ON A POINCARÉ TYPE FORMULA FOR SOLUTIONS OF SINGULAR AND DEGENERATE ELLIPTIC EQUATIONS

ALBERTO FARINA, BERARDINO SCIUNZI, AND ENRICO VALDINOCI

Abstract

We provide a geometric Poincaré type formula for stable solutions of $-\Delta_{p}(u)=$ $f(u)$. From this, we derive a symmetry result in the plane. This work is a refinement of previous results obtained by the authors under further integrability and regularity assumptions.

Let $p \in[2,+\infty), f \in C^{1}(\mathbb{R})$ and Ω be a non-empty, open subset of \mathbb{R}^{N}. Assume that $u \in W_{\mathrm{loc}}^{1, p}(\Omega)$ is a weak solution of

$$
\begin{equation*}
-\Delta_{p}(u)=f(u) \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

We consider the weighted Sobolev space with weight $\rho=|\nabla u|^{p-2}$ (see ${ }^{1}[4]$). Such space, denoted by $H_{\rho}^{1,2}(\Omega)$ may be defined as the closure of $C^{1}(\Omega)$ with respect to the $\|\cdot\|_{H_{\rho}^{1,2}(\Omega)^{-}}$ norm defined as

$$
\begin{aligned}
\|v\|_{H_{\rho}^{1,2}(\Omega)} & :=\|v\|_{L^{2}(\Omega)}+\|\nabla v\|_{L_{\rho}^{2}(\Omega)} \\
& =\sqrt{\int_{\Omega}|v(x)|^{2} d x}+\sqrt{\int_{\Omega}|\nabla v(x)|^{2} \rho(x) d x} .
\end{aligned}
$$

We also define $H_{\rho, 0}^{1,2}(\Omega)$ to be the closure of $C_{0}^{1}(\Omega)$ with respect to the $H_{\rho}^{1,2}(\Omega)$-norm. We suppose that u is stable, that is

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2}|\nabla \varphi|^{2}+(p-2)|\nabla u|^{p-4}(\nabla u, \nabla \varphi)^{2}-f^{\prime}(u) \varphi^{2} d x \geqslant 0 \tag{2}
\end{equation*}
$$

for any $\varphi \in C_{0}^{1}(\Omega)$ - or, equivalently, by density, for any $\varphi \in H_{\rho, 0}^{1,2}(\Omega)$. This stability condition is classical in the calculus of variation framework (for instance, local minima are

[^0][^1]stable solutions; see, e.g., $[1,7])$. At any $x \in \Omega \cap\{\nabla u \neq 0\}$, we consider the level set of u, namely
$$
\mathcal{L}_{u, x}=\{y \in \Omega \text { s.t. } u(y)=u(x)\} .
$$

By well-known regularity theory (see, e.g., $[6,13]$), one has that

$$
\begin{equation*}
u \in C_{\mathrm{loc}}^{1, \alpha}(\Omega) \cap C_{\mathrm{loc}}^{2, \alpha}(\Omega \cap\{\nabla u \neq 0\}) \tag{3}
\end{equation*}
$$

and so $\mathcal{L}_{u, x}$ is a C^{2}-hypersurface. In particular, we can consider the principal curvatures $k_{l, u}$ of $\mathcal{L}_{u, x}$, for $l=1, \ldots, N-1$. Also, given $g \in C^{1}(\Omega)$, one can define its tangential gradient with respect to $\mathcal{L}_{u, x}$, that is

$$
\begin{equation*}
\nabla_{\mathcal{L}_{u, x}} g=\nabla g-\left(\nabla g, \frac{\nabla u}{|\nabla u|}\right) \frac{\nabla u}{|\nabla u|} . \tag{4}
\end{equation*}
$$

With this notation, the following inequality holds:

Theorem 1.

