ON A POINCARE TYPE FORMULA FOR SOLUTIONS OF SINGULAR
AND DEGENERATE ELLIPTIC EQUATIONS

ALBERTO FARINA, BERARDINO SCIUNZI, AND ENRICO VALDINOCI

ABSTRACT. We provide a geometric Poincaré type formula for stable solutions of —A,(u) =
f(u). From this, we derive a symmetry result in the plane. This work is a refinement of
previous results obtained by the authors under further integrability and regularity assump-
tions.

Let p € [2,+00), f € CYR) and Q be a non-empty, open subset of RY. Assume that
u € WP(Q) is a weak solution of

(1) A, (w) = f() in ©.

We consider the weighted Sobolev space with weight p = |[Vu[P=2 (see' [4]). Such space,
denoted by H,*(Q2) may be defined as the closure of C'() with respect to the || - || 1.2()-

norm defined as

[0l g2 = lvllzze + [IVolrze

_ \//Q |v(x)|2d$—|—\//Q|Vv(x)|2p(:v)dx.

We also define H,73(€2) to be the closure of C}(€2) with respect to the H}*(Q)-norm. We
suppose that u is stable, that is

) [ 19ul Vel + (o= IV (Va Vi) = ) de > 0
Q

for any ¢ € C3()) - or, equivalently, by density, for any ¢ € H;:g (©). This stability
condition is classical in the calculus of variation framework (for instance, local minima are
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'We remark that the weight p is locally integrable, since we suppose here p > 2. The results of this

paper, for 1 < p < 2, are already contained in [7], since, in this case, Vu € Wlif(Q), thanks to [13].
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stable solutions; see, e.g., [1, 7]). At any x € Q N {Vu # 0}, we consider the level set of u,
namely

Lo.={y€Qst. uly) =u(x)}.

By well-known regularity theory (see, e.g., [6, 13]), one has that

(3) ue CQ) N C2*(Q N {Vu # 0})

loc loc

and so L, is a C*-hypersurface. In particular, we can consider the principal curvatures k;,,
of Loz, for I =1,...,N — 1. Also, given g € C*(), one can define its tangential gradient
with respect to £, ,, that is

Vu Vu
4 \Y4 =Vg—(V )

With this notation, the following inequality holds:

Theorem 1.

(h—1) / Vu|Vel?de > (p - 1) / V2P|V, |Vl de
QO QN{Vu#0}

+ / |VulPp? kP, dx
QN{Vu#0} Z b

1IKIKN-1

(5)

for any ¢ € C3(Q).

Notice that the left hand side of (5) is finite, since u € W,2P(Q) and ¢ € C3(2). Formula (5)
was proved in [7], under the additional assumption that Vu € W% (Q), see (2.10) in [7], and
several delicate approximation estimates will be needed here to remove such unnecessary
hypothesis. When p = 2, formula (5) reduces to the important Poincaré type formula
of [11, 12]. In fact, [11, 12] first introduced these types of weigthed inequalities, in which
the weighted norms of any test function ¢ is bounded by a weighted norm of its gradient, and
the weights involve the geometry of the level sets of a stable solution. By an appropriate
choice of the test function, as shown in [7], it is possible to deduce several interesting
results on the geometry of the solution itself. In particular, following some ideas of [7], the
symmetry result in the plane which is stated here below is a consequence of Theorem 1:

Corollary 2. If u is a stable solution of —Ay(u) = f(u) in the whole R?, with |Vu| €
L>(R?), then it possesses onedimensional symmetry, that is there exists u, : R — R
and w € St such that

u(z) = up(w - ) for any x € R?.

Under the additional assumption that Vu € W,2?(R?), Corollary 2 was proven in [7] (see, in
particular, Theorem 1.1 there). Therefore, Corollary 2 is a refinement of a previous result
of [7] which drops an unnecessary assumption. When p = 2, Corollary 2 is related to a
celebrated problem posed by De Giorgi (see [5, 9, 3] and also [2, 1, 10, 8]). The proofs of
Theorem 1 and Corollary 2 are contained in the forthcoming Sections 1 and 2, respectively.
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1. PROOF OF THEOREM 1

From Proposition 2.2 of [4], we know that?

au . 1,2
(6) 8_% = Uy e H

p,loc

(Q) forany j=1,...,N.

