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Abstract. Given a smooth compact k-dimensional manifold Λ embedded in

Rm, with m ≥ 2 and 1 ≤ k ≤ m − 1, and given ϵ > 0, we define Bϵ(Λ) to
be the geodesic tubular neighborhood of radius ϵ about Λ. In this paper, we
construct positive solutions of the semilinear elliptic equation ∆u+ up = 0 in Bϵ(Λ)

u = 0 on ∂Bϵ(Λ),

when the parameter ϵ is chosen small enough. In this equation, the exponent

p satisfies either p > 1 when n := m − k ≤ 2 or p ∈ (1, n+2
n−2

) when n > 2. In

particular p can be critical or supercritical in dimension m ≥ 3. As ϵ tends to

0, the solutions we construct have Morse index tending to infinity. Moreover,
using a Pohozaev type argument, we prove that our result is sharp in the sense
that there are no positive solutions for p > n+2

n−2
, n ≥ 3, if ϵ is sufficiently small.

1. Introduction

Assume that we are given Λ, a smooth compact k-dimensional submanifold which
is embedded in Rm, where m ≥ 2 and k ∈ {1, . . . ,m− 1}. For all ϵ > 0, we define
the plain tubular neighborhood of radius ϵ, centered about Λ by

(1.1) Bϵ(Λ) := {x ∈ Rm : dist(x,Λ) < ϵ} ,

where x 7→ dist(x, Y ) denotes the Euclidean distance in Rm from x to Y . Let us
observe that, for all ϵ small enough, the boundary of Bϵ(Λ), which is defined by

Tϵ(Λ) := {x ∈ Rm : dist(x,Λ) = ϵ},

is a smooth embedded hypersurface in Rm.
The aim of the paper is to show, for ϵ small, the existence of a new family of

positive solutions of the semilinear elliptic problem

(1.2)

{
∆u+ up = 0 in Bϵ(Λ)

u = 0 on Tϵ(Λ).

Note that, in this paper ∆ will always represent the Laplace operator in Rn.
To state precisely our result we need some preliminaries. Let

n := m− k ≥ 1,
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denote the codimension of Λ in Rm. It is well known that, if Bn
1 denotes the

n-dimensional unit ball in Rn, there exists a positive solution U of

(1.3)

{
∆U + Up = 0 in Bn

1

U = 0 on ∂Bn
1 ,

provided the exponent p is chosen to satisfy 1 < p < +∞ when n ≤ 2 or p ∈ (1, n+2
n−2 )

when n ≥ 3. Thanks to Gidas-Ni-Nirenberg’s Theorem [8], the function U is
known to be radially symmetric. Moreover, this solution is known to be unique,
nondegenerate (we refer to Theorem 4.1 and Theorem 4.2 in [6] for a proof of this
fact) and to have Morse index equal to 1.

For all ϵ > 0, we define

(1.4) ūϵ(x) := ϵ−
2

p−1U

(
dist(x,Λ)

ϵ

)
,

for all x ∈ Bϵ(Λ). This function is obtained by translating a rescaled copy of U
along the manifold Λ. With these notations at hand, we have the following :

Theorem 1.1. Assume that

p ∈ (1,+∞), if n ≤ 2, or p ∈
(
1,
n+ 2

n− 2

)
, if n ≥ 3,

where n := m− k. Then, there exists ϵ̄ > 0 and S ⊂ (0, ϵ̄) such that :

(1) For all ϵ ∈ S, there exists a positive solution uϵ of (1.2) satisfiying

(1.5) lim
ϵ→0, ϵ∈S

∥∥∥∥uϵūϵ
∥∥∥∥
L∞(Bϵ(Λ))

= 1.

(2) For all α ≥ 1,

(1.6) lim
ϵ→0

1

ϵα
(ϵ−meas Sϵ) = 0,

where Sϵ := S ∩ (0, ϵ).
(3) As ϵ ∈ S tends to 0, the Morse index of uϵ tends to infinity.

Let us briefly comment on our result and in particular on the structure of the
set S in which the parameter ϵ can be chosen. As will be apparent in the proof,
our construction does not hold for all values of the parameter ϵ close to 0. There
is a resonance phenomenon which prevents the construction to hold for any small
value of ϵ and which forces ϵ to be taken away from a set of small density close to
0. This is precisely the meaning of (1.6). Such a phenomenon is not new and, in
the context of semilinear partial differential equations, it was originally found by A.
Malchiodi and M. Montenegro in [13]. Since this seminal paper, this phenomenon
has also been found in other instances, for example in the study of other semilinear
partial differential equations [11, 14] or in the study of constant mean curvature
surfaces [12, 15].

The Morse index of uϵ is defined to be equal to the dimension of the subspace
of H1

0 (Bϵ(Λ)) over which the quadratic form

v 7→
∫
Bϵ(Λ)

(
|∇v|2 − pup−1

ϵ v2
)
dx,
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is definite negative. The fact that we are not able to construct the solutions for all
values of ϵ close enough to 0 is also reflected in another important feature of our
solutions, namely that their Morse index tends to infinity as ϵ tends to 0.

In the same way, recall that when p = m+2
m−2 and k = m− 1 it has been proved in

[4] that the energy and the Morse index of all positive solutions tend to infinity as
ϵ tends to 0.

The shape of the solution we construct is also worth mentioning, in fact, the
solution uϵ is close to the function ūϵ which has been defined in (1.4) and hence it
does not concentrate at points as ϵ→ 0. Also, by (1.4), we have

∥ūϵ∥L∞(Bϵ(Λ)) = O(ϵ−
2

p−1 ),

as ϵ tends to 0.
In the particular case where the exponent p is the critical Sobolev exponent i.e.

when p = m+2
m−2 , a well known theorem by A. Bahri and J.M. Coron [2] yields the

existence of positive solutions of (1.2), provided that the topology of the domain is
not trivial. In this case, our result can be seen as a direct construction of a positive
solution, via a technique which also gives the shape of the solution, that cannot be
deduced from the proof in [2].

The solutions we construct are also new in the subcritical case (p < m+2
m−2 ) since

they are qualitatively different from the so called multibump solutions which were
found in [1, 7] and which do not satisfy (1.5).

Let us observe that the result of Theorem 1.1 holds for supercritical exponents,
namely exponents which are larger than the critical Sobolev exponent m+2

m−2 in di-
mension m. In the particular case where the codimension n of the manifold Λ
is equal to 1 or 2, the exponent p can be taken to be arbitrarily large. To our
knowledge this is the first existence result for solutions of (1.2) defined in tubular
neighborhoods of general k-dimensional manifolds. A previous result has been re-
cently obtained for (m− 1)-dimensional manifolds in [3] and it was indeed a source
of inspiration for the present paper.

As it will become clear in the proof, the smoothness of the submanifold Λ is a key
ingredient of the proof. However, close inspection also shows that this assumption
can be relaxed if one is ready to loose some control on the density of the set S close
to 0. Indeed, we have the :

Proposition 1.1. Under the assumptions of Theorem 1.1, if in point (2) of Theo-
rem 1.1 we fix α ≥ 1, then there exists l ∈ N only depending on n and α, such that
the conclusion of Theorem 1.1 holds provided Λ is at least a Cl submanifold. The
larger α is, the larger l has to be chosen.

Let us emphasize on the fact that the scheme of the proof is not new and in fact
it is inspired from [13] and [12]. However, our framework is simpler and we hope
that this will help the interested reader to understand the ideas and techniques in
these more involved works.

When n ≥ 3, the existence result of Theorem 1.1 holds under the assumption
that

p <
n+ 2

n− 2
.

