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Abstract

By virtue of a weak comparison principle in small domains we prove axial sym-

metry in convex and symmetric smooth bounded domains as well as radial sym-

metry in balls for regular solutions of a class of quasi-linear elliptic systems in

non-variational form. Moreover, in the two dimensional case, we study the system

when set in a half-space.

2000 Mathematics Subject Classification. 35K10, 35J62, 35B40.
Key words. Quasi-linear elliptic systems, non-variational systems, axial symmetry, radial symmetry.

∗The authors were partially supported by the Italian PRIN Research Project 2007: Metodi
Variazionali e Topologici nello Studio di Fenomeni non Lineari

†The author was partially supported by the Italian PRIN Research Project 2007: Metodi
Variazionali e Topologici nello Studio di Fenomeni non Lineari.

939



940 L. Montoro, B. Sciunzi, M. Squassina

1 Introduction and main results

The aim of this paper is to get some symmetry and monotonicity results for the
solutions (u, v) ∈ C1,α(Ω)× C1,α(Ω) to the following quasi-linear elliptic system





−∆pu = f(u, v) in Ω,

−∆mv = g(u, v) in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 in ∂Ω,

(1.1)

where Ω is a smooth bounded domain of RN , N ≥ 2 and ∆p = div(|Du|p−2Du) is
the p-Laplacian operator, | · | denoting the standard Euclidean norm in RN . Fur-
thermore, in the two-dimensional case, we shall also consider the system defined in
the half-space. Problem 1.1 is the stationary system corresponding to the parabolic
system {

ut −∆pu = f(u, v) in Ω× (0,∞),
vt −∆mv = g(u, v) in Ω× (0,∞),

where the adoption of the p-Laplacian operator inside the diffusion term arises in
various applications where the standard linear heat operator ut−∆ is replaced by a
nonlinear diffusion with gradient dependent diffusivity. The equations in the above
system usually arise in the theory of non-Newtonian filtration fluids, in turbulent
flows in porous media and in glaciology (cf. [2]).

System (1.1) does not necessarily admit a variational structure and it has been
previously studied in the literature both from the point of view of existence and
symmetry of smooth solutions. For the existence of a positive radially symmetric
C2 solution in the particular case where f(u, v) = uαvβ and g(u, v) = uγvδ for
suitable values of α, β, γ, δ ≥ 0, we refer the reader to [6] and to the reference
therein. Concerning the symmetry properties (and a priori estimates) of any smooth
solution of (1.1) in the special case f(u, v) = f(v) and g(u, v) = g(u) are positive
and nondecreasing functions, we refer to [10] (see also [1]).

In our main results we shall always assume on f, g that

f, g ∈ Liploc(R2
+) and f(s, t) > 0, g(s, t) > 0, for all s, t > 0, (1.2)

and that they satisfy the monotonicity (also known as cooperativity) conditions

∂f

∂t
(s, t) ≥ 0 and

∂g

∂s
(s, t) ≥ 0, for all s, t > 0. (1.3)

The sign assumptions (1.2) and (1.3) are natural in the study of this class of prob-
lems. Furthermore, it is shown in [16] that conditions (1.3) are, actually, necessary
in order to obtain symmetry results for the solutions to (1.1). For useful regularity
features of the solutions to (1.1), we refer the reader to [10, Section 2] where the
regularity of the quasi-linear equation −∆pu = h(x) is investigated under the as-
sumption that h ∈ C0,α∩W 1,σ

loc (Ω), where σ ≥ max{N/2, 2}. In turn, the regularity
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properties of (1.1) can be obtained by applying the results of [10] to the choices
h(x) = f(u(x), v(x)) and h(x) = g(u(x), v(x)) where f, g are locally Lipschitz.
Under the same cooperativity condition (1.3), for the non-degenerate case p = 2 =
m, we refer e.g. to [5, 12, 16] and references included.

In the following we present our symmetry results, which complete those of [10],
first in the case where system (1.1) is set is a smooth bounded symmetric domain
and, then, when it is set in a half-space of R2.

Our results are based on the use of a refined version of the Moving Plane tech-
nique [15] (see also [13]). We will in particular use the moving plane procedure as
improved in [4]. In the case of the half-space of R2, we exploit a geometric idea as
in [11], which is more related to the techniques developed in [3].

1.1 System in a smooth bounded domain

In a bounded domain Ω, we consider solutions u, v ∈ C1(Ω) × C1(Ω) to the non-
variational quasi-linear system





−∆pu = f(u, v) in Ω,

−∆mv = g(u, v) in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 in ∂Ω.

(1.4)

Furthermore, we assume that (1.2) and that the cooperativity condition (1.3) is
satisfied. Let us set

Zu ≡ {x ∈ Ω : ∇u(x) = 0}, Zv ≡ {x ∈ Ω : ∇v(x) = 0}.

The first main result of the paper is the following

Theorem 1.1 Assume that (1.2) and (1.3) hold. If Ω is convex with respect to the
x1-direction, and symmetric with respect to the hyperplane T0 = {x1 = 0}, then u
and v are symmetric and nondecreasing in the x1-direction in Ω0 = {x1 < 0}, with

∂u

∂x1
(x) > 0 in Ω0 \ Zu,

∂v

∂x1
(x) > 0 in Ω0 \ Zv.