Moreover, as proved in [4],
(7) [VulP7*Vu € Hypo(Q2,RY)

Now, we consider (4) and we see that

Vu
8 2 = 2 _(Vg, —)°
Also, by a direct computation,
0|Vul _ (Vu, Vu,) in (Vi £ 0},

(9) oz, vl
From (8) and (9), we obtain that, in {Vu # 0},

N
Va2 [IVIVul2 = DIV ] = (0 = 2)[Vul 2 Ve, . [Vul =

J=1

(10) Va2V VUl + (p = 2)[Vul"~ (Vu, V[Vu])*~

N N
VulP 2| Vu; |2 — (p—2 VulP~4(Vu, Vu;)?.
j j
j=1

j=1
Now, we observe that, by Cauchy-Schwarz inequality,
(11) [VulPZ2 [ D%l V] < [Vl | D*ul*xy + [VulP VY [* € LY(Q),

for any 1 € C§(Q), where x, is the characteristic function of the support of V|, thanks
to (3), (6) and the fact that p > 2. From (1),

(12) 0= /Q Vul2(Vu, Viby) — f(u), dr,

for any ¢ € C§°(£2). We remark that we can integrate by parts in (12), by means of (7).
What is more, the distributional derivatives of |Vu|P~?u; may be computed via a standard
calculus, due to Remark 2.3 of [4] and Stampacchia’s Theorem (for the latter, see, e.g.,
Theorem 1.56 on page 79 of [14]), giving

(13) 8j(|Vu|p_2uZ—) = |Vu|p_2uij +(p— 2)|Vu|p_4(Vu, Vu;)u;.

with 9;(|Vul[P~2u;) = 0 in the critical set {Vu = 0}, according to Stampacchia’s Theorem.
Therefore, (12), an integration by parts, (11) and (13) give that

(14) 0= /Q VP2 (Vay, Vo) + (p — 2)[ Va4 (Vu, Vay) (Va, Vi) — f/(u)uyis da,

2We remark that in some parts of [4] some further assumptions are taken, such as boundary conditions
or sign hypotheses on the nonlinearity. This is not the case for the part of [4] that we use here, since it
only deals with the local integrability properties of the solutions.
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for any ¢ € C°(92), and, in fact, by density and (11), for any ¢ € C}(Q2). Now, we
take ¢ € C}(Q) as in the statement of Theorem 1 and we define, for a fixed j,

Y= uj-g02.

Let Q' C Q be a bounded open set containing the support of ¢ and consider a sequence w, €
C*(€') which approaches u; in the ||| 1 (qr)"OTI AS € — 0% (the existence of this sequence

follows from (6) and our definition of H):?). Let 1. := w. - ¢*. Notice that 1. € Cj(2) and
so we can apply to it formula (14), obtaining

0= / (VulP~2(Vuy, Vibe) + (p — 2)|VulP~4(Vu, Vu,) (Vu, Vo) — f/(w)uja.
Q
= / |Vu|p_2we(Vuj,V302) + |Vu|p_2<p2(Vuj,VwE)
Q

(15)
+ (p = 2)|Vul~(Vu, Vu)w.(Vu, Vi?)

+ (p — 2)|VulP~*(Vu, Vu;)p*(Vu, Vw,)
— f(w)ujp*w, dz.

Furthermore, for any bounded open set Q C Q, by Cauchy-Schwarz inequality and (6),

[ \VulP~?|| D?u|| |[Vw, — Vu,| dx
0

< \// |Vu]p2HD2uH2dx\//~\Vu\PQ\Vwe—Vudex,
a a

which goes to zero as e — 07, thanks to (3), (6) and the fact that p > 2. Consequently, by
passing € — 07 in (15), then summing over j, and recalling (13), we obtain that

> / (IVuP2(Vuy, V(ue?) + (p = 2)|VulP 4 (Vu, Vi) (Vu, V(ue®)) de
(16) =1’

= [ revaP s
Q
Now, fix € > 0 and look at the stability condition (2) for the test function

with G. € C*(R) such that G.(t) = t if [t| > 2¢, G.(t) = 0 if |[t] < ¢ and |G'(t)| < 3 for
any t € R.