Note that n+2
n−2 is the critical Sobolev exponent in dimension n and observe that this

assumption is used to construct the approximate solution ūϵ to (1.2). One might
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wonder whether if this condition is only technical. As we will see this is not the
case and the existence of positive solutions to (1.2) generally fails if p > n+2

n−2 as we
prove by a Pohozaev type argument.

Theorem 1.2. Assume that n = m− k ≥ 3 and that

p >
n+ 2

n− 2
.

Then, there exists ϵ̄ = ϵ̄(p) > 0, such that for all ϵ ∈ (0, ϵ̄) there is no bounded
positive solution of (1.2) in Bϵ(Λ).

The proof of Theorem1.2 relies on a Pohozaev type identity which we derive for
solutions of (1.2). This is a standard techniques which has been used in several
nonexistence results and it goes back to [17] where the case of star-shaped domains
was considered. A similar idea was already used by D. Passaseo in [16], with a
more involved construction, leading to nonexistence results for superlinear elliptic
problems in topologically nontrivial domains. In our case, the use of suitable coor-
dinates, namely Fermi coordinates (see Section 3), proves to be extremely useful to
get Theorem 1.2 in a simple way. We emphasize that as in [16], our domains are
not star-shaped and are not topologically trivial.

2. Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 consists in showing that there exists a genuine solution
uϵ near the approximate solution ūϵ defined in (1.4) provided the parameter ϵ is
chosen small enough and away from a set where resonance occurs. The main steps
of the proof are the following :

(i) First, we observe that

∥∆ūϵ + ūpϵ∥L∞(Bϵ(Λ)) ≤ Cϵ−
p+1
p−1 .

Then, using a finite step iteration scheme, we improve the approximate
solution ūϵ into a sequence of approximate solutions (uϵ,i)i∈N, which are as
close as we want from a genuine solution of the equation in the sense that

∥∆uϵ,i + upϵ,i∥L∞(Bϵ(Λ)) ≤ Cϵi−
p+1
p−1 .

Moreover, the sequence (uϵ,i)i∈N is constructed in such a way that one
has a good control on the difference uϵ,i − ūϵ. As already mentioned, the
construction of uϵ,i relies on some iteration scheme and we will see that,
in order to keep a good control on the sequence of approximate solutions,
we need to allow a loss of regularity at each iteration. In particular, the
fact that the sequence (uϵ,i)i∈N exists for all i ∈ N, uses the fact that the
manifold Λ is smooth in an essential way. If the submanifold Λ has only
finite regularity, the sequence can just be constructed for a finite number
of indices.

(ii) Next, we study the linearized operator

Lϵ,i := ∆ + pup−1
ϵ,i ,

about the approximate solution uϵ,i and show that the norm of the inverse
of Lϵ,i can be controlled as ϵ tends to 0, provided ϵ is taken away from a
countable sequence tending to 0. More precisely, we will see that the Morse
index of Lϵ,i tends to infinity as ϵ tends to 0. In particular, for fixed i ∈ N,
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the operator Lϵ,i is not invertible for a sequence of values ϵ tending to 0,
and, in order to proceed, we will need to take ϵ away from these values.

(iii) Finally, we look for a genuine solution of 1.2 in the form

uϵ = uϵ,i + φϵ.

At this stage, we show that we can rephrase the problem as a fixed point
problem which can easily be solved using the fixed point theorem for con-
traction mappings.

The outline of the paper is the following. In section 3 we describe the notations
we use and state basic results about the structure of the Laplace operator in Fermi
coordinates about Λ. In section 4, we construct the sequence of approximate so-
lutions (uϵ,i)i∈N and derive the relevant estimates. In Section 5 and 6, we analyze
the spectrum and the uniform invertibility of Lϵ,i, the linearized operator about
uϵ,i. In section 7, we complete the proof of Theorem 1.1 by reducing the problem
to the solvability of a fixed point problem for contraction mappings. In section 8
we prove Theorem 1.2.

3. Fermi coordinates near Λ

An important tool in the proof of Theorem 1.1 is the use of appropriate coordi-
nates to parameterize Bϵ(Λ). We identify Λ with the zero section of NΛ the normal
bundle of Λ and Bϵ(Λ) will be identified with

Ωϵ(Λ) := {(y, z) ∈ NΛ : y ∈ Λ, z ∈ NyΛ, |z| < ϵ},
via the mapping

F1 : Ωϵ(Λ) → Bϵ(Λ)

(y, z) 7→ y + z.

The normal bundle NΛ is endowed with the metric induced by the embedding of
Λ in Rm, namely

ḡ = g̊ + gz,

where g̊ is the induced metric on Λ and gz := dz2 the (Euclidean) metric on the
normal fibers.

In a neighborhood of a given point y ∈ Λ, we can define a moving orthonormal
frame

e1, . . . , en ∈ NΛ,

where each ej is a smooth section of the normal bundle NΛ. Namely, locally the
vectors e1(y), . . . , en(y) constitute an orthonormal basis of the normal space to Λ
at y and y 7→ ej(y) is a smooth vector field. A moving orthonormal frame might
not be globally defined but it is always defined in a neighborhood of a given point
in Λ.

We can then define Φ, a local parametrization from a neighborhood of (y, 0) ∈
Λ× Rn into a neighborhood of y ∈ Rm, by

Φ(y, z1, . . . , zn) := y +

n∑
i=1

zie
i(y),

and (y, z1, . . . , zn) will be referred to as Fermi coordinates. In this parametrization,
the Euclidean metric

(3.7) g◦ := dx21 + . . .+ dx2m,
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in Rm, or more precisely Φ∗g◦, the pull back of g◦ by Φ, is close to ḡ the induced
metric on NΛ. The next Lemma gives a quantitative version of this statement.

Lemma 3.1. In the above defined coordinates,

(3.8) Φ∗g◦ := ḡ +
n∑

i=1

zi(̊h
i + 2ℓ̊i) +

n∑
i,j=1

zizj k̊
ij ,

where the tensors h̊i, ℓ̊i and k̊ij acting on TΛ, have coefficients which are smooth
functions on Λ.

Proof. We denote by

(t1, . . . tk) 7−→ Y (t1, . . . , tk),

a parametrization of Λ close to a given point y• and, without loss of generality, we
assume that Y (0) = y•.

To keep notations short, we agree that ej ◦ Y is also denoted by ej . Hence

X(t1, . . . , tk, z1, . . . , zn) := Y (t1, . . . , tk) +
n∑

i=1

zie
i(t1, . . . , tk),

is a parametrization on Rm close to y•. To compute the coefficients of the Euclidean
metric in these coordinates, it is enough to compute

∂taX · ∂tbX, ∂taX · ∂zjX and ∂ziX · ∂zjX.

Observe that ∂taY is a tangent vector to Λ while ej is a normal vector to Λ and
hence ∂taY · ej ≡ 0. Using this, it is easy to check that

∂taX · ∂tbX = ∂taY · ∂tbY +
n∑

i=1

zi(∂taY · ∂tbei+ ∂tbY · ∂taei)+
n∑

i,j=1

zizj∂tae
i · ∂tbej ,

∂taX · ∂zjX =
n∑

i=1

zi∂tae
i · ej and ∂ziX · ∂zjX =

n∑
i,j=1

ei · ej .

We set

h̊i :=
k∑

a,b=1

(∂taY · ∂tbei + ∂tbY · ∂taei)dtadtb,

k̊ij :=

k∑
a,b=1

∂tae
i · ∂tbejdtadtb and ℓ̊i :=

k∑
a=1

n∑
j=1

∂tae
i · ejdtadzb.

