pi) satisfying (3.13).

Given any x ∈ Ω′, we find ī so that

x ∈ Bρpī
(pī)

Therefore, by (3.13), we get∫
Ω′

1
|Du|(m−1)r

1
|x− y|γ dy�

∫
B2ρpī

(pī)

1
|Du|(m−1)r

1
|x− y|γ dy

+
∫

Ω′\B2ρpī
(pī)

1
|Du|(m−1)r

1
|x− y|γ dy

� sup
i=1,... ,N

{C(ρpi , pi)}

+


 1

min
i=1,... ,N

{ρpi
}




γ ∫
Ω′

1
|Du|(m−1)r dy ≤ const

where we used that the result if true for γ = 0 as remarked above, i.e.∫
Ω′

1
|Du|(m−1)r dy ≤ const

�

4 Some consequences

Once we have local summability properties of 1
|Du| then, by [4] a weighted Sobolev

(and Poincaré) type inequality follows in weighted Sobolev spaces with weight
ρ = |Du|m−2. Also, as in [5], a weak Harnack type inequality for nonnegative
solutions of the linearized equation follows.

For the readers convenience, we briefly recall the statements of these results
referring to [4, 5] for the proofs.

Theorem 4.1 Let u ∈ C1(Ω) be a weak solution of (1.1) with f locally Lipschitz
continuous. Define p∗ by

1
p∗ =

1
p

− 1
N

+
2
Np

(
m− 2
m− 1

)

(consequently p∗ > p for m > 2).
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Suppose Ω′ ⊂ Ω and

f(u(x)) � θ > 0 in Ω′ (4.1)

or

f(u(x)) � θ′ < 0 in Ω′ (4.2)

Then, for every p� 2 we get that there exists a positive constant c0 = c0(N, p, ρ, t,
γ, θ) such that the following weighted Sobolev’s inequality holds

‖v‖Lp∗ (Ω′) � c0‖Dv‖Lp(Ω′,ρ), (4.3)

for any v ∈ H1,p
0,ρ (Ω′)3 and for any p∗ < p∗.

Moreover if v ∈ H1,p
0,ρ (Ω′) we have the following weighted Poincaré inequality

‖v‖Lp(Ω′) �C(|Ω′|)‖Dv‖Lp(Ω′,ρ) (4.4)

where C(|Ω|) → 0 if |Ω| → 0.

Theorem 4.2 Let v ∈ H1,2
ρ (Ω) ∩ L∞(Ω) be a nonnegative weak supersolution of

the linearized equation (2.3) in a bounded smooth domain Ω of R
N , N � 2, with

f locally Lipschitz continuous and m > 2. Suppose that B(x, 5δ) ⊂ Ω and

f(u(x)) � θ > 0 in B(x, 5δ) (4.5)

or

f(u(x)) � θ′ < 0 in B(x, 5δ) (4.6)

Let us put

1
2∗ =

1
2

− 1
N

+
1
N

(
m− 2
m− 1

)

(consequently 2∗
> 2 for m > 2) and let 2∗ be any real number such that 2 < 2∗ <

2∗. Then for every 0 < s < χ, χ ≡ 2∗
2 , there exists C > 0 such that

‖v‖Ls(B(x,2δ))�C inf
B(x,δ)

v (4.7)

where C is a constant depending on x, s,N, u,m, f .
If 2N+2

N+2 < m < 2 the same result holds with χ replaced by χ′ ≡ 2�

s� where 2�

is the classical Sobolev exponent, 2
s� ≡ 1 − 1

s and s < m−1
2−m .

3The proof of Theorem 4.1 (see [4]) is based on Theorem 3.1 and on potential estimates.
Since potential estimates are also available for functions with zero mean (see [8]), then we can
prove weighted Sobolev inequality, and weighted Poincaré inequality, also for functions with zero
mean.
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Proof. It is sufficient to note that the proof of the Harnack inequality given in [5],
is based on Sobolev weighted inequality which holds locally in our case as showed
in Theorem 4.1 �

Corollary 4.1 Let u ∈ C1(Ω) a weak solution of (1.1) with m > 2 or 2N+2
N+2 <

m < 2 and f locally Lipschitz continuous. Then, for any i ∈ {1, . . . , N} and any
domain Ω′ ⊂ Ω with

f(u(x)) � θ > 0 in Ω′ (4.8)

or

f(u(x)) � θ′ < 0 in Ω′ (4.9)

we have that, if uxi
� 0 in Ω′, then either uxi

≡ 0 in Ω′ or uxi
> 0 in Ω′.