In particular, if Ω is a ball, then u and v are radially symmetric with ∂u
∂r (r) < 0

and ∂v
∂r (r) < 0.

Notice that this result holds true under the same assumptions that were consid-
ered in [10] where the particular case f(u, v) = f(v) and g(u, v) = g(u) is considered.
More precisely, no monotonicity is requested on the function f (resp. g) with respect
to u (resp. v).

The second result is an improvement under some restrictions on the values of
p,m, of the previous Theorem 1.1.
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Theorem 1.2 Assume that (1.2) and (1.3) hold and 2N+2
N+2 < p, m < ∞. If Ω is

convex with respect to the x1-direction and symmetric with respect to the hyperplane
T0 = {x1 = 0}, then u and v are symmetric and nondecreasing in the x1-direction
in Ω0 = {x1 < 0} with

∂u

∂x1
(x) > 0 in Ω0,

∂v

∂x1
(x) > 0 in Ω0.

In particular Zu ⊂ T0 and Zv ⊂ T0 . Therefore if for N orthogonal directions ei

the domain Ω is symmetric with respect to any hyperplane T ei
0 = {x · ei = 0}, then

Zu = Zv = {0}, (1.5)

assuming that 0 is the center of symmetry.

1.2 System on a half-space of R2

Let H = {(x, y) ∈ R2 : y > 0} and consider the system





−∆pu = f(u, v) in H,

−∆mv = g(u, v) in H,

u > 0, v > 0 in H,

u = 0, v = 0 on ∂H.

(1.6)

Then we have the following monotonicity result

Theorem 1.3 Let (u, v) be a nontrivial weak C1,α
loc (H) solution of (1.6). Assume

that (1.2) and (1.3) hold and let 3
2 < p, m < ∞. Then

∂u

∂y
(x, y) > 0 and

∂v

∂y
(x, y) > 0 for all (x, y) ∈ H.

We prove Theorem 1.3 by exploiting a weak comparison principle in small do-
mains (see Proposition 2.1), and some techniques developed in [11], where the
monotonicity of the solutions was used to prove some Liouville type theorems for
Lane-Emden-Fowler type equations.

Notations.

1. For n ≥ 1, we denote by | · | the euclidean norm in Rn.

2. R+ (resp. R−) is the set of positive (resp. negative) real values.

3. For p > 1 we denote by Lp(Rn) the space of measurable functions u such that∫
Ω
|u|pdx < ∞. The norm (

∫
Ω
|u|pdx)1/p in Lp(Ω) is denoted by ‖ · ‖Lp(Ω).
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4. For s ∈ N, we denote by Hs(Ω) the Sobolev space of functions u in L2(Ω)
having generalized partial derivatives ∂k

i u in L2(Ω) for all i = 1, . . . , n and
any 0 ≤ k ≤ s.

5. The norm (
∫
Ω
|u|pdx +

∫
Ω
|∇u|pdx)1/2 in W 1,p

0 (Ω) is denoted by ‖ · ‖W 1,p
0 (Ω).

6. We denote by C∞0 (Ω) the set of smooth compactly supported functions in Ω.

7. We denote by B(x0, R) a ball of center x0 and radius R.

8. We denote by L(E) the Lebesgue measure of the set E ⊂ Rn.

2 Proofs of the results

In the next section we shall prove the main results of the paper.

2.1 Proof of Theorem 1.1

First, we have the following weak comparison principle in small sub-domains Ω0 of
Ω.

Proposition 2.1 Assume that u, v ∈ C1(Ω) and ũ, ṽ ∈ C1(Ω) are solutions to (1.4).
Let Ω0 be a bounded smooth domain of RN such that Ω0 ⊂ Ω. Then there exists a
positive number δ, depending upon f, g, ‖u‖∞, ‖v‖∞, ‖ũ‖∞, ‖ṽ‖∞, such that if

L(Ω0) ≤ δ, u ≤ ũ on ∂Ω0, v ≤ ṽ on ∂Ω0,

then
u ≤ ũ on Ω0, v ≤ ṽ on Ω0.

Proof. We consider four different cases:

1. p > 2 and m > 2;

2. p ≤ 2 and m > 2;

3. p > 2 and m ≤ 2;

4. p < 2 and m < 2.

We will show that the result follows in cases (1) and (2), the others cases being
similar. We will denote by C a generic positive constant, which may change from
line to line throughout the proof.
Case 1. (p > 2 and m > 2). Let us set

U = (u− ũ)+ and V = (v − ṽ)+.
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We will prove the result by showing that, actually, it holds U ≡ V ≡ 0. Since
both u ≤ ũ on ∂Ω0 and v ≤ ṽ on ∂Ω0 then the functions U, V belong to W 1,p

0 (Ω0).
Therefore, let us consider the variational formulations of the equations of (1.4).