Note that ¢-G.(|Vu|) is a admissible as test function in the linearized equation (2) (that is ¢-
G(|Vu|) € H;’g (Q2)) since G, is locally Lipschitz continuous and vanishes in a neighborhood
of 0. Consequently G.(|Vul) is identically zero in a neighborhood of the critical set Vu = 0,
while elsewhere we can exploit (3): more precisely, ¢ - G.(|Vu|) € Hy*(Q), and Hy?(Q) €

H;”g () since p > 2 (see [4]). Consequently the distributional derivatives may be calculated
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in a standard way and (2) gives

[ 9P HGVa)? 1V + (0= 2)[Tup ™ (Vu, Vi) - (G V)P o+
[ 9 GVl 919l

(b — 2 Vul A (GL( V) A(Vu, V| Vul)? da+
2 [ 1Vul G TuD) GV (VITl, Vo)

(0 — DIVul~p(GLTul)) (G (V) (Tu, V[Tul)(Vu, Vip) do—
/f [(|Vul))? - p*dx > 0.

(17)

Now, we set Q, := QN {Vu # 0}. Notice that, for any m > 0 and any ¥ € L'(RY),
with ¥ = 0 outside €2, we have

lim (G;(wuy))mqf_/ w

e—0t Q

< lim [ 3™ xeqivulc2e = 0.
%

e—0t

We now let ¢ — 0% in (17): using (6), (18) and the dominated convergence theorem, we
conclude that

| VuPITel + (o = DIVal*(Vu, V)P dot

Qo

| 9uP VTP + (o= 2| Vul (T, VIVl det
Qo

2 [ Va2 Vulp(9]Val Vo) +
Qo
+ (p — 2)|Vul " o|Vu|(Vu, V|Vu|)(Vu, Vi) dz—
/f’(u)|Vu|2<p2 dx > 0.
Q
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We now use (16) and (19) to get
| 9uPITel + (o= DIVal A(Va, V)P do
Qo
[ 9uP VTP + (o= 2| Vul (Y VIVl det
Qo

2 / V"Vl (V| V], Vo) +
Qo

(0 = 2)IVul" | Vul(Vu, VIVu|)(Vu, V) dr >

N
>3 [ 90l (T Vi) + (0 = 2T (T, Vi) (T, ¥ 5?) d
j=17¢
N
= QZ/ (VulP2ujp(Vu,, Vo) + (p — 2)|VulP~*u;o(Vu, Vu,) (Vu, Vo) do+
j=17¢

N
> [ IVul 2290 + (0 = 2Vl (T, Ty
j=1 "¢
After an elementary, but remarkable, simplification, the above inequality implies that

/ VP |Vl + (p - 2)[VuP2(Vu, Vo) dot
Qo

[ 19O + (o= 2)[TuP (T VTl o >
Qo

N
> Z/ (VulP~20% |V, | + (p — 2)|VulP~*¢*(Vu, Vu,)? dr.
j=17¢
From this and (10), we conclude that

=1 [ V|Vl do >
Qo

N
> [ 9P [Vl = [9IVulP] + (0 = DITuP RV, Vul P de
Qo

j=1

On the other hand, by formula (2.1) of [12],

(21)

N
S IVu? = VIVull? = [Vul* Yk, + Ve, | Vull®.
7=1

1IKIKN-1

Plugging this into (21) and rearranging the terms, we obtain (5). This completes the proof
of Theorem 1. [ |

2. PROOF OF COROLLARY 2

We observe that (5) holds true and therefore the hypotheses of Corollary 2.6 of [7] are
satisfied. Consequently, Corollary 2.6 of [7] implies that both V.,  |Vu| and k;, vanish
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on {Vu # 0}. This and Lemma 2.11 of [7] entail that u possesses one-dimensional symmetry.

[1]
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