5 The geometry of the critical set, via maximum
principles

In what follows the use of the linearized operator will be crucial. Let us recall
that the linearized operator is defined by

Lu(v, ϕ) ≡
∫

Ω
[|Du|m−2(Dv,Dϕ)

+(m− 2)|Du|m−4(Du,Dv)(Du,Dϕ) − f ′(u)vϕ]dx

In particular Lu can be considered for v, ϕ ∈ H1,2
ρ . Suppose moreover that

|Du|(m−2)Dv ∈ L2(Ω,RN ) and that

Lu(v, ϕ) = 0 ∀ϕ ∈ C∞
c (Ω).

Then, by density arguments, it follows that

Lu(v, ϕ) = 0 ∀ϕ ∈ H1,2
0 (Ω).

We will now prove a general strong maximum principle for Lu. Next we will
use it to deduce a geometric characterization of the critical set Z.

Theorem 5.1 Let v ∈ H1,2
ρ (Ω) ∩ C0(Ω) weakly solve

Lu(v, ϕ) = 0 ∀ϕ ∈ H1,2
0,ρ(Ω). (5.1)

Suppose that f is a nondecreasing locally Lipschitz continuous, 2N+2
N+2 < m < ∞.

If m > 2 assume also that4 |Z| = 0.

4This condition will be removed in the applications.



Vol. 14, 2007 Some results on the qualitative properties of positive solutions 327

If G ⊂ Ω is such that

v� 0 in G, and v > 0 on ∂G,

then v > 0 in G.
The same result follows assuming only f ′(u(x)) � 0 for almost any x ∈ G.

Proof. Let γ > 0 be such that v� 2γ on ∂G. Since (v − γ)− ∈ H1,2
0,ρ(Ω) it can be

used as test function for the linearized equation, showing that∫
G

|Du|m−2(Dv,D(v−γ)−) dx+
∫

G
(m− 2)|Du|m−4(Du,Dv)(Du,D(v−γ)−) dx

=
∫

G
f ′(u)v(v − γ)−dx. (5.2)

Since f ′(u) � 0 in G and v� 0 in G, we get∫
G

|Du|m−2(Dv,D(v − γ)−) dx

+
∫

G

(m− 2)|Du|m−4(Du,Dv)(Du,D(v − γ)−) dx� 0

i.e. ∫
G

|Du|m−2|D(v − γ)−|2 + (m− 2)|Du|m−4(Du,D(v − γ)−)2 dx� 0

To end the proof we now consider two cases (the case 2N+2
N+2 < m ≤ 2 and the case

2 < m < ∞).
Let us first assume 2N+2

N+2 < m ≤ 2.
Since in this case |Du|m−4(Du,D(v−γ)−)2 ≤ |Du|m−2|D(v−γ)−|2 we have

that

(m− 2)|Du|m−4(Du,D(v − γ)−)2 ≥ (m− 2)|Du|m−2|D(v − γ)−|2

so that∫
G

(m− 1)|Du|m−2|D(v − γ)−|2 dx �
∫

G

|Du|m−2|D(v − γ)−|2 dx

+
∫

G

(m−2)|Du|m−4(Du,D(v − γ)−)2 dx

� 0

Note now that |Du|m−2 > 0 in G in this case since (m − 2) ≤ 0 and u ∈
C1(Ω). Therefore ∫

G

|D(v − γ)−|2 dx� 0

which implies |D(v − γ)−| = 0 almost everywhere in G and proves the thesis in
this case.
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Let us now assume 2 < m < ∞.
Arguing as above we get∫

G

|Du|m−2|D(v − γ)−|2 + (m− 2)|Du|m−4(Du,D(v − γ)−)2 dx� 0

and since in this case (m − 2)|Du|m−4(Du,D(v − γ)−)2 dx� 0, we immediately
get ∫

G

|Du|m−2|D(v − γ)−|2 dx� 0

Having assumed that Z = 0 if m > 2, the thesis follows now as above, since
|Du|m−2|D(v − γ)−|2 = 0 a.e. in G implies |D(v − γ)−| = 0 a.e. in G and the
thesis. �

Our main purpose (see Proposition 5.1 here below) is to apply Theorem 5.1
to the case

v = uxi i = 1, . . . , N

In this case we also avoid the a-priori assumption |Z| = 0 needed in Theorem 5.1
for the case m > 2 by slightly modifying the arguments in the proof.

Proposition 5.1 Let u ∈ C1(Ω) be a weak solution of (1.1), 2N+2
N+2 < m < ∞.