Observe that these are smooth functions defined on Λ.
With these notations at hand, we can write

g◦ =
k∑

a,b=1

g̊ab + n∑
i=1

z i̊hiab +
n∑

i,j=1

zizj k̊
ij
ab

 dtadtb

+ 2

k∑
a=1

n∑
j=1

(
n∑

i=1

ziℓ̊
i
aj

)
dtadzj +

n∑
i=1

dz2i ,

so the proof of (3.8) is completed. �
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Recall that, if on a given manifold M the metric tensor is given in local coordi-
nates by

g =

m∑
i,j=1

gijdxidxj ,

then the Laplace-Beltrami operator is given by

∆g :=
1√
detg

m∑
i,j=1

∂xi

(√
detg gij∂xj ·

)
,

where gij are the coefficients of the inverse of the matrix (gij)ij .
Using this formula, together with the expansion in Lemma 3.1, we get the :

Lemma 3.2. In a tubular neighborhood of Λ, the Euclidean Laplacian ∆ can be
decomposed as

∆ :=
m∑
i=1

∂2xi
= ∆ḡ +D,

where ∆ḡ = ∆g̊ +∆gz denotes the Laplace-Beltrami operator on NΛ for the metric
ḡ = g̊+gz, and D is a second order differential operator which, in Fermi coordinates,
can be expanded as

D =
n∑

i=1

ziD
(2)
i +D(1),

where D
(2)
i (respectively D(1)) are second order (respectively first order) partial dif-

ferential operators whose coefficients are smooth and bounded in some fixed tubular
neighborhood of Λ.

Proof. The proof follows from the result of Lemma 3.1 and the expression of the
Laplacian in local coordinates. �

We can define, in a fixed tubular neighborhood of Λ, the function a by

(3.9) dvolg◦ = a dvolḡ.

Observe that a is smooth and a ≡ 1 along Λ. Moreover, it follows from Lemma 3.1,
that there exists a constant C > 0 such that

|a− 1| ≤ C |z|,
in a tubular neighborhood of Λ.

4. Construction of a sequence of approximate solutions

We assume that p ∈ (1,+∞) if n = 1, 2 or p ∈ (1, n+2
n−2 ) if n ≥ 3. As in the

introduction, we let U to be the unique positive radial solution of (1.3) and we set

(4.10) L := −
(
∆+ pUp−1

)
,

to be the linearized operator about U . The spectrum of L will be denoted by

(4.11) µ0 < µ1 ≤ µ2 ≤ µ3 ≤ . . .

and the corresponding eigenfunctions, which will be denoted by ϕj , are normalized
to have norm 1 in L2(Bn

1 ). It is known (see Theorem 4.1 and Theorem 4.2 in [6])
that

µ0 < 0 < µ1.
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We use the Fermi coordinates introduced in the previous section. According to
(1.4), the function ūϵ only depends on |z| which is nothing but the distance function
from a point to Λ. We can write

∆ūϵ + ūpϵ = (∆gz ūϵ + ūpϵ ) + (∆g̊ +D)ūϵ.

Since ∆g̊ūϵ = 0 and since ∆gz ūϵ + ūpϵ = 0, we conclude that

(4.12) ∆ūϵ + ūpϵ = Dūϵ.

As mentioned before, the idea is first to implement an iteration scheme to perturb
ūϵ into a sequence of approximate solutions which are closer to being a genuine
solution of our problem. To do so, we write u = ūϵ + v and, making use of the
result of Lemma 3.2 and (4.12), we rewrite the equation in (1.2) as

(4.13) −(∆gz + pūp−1
ϵ )v = Eϵ +Kϵ(v) + (∆g̊ +D)v,

where by definition

Eϵ := ∆ūϵ + ūpϵ ,

and

Kϵ(v) := |ūϵ + v|p − ūpϵ − pūp−1
ϵ v.

The iteration scheme we use is the following : we set vϵ,0 ≡ 0 and, for all i ≥ 0,
we define inductively vϵ,i+1 to be the solution of

(4.14)

{ −(∆gz + pūp−1
ϵ )vϵ,i+1 = Eϵ +Kϵ(vϵ,i) + (∆g̊ +D)vϵ,i in Bϵ(Λ)

vϵ,i+1 = 0 on Tϵ(Λ).

Observe that the functions are defined in Bϵ(Λ) but the operator on the left hand
side only depends on the variable normal to Λ, namely ∂zj . So, when we solve this
equation, we only solve the equation in Bn

ϵ , the ball of radius ϵ in Rn centered at
the origin, and we consider the variable on Λ as parameters. At each iteration,
we loose two degrees of regularity in the variables belonging to Λ but this is not a
problem if we assume that Λ is differentiable enough, in fact this is where we need
Λ to be smooth if we want the sequence to be defined for all i and Λ should be
regular enough if we just need a finite number of iteration. For sake of simplicity,
we state and prove all results when Λ is a smooth submanifold of Rm, leaving the
statement for the case where Λ has finite smoothness to the reader.

To invert the left hand side of (4.13), we simply use a scaling argument and the
fact that, according to the result in [6], 0 is not in the spectrum of the operator L
and hence this operator is invertible. In particular, if one wants to solve{ −

(
∆+ pūp−1

ϵ

)
v = f in Bn

ϵ

v = 0 on ∂Bn
ϵ ,

one just considers ṽ(x) := v(ϵx) and f̃(x) := f(ϵx) which solve −
(
∆+ pUp−1

)
ṽ = ϵ2f̃ in Bn

1

ṽ = 0 on ∂Bn
1 .

Standard elliptic estimates for ṽ are available and the corresponding scaled esti-
mates for the function v follow at once. Observe the gain of two powers of ϵ due to
the presence of ϵ2 on the right hand side of the last equation.
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We define

(4.15) uϵ,i := ūϵ + vϵ,i.

We claim the following :

Proposition 4.1. There exist constants C > 0 and ϵ0 > 0 such that, for all
ϵ ∈ (0, ϵ0) and for all i ∈ N

(4.16) ∥∆uϵ,i + upϵ,i∥L∞(Bϵ(Λ)) ≤ Cϵi−
p+1
p−1 ,

and

(4.17)

∥∥∥∥vϵ,iūϵ
∥∥∥∥
L∞(Bϵ(Λ))

+ ϵ

∥∥∥∥∂ϵvϵ,iūϵ

∥∥∥∥
L∞(Bϵ(Λ))

≤ Cϵ.

Proof. The proof is decomposed into a few steps each of which takes advantage of a
particular property of the problem we are studying. To begin, we need to introduce
the norms

∥u∥C0,α
ϵ (Bϵ(Λ)) := ∥u∥L∞(Bϵ(Λ)) + sup

(y,z),(y,z′)∈Ωϵ(Λ)

ϵα
|u ◦ F1(y, z)− u ◦ F1(y, z

′)|
|z − z′|α

,

and

∥u∥C2,α
ϵ (Bϵ(Λ)) := ∥u∥L∞(Bϵ(Λ)) + ϵ∥∇gzu∥L∞(Bϵ(Λ)) + ϵ2∥∇2

gzu∥L∞(Bϵ(Λ))

+ sup
(y,z),(y,z′)∈Ωϵ(Λ)

ϵ2+α
|∇2

gzu ◦ F1(y, z)−∇2
gzu ◦ F1(y, z

′)|
|z − z′|α

.

Step 1. According to (4.12), we have in local coordinates

∆ūϵ + ūpϵ =
n∑

i=1

ziD
(2)
i ūϵ +D(1)ūϵ.