$$
\begin{align*}
(p-1) & \int_{\Omega}|\nabla u|^{p}|\nabla \varphi|^{2} d x \geqslant\left.(p-1) \int_{\Omega \cap\{\nabla u \neq 0\}}|\nabla u|^{p-2} \varphi^{2}\left|\nabla_{\mathcal{L}_{u, x}}\right| \nabla u\right|^{2} d x \\
& +\int_{\Omega \cap\{\nabla u \neq 0\}}|\nabla u|^{p} \varphi^{2} \sum_{1 \leqslant l \leqslant N-1} k_{l, u}^{2} d x \tag{5}
\end{align*}
$$

for any $\varphi \in C_{0}^{1}(\Omega)$.
Notice that the left hand side of (5) is finite, since $u \in W_{\mathrm{loc}}^{1, p}(\Omega)$ and $\varphi \in C_{0}^{1}(\Omega)$. Formula (5) was proved in [7], under the additional assumption that $\nabla u \in W_{\text {loc }}^{1,2}(\Omega)$, see (2.10) in [7], and several delicate approximation estimates will be needed here to remove such unnecessary hypothesis. When $p=2$, formula (5) reduces to the important Poincaré type formula of $[11,12]$. In fact, $[11,12]$ first introduced these types of weigthed inequalities, in which the weighted norms of any test function φ is bounded by a weighted norm of its gradient, and the weights involve the geometry of the level sets of a stable solution. By an appropriate choice of the test function, as shown in [7], it is possible to deduce several interesting results on the geometry of the solution itself. In particular, following some ideas of [7], the symmetry result in the plane which is stated here below is a consequence of Theorem 1:

Corollary 2. If u is a stable solution of $-\Delta_{p}(u)=f(u)$ in the whole \mathbb{R}^{2}, with $|\nabla u| \in$ $L^{\infty}\left(\mathbb{R}^{2}\right)$, then it possesses onedimensional symmetry, that is there exists $u_{o}: \mathbb{R} \rightarrow \mathbb{R}$ and $\varpi \in \mathrm{S}^{1}$ such that

$$
u(x)=u_{o}(\varpi \cdot x) \quad \text { for any } x \in \mathbb{R}^{2}
$$

Under the additional assumption that $\nabla u \in W_{\mathrm{loc}}^{1,2}\left(\mathbb{R}^{2}\right)$, Corollary 2 was proven in $[7]$ (see, in particular, Theorem 1.1 there). Therefore, Corollary 2 is a refinement of a previous result of [7] which drops an unnecessary assumption. When $p=2$, Corollary 2 is related to a celebrated problem posed by De Giorgi (see [5, 9, 3] and also [2, 1, 10, 8]). The proofs of Theorem 1 and Corollary 2 are contained in the forthcoming Sections 1 and 2, respectively.

1. Proof of Theorem 1

From Proposition 2.2 of [4], we know that ${ }^{2}$

$$
\begin{equation*}
\frac{\partial u}{\partial x_{j}}=u_{j} \in H_{\rho, \text { loc }}^{1,2}(\Omega) \quad \text { for any } j=1, \ldots, N \tag{6}
\end{equation*}
$$

Moreover, as proved in [4],

$$
\begin{equation*}
|\nabla u|^{p-2} \nabla u \in H_{\mathrm{loc}}^{1}\left(\Omega, \mathbb{R}^{N}\right) \tag{7}
\end{equation*}
$$

Now, we consider (4) and we see that

$$
\begin{equation*}
\left|\nabla_{\mathcal{L}_{u, x}} g\right|^{2}=|\nabla g|^{2}-\left(\nabla g, \frac{\nabla u}{|\nabla u|}\right)^{2} . \tag{8}
\end{equation*}
$$

Also, by a direct computation,

$$
\begin{equation*}
\frac{\partial|\nabla u|}{\partial x_{j}}=\frac{\left(\nabla u, \nabla u_{j}\right)}{|\nabla u|} \quad \text { in }\{\nabla u \neq 0\} \tag{9}
\end{equation*}
$$