∫

Ω

|∇u|p−2(∇u,∇ϕ)dx =
∫

Ω

f(u, v)ϕdx, ∀ϕ ∈ C∞c (Ω), (1.7)
∫

Ω

|∇ũ|p−2(∇ũ,∇ϕ)dx =
∫

Ω

f(ũ, ṽ)ϕdx, ∀ϕ ∈ C∞c (Ω), (1.8)
∫

Ω

|∇v|m−2(∇v,∇ϕ)dx =
∫

Ω

g(u, v)ϕdx, ∀ϕ ∈ C∞c (Ω), (1.9)
∫

Ω

|∇ṽ|m−2(∇ṽ,∇ϕ)dx =
∫

Ω

g(ũ, ṽ)ϕdx, ∀ϕ ∈ C∞c (Ω). (1.10)

By a density argument, we can put respectively ϕ = U in equations (1.7) and (1.8)
and ϕ = V in equations (1.9) and (1.10). Subtracting, we get
∫

Ω0

(|∇u|p−2∇u− |∇ũ|p−2∇ũ,∇(u− ũ)+
)
dx =

∫

Ω0

[f(u, v)− f(ũ, ṽ)](u− ũ)+dx,

(1.11)∫

Ω0

(|∇v|m−2∇v − |∇ṽ|m−2∇ṽ,∇(v − ṽ)+
)
dx =

∫

Ω0

[g(u, v)− g(ũ, ṽ)](v − ṽ)+dx.

(1.12)

Now we use the following standard estimate

(|η|q−2η − |η′|q−2η′, η − η′) ≥ C(|η|+ |η′|)q−2|η − η′|2,
for all η, η′ ∈ RN with |η| + |η′| > 0 and q > 1, from equations (1.11) and (1.12)
one has that

∫

Ω0

(|∇u|+ |∇ũ|)p−2|∇(u− ũ)+|2dx ≤ C

∫

Ω0

[f(u, v)− f(ũ, ṽ)](u− ũ)+dx, (1.13)
∫

Ω0

(|∇v|+ |∇ṽ|)m−2|∇(v − ṽ)+|2dx ≤ C

∫

Ω0

[g(u, v)− g(ũ, ṽ)](v − ṽ)+dx. (1.14)

Since f is locally lipschitz continuous and {t 7→ f(s, t)} is nondecreasing, from
equation (1.13) it follows

∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx ≤ C

∫

Ω0

[f(u, v)− f(ũ, v)
u− ũ

]
((u− ũ)+)2dx

+ C

∫

Ω0

[f(ũ, v)− f(ũ, ṽ)
(v − ṽ)+

]
(u− ũ)+(v − ṽ)+dx

≤ C
(∫

Ω0

((u− ũ)+)2dx +
∫

Ω0

(u− ũ)+(v − ṽ)+dx
)

≤ C
(∫

Ω0

((u− ũ)+)2dx +
∫

Ω0

((v − ṽ)+)2dx
)
, (1.15)
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where, of course, in the last inequality we have used Young’s inequality. Arguing
in the same fashion, since g is locally lipschitz continuous and {s 7→ g(s, t)} is
nondecreasing, from equation (1.14) one deduces
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx ≤ C
( ∫

Ω0

((u− ũ)+)2dx +
∫

Ω0

((v − ṽ)+)2dx
)
. (1.16)

We know that a weighted Poincaré inequality holds true (cf. [8]), that yields
∫

Ω0

((u− ũ)+)2dx ≤ C1(Ω0)
∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx, (1.17)
∫

Ω0

((v − ṽ)+)2dx ≤ C2(Ω0)
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx, (1.18)

where C1(Ω0) → 0, when L(Ω0) → 0, as well as C2(Ω0) → 0, for L(Ω0) → 0. In
turn, by combining inequalities (1.15) and (1.16), and setting

CΩ0 = C max{C1(Ω0), C2(Ω0)},
we conclude that

∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx ≤ CΩ0

(∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx

+
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx
)
,

∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx ≤ CΩ0

(∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx

+
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx
)
.

By adding these equations, and setting

I(Ω0) =
∫

Ω0

|∇u|p−2|∇(u− ũ)+|2dx +
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx,

we obtain
I(Ω0) ≤ CΩ0I(Ω0). (1.19)

Now, we choose the value of δ > 0 so small that the condition L(Ω0) ≤ δ implies
CΩ0 < 1. Therefore, from equation (1.19), we get the desired contradiction. In
turn, we get

(u− ũ)+ ≡ 0 and (v − ṽ)+ ≡ 0,

concluding the proof in this case.

Case 2. (p ≤ 2 and m > 2). Since p ≤ 2 and u ∈ C1,α(Ω), then equation (1.13)
gives ∫

Ω0

|∇(u− ũ)+|2dx ≤ C

∫

Ω0

[f(u, v)− f(ũ, ṽ)](u− ũ)+dx. (1.20)
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Then, arguing as in the previous case, since f(s, t) is locally lipschitz continuous and
nondecreasing in t, via the standard Poincaré inequality and the weighted Poincaré
inequality (1.18), from inequality (1.20) one has
∫

Ω0

|∇(u− ũ)+|2dx ≤ CC1(Ω0)
( ∫

Ω0

|∇(u− ũ)+|2 +
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx
)
.

In the very same way, one gets
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx

≤ CC2(Ω0)
( ∫

Ω0

|∇(u− ũ)+|2dx +
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx
)
.

Adding these equations, setting

J(Ω0) =
∫

Ω0

|∇(u− ũ)+|2 +
∫

Ω0

|∇v|m−2|∇(v − ṽ)+|2dx,

yields immediately
J(Ω0) ≤ CΩ0J(Ω0).

