welcome: please sign in
location: KnightTour

Knight Tour

Problem Description

Find a tour for the knight piece that starts at any square, travels all squares but the forbidden ones (representing holes on the board), and comes back to the origin, following the rules of chess.


Input format

The input file contains one atom size(N), which states that the chess board size is N*N and a number of atoms forbidden(X1,Y1). The rows of the board are numbered 1, 2, and so on up to N from top to bottom, and the columns are numbered 1, 2, and so on up to N from left to right. Each square can thus be represented by a unique pair of coordinates.

Output format

The output is a tour defined as a predicate

move(X1,Y1,X2,Y2). move(X2,Y2,X3,Y3). ... move(Xn,Yn,X1,Y1).

where each atom represents a valid move of the knight, all the squares are connected, and the last move brings the knight back to the origin. Moreover, no move ends onto a forbidden square.


A given input might be:


forbidden(1,9). forbidden(2,9). forbidden(3,9). forbidden(4,9). forbidden(5,9). forbidden(6,9). forbidden(7,9). forbidden(8,9). forbidden(9,9).

forbidden(9,1). forbidden(9,2). forbidden(9,3). forbidden(9,4). forbidden(9,5). forbidden(9,6). forbidden(9,7). forbidden(9,8). forbidden(9,9).

Resulting in the following output:

move(1,1,2,3). move(1,2,3,1). move(1,3,3,2). move(1,4,3,3). move(1,5,2,7). move(1,6,2,4). move(1,7,3,6). move(1,8,2,6). move(2,1,1,3). move(2,2,4,3). move(2,3,4,4). move(2,4,1,2). move(2,5,3,7). move(2,6,3,8). move(2,7,4,8). move(2,8,1,6). move(3,1,5,2). move(3,2,1,1). move(3,3,2,1). move(3,4,1,5). move(3,5,1,4). move(3,6,5,5). move(3,7,1,8). move(3,8,1,7). move(4,1,2,2). move(4,2,5,4). move(4,3,5,1). move(4,4,2,5). move(4,5,6,6). move(4,6,3,4). move(4,7,2,8). move(4,8,5,6). move(5,1,7,2). move(5,2,7,1). move(5,3,4,1). move(5,4,7,3). move(5,5,7,6). move(5,6,3,5). move(5,7,4,5). move(5,8,4,6). move(6,1,5,3). move(6,2,7,4). move(6,3,4,2). move(6,4,8,5). move(6,5,8,6). move(6,6,8,7). move(6,7,7,5). move(6,8,4,7). move(7,1,8,3). move(7,2,8,4). move(7,3,8,1). move(7,4,8,2). move(7,5,6,3). move(7,6,8,8). move(7,7,5,8). move(7,8,5,7). move(8,1,6,2). move(8,2,6,1). move(8,3,6,4). move(8,4,6,5). move(8,5,7,7). move(8,6,7,8). move(8,7,6,8). move(8,8,6,7).

Additional sample instances: download

Problem Peculiarities

Type: Search Competition: System Track

Notes and Updates


ASP Competition 2013: KnightTour (last edited 2013-03-14 22:26:43 by FrancescoCalimeri)