From (8) and (9), we obtain that, in $\{\nabla u \neq 0\}$,

$$
\begin{align*}
& |\nabla u|^{p-2}\left[\left.|\nabla| \nabla u\right|^{2}-\sum_{j=1}^{N}\left|\nabla u_{j}\right|^{2}\right]-(p-2)|\nabla u|^{p-2}\left|\nabla_{\mathcal{L}_{u, x}}\right| \nabla u| |^{2}= \\
& |\nabla u|^{p-2}|\nabla| \nabla u| |^{2}+(p-2)|\nabla u|^{p-4}(\nabla u, \nabla|\nabla u|)^{2}- \tag{10}\\
& \sum_{j=1}^{N}|\nabla u|^{p-2}\left|\nabla u_{j}\right|^{2}-(p-2) \sum_{j=1}^{N}|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right)^{2} .
\end{align*}
$$

Now, we observe that, by Cauchy-Schwarz inequality,

$$
\begin{equation*}
|\nabla u|^{p-2}\left\|D^{2} u\right\||\nabla \psi| \leqslant|\nabla u|^{p-2}\left\|D^{2} u\right\|^{2} \chi_{\psi}+|\nabla u|^{p-2}|\nabla \psi|^{2} \in L^{1}(\Omega), \tag{11}
\end{equation*}
$$

for any $\psi \in C_{0}^{1}(\Omega)$, where χ_{ψ} is the characteristic function of the support of $|\nabla \psi|$, thanks to (3), (6) and the fact that $p \geqslant 2$. From (1),

$$
\begin{equation*}
0=-\int_{\Omega}|\nabla u|^{p-2}\left(\nabla u, \nabla \psi_{j}\right)-f(u) \psi_{j} d x \tag{12}
\end{equation*}
$$

for any $\psi \in C_{0}^{\infty}(\Omega)$. We remark that we can integrate by parts in (12), by means of (7). What is more, the distributional derivatives of $|\nabla u|^{p-2} u_{i}$ may be computed via a standard calculus, due to Remark 2.3 of [4] and Stampacchia's Theorem (for the latter, see, e.g., Theorem 1.56 on page 79 of [14]), giving

$$
\begin{equation*}
\partial_{j}\left(|\nabla u|^{p-2} u_{i}\right)=|\nabla u|^{p-2} u_{i j}+(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right) u_{i} . \tag{13}
\end{equation*}
$$

with $\partial_{j}\left(|\nabla u|^{p-2} u_{i}\right)=0$ in the critical set $\{\nabla u=0\}$, according to Stampacchia's Theorem. Therefore, (12), an integration by parts, (11) and (13) give that

$$
\begin{equation*}
0=\int_{\Omega}|\nabla u|^{p-2}\left(\nabla u_{j}, \nabla \psi\right)+(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right)(\nabla u, \nabla \psi)-f^{\prime}(u) u_{j} \psi d x \tag{14}
\end{equation*}
$$

[^2]for any $\psi \in C_{0}^{\infty}(\Omega)$, and, in fact, by density and (11), for any $\psi \in C_{0}^{1}(\Omega)$. Now, we take $\varphi \in C_{0}^{1}(\Omega)$ as in the statement of Theorem 1 and we define, for a fixed j,
$$
\psi:=u_{j} \cdot \varphi^{2} .
$$

Let $\Omega^{\prime} \subset \Omega$ be a bounded open set containing the support of φ and consider a sequence $w_{\epsilon} \in$ $C^{1}\left(\Omega^{\prime}\right)$ which approaches u_{j} in the $\|\cdot\|_{H_{P}^{1,2}\left(\Omega^{\prime}\right)}$-norm as $\epsilon \rightarrow 0^{+}$(the existence of this sequence follows from (6) and our definition of $\left.H_{\rho}^{1,2}\right)$. Let $\psi_{\epsilon}:=w_{\epsilon} \cdot \varphi^{2}$. Notice that $\psi_{\epsilon} \in C_{0}^{1}(\Omega)$ and so we can apply to it formula (14), obtaining