Arguing as before for the case where p,m > 2, by choosing δ sufficiently small that
CΩ0 < 1, we get the desired contradiction, concluding the proof.

Let us now recall the fundamental ingredients of the moving plane method. Let
Ω be a bounded smooth domain contained in RN . Let us consider a direction, say
x1 for example. We set

Tλ := {x ∈ RN : x1 = λ}.
Given x ∈ RN and λ < 0 for semplicity, we define

xλ := (2λ− x1, x2, . . . , xN ), uλ(x) := u(xλ),

vλ(x) := v(xλ), Ωλ :=
{
x ∈ Ω : x1 < λ

}
.

We also set

Λ := sup
{
λ ∈ R : x ∈ Ωt implies xλ ∈ Ω for all t ≤ λ

}
, a := inf

x∈Ω
x1. (1.21)

Zu,λ := {x ∈ Ωλ : ∇u(x) = ∇uλ(x) = 0}, Zv,λ := {x ∈ Ωλ : ∇v(x) = ∇vλ(x) = 0}.
Proposition 2.2 Assume that (1.2) and (1.3) hold, and 1 < p, m < ∞.
Let (u, v) ∈ C1,α(Ω)×C1,α(Ω) be a solution to system (1.4) and let Λ be as in (1.21).
Then, for any a ≤ λ ≤ Λ, we have

u(x) ≤ uλ(x) and v(x) ≤ vλ(x), for all x ∈ Ωλ. (1.22)

Moreover, for any λ such that a < λ < Λ, we have

u(x) < uλ(x), for all x ∈ Ωλ \ Zu,λ, (1.23)
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and
v(x) < vλ(x), for all x ∈ Ωλ \ Zv,λ. (1.24)

Finally, we have
∂u

∂x1
(x) ≥ 0, for all x ∈ ΩΛ, (1.25)

where Zu = {x ∈ Ω : ∇u(x) = 0}, and

∂v

∂x1
(x) ≥ 0, for all x ∈ ΩΛ. (1.26)

Proof. For a < λ < Λ and λ sufficiently close to a, we assume that L(Ωλ) is as
small as we need. In particular, we may assume that Proposition 2.1 works with
Ω0 = Ωλ. Therefore, we set

Wλ := u− uλ and Hλ := v − vλ,

and we observe that, by construction, we have

Wλ ≤ 0 on ∂Ωλ and Hλ ≤ 0 on ∂Ωλ.

In turn, by Proposition 2.1, it follows that

Wλ ≤ 0 in Ωλ and Hλ ≤ 0 in Ωλ.

We now define the set

Λu,v
0 =

{
λ > a : u ≤ ut and v ≤ vt for all t ∈ (a, λ]

}
. (1.27)

and
λ0 = supΛu,v

0 . (1.28)

Note that by continuity, we have u ≤ uλ0 and v ≤ vλ0 . We have to show that
actually λ0 = Λ. Hence, assume that by contradiction λ0 < Λ and argue as follows.
Let A be an open set such that

Zu ∩ Ωλ0 ⊂ A ⊂ Ωλ0 ,

Zv ∩ Ωλ0 ⊂ A ⊂ Ωλ0 .

Note that since |Zu| = |Zv| = 0 (see [10, Theorem 2.2] and the references therein),
we can choose A as small as we like. Notice now that, since f and g are locally
Lipschitz continuous, there exists a positive constant Λ such that

∂f

∂s
(s, t) + Λ ≥ 0, and

∂g

∂t
(s, t) + Λ ≥ 0, for all s, t > 0. (1.29)

Furthermore, ∂f
∂t (s, t) and ∂g

∂s (s, t) are non-negative for s, t > 0, by assumption.
Consequently,

−∆pu + Λu = f(u, v) + Λu ≤ f(uλ, vλ) + Λuλ = −∆puλ + Λuλ, (1.30)
−∆mv + Λv = g(u, v) + Λv ≤ g(uλ, vλ) + Λvλ = −∆mvλ + Λvλ, (1.31)
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for any a ≤ λ ≤ λ0. In light of (1.30)-(1.31), we are able to write





−∆pu + Λu ≤ −∆puλ + Λuλ in Ωλ,

u ≤ uλ in Ωλ,

−∆mv + Λv ≤ −∆mvλ + Λvλ in Ωλ,

v ≤ vλ in Ωλ.

(1.32)

Then, by (1.32), and a strong comparison principle [7, Theorem 1.4], we get

u < uλ0 or u ≡ uλ0 ,

in any connected component of Ωλ0 \ Zu, and

v < vλ0 or v ≡ vλ0 ,

in any connected component of Ωλ0 \ Zu. We claim that

The case u ≡ uλ0 in some connected component C of Ωλ0 \ Zu is not possible.

