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Abstract. We provide a geometric Poincaré type formula for stable solutions of−∆p(u) =
f(u). From this, we derive a symmetry result in the plane. This work is a refinement of
previous results obtained by the authors under further integrability and regularity assump-
tions.

Let p ∈ [2,+∞), f ∈ C1(R) and Ω be a non-empty, open subset of RN . Assume that
u ∈ W 1,p

loc (Ω) is a weak solution of

(1) −∆p(u) = f(u) in Ω.

We consider the weighted Sobolev space with weight ρ = |∇u|p−2 (see1 [4]). Such space,
denoted by H1,2

ρ (Ω) may be defined as the closure of C1(Ω) with respect to the ∥ · ∥H1,2
ρ (Ω)-

norm defined as

∥v∥H1,2
ρ (Ω) := ∥v∥L2(Ω) + ∥∇v∥L2

ρ(Ω)

=

√∫
Ω

|v(x)|2 dx+

√∫
Ω

|∇v(x)|2 ρ(x) dx.

We also define H1,2
ρ,0(Ω) to be the closure of C1

0(Ω) with respect to the H1,2
ρ (Ω)-norm. We

suppose that u is stable, that is

(2)

∫
Ω

|∇u|p−2|∇φ|2 + (p− 2)|∇u|p−4 (∇u,∇φ)2 − f ′(u)φ2 dx > 0

for any φ ∈ C1
0(Ω) – or, equivalently, by density, for any φ ∈ H1,2

ρ,0(Ω). This stability
condition is classical in the calculus of variation framework (for instance, local minima are
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.
1We remark that the weight ρ is locally integrable, since we suppose here p > 2. The results of this

paper, for 1 < p 6 2, are already contained in [7], since, in this case, ∇u ∈ W 1,2
loc (Ω), thanks to [13].
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stable solutions; see, e.g., [1, 7]). At any x ∈ Ω ∩ {∇u ̸= 0}, we consider the level set of u,
namely

Lu,x =
{
y ∈ Ω s.t. u(y) = u(x)

}
.

By well-known regularity theory (see, e.g., [6, 13]), one has that

(3) u ∈ C1,α
loc (Ω) ∩ C

2,α
loc (Ω ∩ {∇u ̸= 0})

and so Lu,x is a C2-hypersurface. In particular, we can consider the principal curvatures kl,u
of Lu,x, for l = 1, . . . , N − 1. Also, given g ∈ C1(Ω), one can define its tangential gradient
with respect to Lu,x, that is

(4) ∇Lu,xg = ∇g −
(
∇g, ∇u

|∇u|
) ∇u
|∇u|

.

With this notation, the following inequality holds:

Theorem 1.

(p− 1)

∫
Ω

|∇u|p|∇φ|2 dx > (p− 1)

∫
Ω∩{∇u ̸=0}

|∇u|p−2φ2|∇Lu,x|∇u||2 dx

+

∫
Ω∩{∇u̸=0}

|∇u|pφ2
∑

16l6N−1

k2l,u dx
(5)

for any φ ∈ C1
0(Ω).

Notice that the left hand side of (5) is finite, since u ∈ W 1,p
loc (Ω) and φ ∈ C1

0(Ω). Formula (5)

was proved in [7], under the additional assumption that∇u ∈ W 1,2
loc (Ω), see (2.10) in [7], and

several delicate approximation estimates will be needed here to remove such unnecessary
hypothesis. When p = 2, formula (5) reduces to the important Poincaré type formula
of [11, 12]. In fact, [11, 12] first introduced these types of weigthed inequalities, in which
the weighted norms of any test function φ is bounded by a weighted norm of its gradient, and
the weights involve the geometry of the level sets of a stable solution. By an appropriate
choice of the test function, as shown in [7], it is possible to deduce several interesting
results on the geometry of the solution itself. In particular, following some ideas of [7], the
symmetry result in the plane which is stated here below is a consequence of Theorem 1:

Corollary 2. If u is a stable solution of −∆p(u) = f(u) in the whole R2, with |∇u| ∈
L∞(R2), then it possesses onedimensional symmetry, that is there exists uo : R → R
and ϖ ∈ S1 such that

u(x) = uo(ϖ · x) for any x ∈ R2.