$$
\begin{align*}
0= & \int_{\Omega}|\nabla u|^{p-2}\left(\nabla u_{j}, \nabla \psi_{\epsilon}\right)+(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right)\left(\nabla u, \nabla \psi_{\epsilon}\right)-f^{\prime}(u) u_{j} \psi_{\epsilon} \\
= & \int_{\Omega}|\nabla u|^{p-2} w_{\epsilon}\left(\nabla u_{j}, \nabla \varphi^{2}\right)+|\nabla u|^{p-2} \varphi^{2}\left(\nabla u_{j}, \nabla w_{\epsilon}\right) \tag{15}\\
& +(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right) w_{\epsilon}\left(\nabla u, \nabla \varphi^{2}\right) \\
& +(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right) \varphi^{2}\left(\nabla u, \nabla w_{\epsilon}\right) \\
& -f^{\prime}(u) u_{j} \varphi^{2} w_{\epsilon} d x .
\end{align*}
$$

Furthermore, for any bounded open set $\tilde{\Omega} \subset \Omega$, by Cauchy-Schwarz inequality and (6),

$$
\begin{aligned}
& \int_{\tilde{\Omega}}|\nabla u|^{p-2}\left\|D^{2} u\right\|\left|\nabla w_{\epsilon}-\nabla u_{j}\right| d x \\
\leqslant & \sqrt{\int_{\tilde{\Omega}}|\nabla u|^{p-2}\left\|D^{2} u\right\|^{2} d x} \sqrt{\int_{\tilde{\Omega}}|\nabla u|^{p-2}\left|\nabla w_{\epsilon}-\nabla u_{j}\right|^{2} d x}
\end{aligned}
$$

which goes to zero as $\epsilon \rightarrow 0^{+}$, thanks to (3), (6) and the fact that $p \geqslant 2$. Consequently, by passing $\epsilon \rightarrow 0^{+}$in (15), then summing over j, and recalling (13), we obtain that

$$
\begin{align*}
& \sum_{j=1}^{N} \int_{\Omega}\left(|\nabla u|^{p-2}\left(\nabla u_{j}, \nabla\left(u_{j} \varphi^{2}\right)\right)+(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right)\left(\nabla u, \nabla\left(u_{j} \varphi^{2}\right)\right) d x\right. \tag{16}\\
& =\int_{\Omega} f^{\prime}(u)|\nabla u|^{2} \varphi^{2} d x
\end{align*}
$$

Now, fix $\varepsilon>0$ and look at the stability condition (2) for the test function

$$
\varphi \cdot G_{\varepsilon}(|\nabla u|)
$$

with $G_{\varepsilon} \in C^{\infty}(\mathbb{R})$ such that $G_{\varepsilon}(t)=t$ if $|t| \geqslant 2 \varepsilon, G_{\varepsilon}(t)=0$ if $|t| \leqslant \varepsilon$ and $\left|G^{\prime}(t)\right| \leqslant 3$ for any $t \in \mathbb{R}$.
Note that $\varphi \cdot G_{\varepsilon}(|\nabla u|)$ is a admissible as test function in the linearized equation (2) (that is φ. $\left.G_{\varepsilon}(|\nabla u|) \in H_{\rho, 0}^{1,2}(\Omega)\right)$ since G_{ε} is locally Lipschitz continuous and vanishes in a neighborhood of 0 . Consequently $G_{\varepsilon}(|\nabla u|)$ is identically zero in a neighborhood of the critical set $\nabla u=0$, while elsewhere we can exploit (3): more precisely, $\varphi \cdot G_{\varepsilon}(|\nabla u|) \in H_{0}^{1,2}(\Omega)$, and $H_{0}^{1,2}(\Omega) \subset$ $H_{\rho, 0}^{1,2}(\Omega)$ since $p \geqslant 2$ (see [4]). Consequently the distributional derivatives may be calculated
in a standard way and (2) gives