In fact, by construction, it is ∂C \ Tλ0 ⊆ Zu. If u ≡ uλ0 , also the reflection of
∂C \Tλ0 with respect to Tλ0 in contained in Zu. Consequently Ω \Zu would not be
connected, which is a contradiction (see [8, 9]). Consequently

u < uλ0 , (1.33)

in any connected component of Ωλ0 \ Zu. In the very same way, we get

v < vλ0 (1.34)

in any connected component of Ωλ0 \ Zv. Consider now a compact set K in Ωλ0

such that L(Ωλ0 \K) is sufficiently small so that Proposition 2.1 can be applied. By
what we proved before, uλ0 −u and vλ0 −v are positive in K \A, which is compact.
Then, by continuity, we find ε > 0 such that, λ0 + ε < Λ and for λ < λ0 + ε we
have that L(Ωλ \ (K \ A)) is still sufficiently small as before, and uλ − u > 0 in
K \A, vλ − v > 0 in K \A. In particular uλ − u > 0 and vλ − v > 0 on ∂(K \A).
Consequently u ≤ uλ and v ≤ vλ on ∂(Ωλ \ (K \A)). By Proposition 2.1 it follows
u ≤ uλ and v ≤ vλ in Ωλ \ (K \ A) and, consequently in Ωλ, which contradicts
the assumption λ0 < Λ. Therefore λ0 ≡ Λ and the thesis is proved. The proof
of (1.23) and (1.24) follows by the strong comparison theorem exploited as above
immediately as above, see (1.33) and (1.34). Finally (1.25) and (1.26) follow by the
monotonicity of the solution, which is implicit in the above arguments.

2.2 Proof of Theorem 1.2

First, we give the following definition (cf. [8, 9, 10]).
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Definition 2.1 Let ρ ∈ L1(Ω) and 1 ≤ q < ∞. The space H1,q
ρ (Ω) is defined as

the completion of C1(Ω) (or C∞(Ω)) under the norm

‖v‖H1,q
ρ

= ‖v‖Lq(Ω) + ‖∇v‖Lq(Ω,ρ), (1.35)

where

‖∇v‖q
Lp(Ω,ρ) :=

∫

Ω

|∇v(x)|qρ(x)dx.

We also recall that H1,q
ρ (Ω) may be equivalently defined as the space of functions

having distributional derivatives represented by a function for which the norm de-
fined in (1.35) is bounded. These two definitions are equivalent if the domain has
piecewise regular boundary.

If (u, v) ∈ C1(Ω)× C1(Ω) is a weak solution of (1.4), then we have

L(u,v)((uxi
, vxj

), (ϕ,ψ)) ≡ (L1
(u,v)((uxi

, vxj
), (ϕ,ψ)), L2

(u,v)((uxi
, vxj

), (ϕ,ψ)),

where we have set, for 1 < p,m < ∞,

L1
(u,v)((uxi , vxj ), (ϕ,ψ))

=
∫

Ω

|∇u|p−2(∇uxi ,∇ϕ) + (p− 2)
∫

Ω

|∇u|p−4(∇u,∇uxi)(∇u,∇ϕ)

−
∫

Ω

[∂f

∂s
(u, v)uxi +

∂f

∂t
(u, v)vxi

]
ϕdx,

L2
(u,v)((uxi , vxj ), (ϕ,ψ))

=
∫

Ω

|∇v|m−2(∇vxi ,∇ψ) + (m− 2)
∫

Ω

|∇v|m−4(∇v,∇vxi)(∇v,∇ψ)

−
∫

Ω

[∂g

∂s
(u, v)uxi +

∂g

∂t
(u, v)vxi

]
ψ dx,

for any ϕ,ψ ∈ C1
0 (Ω). Moreover, the following equation holds

L(u,v)((uxi , vxj ), (ϕ,ψ)) = 0, for all (ϕ,ψ) in H1,2
0,ρu

(Ω)×H1,2
0,ρv

(Ω), (1.36)

and all i, j = 1, . . . , N , where

ρu(x) := |∇u(x)|p−2, ρv(x) := |∇v(x)|m−2.

More generally, if (w, h) ∈ H1,2
ρu

(Ω) × H1,2
ρv

(Ω), we can define L(u,v)((w, h), (ϕ,ψ))
as above.

An immediate consequence is the following
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Theorem 2.1 Assume that (1.2) and (1.3) hold and that 2N+2
N+2 < p, m < ∞. Let

(w, h) ∈ H1,2
ρu
∩ C(Ω)×H1,2

ρv
∩ C(Ω)

be a nonnegative weak solutions of

L(u,v)((w, h), (ϕ,ψ)) = 0, ∀ϕ, ψ ∈ C1
0 (Ω).

Then, for any domain Ω′ ⊂ Ω with w ≥ 0 in Ω′ and h ≥ 0 in Ω′, one of the following
four cases occurs

(i) w > 0 and h ≡ 0 in Ω′;

(ii) w > 0 and h > 0 in Ω′;

(iii) w ≡ 0 and h > 0 in Ω′;

(iv) w ≡ 0 and h ≡ 0 in Ω′.