As remarked earlier, the function ūϵ only depends on |z| and hence we have

∥ūϵ∥C2,α
ϵ (Bϵ(Λ)) ≤ Cϵ−

2
p−1 .

This follows from the the fact that U ∈ C2,α(Bn
1 ).

Taking advantage of the fact that the coefficients in D
(2)
i and D(1) are smooth

functions whose partial derivatives are bounded independently of ϵ, we conclude
that for all ℓ ∈ N, we have

ϵ ∥∇ℓ
g̊D

(2)
i ūϵ∥C0,α

ϵ (Bϵ(Λ)) + ∥∇ℓ
g̊D

(1)ūϵ∥C0,α
ϵ (Bϵ(Λ)) ≤ Cℓϵ

− p+1
p−1 .

for some constant Cℓ > 0 which does not depend on ϵ ∈ (0, 1). This implies that,
for all ℓ ∈ N, there exists Cℓ > 0 such that, for all ϵ ∈ (0, 1)

∥∇ℓ
g̊ (∆ūϵ + ūpϵ ) ∥C0,α

ϵ (Bϵ(Λ)) ≤ Cℓϵ
− p+1

p−1 .

Taking ℓ = 0, this already proves (4.16) when i = 0.
Step 2. To prove the first half of (4.17) when i = 1, we use the fact that

−(∆gz + pūp−1
ϵ )vϵ,1 = ∆ūϵ + ūpϵ .
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Using the inverse of the operator −(∆gz + pūp−1
ϵ ) and considering the variables on

Λ as parameters we get from standard elliptic estimates that there exists Cℓ > 0
such that, for all ϵ ∈ (0, 1)

∥vϵ,1∥C2,α
ϵ (Bϵ(Λ)) ≤ Cϵ1−

2
p−1 .

We have obtained the first half of (4.17) when i = 1.
Step 3. We now derive some estimates for the partial derivatives of vϵ,1 in the
direction parallel to Λ. More precisely, we choose local coordinates t1, . . . , tk on
Λ and a cutoff function χ with compact support where these coordinates are well
defined. Observe that the operator

Γ : f 7→ χ∂ti1 . . . ∂tiℓ f,

commutes with −(∆gz + pūp−1
ϵ ) and hence

−(∆gz + pūp−1
ϵ )Γvϵ,1 = Γ(∆ūϵ + ūpϵ ).

Moreover, since vϵ,1 vanishes on Tϵ(Λ), so does Γvϵ,1. Since we have already esti-
mated the right hand side of this equation, we can use the inverse of the operator
−(∆gz + pūp−1

ϵ ) and we get, for all ℓ ∈ N,

(4.18) ∥∇ℓ
g̊vϵ,1∥C2,α

ϵ
≤ Cℓϵ

1− 2
p−1 ,

where, as usual, Cℓ > 0 does not depend on ϵ ∈ (0, 1).
Step 4. To proceed, we argue by induction. Taking the difference between the
equation satisfied by vϵ,i+1 and the equation satisfied by vϵ,i we get

−(∆gz + pūϵ)(vϵ,i+1 − vϵ,i) = Kϵ(vϵ,i)−Kϵ(vϵ,i−1) + (∆g̊ +D)(vϵ,i − vϵ,i−1),

and one proves by induction that

∥∇ℓ
g̊(vϵ,i+1 − vϵ,i)∥C2,α

ϵ (Bϵ(Λ)) ≤ Cℓϵ
i+1− 2

p−1 ,

where Cℓ > 0 does not depend on ϵ ∈ (0, 1). The proof uses the arguments already
employed in Step 2 and Step 3. There is though one additional argument which
is needed to estimate the nonlinear term Kϵ(v). The key observation is that vϵ,i
vanishes on ∂Bϵ(Λ) and if

∥∇gzvϵ,i∥L∞(Bϵ(Λ)) ≤ Cϵ−
2

p−1 ,

then, we have the pointwise estimate

(4.19) |vϵ,i| ≤
1

2
ūϵ,

provided ϵ is chosen close enough to 0, since by Hopf boundary Lemma U has
non-zero normal derivative on Tϵ(Λ). Hence, we are entitled to write

Kϵ(vϵ,i) = ūpϵ ((1 + wϵ,i)
p − 1− pwϵ,i) ,

where

wϵ,i :=
vϵ,i
ūϵ
,

takes values into [−1/2, 1/2]. In particular, we can use standard Taylor’s expansion
to evaluate the nonlinear term Kϵ. Details are left to the reader. �

Observe that (4.19) also implies that, if i ∈ N is fixed, uϵ,i > 0 in Bϵ(Λ) provided
ϵ is chosen small enough.
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5. Analysis of the linearized operator about uϵ,i

We keep the notations of the previous section. In particular, uϵ,i denotes one of
the approximate solutions which have been defined in (4.15). In this section we are
interested in the mapping properties of the linearized operator about uϵ,i, namely

Lϵ,i := −
(
∆+ pup−1

ϵ,i

)
.

We will exploit the fact that, in some sense to be made precise, this operator is
close to the operator

Lϵ := −
(
∆ḡ + pūp−1

ϵ

)
,

whose eigenvalues are explicitly given by

(5.20)
µi

ϵ2
+ λj ,

where we recall that (µj)j≥0 are the eigenvalues of L (defined in (4.10)) and where

λ0 = 0 < λ1 ≤ λ2 ≤ . . .

are the eigenvalues of −∆g̊ on Λ.
There are some remarks which are straightforward but nevertheless very impor-

tant. All rely on the fact that, as already mentioned, µ0 < 0 < µ1.

(i) The Morse index of Lϵ, which is defined to be the maximal dimension of
the subspaces of H1

0 (Bϵ(Λ)) over which the quadratic form

(5.21) Qϵ(v) :=

∫
Bϵ(Λ)

(
|∇ḡv|2 − pūp−1

ϵ v2
)
dvolḡ,

is definite negative, is a decreasing function of ϵ. Observe that Qϵ is defined
using the volume form associated to the metric ḡ on NΛ and

|∇ḡv|2 = |∇g̊v|2 + |∇gzv|2.

By Weyl’s formula (see for example [9]) it is known that the number of
eigenvalues of −∆g̊ (counted with multiplicity), which are less than λ > 0

is asymptotic to λk/2 as λ tends to infinity. Therefore, taking into account
(5.20) (see also (ii) here below), we get an estimate of the Morse index of
Lϵ, namely

Index Lϵ ∼ ϵ−k.

(ii) Observe that
µi

ϵ2
+ λj ≥

µ1

ϵ2
> 0,

for all i ≥ 1 and all j ≥ 0. In particular, the eigenfunctions associated to
negative eigenvalues of Lϵ are of the form

(y, z) 7→ ϕ0(z/ϵ)ψ(y),

where ψ is an eigenfunction of −∆g̊ and where we recall that ϕ0 is the
eigenfunction of L associated to µ0.

(iii) The eigenvalues of Lϵ are monotone functions of ϵ and in fact

∂ϵ

(µ0

ϵ2
+ λj

)
= −2

µ0

ϵ3
.

In particular, the Morse index of Lϵ is a decreasing function of ϵ.
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(iv) The spectrum of Lϵ contains 0 if and only if

ϵ =

√
−µ0

λj
,

and for this special values of ϵ, the operator Lϵ (under 0 Dirichlet boundary
conditions) is not invertible.

Having these remarks in mind, we now explain the argument we would use if we
were to work with the operator Lϵ instead of Lϵ,i.