$$
\begin{align*}
& \int_{\Omega}|\nabla u|^{p-2}\left(G_{\varepsilon}(|\nabla u|)\right)^{2} \cdot|\nabla \varphi|^{2}+(p-2)|\nabla u|^{p-4}(\nabla u, \nabla \varphi)^{2} \cdot\left(G_{\varepsilon}(|\nabla u|)\right)^{2} d x+ \\
& \int_{\Omega}|\nabla u|^{p-2}\left(G_{\varepsilon}^{\prime}(|\nabla u|)\right)^{2} \cdot|\nabla| \nabla u| |^{2} \varphi^{2}+ \\
& \quad(p-2)|\nabla u|^{p-4} \varphi^{2}\left(G_{\varepsilon}^{\prime}(|\nabla u|)\right)^{2}(\nabla u, \nabla|\nabla u|)^{2} d x+ \tag{17}\\
& 2 \int_{\Omega}|\nabla u|^{p-2}\left(G_{\varepsilon}(|\nabla u|)\right)\left(G_{\varepsilon}^{\prime}(|\nabla u|)\right) \varphi(\nabla|\nabla u|, \nabla \varphi)+ \\
& \quad(p-2)|\nabla u|^{p-4} \varphi\left(G_{\varepsilon}^{\prime}(|\nabla u|)\right)\left(G_{\varepsilon}(|\nabla u|)\right)(\nabla u, \nabla|\nabla u|)(\nabla u, \nabla \varphi) d x- \\
& \int_{\Omega} f^{\prime}(u)\left(G_{\varepsilon}(|\nabla u|)\right)^{2} \cdot \varphi^{2} d x \geqslant 0 .
\end{align*}
$$

Now, we set $\Omega_{o}:=\Omega \cap\{\nabla u \neq 0\}$. Notice that, for any $m>0$ and any $\Psi \in L^{1}\left(\mathbb{R}^{N}\right)$, with $\Psi=0$ outside Ω, we have

$$
\begin{align*}
\lim _{\varepsilon \rightarrow 0^{+}} & \int_{\Omega}\left(G_{\varepsilon}^{\prime}(|\nabla u|)\right)^{m} \Psi-\int_{\Omega_{o}} \Psi \tag{18}\\
& \leqslant \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Omega_{o}} 3^{m}|\Psi| \chi_{\varepsilon \leqslant|\nabla u| \leqslant 2 \varepsilon}=0 .
\end{align*}
$$

We now let $\varepsilon \rightarrow 0^{+}$in (17): using (6), (18) and the dominated convergence theorem, we conclude that

$$
\begin{align*}
& \int_{\Omega_{o}}|\nabla u|^{p}|\nabla \varphi|^{2}+(p-2)|\nabla u|^{p-2}(\nabla u, \nabla \varphi)^{2} d x+ \\
& \left.\int_{\Omega_{o}}|\nabla u|^{p-2}|\nabla| \nabla u\right|^{2} \varphi^{2}+(p-2)|\nabla u|^{p-4} \varphi^{2}(\nabla u, \nabla|\nabla u|)^{2} d x+ \\
& 2 \int_{\Omega_{o}}|\nabla u|^{p-2}|\nabla u| \varphi(\nabla|\nabla u|, \nabla \varphi)+ \tag{19}\\
& +(p-2)|\nabla u|^{p-4} \varphi|\nabla u|(\nabla u, \nabla|\nabla u|)(\nabla u, \nabla \varphi) d x- \\
& \int_{\Omega} f^{\prime}(u)|\nabla u|^{2} \varphi^{2} d x \geqslant 0 .
\end{align*}
$$