Proof. In light of (1.3), we have ∂f
∂t (s, t) and ∂g

∂s (s, t) are non-negative for s, t > 0.
Then, taking into account (1.29), it follows that w and h are nonnegative functions
solving the inequalities∫

Ω

|∇u|p−2(∇w,∇ϕ) + (p− 2)
∫

Ω

|∇u|p−4(∇u,∇w)(∇u,∇ϕ) dx +
∫

Ω

Λwϕ dx ≥ 0,

∫

Ω

|∇v|m−2(∇h,∇ψ) + (m− 2)
∫

Ω

|∇v|m−4(∇v,∇h)(∇v,∇ψ) dx +
∫

Ω

Λvψ dx ≥ 0,

for all nonnegative test functions ϕ and ψ, where Λ is the constant appearing in
(1.29). Therefore, we can apply [9, Theorem 1.1] to w and to h separately obtaining
that, for every s > 1 sufficiently close to 1, there exist positive constants C1, C2 such
that

‖w‖Ls(B(x,2δ)) ≤ C1 inf
B(x,δ)

w and ‖h‖Ls(B(x,2δ)) ≤ C2 inf
B(x,δ)

h. (1.37)

Then, in turn, the sets {x ∈ Ω′ : w(x) = 0} and {x ∈ Ω′ : h(x) = 0} are both closed
(by continuity) and open (via inequalitites (1.37)) in the domain Ω′, yielding the
assertion.

We have the following

Proposition 2.3 Let (u, v) ∈ C1,α(Ω)×C1,α(Ω) be a solution to system (1.4) and
let Λ be as in (1.21). Assume that (1.2) and (1.3) hold and that 2N+2

N+2 < p,m < ∞.
Then, for any a ≤ λ ≤ Λ, we have

u(x) < uλ(x) and v(x) < vλ(x), for all x ∈ ΩΛ. (1.38)

∂u

∂x1
(x) > 0, for all x ∈ ΩΛ, (1.39)

∂v

∂x1
(x) > 0, for all x ∈ ΩΛ. (1.40)

Proof. To prove (1.38) it is sufficient to apply equations (1.30) and (1.32). Instead to
get (1.39) and (1.40) we use equations (1.25) and (1.26), together with Theorem 2.1.
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2.3 Proof of Theorem 1.3

For any given x ∈ R, by Hopf boundary Lemma, (see [14]), it follows that

uy(x, 0) =
∂u

∂y
(x, 0) > 0 and vy(x, 0) =

∂v

∂y
(x, 0) > 0.

We can therefore fix x0 and r such that

∂u

∂y
(x, y) ≥ γ > 0,

∂v

∂y
(x, y) ≥ γ > 0 for all (x, y) ∈ B2r(x0) ∩ {y ≥ 0}, (1.41)

for some γ > 0. Now, it follows that, for λ ≤ r fixed, we have ∂u
∂y (x0, y) > 0 and

∂v
∂y (x0, y) > 0, provided 0 ≤ y ≤ λ and for every 0 < λ′ ≤ λ we get u(x0, y) <

u(x0, 2λ′ − y) and v(x0, y) < v(x0, 2λ′ − y), provided that y ∈ [0, λ′). Therefore we
can exploit Theorem 2.2 in the appendix and get that for every 0 < λ′ ≤ λ we have
u(x0, y) < u(x0 , 2λ′−y) and v(x0, y) < v(x0 , 2λ′−y) in Σλ′ ≡ {(x, y) : 0 < y < λ′}.
Let us set

Λ = {λ ∈ R+ : u < uλ′ and v < vλ′ in Σλ′ , for all λ′ ≤ λ},

λ̄ = sup Λ.

We will prove the theorem, proving that λ̄ = ∞. Note that, by continuity
u ≤ uλ̄ and v ≤ vλ̄ in Σλ̄ and also u < uλ̄ and v < vλ̄, by the strong comparison
principle. Moreover by the above arguments we have ∂u

∂y (x, y) ≥ 0 and ∂u
∂y (x, y) ≥ 0

in Σλ̄. Furthermore, by the strong maximum principle for the linearized operator
(see Theorem 2.1), it follows that

∂u

∂y
(x, y) > 0 and

∂v

∂y
(x, y) > 0,

in Σλ̄. To prove that λ̄ = ∞, let us argue by contradiction, and assume λ̄ < ∞.
First of all let us show that there exists some x̄ ∈ R such that

∂u

∂y
(x̄ , λ̄) > 0 and

∂v

∂y
(x̄ , λ̄) > 0.

Note that by continuity ∂u
∂y (x, λ̄), ∂v

∂y (x, λ̄) ≥ 0.
Let us first show that there exists a point x0 where ∂u

∂y (x0 , λ̄) > 0. To prove
this we argue by contradiction and assume that

∂u

∂y
(x , λ̄) = 0

for every x ∈ R. Now, consider the function u?(x, y) defined in Σ2λ̄ by

u?(x, y) ≡
{

u(x, y) if 0 ≤ y ≤ λ̄,
u(x, 2λ̄− y) if λ̄ ≤ y ≤ 2λ̄,
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and consider the function u?(x, y) defined in Σ2λ̄ by

u?(x, y) ≡
{

u(x, 2λ̄− y) if 0 ≤ y ≤ λ̄,

u(x, y) if λ̄ ≤ y ≤ 2λ̄.

Note that u? is the even reflection of u|Σλ̄
and u? is the even reflection of u|Σ2λ̄\Σλ̄

.
Also let v? and v? defined in a similar fashion.