We define

Zϵ := {ϵ > 0 : ∃j ∈ N, µ0 + ϵ2λj = 0},
which corresponds to the set of ϵ’s for which the operator

H1
0 (Bϵ(Λ)) ∩H2(Bϵ(Λ)) → L2(Bϵ(Λ)),

w 7→ Lϵw,

is not invertible. Now, if ϵ /∈ Zϵ, we can estimate the norm of the inverse of Lϵ by a
constant times 1/δϵ where δϵ is the distance from 0 to the spectrum of Lϵ, namely

δϵ := min
{∣∣∣µ0

ϵ2
+ λj

∣∣∣ : j ∈ N
}
.

We fix N ≥ max(2, k) and we define, for all ϵ such that 0 < ϵ < 1, the set

Sϵ,N := {ϵ̄ ∈ (ϵ, 2ϵ) : (ϵ̄− ϵN , ϵ̄+ ϵN ) ∩ Zϵ = ∅}.
Property (i), which makes use of Weyl’s asymptotic formula, implies in particular
that ϵ − meas(Sϵ,N ) cannot be larger than a constant times ϵN−k and, for any
ϵ̄ ∈ Sϵ,N we know from property (iii) (or from direct estimate) that the norm of the
inverse of Lϵ̄ (defined as above) is bounded by a constant times ϵ3−N .

Therefore, if

SN :=
∪

ϵ∈(0,1)

Sϵ,N ,

then, for all ϵ ∈ SN , the norm of the inverse of Lϵ from L2(Bϵ(Λ)) into L
2(Bϵ(Λ))

is controlled by a constant times ϵ3−N . Moreover, if N − k ≥ 2 we have

lim
ϵ→0

1

ϵα
(
ϵ−meas

(
SN ∩ (0, ϵ)

))
= 0,

provided α ∈ (1, N − k).
This is the argument we will try to adapt to the operator Lϵ,i. The main difficulty

is that we will not be able to use separation of variables anymore, instead we will
use the fact that the operators Lϵ,i and Lϵ are close.

5.1. Estimating the Morse index of Lϵ,i. In this section, given i ≥ 0, we recover
partially Property (i) for the operator Lϵ,i. We define the quadratic form associated
to Lϵ,i by

(5.22) Qϵ,i(v) :=

∫
Bϵ(Λ)

(
|∇g◦v|2 − pup−1

ϵ,i v2
)
dvolg◦ .

Observe that the volume form is the one associated to the Euclidean metric g◦.
Similarly, the norm of the gradient of the function v is computed using the Euclidean
metric g◦. Comparing Qϵ,i to the quadratic form Qϵ which was defined in (5.21),
we prove the
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Lemma 5.1. Assume that i ∈ N is fixed. Then, there exists a constant C > 0 such
that

Index Lϵ,i ≤ Cϵ−k,

for all ϵ > 0 close enough to 0.

Proof. Let v ∈ H1
0 (Bϵ(Λ)) which is normalized so that ∥v∥L2(Bϵ(Λ)) = 1 and which

satisfies Qϵ,i(v) ≤ 0. We want to estimate Qϵ(v). Observe that the difference
between Qϵ and Qϵ,i can be attributed to three different phenomena. First the
difference between the square of the norm of the gradient of v when the Euclidean
metric or the product metric ḡ are used, second the difference between the potentials
ūϵ and uϵ,i and finally the difference between the volume forms when the Euclidean
metric or the product metric ḡ are used.

Using the result of Lemma 3.1, it is easy to check that∣∣|∇g◦v|2 − |∇ḡv|2
∣∣ ≤ Cϵ|∇g◦v|2.

Similarly, it follows from Proposition 4.1, that∣∣∣ūp−1
ϵ − up−1

ϵ,i

∣∣∣ ≤ Cϵup−1
ϵ,i .

Finally, it follows once more from Lemma 3.1 that the difference between the volume
forms can be estimated in local coordinates by∣∣∣√detḡ −

√
detg◦

∣∣∣ ≤ Cϵ
√
detḡ.

Since Qϵ,i(v) ≤ 0, we find that

Qϵ(v) = Qϵ(v)−Qϵ,i(v) +Qϵ,i(v)

≤ Qϵ(v)−Qϵ,i(v)

≤ Cϵ

∫
Bϵ(Λ)

(
|∇g◦v|2 + up−1

ϵ,i v2
)
dvolg◦ .

Moreover, Qϵ,i(v) ≤ 0 also implies that∫
Bϵ(Λ)

|∇g◦v|2dvolg◦ ≤
∫
Bϵ(Λ)

pup−1
ϵ,i v2dvolg◦ ≤ Cϵ−2

∫
Bϵ(Λ)

v2dvolḡ.

Therefore, we have

Qϵ(v) ≤
C

ϵ

∫
Bϵ(Λ)

v2dvolḡ =
C

ϵ
.

Using these, we see that the index of Lϵ,i is bounded by the dimension of the
space spanned by the eigenfunctions of Lϵ associated to eigenvalues less than or
equal to C/ϵ. Using Weyl’s asymptotic formula and the explicit expression for the
eigenvalues of Lϵ, we conclude that the index of Lϵ,i is bounded by a constant times
ϵ−k and this completes the proof of the result. �

5.2. Decomposition of eigenfunctions associated to small eigenvalues. Given
i ≥ 0, in this section, we recover Property (ii) for an operator close to Lϵ,i. Using
the function a defined in (3.9), we set

L̃ϵ,i := aLϵ,i.
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Observe that Lϵ,i is self-adjoint with respect to L2(Bϵ(Λ), g◦) while L̃ϵ,i is self-
adjoint with respect to L2(Bϵ(Λ), ḡ). Indeed, we have∫

Bϵ(Λ)

v L̃ϵ,iw dvolḡ =

∫
Bϵ(Λ)

vLϵ,iw dvolg◦

=

∫
Bϵ(Λ)

wLϵ,iv dvolg◦

=

∫
Bϵ(Λ)

w L̃ϵ,iv dvolḡ.

Also observe that the Morse index of L̃ϵ,i is equal to the Morse index of Lϵ,i since
the two associated quadratic forms are equal.

Recall that we have denoted by ϕ0 the eigenfunction of −(∆+pŪp−1) associated
to the eigenvalue µ0 < 0 which is normalized to have L2 norm equal to 1. Observe
that ϕ0 is radial and hence we can define

ϕ0,ϵ(y, z) := ϕ0(|z|/ϵ),

on Bϵ(Λ).

Let v be an eigenfunction of L̃ϵ,i associated to the eigenvalue ν. Hence

L̃ϵ,iv = νv,

in Bϵ(Λ) and v = 0 on Tϵ(Λ). We decompose

(5.23) v(y, z) = ϕ0,ϵ(z)ψ(y) + v̄(y, z),

where ψ is a function defined on Λ and∫
Bϵ(Λ)

v̄ϕ0,ϵhdvolḡ = 0,

for any h ∈ L2(Λ). Observe that the orthogonality condition is expressed using the
metric ḡ and not g◦. As usual, we identify Bϵ(Λ) with a tubular neighborhood of
the zero section in NΛ. We have the :

Lemma 5.2. There exists constants C0, C > 0 such that, if v is a solution of
L̃ϵ,iv = νv which is decomposed as in (5.23) and if we further assume that

ν ≤ C0

ϵ2
,

then

(5.24)

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤ C

ϵ

∫
Bϵ(Λ)

v2dvolḡ.