We now use (16) and (19) to get

$$
\begin{aligned}
& \int_{\Omega_{o}}|\nabla u|^{p}|\nabla \varphi|^{2}+(p-2)|\nabla u|^{p-2}(\nabla u, \nabla \varphi)^{2} d x+ \\
& \left.\int_{\Omega_{o}}|\nabla u|^{p-2}|\nabla| \nabla u\right|^{2} \varphi^{2}+(p-2)|\nabla u|^{p-4} \varphi^{2}(\nabla u, \nabla|\nabla u|)^{2} d x+ \\
& 2 \int_{\Omega_{o}}|\nabla u|^{p-2}|\nabla u| \varphi(\nabla|\nabla u|, \nabla \varphi)+ \\
& (p-2)|\nabla u|^{p-4} \varphi|\nabla u|(\nabla u, \nabla|\nabla u|)(\nabla u, \nabla \varphi) d x \geqslant \\
& \geqslant \sum_{j=1}^{N} \int_{\Omega}|\nabla u|^{p-2}\left(\nabla u_{j}, \nabla\left(u_{j} \varphi^{2}\right)\right)+(p-2)|\nabla u|^{p-4}\left(\nabla u, \nabla u_{j}\right)\left(\nabla u, \nabla\left(u_{j} \varphi^{2}\right)\right) d x \\
& =2 \sum_{j=1}^{N} \int_{\Omega}|\nabla u|^{p-2} u_{j} \varphi\left(\nabla u_{j}, \nabla \varphi\right)+(p-2)|\nabla u|^{p-4} u_{j} \varphi\left(\nabla u, \nabla u_{j}\right)(\nabla u, \nabla \varphi) d x+ \\
& \sum_{j=1}^{N} \int_{\Omega}|\nabla u|^{p-2} \varphi^{2}\left|\nabla u_{j}\right|^{2}+(p-2)|\nabla u|^{p-4} \varphi^{2}\left(\nabla u, \nabla u_{j}\right)^{2} d x .
\end{aligned}
$$

After an elementary, but remarkable, simplification, the above inequality implies that

$$
\begin{align*}
& \int_{\Omega_{o}}|\nabla u|^{p}|\nabla \varphi|^{2}+(p-2)|\nabla u|^{p-2}(\nabla u, \nabla \varphi)^{2} d x+ \\
& \left.\int_{\Omega_{o}}|\nabla u|^{p-2}|\nabla| \nabla u\right|^{2} \varphi^{2}+(p-2)|\nabla u|^{p-4} \varphi^{2}(\nabla u, \nabla|\nabla u|)^{2} d x \geqslant \tag{20}\\
& \geqslant \sum_{j=1}^{N} \int_{\Omega}|\nabla u|^{p-2} \varphi^{2}\left|\nabla u_{j}\right|^{2}+(p-2)|\nabla u|^{p-4} \varphi^{2}\left(\nabla u, \nabla u_{j}\right)^{2} d x .
\end{align*}
$$

From this and (10), we conclude that

$$
\begin{align*}
& (p-1) \int_{\Omega_{o}}|\nabla u|^{p}|\nabla \varphi|^{2} d x \geqslant \\
& \geqslant \int_{\Omega_{o}}|\nabla u|^{p-2} \varphi^{2}\left[\sum_{j=1}^{N}\left|\nabla u_{j}\right|^{2}-\left.|\nabla| \nabla u\right|^{2}\right]+\left.(p-2)|\nabla u|^{p-2} \varphi^{2}\left|\nabla_{\mathcal{L}_{u, x}}\right| \nabla u\right|^{2} d x \tag{21}
\end{align*}
$$

On the other hand, by formula (2.1) of [12],

$$
\sum_{j=1}^{N}\left|\nabla u_{j}\right|^{2}-|\nabla| \nabla u| |^{2}=|\nabla u|^{2} \sum_{1 \leqslant l \leqslant N-1} k_{l, u}^{2}+\left|\nabla_{\mathcal{L}_{u, x}}\right| \nabla u| |^{2}
$$

Plugging this into (21) and rearranging the terms, we obtain (5). This completes the proof of Theorem 1 .