Under the additional assumption that ∇u ∈ W 1,2
loc (R2), Corollary 2 was proven in [7] (see, in

particular, Theorem 1.1 there). Therefore, Corollary 2 is a refinement of a previous result
of [7] which drops an unnecessary assumption. When p = 2, Corollary 2 is related to a
celebrated problem posed by De Giorgi (see [5, 9, 3] and also [2, 1, 10, 8]). The proofs of
Theorem 1 and Corollary 2 are contained in the forthcoming Sections 1 and 2, respectively.
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1. Proof of Theorem 1

From Proposition 2.2 of [4], we know that2

(6)
∂u

∂xj
= uj ∈ H1,2

ρ,loc(Ω) for any j = 1, . . . , N .

Moreover, as proved in [4],

(7) |∇u|p−2∇u ∈ H1
loc(Ω,RN)

Now, we consider (4) and we see that

(8) |∇Lu,xg|2 = |∇g|2 − (∇g, ∇u
|∇u|

)2.

Also, by a direct computation,

(9)
∂|∇u|
∂xj

=
(∇u,∇uj)

|∇u|
in {∇u ̸= 0}.

From (8) and (9), we obtain that, in {∇u ̸= 0},

|∇u|p−2
[
|∇|∇u||2 −

N∑
j=1

|∇uj|2
]
− (p− 2)|∇u|p−2|∇Lu,x|∇u||2 =

|∇u|p−2|∇|∇u||2 + (p− 2)|∇u|p−4(∇u,∇|∇u|)2−
N∑
j=1

|∇u|p−2|∇uj|2 − (p− 2)
N∑
j=1

|∇u|p−4(∇u,∇uj)2.

(10)

Now, we observe that, by Cauchy-Schwarz inequality,

(11) |∇u|p−2∥D2u∥ |∇ψ| 6 |∇u|p−2∥D2u∥2χψ + |∇u|p−2|∇ψ|2 ∈ L1(Ω),

for any ψ ∈ C1
0(Ω), where χψ is the characteristic function of the support of |∇ψ|, thanks

to (3), (6) and the fact that p > 2. From (1),

(12) 0 = −
∫
Ω

|∇u|p−2(∇u,∇ψj)− f(u)ψj dx,

for any ψ ∈ C∞
0 (Ω). We remark that we can integrate by parts in (12), by means of (7).

What is more, the distributional derivatives of |∇u|p−2ui may be computed via a standard
calculus, due to Remark 2.3 of [4] and Stampacchia’s Theorem (for the latter, see, e.g.,
Theorem 1.56 on page 79 of [14]), giving

(13) ∂j(|∇u|p−2ui) = |∇u|p−2ui j + (p− 2)|∇u|p−4(∇u,∇uj)ui.

with ∂j(|∇u|p−2ui) = 0 in the critical set {∇u = 0}, according to Stampacchia’s Theorem.
Therefore, (12), an integration by parts, (11) and (13) give that

(14) 0 =

∫
Ω

|∇u|p−2(∇uj,∇ψ) + (p− 2)|∇u|p−4(∇u,∇uj)(∇u,∇ψ)− f ′(u)ujψ dx,

2We remark that in some parts of [4] some further assumptions are taken, such as boundary conditions
or sign hypotheses on the nonlinearity. This is not the case for the part of [4] that we use here, since it
only deals with the local integrability properties of the solutions.
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for any ψ ∈ C∞
0 (Ω), and, in fact, by density and (11), for any ψ ∈ C1

0(Ω). Now, we
take φ ∈ C1

0(Ω) as in the statement of Theorem 1 and we define, for a fixed j,

ψ := uj · φ2.