Proof. For notational convenience, we set v0(y, z) = ϕ0,ϵ(z)ψ(y) so that v = v0+ v̄.
In the proof, one has to be careful since there are two different metrics which are
used in Bϵ(Λ). The first metric is the Euclidean metric g◦ with respect to which Lϵ,i

is self-adjoint and the second metric is ḡ with respect to which Lϵ is self-adjoint.
Step 1. We exploit the fact that L̃ϵ,iv = νv by multiplying this equation by v and
integrating the result over Bϵ(Λ) to find

(5.25)

∫
Bϵ(Λ)

(
|∇g◦v|2 − pup−1

ϵ,i v2
)
dvolg◦ = ν

∫
Bϵ(Λ)

v2dvolḡ.
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Since up−1
ϵ,i ≤ Cϵ−2 and since the volume forms associated to g◦ and ḡ are equivalent

in a neighborhood of Λ, we get the estimate

(5.26)

∫
Bϵ(Λ)

|∇g◦v|2dvolg◦ ≤
(
ν +

C

ϵ2

)∫
Bϵ(Λ)

v2dvolḡ.

Step 2. Next, we exploit the fact that the eigenvalues of Lϵ are explicitly known
and the orthogonal decomposition of v implies that

µ1

ϵ2

∫
Bϵ(Λ)

v̄2 dvolḡ ≤
∫
Bϵ(Λ)

(
|∇ḡ v̄|2 − pūp−1

ϵ v̄2
)
dvolḡ.

Using the fact that pūp−1
ϵ ≤ Cϵ−2, we conclude that there exists a constant C1 > 0

such that

C1

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤
∫
Bϵ(Λ)

(
|∇ḡ v̄|2 − pūp−1

ϵ v̄2
)
dvolḡ.

Since Lϵv0 is L2(Bϵ(Λ), ḡ) orthogonal to v̄, we conclude that

C1

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤
∫
Bϵ(Λ)

(
∇ḡv · ∇ḡ v̄ − pūp−1

ϵ vv̄
)
dvolḡ.

Step 3. As in the proof of Lemma 5.1, we can replace the metric ḡ by the metric
g◦ and the function ūϵ by uϵ,i on the right hand side and, using the results of
Lemma 3.1 and Proposition 4.1, we conclude that

C1

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤
∫
Bϵ(Λ)

(
∇g◦v · ∇g◦ v̄ − pup−1

ϵ,i vv̄
)
dvolg◦

+ Cϵ

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 + |∇ḡv|2

)
dvolḡ

+
C

ϵ

∫
Bϵ(Λ)

(v̄2 + v2)dvolḡ.

Since L̃ϵ,iv = νv, we conclude that

C1

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤ ν

∫
Bϵ(Λ)

v̄2 dvolḡ

+ Cϵ

∫
Bϵ(Λ)

(
|∇ḡ v̄|2 + |∇ḡv|2

)
dvolḡ

+
C

ϵ

∫
Bϵ(Λ)

(v̄2 + v2)dvolḡ.

On the right hand side, the terms in v̄ can be absorbed in the left hand side provided
ϵ is chosen small enough and ν ≤ C1/(2ϵ

2). We conclude that∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤ Cϵ

∫
Bϵ(Λ)

(
|∇ḡv|2 +

1

ϵ2
v2
)
dvolḡ.

This together with (5.26) implies that that∫
Bϵ(Λ)

(
|∇ḡ v̄|2 +

1

ϵ2
v̄2
)

dvolḡ ≤ C

ϵ

∫
Bϵ(Λ)

v2dvolḡ,

and this completes the proof of the lemma. �
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5.3. Exploiting Kato’s result. In this section, we estimate the rate of change of
eigenvalues of L̃ϵ,i as ϵ varies. In other words, we obtain for the operator L̃ϵ,i a
result, which is close to the Property (iii) which was straightforward for the operator
Lϵ.

Let us explain the proof in the case where ν := ν(ϵ) is a simple eigenvalue for

L̃ϵ,i. It is known that in this case ν depends smoothly on ϵ. To proceed, we need to
work with functions defined on a fixed domain which does not depend on ϵ. Hence,
we parameterize Bϵ(Λ) using

Fϵ : Ω1(Λ) → Bϵ(Λ)

(y, z) 7→ y + ϵz,

where Ω1(Λ) := {(y, z) ∈ NΛ : |z| < 1}. Observe that

F ∗
ϵ ḡ = g̊ + ϵ2 dz2.

We define the operator L̂ϵ,i by

L̂ϵ,i(v ◦ Fϵ) = (L̃ϵ,iv) ◦ Fϵ.

Let v := v(ϵ) be the eigenfunction of L̃ϵ,i associated to ν = ν(ϵ). By definition

of L̂ϵ,i, we have

(5.27) L̂ϵ,iw = ν w,

where w := v ◦ Fϵ. Without loss of generality we can assume that w depends
smoothly on ϵ and is normalized so that∫

Ω1(Λ)

w2 dvolḡ = 1.

Differentiation of (5.27) with respect to ϵ, yields

L̂ϵ,i(∂ϵw) +
(
∂ϵL̂ϵ,i

)
w = (∂ϵν)w + ν (∂ϵw).

Multiplying this equation by w and integrating over Ω1(Λ), we get

∂ϵν =

∫
Ω1(Λ)

w (∂ϵL̂ϵ,i)w dvolḡ.

When the eigenspaces are not simple, we can interpret ∂ϵν as a set-valued func-
tion which takes into account the possibility that the eigenvalue splits into a number
of separate eigenvalues (see [10] and [5]). The estimate for the elements of this set
of derivatives is given by

∂ϵν ∈

{∫
Ω1(Λ)

w (∂ϵL̂ϵ,i)w dvolḡ : L̂ϵ,iw = ν w and

∫
Ω1(Λ)

w2 dvolḡ = 1

}
.

We have the :

Lemma 5.3. There exists a constant C2 > 0 such that if i ∈ N is fixed and if ν is
an eigenvalue of L̃ϵ,i such that

ν ≤ C1

ϵ2
,

where C1 is the constant defined in Lemma 5.2, then

∂ϵν ≥ C2

ϵ3
,
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for all ϵ small enough.

Proof. We use the decomposition of the Laplacian which was given in Lemma 3.2
together with the estimates (4.17) for vϵ,i and ∂ϵvϵ,i which were given in Proposi-
tion 4.1. With little work we conclude that∫

Ω1(Λ)

w (∂ϵL̃ϵ,i)w dvolḡ ≥ − 2

ϵ3

∫
Ω1(Λ)

(
|∇gzw|2 − pUp−1 w2

)
dvolḡ

− C

∫
Ω1(Λ)

(
|∇g̊w|2 +

1

ϵ2
(|∇gzw|2 + w2)

)
dvolḡ.

Indeed, the expression of L̃ϵ,i in local coordinates t := (t1, . . . tk) on Λ and z :=
(z1, . . . , zn) on the normal section can be written as

L̃ϵ,i = −ã
(
∆g̊ +

1

ϵ2

(
∆gz + p(U + ϵ

2
p−1 ṽϵ,i)

p−1
))

+ ϵ D̃(2) + D̃(1),

where ã := a ◦ Fϵ, ṽϵ,i := vϵ,i ◦ Fϵ and where D̃(2) (respectively D̃(1)) is a second
order (respectively first order) partial differential operator in ∂tj and ϵ−1 ∂zi with
smooth coefficients in Ω1(Λ).

Differentiating with respect to ϵ and using (4.17) we conclude that

∂ϵL̃ϵ,i =
2

ϵ3
(
∆gz + pUp−1

)
+ D̂(2) + D̂(1) +

1

ϵ2
D̂(0),

where D̂(j) is a j-th order partial differential operator in ∂tj and ϵ
−2 ∂zi with smooth

coefficients in Ω1(Λ).