2. Proof of Corollary 2

We observe that (5) holds true and therefore the hypotheses of Corollary 2.6 of [7] are satisfied. Consequently, Corollary 2.6 of [7] implies that both $\nabla_{\mathcal{L}_{u, x}}|\nabla u|$ and $k_{1, u}$ vanish
on $\{\nabla u \neq 0\}$. This and Lemma 2.11 of [7] entail that u possesses one-dimensional symmetry.

References

[1] G. Alberti, L. Ambrosio, X. Cabré. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday. Acta Appl. Math., 65(1-3):9-33, 2001.
[2] L. Ambrosio, X. Cabré. Entire solutions of semilinear elliptic equations in \mathbb{R}^{3} and a conjecture of De Giorgi J. Am. Math. Soc., 13(4):725-73, 2000.
[3] H. Berestycki, L. A. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 25(1-2):69-94, 1997.
[4] L. Damascelli, B. Sciunzi. Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations. J. Differential Equations, 206(2):483-515, 2004.
[5] E. De Giorgi, Convergence problems for functionals and operators. Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna, 1979.
[6] E. DiBenedetto. $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8):827-850, 1983.
[7] A. Farina, B. Sciunzi, E. Valdinoci. Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(4):741-791, 2008.
[8] A. Farina, E. Valdinoci. The state of the art for a conjecture of De Giorgi and related problems. Du, Y., Ishii, H., Lin, W.-Y. (eds) Recent Progress on Reaction Diffusion Systems and Viscosity Solutions. Series on Advances in Mathematics for Applied Sciences, pp. 372. World Scientific, Singapore, 2008.
[9] N. A. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann., 311(3):481-491, 1998.
[10] O. Savin, Regularity of flat level sets in phase transitions. Ann. Math. (2), 169(1):41-78, 2009.
[11] P. Sternberg, K. Zumbrun. A Poincaré inequality with applications to volume-constrained areaminimizing surfaces. J. Reine Angew. Math., 503:63-85, 1998.
[12] P. Sternberg, K. Zumbrun. Connectivity of phase boundaries in strictly convex domains. Arch. Rational Mech. Anal., 141(4):375-400, 1998.
[13] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51(1):126-150, 1984.
[14] G.M. Troianiello. Elliptic differential equations and obstacle problems. The University Series in Mathematics. Plenum Press, New York, xiv+353 pp., 1987.

[^0]: 1991 Mathematics Subject Classification. 35B05, 35B65, 35J70.
 Addresses: $A F$ - LAMFA - CNRS UMR 6140 - Université de Picardie Jules Verne - Faculté de Mathématiques et d'Informatique - 33, rue Saint-Leu - 80039 Amiens CEDEX 1, France. Email: alberto.farina@u-picardie.fr.
 BS - Università della Calabria - Dipartimento di Matematica - Ponte Pietro Bucci, 31 B - I-87036 Arcavacata di Rende, Cosenza Italy. Email: sciunzi@mat.unical.it.
 $E V$ - Università di Roma Tor Vergata - Dipartimento di Matematica - Via della ricerca scientifica, 1 -I-00133 Rome, Italy. Email: valdinoci@mat.uniroma2.it.
 EV is supported by FIRB "Analysis and Beyond" and GNAMPA "Equazioni nonlineari su varietà: proprietà qualitative e classificazione delle soluzioni".

[^1]: ${ }^{1}$ We remark that the weight ρ is locally integrable, since we suppose here $p \geqslant 2$. The results of this paper, for $1<p \leqslant 2$, are already contained in [7], since, in this case, $\nabla u \in W_{\text {loc }}^{1,2}(\Omega)$, thanks to [13].

[^2]: ${ }^{2}$ We remark that in some parts of [4] some further assumptions are taken, such as boundary conditions or sign hypotheses on the nonlinearity. This is not the case for the part of [4] that we use here, since it only deals with the local integrability properties of the solutions.