Let Ω′ ⊂ Ω be a bounded open set containing the support of φ and consider a sequence wϵ ∈
C1(Ω′) which approaches uj in the ∥·∥H1,2

ρ (Ω′)-norm as ϵ→ 0+ (the existence of this sequence

follows from (6) and our definition of H1,2
ρ ). Let ψϵ := wϵ · φ2. Notice that ψϵ ∈ C1

0(Ω) and
so we can apply to it formula (14), obtaining

0 =

∫
Ω

|∇u|p−2(∇uj,∇ψϵ) + (p− 2)|∇u|p−4(∇u,∇uj)(∇u,∇ψϵ)− f ′(u)ujψϵ

=

∫
Ω

|∇u|p−2wϵ(∇uj,∇φ2) + |∇u|p−2φ2(∇uj,∇wϵ)

+ (p− 2)|∇u|p−4(∇u,∇uj)wϵ(∇u,∇φ2)

+ (p− 2)|∇u|p−4(∇u,∇uj)φ2(∇u,∇wϵ)
− f ′(u)ujφ

2wϵ dx.

(15)

Furthermore, for any bounded open set Ω̃ ⊂ Ω, by Cauchy-Schwarz inequality and (6),∫
Ω̃

|∇u|p−2∥D2u∥ |∇wϵ −∇uj| dx

6
√∫

Ω̃

|∇u|p−2∥D2u∥2 dx

√∫
Ω̃

|∇u|p−2|∇wϵ −∇uj|2 dx,

which goes to zero as ϵ→ 0+, thanks to (3), (6) and the fact that p > 2. Consequently, by
passing ϵ→ 0+ in (15), then summing over j, and recalling (13), we obtain that

N∑
j=1

∫
Ω

(
|∇u|p−2(∇uj,∇(ujφ

2)) + (p− 2)|∇u|p−4(∇u,∇uj)(∇u,∇(ujφ
2)
)
dx

=

∫
Ω

f ′(u)|∇u|2φ2 dx

(16)

Now, fix ε > 0 and look at the stability condition (2) for the test function

φ ·Gε(|∇u|)

with Gε ∈ C∞(R) such that Gε(t) = t if |t| > 2ε, Gε(t) = 0 if |t| 6 ε and |G′(t)| 6 3 for
any t ∈ R.
Note that φ·Gε(|∇u|) is a admissible as test function in the linearized equation (2) (that is φ·
Gε(|∇u|) ∈ H1,2

ρ,0(Ω)) since Gε is locally Lipschitz continuous and vanishes in a neighborhood
of 0. Consequently Gε(|∇u|) is identically zero in a neighborhood of the critical set ∇u = 0,
while elsewhere we can exploit (3): more precisely, φ ·Gε(|∇u|) ∈ H1,2

0 (Ω), and H1,2
0 (Ω) ⊂

H1,2
ρ,0(Ω) since p > 2 (see [4]). Consequently the distributional derivatives may be calculated
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in a standard way and (2) gives

∫
Ω

|∇u|p−2(Gε(|∇u|))2 · |∇φ|2 + (p− 2)|∇u|p−4(∇u,∇φ)2 · (Gε(|∇u|))2 dx+∫
Ω

|∇u|p−2(G′
ε(|∇u|))2 · |∇|∇u||2φ2+

(p− 2)|∇u|p−4φ2(G′
ε(|∇u|))2(∇u,∇|∇u|)2 dx+

2

∫
Ω

|∇u|p−2(Gε(|∇u|))(G′
ε(|∇u|))φ(∇|∇u|,∇φ)+

(p− 2)|∇u|p−4φ(G′
ε(|∇u|))(Gε(|∇u|))(∇u,∇|∇u|)(∇u,∇φ) dx−∫

Ω

f ′(u)(Gε(|∇u|))2 · φ2 dx > 0.