Since we are assuming that ∂u
∂y (x , λ̄) = 0 for every x ∈ R, it follows that u? and

u? are C1 solutions of −∆mu? = f(u?, v?) and −∆mu? = f(u?, v?) respectively.
Since by definition u < uλ̄ and v < vλ̄ in Σλ̄, we have

u? ≤ u? and v? ≤ v?

in Σ2λ̄. Also u? does not coincide with u? because of the strict inequality u < uλ̄

in Σλ̄. Also, arguing as in (1.30) (see also (1.31)), we find Λ > 0 sufficiently large
such that

−∆pu? + Λu? ≤ −∆pu
? + Λu?.

Since u?(x, λ̄) = u?(x, λ̄) for any x ∈ R, by the strong comparison principle (see
[9, Theorem 1.4]) it would follow that u? ≡ u? in Σ2λ̄. This contradiction actually
proves that there exists some x0 ∈ R such that ∂u

∂y (x0 , λ̄) > 0.

Let now x0 ∈ R such that ∂u
∂y (x0 , λ̄) > 0, and consider an interval [x0−δ ; x0+δ]

where uy is still strictly positive. We claim that there exists x̄ ∈ [x0−δ ; x0+δ] such
that ∂v

∂y (x̄ , λ̄) > 0. To prove this, assume by contradiction that ∂v
∂y (x , λ̄) = 0 for

every x ∈ [x0 − δ ; x0 + δ] and consider v? and v? as above. Exploiting the strong
comparison principle exactly as above in {(x, y) |x ∈ [x0 − δ ; x0 + δ]}, we get a
contradiction. Therefore we conclude that there exists a x̄ such that ∂v

∂y (x̄ , λ̄) > 0.
For such x̄ we therefore have

∂u

∂y
(x̄ , λ̄) > 0 and

∂v

∂y
(x̄ , λ̄) > 0.

Since now we have proved that ∂u
∂y (x0 , y) > 0 and ∂v

∂y (x0 , y) > 0 for every y ∈ [0, λ̄],
it follows that we can find ε > 0 such that

a) ∂u
∂y (x0 , y) > 0 and ∂v

∂y (x0 , y) > 0 for every y ∈ [0, λ̄ + ε]

b) For every 0 < λ′ ≤ λ̄ + ε we get u(x0, y) < u(x0 , 2λ′ − y) and v(x0, y) <
v(x0 , 2λ′ − y) provided that y ∈ [0 , λ′).

Note that a) follows easily by the continuity of the derivatives. The proof of b) is
standard in the moving plane technique. By Theorem 2.2 we now get that u < uλ′

and v < vλ′ for every 0 < λ′ < λ̄ + ε which implies supΛ > λ̄, a contradiction.
Therefore λ̄ = ∞.
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Appendix

We state and prove here a theorem which follows some ideas contained in [11]. For
the readers convenience we provide a blueprint of the proof, which is also based on
Proposition 2.1.

Theorem 2.2 Assume that (1.2) and (1.3) hold, and let (u, v) be a weak C1,α
loc (H)×

C1,α
loc (H) solution of (1.6). Assume that 3

2 < p, m < ∞. Let x0 ∈ R and λ ∈ R
fixed, and assume that

a) ∂u
∂y (x0 , y) > 0 and ∂v

∂y (x0 , y) > 0 for every y ∈ [0, λ]

b) For every 0 < λ′ ≤ λ we have u(x0, y) < u(x0 , 2λ′ − y) and v(x0, y) <
v(x0 , 2λ′ − y) (that is u < uλ′ , v < vλ′) provided that y ∈ [0 , λ′).

Then, for every 0 < λ′ ≤ λ and (x, y) ∈ Σλ′ , it follows that

u(x , y) < u(x , 2λ′ − y) and v(x , y) < v(x , 2λ′ − y).

Proof. Let Lθ be the vector (cos θ, sin θ) and Vθ the vector orthogonal to Lθ such
that (Vθ, e2) ≥ 0. We define Lx0,s,θ the line parallel to Lθ passing through (x0, s).
We define Tx0,s,θ as the triangle delimited by Lx0,s,θ, {y = 0} and {x = x0}, and we
set ux0,s,θ(x) = u(Tx0,s,θ(x)) and vx0,s,θ(x) = v(Tx0,s,θ(x)), where Tx0,s,θ(x) is the
point symmetric to x, w.r.t. Lx0,s,θ. It is well known that ux0,s,θ and vx0,s,θ still
are solutions of our system. Also for simplicity we set ux0,s,0 = us and vx0,s,0 = vs.
Let us now consider x0 ∈ R and λ ∈ R fixed as in the statement. We have the
following

Claim 1. There exists δ > 0 such that for any −δ ≤ θ ≤ δ and for any 0 < λ′ ≤ λ+δ
we have u(x0, y) < ux0,λ′,θ(x0, y) and v(x0, y) < vx0,λ′,θ(x0, y) for every 0 ≤ y < λ′.

We argue by contradiction. If the claim were false, we could find a sequence of
δn converging to 0 and −δn ≤ θn ≤ δn, 0 < λn ≤ λ + δn, 0 ≤ yn < λn such that

u(x0, yn) ≥ ux0,λn,θn(x0, yn) or v(x0, yn) ≥ vx0,λn,θn(x0, yn).