Suppose that f is locally Lipschitz continuous and suppose that f ′(u(x)) � 0 for
any x ∈ G where G ⊂ Ω. Moreover assume that for some 1�i�N uxi

� 0 in G
and uxi > 0 on ∂G . Then uxi > 0 in G and, in particular

G ∩ Z ≡ ∅
Proof. By Corollary 2.1 it follows that uxi ∈ H1,2

ρ (Ω) and moreover |Du|p−2

|uxixj | ∈ L2(Ω). Moreover Lu(uxi , ϕ) = 0 for all ϕ ∈ C∞
c (Ω) (see [4]). Therefore

we can apply Theorem 5.1 and get the thesis for the case 2N+2
N+2 < m ≤ 2.

If else m > 2 a little care is needed since here we are not making a-priori
assumptions on the measure of Z as in Theorem 5.1.
We argue as follows. Proceeding as in Theorem 5.1 with v replaced by uxi , we get∫

G

|Du|m−2|D(uxi − γ)−|2 dx� 0 (5.3)

In a neighborhood of ∂G, there are not points where Du = 0 because of the
assumption uxi > 0 on ∂G.

Suppose now by contradiction that Z∩G 
= ∅. Then there exists a connected
component C of G \ Z such that ∂G ∩ C 
= ∅ and C ∩ Z ∩G 
= ∅.

Therefore by (5.3), since uxi ≥ γ on the boundary of G by assumption, we
get that

uxi
�γ in C (5.4)

Consider now a point p ∈ Z with p ∈ ∂C.
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At the same time we get uxi
(p) ≥ γ > 0 by (5.4), and uxi

(p) = 0 since
p ∈ Z.
This contradiction shows that

Z ∩G = ∅
and the thesis. �

The above result allows to prove immediately an important property of the
critical set Z, as stated in the following

Corollary 5.1 Let u ∈ C1(Ω) be a weak solution of (1.1). Suppose that f is
locally Lipschitz continuous.

Suppose that the domain Ω is convex and symmetric in the ei-direction and
the solution u is symmetric and monotone, in the sense that uxi

� 0 in Ω−
i = {x ∈

Ω : xi < 0}.
Then, given G−

i ⊂ Ω−
i with uxi

> 0 on ∂G−
i and f ′(u) � 0 in G−

i , it follows

G−
i ∩ Z = ∅

In particular, if Ω is symmetric with respect to all the variables and we
assume that the center of symmetry is 0, then the only isolated point of Z is 0.

Remark 5.1 Corollary (5.1) applies when symmetry and monotonicity properties
of the solutions are known.
We refer to [3, 4] and the references therein for results on this topic.

6 Applications

The results proved above are interesting in itself, and may be also exploited to
get stronger information on the geometry of the critical set of the solutions under
stronger assumptions. In this section we will assume that Ω is a bounded smooth
domain in R

2 and:

I1 {s ∈ R | f(s) = 0} ≡ {0, u0} (u0 > 0).

I2 f ′ � 0 a.e. in [u0 − γ;u0 + γ] (for some γ > 0).

Under these assumptions we extend to the case changing sign nonlinearities
some results proved in [5] for the case of positive nonlinearities.

Let us fix some notations.
Let ν be a direction in R

N . For a real number λ we define

T ν
λ = {x ∈ R : x · ν = λ} (6.1)

Ων
λ = {x ∈ Ω : x · ν < λ} (6.2)
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Theorem 6.1 Let u ∈ C1(Ω) be a weak solution of (1.1).
Suppose that Ω is a bounded smooth domain in R

2 which is strictly convex
and symmetric in the ei-direction for two orthogonal directions e1 , e2 and assume
that 0 is the center of symmetry 5.

Assume6 3
2 < m�2 and f locally Lipschitz continuous satisfying (I1) and

(I2). Then

Z ≡ {x ∈ Ω |Du(x) = 0} = {0} (6.3)

Consequently u ∈ C2(Ω \ {0}).

Proof. By Theorem 1.1 in [3] we have that u is symmetric, monotone in the
ei-direction for i = 1, 2, and is strictly monotone outside the critical set Z.

We claim now that

Z ⊂ U0 ∪ {0} (6.4)

where U0 ≡ {x ∈ Ω |u(x) = u0}.
To prove this, let us assume the contrary and consider x ∈ Ω such that x 
= 0

and
x ∈ Z with u(x) 
= u0

By continuity, it follows that there exists a ball Bρ(x) such that f(u) is
positive (or negative) in Bρ(x). Also by symmetry we may and do assume that
Bρ(x) ⊂ Ωe1

0 and ux1 � 0 in Bρ(x). Since x ∈ Z, then ux1(x) = 0 and by Corollary
4.1 we gather ux1 ≡ 0 in Bρ(x). Anyway the case ux1 ≡ 0 in Bρ(x) is impossible
since u is strictly monotone outside Z by [3] and |Bρ(x)∩Z| = 0 by Theorem 3.1.
This contradiction shows that it is not possible that x ∈ Z. Consequently (6.4)
follows.