Now, we decompose the eigenfunctions w satisfying L̂ϵ,iw = ν w into w = w0+w̄
as in Lemma 5.2 to get∫

Ω1(Λ)

w (∂ϵL̃ϵ,i)w dvolḡ ≥ − 2

ϵ3

∫
Ω1(Λ)

(
|∇gzw0|2 − pUp−1 w2

0

)
dvolḡ

− 2

ϵ3

∫
Ω1(Λ)

(
|∇gz w̄|2 − pUp−1 w̄2

)
dvolḡ

− C

∫
Ω1(Λ)

(
|∇g̊w|2 +

1

ϵ2
(|∇gzw|2 + w2)

)
dvolḡ.

Since ∫
Ω1(Λ)

(
|∇gzw0|2 − pUp−1 w2

0

)
dvolḡ = µ0

∫
Ω1(Λ)

w2
0 dvolḡ,

we conclude, using the estimate (5.24) and (5.25) in the proof of Lemma 5.2 that∫
Ω1(Λ)

w (∂ϵL̃ϵ,i)w dvolḡ ≥ −2µ0

ϵ3

∫
Ω1(Λ)

w2
0 dvolḡ −

C

ϵ2

∫
Ω1(Λ)

w2 dvolḡ.

Since ∫
Ω1(Λ)

w2
0 dvolḡ =

∫
Ω1(Λ)

w2 dvolḡ −
∫
Ω1(Λ)

w̄2 dvolḡ,

we can again use the result of Lemma 5.2 to conclude that∫
Ω1(Λ)

w (∂ϵL̃ϵ,i)w dvolḡ ≥ −
(
2µ0

ϵ3
+
C

ϵ2

) ∫
Ω1(Λ)

w2 dvolḡ.

One can then choose the constant C2 > 0 to be any number C2 < −2µ0. �
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6. Uniform Invertibility of Lϵ,i

We now have all the ingredients to apply to the operator Lϵ,i, the strategy which
was outlined at the beginning of §5 for the operator Lϵ.

We fix i ≥ 0 and ϵ > 0. We denote by Σϵ,i the spectrum of L̃ϵ,i and we define

Zϵ,i := {ϵ > 0 : 0 ∈ Σϵ,i},
which corresponds to the set of ϵ’s for which the operator

H1
0 (Bϵ(Λ)) ∩H2(Bϵ(Λ)) → L2(Bϵ(Λ)),

w 7→ L̃ϵ,iw,

is not invertible. It is standard that, if ϵ /∈ Zϵ,i, one can estimate the norm of the

inverse of L̃ϵ,i by a constant times 1/δϵ,i where δϵ,i is the distance from 0 to the

spectrum of L̃ϵ,i, namely

δϵ,i := min {|ν| : ν ∈ Σϵ,i} .
We fix N ≥ max(2, k) and we define, for all ϵ such that 0 < ϵ < 1, the set

Sϵ,i,N := {ϵ̄ ∈ (ϵ, 2ϵ) : (ϵ̄− ϵN , ϵ̄+ ϵN ) ∩ Zϵ,i = ∅}.
The result of Lemma 5.1, implies that ϵ − meas (Sϵ,i,N ) cannot be larger than a
constant times ϵN−k and, for any ϵ̄ ∈ Sϵ,i,N we know from Lemma 5.3 that the

norm of the inverse of L̃ϵ,i (defined as above) is bounded by a constant times ϵ3−N

and, since L̃ϵ,i = aLϵ,i where a is bounded away from 0, a similar property holds
for Lϵ,i.

Therefore, if

Si,N :=
∪

ϵ∈(0,1)

Sϵ,i,N ,

then, for all ϵ ∈ Si,N , the norm of the inverse of Lϵ,i defined from L2(Bϵ(Λ)) into
L2(Bϵ(Λ)), is controlled by a constant times ϵ3−N . Moreover, if N −k ≥ 2 we have

lim
ϵ→0

1

ϵα
(
ϵ−meas

(
Si,N ∩ (0 , ϵ)

))
= 0,

provided α < N − k.

Definition 6.1. We define C1
0 (Bϵ(Λ)) to be the subspace of C1(Bϵ(Λ)) spanned by

functions which vanish on Tϵ(Λ).

Now it is enough to invoke Schauder’s estimates to estimate the norm of the
inverse of Lϵ,i when defined from C0(Bϵ(Λ)) into C

1
0 (Bϵ(Λ)) (here we use the Eu-

clidean metric to estimate the norm of the partial derivatives of functions). Using
Schauder’s estimates to control the norm of the inverse of Lϵ,i between C

ℓ spaces
starting from the knowledge of its norm between Lebesgue spaces, we loose a few
powers of ϵ, say ϵ−N0 , where N0 only depends on the dimension m. We have proven
the :

Lemma 6.1. Given i ≥ 0 and N ≥ k + 2, there exist Si,N ⊂ (0,+∞) and N0 ∈ N
such that, for all ϵ ∈ Si,N the operator Lϵ,i is invertible and the norm of its inverse
defined from C0(Bϵ(Λ)) into C1

0 (Bϵ(Λ)) is bounded by a constant times ϵ3−N−N0 .
Moreover

lim
ϵ→0

1

ϵα
(
ϵ−meas

(
Si,N ∩ (0 , ϵ)

))
= 0,

provided α < N − k.
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7. A perturbation argument and the proof of Theorem 1.1

Thanks to the previous analysis, we can now give the proof of Theorem 1.1. We
keep the notations introduced in the previous section.

As already mentioned, we perturb the approximate solution uϵ,i. Therefore, we
look for a solution u = uϵ,i + v so that the equation to solve can be written as

(7.28) Lϵ,iv = Eϵ,i +Kϵ,i(v),

where by definition

Eϵ,i := ∆uϵ,i + upϵ,i,

and

Kϵ,i(v) := |uϵ,i + v|p − upϵ,i − p up−1
ϵ,i v.

As in the proof of Proposition 4.1, it will be convenient to observe that

Kϵ,i(v) := upϵ,i

(∣∣∣∣1 + w

uϵ,i

∣∣∣∣p − 1− p
w

uϵ,i

)
,

so that one can use Taylor’s expansion to evaluate the nonlinear terms, provided
w/uϵ,i is small enough.

We fixe α > 1 as in the statement of Theorem 1.1 and N ≥ k + 2. Then, we
choose i > 2(N +N0)− 3 and M such that

(7.29) i+ 2−N −N0 −
2

p− 1
> M,

and

(7.30) M > N +N0 − 1− 2

p− 1
.

According to (4.16), we have

∥Eϵ,i∥L∞(Bϵ(Λ)) ≤ C ϵi−
p+1
p−1 ,

and we can use the result of Lemma 6.1 to evaluate the norm of L−1
ϵ,i , the inverse

of Lϵ,i, by

∥L−1
ϵ,i ∥C0→C1 ≤ C ϵ3−N−N0 .

Recall that C1
0 (Bϵ(Λ)) denotes the subspace of C1(Bϵ(Λ)) spanned by functions

which vanish on Tϵ(Λ). Now, assume that v ∈ C1
0 (Bϵ(Λ)) satisfies ∥v∥C1

0 (Bϵ(Λ)) ≤
ϵM where M is fixed as above. Since v vanished on Tϵ(Λ) and since the gradient
of v is bounded by ϵM we conclude that |v/uϵ,i| ≤ 1/2 for all ϵ > 0 small enough.
Hence we find

∥Kϵ,i(v2)−Kϵ,i(v1)∥L∞(Bϵ(Λ)) ≤ C ϵM−2 p−2
p−1 ∥v2 − v1∥L∞(Bϵ(Λ)),

for all v2, v1 ∈ C1
0 (Bϵ(Λ)) such that ∥vi∥C1

0 (Bϵ(Λ)) ≤ ϵM .