For a sequence yn, eventually considering a subsequence, we may assume that
u(x0, yn) ≥ ux0,λn,θn(x0, yn) for any n ∈ N or v(x0, yn) ≥ vx0,λn,θn(x0, yn) for
any n ∈ N. Let us assume that u(x0, yn) ≥ ux0,λn,θn(x0, yn) for any n ∈ N. At
the limit, eventually considering subsequences, we may assume that λn converges
to λ̃ ≤ λ. In addition yn converges to ỹ for some ỹ ≤ λ̃. Let us show that ỹ = λ̃.
If λ̃ = 0 it also follows ỹ = λ̃ = 0 since 0 ≤ yn < λn. If instead λ̃ > 0, by con-
tinuity it follows that u(x0, ỹ) ≥ uλ̃(x0, ỹ). Consequently yn converges to λ̃ = ỹ
since we know that u < uλ′ for all λ′ ≤ λ̄ in Σλ′ . By the mean value theorem
since u(x0, yn) ≥ ux0,λn,θn(x0, yn), it follows that ∂u

∂Vθn
(x̃n, ỹn) ≤ 0 at some point

ξn ≡ (x̃n, ỹn) lying on the line from (x0, yn) to Tx0,λn,θn(x0, yn). We recall that the
vector Vθn is orthogonal to the line Lx0,λn,θn and Vθn converges to e2 since θn goes
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to 0. Passing to the limit it follows that ∂u
∂y (x0, λ̃) ≤ 0 which is impossible by the

assumptions, proving the claim.
Let δ be the value provided by Claim 1.

Claim 2. There is ρ = ρ(δ) such that, for any 0 < s ≤ ρ, the following inequalities
hold: u < ux0,s,δ in Tx0,s,δ (u < ux0,s,−δ in Tx0,s,−δ) and v < vx0,s,δ in Tx0,s,δ

(v < vx0,s,−δ in Tx0,s,−δ).

We prove that we can find ρ = ρ(δ) such that, for every 0 < s ≤ ρ, it follows
u < ux0,s,δ in Tx0,s,δ and v < vx0,s,δ in Tx0,s,δ. If we replace δ by −δ the proof is
exactly the same. To prove this, we can set ρ in such a way that

(i) ρ < λ, where λ is given in the statement.

(ii) For every 0 < s ≤ ρ we have u ≤ ux0,s,δ on ∂(Tx0,s,δ) and v ≤ vx0,s,δ on
∂(Tx0,s,δ).

(iii) For ρ small enough and 0 < s ≤ ρ, L(Tx0,s,δ) is so small to exploit Proposition
2.1.

Therefore, given any 0 < s ≤ ρ, if we consider wx0,s,δ = u − ux0,s,δ and hx0,s,δ =
v − vx0,s,δ, we have that wx0,s,δ ≤ 0 and hx0,s,δ ≤ 0 on ∂Tx0,s,δ and therefore, by
Proposition 2.1, we get wx0,s,δ ≤ 0 and hx0,s,δ ≤ 0 in Tx0,s,δ. Also, by the strong
comparison principle exploited as above (see (1.32) and (1.30)), it follows that the
strict inequalities hold. This concludes the proof of Claim 2.

Consider now the values ρ and δ provided by the Claims. Consider 0 < λ′ ≤ λ
and let us fix 0 < s̄ < min{ρ, λ′} so that by Claim 2 we have wx0,s̄,δ < 0 and
hx0,s̄,δ < 0 in Tx0,s̄,δ. We now define the continuous function g(t) = (s(t), θ(t)) :
[0, 1] → R2, by s(t) = (tλ′ + (1 − t)s̄ and θ(t) = (1 − t)δ, so that g(0) = (s̄, δ),
g(1) = (λ′, 0) and θ(t) 6= 0 for every t ∈ [0, 1). Moreover Claim 1 yields wx0,s̄,δ ≤ 0
and hx0,s,δ ≤ 0 on ∂(Tx0,s(t),θ(t)) for every t ∈ [0, 1). Also wx0,s(t),θ(t) and hx0,s,δ

are not identically zero on ∂(Tx0,s(t),θ(t)), for every t ∈ [0, 1). We now let

T = {t̃ ∈ [0, 1] such that wx0,s̄,δ ; hx0,s,δ < 0 in Tx0,s(t),θ(t) for every 0 ≤ t ≤ t̃},
and t̄ = sup T , where, possibly, t̄ = 0. Exploiting the moving-rotating plane tech-
nique as in [11] it follows that t̄ = 1, concluding the proof.

References

[1] C. Azizieh, P. Clément, E. Mitidieri, Existence and a priori estimates for positive
solutions of p-Laplace systems, J. Differential Equations 184 (2002), 422–442, .

[2] N. Alikakos, L.C. Evans, Continuity of the gradient for weak solutions of a degenerate
parabolic equation, J. Math. Pures Appl. 62 (1983), 253–268.

[3] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic
equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997),
69–94.



Symmetry for nonvariational quasi-linear elliptic systems 955

[4] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method,
Bulletin Soc. Brasil. de Mat Nova Ser 22 (1991), 1–37.

[5] J. Busca, B. Sirakov, Symmetry results for semilinear elliptic systems in the whole
space, J. Differential Equations 163 (2000), 41–56.

[6] P. Clément, J. Fleckinger, E. Mitidieri, F. de Thélin, Existence of positive solutions
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