Assume now that the thesis of the Theorem is not true and that there exists a
point (x0

1, x
0
2) ∈ Z with (x0

1, x
0
2) 
= 0. In this case by (6.4) we have u(x0

1, x
0
2) = u0.

Let us show that there exist ε′ and ε′′ such that

Du(x1, x
0
2 + ε′) 
= 0 ∀x1 � 0 (6.5)

and

Du(x1, x
0
2 − ε′′) 
= 0 ∀x1 � 0 (6.6)

To prove this we exploit a sliding balls technique introduced in [3] (see
Proposition 3.1). It is crucial here a joint use of this technique and (6.4)(see
figure 1).

5With the notations of [7] we are assuming λ1(e1) = λ1(−e1) = λ1(e2) = λ1(−e2) = 0.
6Note that he condition 3

2 < m < 2 is equivalent to the condition 2N+2
N+2 < m < 2 for N = 2.



Vol. 14, 2007 Some results on the qualitative properties of positive solutions 331

ν0UZ I

sliding balls

i

rectangleG

Figure 1 Construction of the rectangle G

Let us consider a ball Bρ(ξ) with ξ2 > x0
2 +2ρ, and let us slide this ball from

−∞ to ∞ in the e1-direction until it touches U0 for the first time t0 at a point p.
More precisely we are assuming that

Bρ(ξ − te1) ∩ U0 = ∅ for t < t0

Bρ(ξ − t0e1) ∩ U0 � p

Note that, in what follows everything can be proved in a simpler way if t0 does
not exist.

Now we recall that u is monotone nondecreasing in the e1-direction in Ωe1
0

by [3]. Therefore u < u0 in the interior of Bρ(ξ− t0e1). We claim that this implies
Du(p) 
= 0.

In fact, if we put w ≡ (u− u0), it follows that −w ≥ 0 in Bρ(ξ− t0e1). Also
we have that

− ∆m(w) + Λw = f(u) + Λu− Λu0 =
= f(u) + Λu− (f(u0) + Λu0)

(6.7)

recalling that f(u0) = 0, and we are assuming Λ ≥ 0.
Now, since f is locally Lipschitz continuous, we may and do assume that

Λ is sufficiently large so that f(s) + Λs is nondecreasing in [0, ‖u‖∞]. With this
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assumption, since w ≤ 0 (u ≤ u0) in Bρ(ξ − t0e1), it follows

−∆m(w) + Λw ≤ 0 in Bρ(ξ − t0e1) (6.8)

i.e.

−∆m(−w) + Λ(−w) ≥ 0 in Bρ(ξ − t0e1) (6.9)

Therefore, by the strong maximum principle (see [16]), it follows

Du(p) 
= 0

To end the proof of (6.5) it is now sufficient to note that by monotonicity,
the line parallel to e1 through p intersects the set U0 in Ωe1

0 only at p. More
precisely, U0 ∩ Ωe1

0 ∩ {x |x2 = p2} = p. Therefore by (6.4) we get (6.5) (and (6.6)
in the same way).

Arguing in the same way and considering the e2-direction we find θ′ and θ′′

such that

Du(x0
1 + θ′, x2) 
= 0 ∀x2 � 0 (6.10)

and

Du(x0
1 − θ′′, x2) 
= 0 ∀x2 � 0 (6.11)

Therefore we have that the rectangle G of vertices (x0
1 +θ′, x0

2 +ε′)(x0
1 +θ′, x0

2 −ε′)
(x0

1 − θ′′, x0
2 + ε′)(x0

1 − θ′′, x0
2 − ε′′) has no points of Z on its boundary.

In particular we can suppose that G is sufficiently small in order that |u(x)−
u0|� γ

2 so that f ′(u(x)) � θ > 0 in G (see figure 1).
If we assume now (x0

1, x
0
2) 
= (0, 0) by symmetry we can suppose G ⊂ Ωe1

0
and by construction

ux1 > 0 on ∂G.

Also we can assume ux1 � 0 in G (or G ⊂ Ωe2
λ2(e2)

and ux2 � 0 in G). In both
cases we can apply Proposition 5.1 and get

Z ∩G = ∅ (6.12)

proving that

Z ≡ {0} (6.13)

�
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