We can then rephrase the solvability of (1.2) as a fixed point problem

v := L−1
ϵ,i (Eϵ,i +Kϵ,i(v)) ,

and apply a standard fixed point argument for contraction mapping in{
v ∈ C1

0 (Bϵ(Λ)) : ∥v∥C1(Bϵ(Λ)) ≤ ϵM
}
.

The choice of M implies that we have a contraction mapping (this fact uses (7.30))
from this set into itself (this fact uses (7.29)). This completes the proof of Theo-
rem 1.1.
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8. A Pohozaev type argument and the proof of Theorem 1.2

In this last section, we give a proof of Theorem 1.2 using a refined version of the
celebrated technique introduced in [17] are usually referred to as Pohozaev identity.
We exploit an appropriate use of test functions, and explicit computations carried
out in Fermi coordinates.

We start with a general result in the following :

Lemma 8.1. Assume D ⊆ Rm is an open set, and let ϕ ∈ C2(D), then

div

(
(∇u · ∇ϕ)∇u−

(
1

2
|∇u|2 − 1

p+ 1
up+1

)
∇ϕ+

1

p+ 1
u∆ϕ∇u

)
+

(
1

n
∆ϕ |∇u|2 −∇2ϕ(∇u,∇u)

)
+

(
n− 2

2n
− 1

p+ 1

)
|∇u|2 ∆ϕ

− 1

p+ 1
u∇u · ∇∆ϕ = 0,

in D, provided u is a classical solution of ∆u+ up = 0 in D.

Proof. Multiplying the equation ∆u+ up = 0 by u, we get

(8.31) div (u∇u) = |∇u|2 − up+1.

Next, we multiply the equation ∆u + up = 0 by ∇ϕ · ∇u to get after some simple
manipulation

div

(
(∇u · ∇ϕ)∇u+

1

p+ 1
up+1 ∇ϕ

)
−∇2ϕ(∇u,∇u)− 1

p+ 1
up+1 ∆ϕ

−1

2
∇ϕ · ∇(|∇u|2) = 0.

Trying to write the last term on the left hand side as a divergence and correcting,
we conclude that

(8.32)

div

(
(∇u · ∇ϕ)∇u−

(
1

2
|∇u|2 − 1

p+ 1
up+1

)
∇ϕ
)

−∇2ϕ(∇u,∇u) +
(
1

2
|∇u|2 − 1

p+ 1
up+1

)
∆ϕ = 0.

The result follows immediately from the use of (8.31) to eliminate the terms in up+1

in (8.32). �
The previous result, together with the divergence theorem implies the following

identity :

Lemma 8.2. Assume that we are given a function ϕ (at least C2) and u a solution
of ∆u+ up = 0 both defined on a bounded smooth domain Ω. Further assume that
u = 0 on ∂Ω, then

1

2

∫
∂Ω

|∇u|2 ∇ϕ · ν dσ∂Ω +

∫
Ω

(
1

n
∆ϕ |∇u|2 −∇2ϕ(∇u,∇u)

)
dvolg◦

+

(
n− 2

2n
− 1

p+ 1

) ∫
Ω

|∇u|2 ∆ϕ dvolg◦ − 1

p+ 1

∫
Ω

u∇u · ∇∆ϕ dvolg◦ = 0,

where ν is the unit normal to ∂Ω and dvolg◦ is defined according to (3.7).

Proof. Just observe that the fact that (∇u · ∇ϕ)∇u · ν = |∇u|2 ∇ϕ · ν since u
vanishes on ∂Ω. �
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We apply the previous analysis to the function

ϕ :=
1

2
dist(·,Λ)2,

and to the domain Ω = Bϵ(Λ).
We will need the :

Lemma 8.3. There exists a constant C > 0 such that the following estimates hold
in Bϵ(Λ)

|∆ϕ− n| ≤ C ϵ and |∇∆ϕ| ≤ C.

Moreover, for any C1 function v defined on Bϵ(Λ)∣∣∣∣ 1n ∆ϕ |∇v|2 −∇2ϕ(∇v,∇v)
∣∣∣∣ ≤ C ϵ |∇v|2.

Proof. Follows at once from the expansion of the metric in Fermi coordinates,
namely exploiting Lemma 3.1 and Lemma 3.2, and the fact that in Fermi coor-
dinates we have

ϕ :=
1

2
dist(·,Λ)2 =

|z|2

2
.

The lemma follows. �

Now, Poincaré inequality in Bϵ(Λ) reads

Lemma 8.4. There exists a constant C > 0, such that, for all ϵ ∈ (0, 1) and all
u ∈ H1

0 (Bϵ(Λ), we have

(8.33)

∫
Bϵ(Λ)

u2dvolg◦ ≤ C ϵ2
∫
Bϵ(Λ)

|∇u|2 dvolg◦ .

Proof. This follows at once from the fact that the Poincaré inequality in the unit
ball of Rn reads ∫

B1

u2dz ≤ C

∫
B1

|∇u|2 dz,

and a scaling argument implies that∫
Bϵ

u2dz ≤ C ϵ2
∫
Bϵ

|∇u|2 dz.

Now, using the product metric ḡ on Bϵ(Λ), this implies that∫
Bϵ(Λ)

u2 dvolḡ ≤ C ϵ2 |Λ|
∫
Bϵ(Λ)

|∇u|2gz dvolḡ.

Finally, since the Euclidean metric and the product metrics are equivalent (see
(3.9)), we conclude that∫

Bϵ(Λ)

u2 dvolg◦ ≤ C ′ ϵ2 |Λ|
∫
Bϵ(Λ)

|∇u|2g◦ dvolg◦ .

This completes the proof of (8.33). �

Proof of Theorem 1.2. Using Lemma 8.3 and Lemma 8.4 together with Cauchy-
Schwarz inequality we get∣∣∣∣∣ 1

p+ 1

∫
Bϵ(Λ)

u∇u · ∇∆ϕ dvolg◦

∣∣∣∣∣ ≤ C ϵ

∫
Bϵ(Λ)

|∇u|2 dvolg◦ .
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Collecting these, together with the result of Lemma 8.2, we conclude that there
exists a constant C > 0 such that(

n− 2

2
− n

p+ 1
+ C ϵ

) ∫
Bϵ(Λ)

|∇u|2 dvolg◦ ≤ 0,

since ∇ϕ · ν = ϵ on ∂Bϵ(Λ). This implies that u ≡ 0 provided ϵ is close enough to
0 and p > n+2

n−2 . �

Remark 8.1. To avoid technical complications we have chosen to carry out the
proofs of this section only in the case of a power type nonlinearity. However the
same technique can be easily extended to more general nonlinearities.
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H. Poincaré Anal. Non Lineaire 16(5), (1999), pp. 631–652.

[7] E.N. Dancer and S. Yan, Multibump solutions for an elliptic problem in expanding do-
mains. Comm. Partial Differential Equations, 27 (1-2), (2002), pp. 23–55.

[8] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maxi-

mum principle. Comm. Math. Phys., 68(3), (1979), pp. 209–243.
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Dipartimento di Matematica, Università della Calabria, Ponte Pietro Bucci 31B,
87036 Cosenza, Italy

E-mail address: sciunzi@mat.unical.it