(17)

Now, we set Ωo := Ω ∩ {∇u ̸= 0}. Notice that, for any m > 0 and any Ψ ∈ L1(RN),
with Ψ = 0 outside Ω, we have

lim
ε→0+

∫
Ω

(G′
ε(|∇u|))mΨ−

∫
Ωo

Ψ

6 lim
ε→0+

∫
Ωo

3m|Ψ|χε6|∇u|62ε = 0.

(18)

We now let ε → 0+ in (17): using (6), (18) and the dominated convergence theorem, we
conclude that

∫
Ωo

|∇u|p|∇φ|2 + (p− 2)|∇u|p−2(∇u,∇φ)2 dx+∫
Ωo

|∇u|p−2|∇|∇u||2φ2 + (p− 2)|∇u|p−4φ2(∇u,∇|∇u|)2 dx+

2

∫
Ωo

|∇u|p−2|∇u|φ(∇|∇u|,∇φ)+

+ (p− 2)|∇u|p−4φ|∇u|(∇u,∇|∇u|)(∇u,∇φ) dx−∫
Ω

f ′(u)|∇u|2φ2 dx > 0.

(19)
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We now use (16) and (19) to get∫
Ωo

|∇u|p|∇φ|2 + (p− 2)|∇u|p−2(∇u,∇φ)2 dx+∫
Ωo

|∇u|p−2|∇|∇u||2φ2 + (p− 2)|∇u|p−4φ2(∇u,∇|∇u|)2 dx+

2

∫
Ωo

|∇u|p−2|∇u|φ(∇|∇u|,∇φ)+

(p− 2)|∇u|p−4φ|∇u|(∇u,∇|∇u|)(∇u,∇φ) dx >

>
N∑
j=1

∫
Ω

|∇u|p−2(∇uj,∇(ujφ
2)) + (p− 2)|∇u|p−4(∇u,∇uj)(∇u,∇(ujφ

2)) dx

= 2
N∑
j=1

∫
Ω

|∇u|p−2ujφ(∇uj,∇φ) + (p− 2)|∇u|p−4ujφ(∇u,∇uj)(∇u,∇φ) dx+

N∑
j=1

∫
Ω

|∇u|p−2φ2|∇uj|2 + (p− 2)|∇u|p−4φ2(∇u,∇uj)2 dx.

After an elementary, but remarkable, simplification, the above inequality implies that∫
Ωo

|∇u|p|∇φ|2 + (p− 2)|∇u|p−2(∇u,∇φ)2 dx+∫
Ωo

|∇u|p−2|∇|∇u||2φ2 + (p− 2)|∇u|p−4φ2(∇u,∇|∇u|)2 dx >

>
N∑
j=1

∫
Ω

|∇u|p−2φ2|∇uj|2 + (p− 2)|∇u|p−4φ2(∇u,∇uj)2 dx.

(20)

From this and (10), we conclude that

(p− 1)

∫
Ωo

|∇u|p|∇φ|2 dx >

>
∫
Ωo

|∇u|p−2φ2
[ N∑
j=1

|∇uj|2 − |∇|∇u||2
]
+ (p− 2)|∇u|p−2φ2|∇Lu,x |∇u||2 dx.

(21)

On the other hand, by formula (2.1) of [12],

N∑
j=1

|∇uj|2 − |∇|∇u||2 = |∇u|2
∑

16l6N−1

k2l,u + |∇Lu,x|∇u||2.

Plugging this into (21) and rearranging the terms, we obtain (5). This completes the proof
of Theorem 1. �

2. Proof of Corollary 2

We observe that (5) holds true and therefore the hypotheses of Corollary 2.6 of [7] are
satisfied. Consequently, Corollary 2.6 of [7] implies that both ∇Lu,x |∇u| and k1,u vanish
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on {∇u ̸= 0}. This and Lemma 2.11 of [7] entail that u possesses one-dimensional symmetry.
�
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